Fix last sector write on sd card
[qemu/agraf.git] / target-arm / helper.c
blobae4f334e40a5b4c1725f1ec077088766d6fb9d09
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
5 #include "cpu.h"
6 #include "gdbstub.h"
7 #include "helper.h"
8 #include "qemu-common.h"
9 #include "host-utils.h"
10 #if !defined(CONFIG_USER_ONLY)
11 #include "hw/loader.h"
12 #endif
14 static uint32_t cortexa9_cp15_c0_c1[8] =
15 { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
17 static uint32_t cortexa9_cp15_c0_c2[8] =
18 { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
20 static uint32_t cortexa8_cp15_c0_c1[8] =
21 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
23 static uint32_t cortexa8_cp15_c0_c2[8] =
24 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
26 static uint32_t mpcore_cp15_c0_c1[8] =
27 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
29 static uint32_t mpcore_cp15_c0_c2[8] =
30 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
32 static uint32_t arm1136_cp15_c0_c1[8] =
33 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
35 static uint32_t arm1136_cp15_c0_c2[8] =
36 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
38 static uint32_t cpu_arm_find_by_name(const char *name);
40 static inline void set_feature(CPUARMState *env, int feature)
42 env->features |= 1u << feature;
45 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
47 env->cp15.c0_cpuid = id;
48 switch (id) {
49 case ARM_CPUID_ARM926:
50 set_feature(env, ARM_FEATURE_V4T);
51 set_feature(env, ARM_FEATURE_V5);
52 set_feature(env, ARM_FEATURE_VFP);
53 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
54 env->cp15.c0_cachetype = 0x1dd20d2;
55 env->cp15.c1_sys = 0x00090078;
56 break;
57 case ARM_CPUID_ARM946:
58 set_feature(env, ARM_FEATURE_V4T);
59 set_feature(env, ARM_FEATURE_V5);
60 set_feature(env, ARM_FEATURE_MPU);
61 env->cp15.c0_cachetype = 0x0f004006;
62 env->cp15.c1_sys = 0x00000078;
63 break;
64 case ARM_CPUID_ARM1026:
65 set_feature(env, ARM_FEATURE_V4T);
66 set_feature(env, ARM_FEATURE_V5);
67 set_feature(env, ARM_FEATURE_VFP);
68 set_feature(env, ARM_FEATURE_AUXCR);
69 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
70 env->cp15.c0_cachetype = 0x1dd20d2;
71 env->cp15.c1_sys = 0x00090078;
72 break;
73 case ARM_CPUID_ARM1136_R2:
74 case ARM_CPUID_ARM1136:
75 set_feature(env, ARM_FEATURE_V4T);
76 set_feature(env, ARM_FEATURE_V5);
77 set_feature(env, ARM_FEATURE_V6);
78 set_feature(env, ARM_FEATURE_VFP);
79 set_feature(env, ARM_FEATURE_AUXCR);
80 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
81 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
82 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
83 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
84 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
85 env->cp15.c0_cachetype = 0x1dd20d2;
86 env->cp15.c1_sys = 0x00050078;
87 break;
88 case ARM_CPUID_ARM11MPCORE:
89 set_feature(env, ARM_FEATURE_V4T);
90 set_feature(env, ARM_FEATURE_V5);
91 set_feature(env, ARM_FEATURE_V6);
92 set_feature(env, ARM_FEATURE_V6K);
93 set_feature(env, ARM_FEATURE_VFP);
94 set_feature(env, ARM_FEATURE_AUXCR);
95 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
96 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
97 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
98 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
99 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
100 env->cp15.c0_cachetype = 0x1dd20d2;
101 break;
102 case ARM_CPUID_CORTEXA8:
103 set_feature(env, ARM_FEATURE_V4T);
104 set_feature(env, ARM_FEATURE_V5);
105 set_feature(env, ARM_FEATURE_V6);
106 set_feature(env, ARM_FEATURE_V6K);
107 set_feature(env, ARM_FEATURE_V7);
108 set_feature(env, ARM_FEATURE_AUXCR);
109 set_feature(env, ARM_FEATURE_THUMB2);
110 set_feature(env, ARM_FEATURE_VFP);
111 set_feature(env, ARM_FEATURE_VFP3);
112 set_feature(env, ARM_FEATURE_NEON);
113 set_feature(env, ARM_FEATURE_THUMB2EE);
114 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
115 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
116 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
117 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
118 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
119 env->cp15.c0_cachetype = 0x82048004;
120 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
121 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
122 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
123 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
124 env->cp15.c1_sys = 0x00c50078;
125 break;
126 case ARM_CPUID_CORTEXA9:
127 set_feature(env, ARM_FEATURE_V4T);
128 set_feature(env, ARM_FEATURE_V5);
129 set_feature(env, ARM_FEATURE_V6);
130 set_feature(env, ARM_FEATURE_V6K);
131 set_feature(env, ARM_FEATURE_V7);
132 set_feature(env, ARM_FEATURE_AUXCR);
133 set_feature(env, ARM_FEATURE_THUMB2);
134 set_feature(env, ARM_FEATURE_VFP);
135 set_feature(env, ARM_FEATURE_VFP3);
136 set_feature(env, ARM_FEATURE_VFP_FP16);
137 set_feature(env, ARM_FEATURE_NEON);
138 set_feature(env, ARM_FEATURE_THUMB2EE);
139 /* Note that A9 supports the MP extensions even for
140 * A9UP and single-core A9MP (which are both different
141 * and valid configurations; we don't model A9UP).
143 set_feature(env, ARM_FEATURE_V7MP);
144 env->vfp.xregs[ARM_VFP_FPSID] = 0x41034000; /* Guess */
145 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
146 env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
147 memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
148 memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
149 env->cp15.c0_cachetype = 0x80038003;
150 env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
151 env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
152 env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
153 env->cp15.c1_sys = 0x00c50078;
154 break;
155 case ARM_CPUID_CORTEXM3:
156 set_feature(env, ARM_FEATURE_V4T);
157 set_feature(env, ARM_FEATURE_V5);
158 set_feature(env, ARM_FEATURE_V6);
159 set_feature(env, ARM_FEATURE_THUMB2);
160 set_feature(env, ARM_FEATURE_V7);
161 set_feature(env, ARM_FEATURE_M);
162 set_feature(env, ARM_FEATURE_DIV);
163 break;
164 case ARM_CPUID_ANY: /* For userspace emulation. */
165 set_feature(env, ARM_FEATURE_V4T);
166 set_feature(env, ARM_FEATURE_V5);
167 set_feature(env, ARM_FEATURE_V6);
168 set_feature(env, ARM_FEATURE_V6K);
169 set_feature(env, ARM_FEATURE_V7);
170 set_feature(env, ARM_FEATURE_THUMB2);
171 set_feature(env, ARM_FEATURE_VFP);
172 set_feature(env, ARM_FEATURE_VFP3);
173 set_feature(env, ARM_FEATURE_VFP_FP16);
174 set_feature(env, ARM_FEATURE_NEON);
175 set_feature(env, ARM_FEATURE_THUMB2EE);
176 set_feature(env, ARM_FEATURE_DIV);
177 set_feature(env, ARM_FEATURE_V7MP);
178 break;
179 case ARM_CPUID_TI915T:
180 case ARM_CPUID_TI925T:
181 set_feature(env, ARM_FEATURE_V4T);
182 set_feature(env, ARM_FEATURE_OMAPCP);
183 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
184 env->cp15.c0_cachetype = 0x5109149;
185 env->cp15.c1_sys = 0x00000070;
186 env->cp15.c15_i_max = 0x000;
187 env->cp15.c15_i_min = 0xff0;
188 break;
189 case ARM_CPUID_PXA250:
190 case ARM_CPUID_PXA255:
191 case ARM_CPUID_PXA260:
192 case ARM_CPUID_PXA261:
193 case ARM_CPUID_PXA262:
194 set_feature(env, ARM_FEATURE_V4T);
195 set_feature(env, ARM_FEATURE_V5);
196 set_feature(env, ARM_FEATURE_XSCALE);
197 /* JTAG_ID is ((id << 28) | 0x09265013) */
198 env->cp15.c0_cachetype = 0xd172172;
199 env->cp15.c1_sys = 0x00000078;
200 break;
201 case ARM_CPUID_PXA270_A0:
202 case ARM_CPUID_PXA270_A1:
203 case ARM_CPUID_PXA270_B0:
204 case ARM_CPUID_PXA270_B1:
205 case ARM_CPUID_PXA270_C0:
206 case ARM_CPUID_PXA270_C5:
207 set_feature(env, ARM_FEATURE_V4T);
208 set_feature(env, ARM_FEATURE_V5);
209 set_feature(env, ARM_FEATURE_XSCALE);
210 /* JTAG_ID is ((id << 28) | 0x09265013) */
211 set_feature(env, ARM_FEATURE_IWMMXT);
212 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
213 env->cp15.c0_cachetype = 0xd172172;
214 env->cp15.c1_sys = 0x00000078;
215 break;
216 case ARM_CPUID_SA1100:
217 case ARM_CPUID_SA1110:
218 set_feature(env, ARM_FEATURE_STRONGARM);
219 env->cp15.c1_sys = 0x00000070;
220 break;
221 default:
222 cpu_abort(env, "Bad CPU ID: %x\n", id);
223 break;
227 void cpu_reset(CPUARMState *env)
229 uint32_t id;
231 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
232 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
233 log_cpu_state(env, 0);
236 id = env->cp15.c0_cpuid;
237 memset(env, 0, offsetof(CPUARMState, breakpoints));
238 if (id)
239 cpu_reset_model_id(env, id);
240 #if defined (CONFIG_USER_ONLY)
241 env->uncached_cpsr = ARM_CPU_MODE_USR;
242 /* For user mode we must enable access to coprocessors */
243 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
244 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
245 env->cp15.c15_cpar = 3;
246 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
247 env->cp15.c15_cpar = 1;
249 #else
250 /* SVC mode with interrupts disabled. */
251 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
252 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
253 clear at reset. Initial SP and PC are loaded from ROM. */
254 if (IS_M(env)) {
255 uint32_t pc;
256 uint8_t *rom;
257 env->uncached_cpsr &= ~CPSR_I;
258 rom = rom_ptr(0);
259 if (rom) {
260 /* We should really use ldl_phys here, in case the guest
261 modified flash and reset itself. However images
262 loaded via -kenrel have not been copied yet, so load the
263 values directly from there. */
264 env->regs[13] = ldl_p(rom);
265 pc = ldl_p(rom + 4);
266 env->thumb = pc & 1;
267 env->regs[15] = pc & ~1;
270 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
271 env->cp15.c2_base_mask = 0xffffc000u;
272 /* v7 performance monitor control register: same implementor
273 * field as main ID register, and we implement no event counters.
275 env->cp15.c9_pmcr = (id & 0xff000000);
276 #endif
277 set_flush_to_zero(1, &env->vfp.standard_fp_status);
278 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
279 set_default_nan_mode(1, &env->vfp.standard_fp_status);
280 set_float_detect_tininess(float_tininess_before_rounding,
281 &env->vfp.fp_status);
282 set_float_detect_tininess(float_tininess_before_rounding,
283 &env->vfp.standard_fp_status);
284 tlb_flush(env, 1);
287 static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
289 int nregs;
291 /* VFP data registers are always little-endian. */
292 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
293 if (reg < nregs) {
294 stfq_le_p(buf, env->vfp.regs[reg]);
295 return 8;
297 if (arm_feature(env, ARM_FEATURE_NEON)) {
298 /* Aliases for Q regs. */
299 nregs += 16;
300 if (reg < nregs) {
301 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
302 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
303 return 16;
306 switch (reg - nregs) {
307 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
308 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
309 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
311 return 0;
314 static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
316 int nregs;
318 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
319 if (reg < nregs) {
320 env->vfp.regs[reg] = ldfq_le_p(buf);
321 return 8;
323 if (arm_feature(env, ARM_FEATURE_NEON)) {
324 nregs += 16;
325 if (reg < nregs) {
326 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
327 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
328 return 16;
331 switch (reg - nregs) {
332 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
333 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
334 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
336 return 0;
339 CPUARMState *cpu_arm_init(const char *cpu_model)
341 CPUARMState *env;
342 uint32_t id;
343 static int inited = 0;
345 id = cpu_arm_find_by_name(cpu_model);
346 if (id == 0)
347 return NULL;
348 env = qemu_mallocz(sizeof(CPUARMState));
349 cpu_exec_init(env);
350 if (!inited) {
351 inited = 1;
352 arm_translate_init();
355 env->cpu_model_str = cpu_model;
356 env->cp15.c0_cpuid = id;
357 cpu_reset(env);
358 if (arm_feature(env, ARM_FEATURE_NEON)) {
359 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
360 51, "arm-neon.xml", 0);
361 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
362 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
363 35, "arm-vfp3.xml", 0);
364 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
365 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
366 19, "arm-vfp.xml", 0);
368 qemu_init_vcpu(env);
369 return env;
372 struct arm_cpu_t {
373 uint32_t id;
374 const char *name;
377 static const struct arm_cpu_t arm_cpu_names[] = {
378 { ARM_CPUID_ARM926, "arm926"},
379 { ARM_CPUID_ARM946, "arm946"},
380 { ARM_CPUID_ARM1026, "arm1026"},
381 { ARM_CPUID_ARM1136, "arm1136"},
382 { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
383 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
384 { ARM_CPUID_CORTEXM3, "cortex-m3"},
385 { ARM_CPUID_CORTEXA8, "cortex-a8"},
386 { ARM_CPUID_CORTEXA9, "cortex-a9"},
387 { ARM_CPUID_TI925T, "ti925t" },
388 { ARM_CPUID_PXA250, "pxa250" },
389 { ARM_CPUID_SA1100, "sa1100" },
390 { ARM_CPUID_SA1110, "sa1110" },
391 { ARM_CPUID_PXA255, "pxa255" },
392 { ARM_CPUID_PXA260, "pxa260" },
393 { ARM_CPUID_PXA261, "pxa261" },
394 { ARM_CPUID_PXA262, "pxa262" },
395 { ARM_CPUID_PXA270, "pxa270" },
396 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
397 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
398 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
399 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
400 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
401 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
402 { ARM_CPUID_ANY, "any"},
403 { 0, NULL}
406 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
408 int i;
410 (*cpu_fprintf)(f, "Available CPUs:\n");
411 for (i = 0; arm_cpu_names[i].name; i++) {
412 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
416 /* return 0 if not found */
417 static uint32_t cpu_arm_find_by_name(const char *name)
419 int i;
420 uint32_t id;
422 id = 0;
423 for (i = 0; arm_cpu_names[i].name; i++) {
424 if (strcmp(name, arm_cpu_names[i].name) == 0) {
425 id = arm_cpu_names[i].id;
426 break;
429 return id;
432 void cpu_arm_close(CPUARMState *env)
434 free(env);
437 uint32_t cpsr_read(CPUARMState *env)
439 int ZF;
440 ZF = (env->ZF == 0);
441 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
442 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
443 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
444 | ((env->condexec_bits & 0xfc) << 8)
445 | (env->GE << 16);
448 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
450 if (mask & CPSR_NZCV) {
451 env->ZF = (~val) & CPSR_Z;
452 env->NF = val;
453 env->CF = (val >> 29) & 1;
454 env->VF = (val << 3) & 0x80000000;
456 if (mask & CPSR_Q)
457 env->QF = ((val & CPSR_Q) != 0);
458 if (mask & CPSR_T)
459 env->thumb = ((val & CPSR_T) != 0);
460 if (mask & CPSR_IT_0_1) {
461 env->condexec_bits &= ~3;
462 env->condexec_bits |= (val >> 25) & 3;
464 if (mask & CPSR_IT_2_7) {
465 env->condexec_bits &= 3;
466 env->condexec_bits |= (val >> 8) & 0xfc;
468 if (mask & CPSR_GE) {
469 env->GE = (val >> 16) & 0xf;
472 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
473 switch_mode(env, val & CPSR_M);
475 mask &= ~CACHED_CPSR_BITS;
476 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
479 /* Sign/zero extend */
480 uint32_t HELPER(sxtb16)(uint32_t x)
482 uint32_t res;
483 res = (uint16_t)(int8_t)x;
484 res |= (uint32_t)(int8_t)(x >> 16) << 16;
485 return res;
488 uint32_t HELPER(uxtb16)(uint32_t x)
490 uint32_t res;
491 res = (uint16_t)(uint8_t)x;
492 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
493 return res;
496 uint32_t HELPER(clz)(uint32_t x)
498 return clz32(x);
501 int32_t HELPER(sdiv)(int32_t num, int32_t den)
503 if (den == 0)
504 return 0;
505 if (num == INT_MIN && den == -1)
506 return INT_MIN;
507 return num / den;
510 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
512 if (den == 0)
513 return 0;
514 return num / den;
517 uint32_t HELPER(rbit)(uint32_t x)
519 x = ((x & 0xff000000) >> 24)
520 | ((x & 0x00ff0000) >> 8)
521 | ((x & 0x0000ff00) << 8)
522 | ((x & 0x000000ff) << 24);
523 x = ((x & 0xf0f0f0f0) >> 4)
524 | ((x & 0x0f0f0f0f) << 4);
525 x = ((x & 0x88888888) >> 3)
526 | ((x & 0x44444444) >> 1)
527 | ((x & 0x22222222) << 1)
528 | ((x & 0x11111111) << 3);
529 return x;
532 uint32_t HELPER(abs)(uint32_t x)
534 return ((int32_t)x < 0) ? -x : x;
537 #if defined(CONFIG_USER_ONLY)
539 void do_interrupt (CPUState *env)
541 env->exception_index = -1;
544 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
545 int mmu_idx, int is_softmmu)
547 if (rw == 2) {
548 env->exception_index = EXCP_PREFETCH_ABORT;
549 env->cp15.c6_insn = address;
550 } else {
551 env->exception_index = EXCP_DATA_ABORT;
552 env->cp15.c6_data = address;
554 return 1;
557 /* These should probably raise undefined insn exceptions. */
558 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
560 int op1 = (insn >> 8) & 0xf;
561 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
562 return;
565 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
567 int op1 = (insn >> 8) & 0xf;
568 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
569 return 0;
572 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
574 cpu_abort(env, "cp15 insn %08x\n", insn);
577 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
579 cpu_abort(env, "cp15 insn %08x\n", insn);
582 /* These should probably raise undefined insn exceptions. */
583 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
585 cpu_abort(env, "v7m_mrs %d\n", reg);
588 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
590 cpu_abort(env, "v7m_mrs %d\n", reg);
591 return 0;
594 void switch_mode(CPUState *env, int mode)
596 if (mode != ARM_CPU_MODE_USR)
597 cpu_abort(env, "Tried to switch out of user mode\n");
600 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
602 cpu_abort(env, "banked r13 write\n");
605 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
607 cpu_abort(env, "banked r13 read\n");
608 return 0;
611 #else
613 extern int semihosting_enabled;
615 /* Map CPU modes onto saved register banks. */
616 static inline int bank_number (int mode)
618 switch (mode) {
619 case ARM_CPU_MODE_USR:
620 case ARM_CPU_MODE_SYS:
621 return 0;
622 case ARM_CPU_MODE_SVC:
623 return 1;
624 case ARM_CPU_MODE_ABT:
625 return 2;
626 case ARM_CPU_MODE_UND:
627 return 3;
628 case ARM_CPU_MODE_IRQ:
629 return 4;
630 case ARM_CPU_MODE_FIQ:
631 return 5;
633 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
634 return -1;
637 void switch_mode(CPUState *env, int mode)
639 int old_mode;
640 int i;
642 old_mode = env->uncached_cpsr & CPSR_M;
643 if (mode == old_mode)
644 return;
646 if (old_mode == ARM_CPU_MODE_FIQ) {
647 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
648 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
649 } else if (mode == ARM_CPU_MODE_FIQ) {
650 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
651 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
654 i = bank_number(old_mode);
655 env->banked_r13[i] = env->regs[13];
656 env->banked_r14[i] = env->regs[14];
657 env->banked_spsr[i] = env->spsr;
659 i = bank_number(mode);
660 env->regs[13] = env->banked_r13[i];
661 env->regs[14] = env->banked_r14[i];
662 env->spsr = env->banked_spsr[i];
665 static void v7m_push(CPUARMState *env, uint32_t val)
667 env->regs[13] -= 4;
668 stl_phys(env->regs[13], val);
671 static uint32_t v7m_pop(CPUARMState *env)
673 uint32_t val;
674 val = ldl_phys(env->regs[13]);
675 env->regs[13] += 4;
676 return val;
679 /* Switch to V7M main or process stack pointer. */
680 static void switch_v7m_sp(CPUARMState *env, int process)
682 uint32_t tmp;
683 if (env->v7m.current_sp != process) {
684 tmp = env->v7m.other_sp;
685 env->v7m.other_sp = env->regs[13];
686 env->regs[13] = tmp;
687 env->v7m.current_sp = process;
691 static void do_v7m_exception_exit(CPUARMState *env)
693 uint32_t type;
694 uint32_t xpsr;
696 type = env->regs[15];
697 if (env->v7m.exception != 0)
698 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
700 /* Switch to the target stack. */
701 switch_v7m_sp(env, (type & 4) != 0);
702 /* Pop registers. */
703 env->regs[0] = v7m_pop(env);
704 env->regs[1] = v7m_pop(env);
705 env->regs[2] = v7m_pop(env);
706 env->regs[3] = v7m_pop(env);
707 env->regs[12] = v7m_pop(env);
708 env->regs[14] = v7m_pop(env);
709 env->regs[15] = v7m_pop(env);
710 xpsr = v7m_pop(env);
711 xpsr_write(env, xpsr, 0xfffffdff);
712 /* Undo stack alignment. */
713 if (xpsr & 0x200)
714 env->regs[13] |= 4;
715 /* ??? The exception return type specifies Thread/Handler mode. However
716 this is also implied by the xPSR value. Not sure what to do
717 if there is a mismatch. */
718 /* ??? Likewise for mismatches between the CONTROL register and the stack
719 pointer. */
722 static void do_interrupt_v7m(CPUARMState *env)
724 uint32_t xpsr = xpsr_read(env);
725 uint32_t lr;
726 uint32_t addr;
728 lr = 0xfffffff1;
729 if (env->v7m.current_sp)
730 lr |= 4;
731 if (env->v7m.exception == 0)
732 lr |= 8;
734 /* For exceptions we just mark as pending on the NVIC, and let that
735 handle it. */
736 /* TODO: Need to escalate if the current priority is higher than the
737 one we're raising. */
738 switch (env->exception_index) {
739 case EXCP_UDEF:
740 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
741 return;
742 case EXCP_SWI:
743 env->regs[15] += 2;
744 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
745 return;
746 case EXCP_PREFETCH_ABORT:
747 case EXCP_DATA_ABORT:
748 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
749 return;
750 case EXCP_BKPT:
751 if (semihosting_enabled) {
752 int nr;
753 nr = lduw_code(env->regs[15]) & 0xff;
754 if (nr == 0xab) {
755 env->regs[15] += 2;
756 env->regs[0] = do_arm_semihosting(env);
757 return;
760 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
761 return;
762 case EXCP_IRQ:
763 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
764 break;
765 case EXCP_EXCEPTION_EXIT:
766 do_v7m_exception_exit(env);
767 return;
768 default:
769 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
770 return; /* Never happens. Keep compiler happy. */
773 /* Align stack pointer. */
774 /* ??? Should only do this if Configuration Control Register
775 STACKALIGN bit is set. */
776 if (env->regs[13] & 4) {
777 env->regs[13] -= 4;
778 xpsr |= 0x200;
780 /* Switch to the handler mode. */
781 v7m_push(env, xpsr);
782 v7m_push(env, env->regs[15]);
783 v7m_push(env, env->regs[14]);
784 v7m_push(env, env->regs[12]);
785 v7m_push(env, env->regs[3]);
786 v7m_push(env, env->regs[2]);
787 v7m_push(env, env->regs[1]);
788 v7m_push(env, env->regs[0]);
789 switch_v7m_sp(env, 0);
790 env->uncached_cpsr &= ~CPSR_IT;
791 env->regs[14] = lr;
792 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
793 env->regs[15] = addr & 0xfffffffe;
794 env->thumb = addr & 1;
797 /* Handle a CPU exception. */
798 void do_interrupt(CPUARMState *env)
800 uint32_t addr;
801 uint32_t mask;
802 int new_mode;
803 uint32_t offset;
805 if (IS_M(env)) {
806 do_interrupt_v7m(env);
807 return;
809 /* TODO: Vectored interrupt controller. */
810 switch (env->exception_index) {
811 case EXCP_UDEF:
812 new_mode = ARM_CPU_MODE_UND;
813 addr = 0x04;
814 mask = CPSR_I;
815 if (env->thumb)
816 offset = 2;
817 else
818 offset = 4;
819 break;
820 case EXCP_SWI:
821 if (semihosting_enabled) {
822 /* Check for semihosting interrupt. */
823 if (env->thumb) {
824 mask = lduw_code(env->regs[15] - 2) & 0xff;
825 } else {
826 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
828 /* Only intercept calls from privileged modes, to provide some
829 semblance of security. */
830 if (((mask == 0x123456 && !env->thumb)
831 || (mask == 0xab && env->thumb))
832 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
833 env->regs[0] = do_arm_semihosting(env);
834 return;
837 new_mode = ARM_CPU_MODE_SVC;
838 addr = 0x08;
839 mask = CPSR_I;
840 /* The PC already points to the next instruction. */
841 offset = 0;
842 break;
843 case EXCP_BKPT:
844 /* See if this is a semihosting syscall. */
845 if (env->thumb && semihosting_enabled) {
846 mask = lduw_code(env->regs[15]) & 0xff;
847 if (mask == 0xab
848 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
849 env->regs[15] += 2;
850 env->regs[0] = do_arm_semihosting(env);
851 return;
854 env->cp15.c5_insn = 2;
855 /* Fall through to prefetch abort. */
856 case EXCP_PREFETCH_ABORT:
857 new_mode = ARM_CPU_MODE_ABT;
858 addr = 0x0c;
859 mask = CPSR_A | CPSR_I;
860 offset = 4;
861 break;
862 case EXCP_DATA_ABORT:
863 new_mode = ARM_CPU_MODE_ABT;
864 addr = 0x10;
865 mask = CPSR_A | CPSR_I;
866 offset = 8;
867 break;
868 case EXCP_IRQ:
869 new_mode = ARM_CPU_MODE_IRQ;
870 addr = 0x18;
871 /* Disable IRQ and imprecise data aborts. */
872 mask = CPSR_A | CPSR_I;
873 offset = 4;
874 break;
875 case EXCP_FIQ:
876 new_mode = ARM_CPU_MODE_FIQ;
877 addr = 0x1c;
878 /* Disable FIQ, IRQ and imprecise data aborts. */
879 mask = CPSR_A | CPSR_I | CPSR_F;
880 offset = 4;
881 break;
882 default:
883 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
884 return; /* Never happens. Keep compiler happy. */
886 /* High vectors. */
887 if (env->cp15.c1_sys & (1 << 13)) {
888 addr += 0xffff0000;
890 switch_mode (env, new_mode);
891 env->spsr = cpsr_read(env);
892 /* Clear IT bits. */
893 env->condexec_bits = 0;
894 /* Switch to the new mode, and to the correct instruction set. */
895 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
896 env->uncached_cpsr |= mask;
897 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
898 * and we should just guard the thumb mode on V4 */
899 if (arm_feature(env, ARM_FEATURE_V4T)) {
900 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
902 env->regs[14] = env->regs[15] + offset;
903 env->regs[15] = addr;
904 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
907 /* Check section/page access permissions.
908 Returns the page protection flags, or zero if the access is not
909 permitted. */
910 static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
911 int is_user)
913 int prot_ro;
915 if (domain == 3)
916 return PAGE_READ | PAGE_WRITE;
918 if (access_type == 1)
919 prot_ro = 0;
920 else
921 prot_ro = PAGE_READ;
923 switch (ap) {
924 case 0:
925 if (access_type == 1)
926 return 0;
927 switch ((env->cp15.c1_sys >> 8) & 3) {
928 case 1:
929 return is_user ? 0 : PAGE_READ;
930 case 2:
931 return PAGE_READ;
932 default:
933 return 0;
935 case 1:
936 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
937 case 2:
938 if (is_user)
939 return prot_ro;
940 else
941 return PAGE_READ | PAGE_WRITE;
942 case 3:
943 return PAGE_READ | PAGE_WRITE;
944 case 4: /* Reserved. */
945 return 0;
946 case 5:
947 return is_user ? 0 : prot_ro;
948 case 6:
949 return prot_ro;
950 case 7:
951 if (!arm_feature (env, ARM_FEATURE_V7))
952 return 0;
953 return prot_ro;
954 default:
955 abort();
959 static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
961 uint32_t table;
963 if (address & env->cp15.c2_mask)
964 table = env->cp15.c2_base1 & 0xffffc000;
965 else
966 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
968 table |= (address >> 18) & 0x3ffc;
969 return table;
972 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
973 int is_user, uint32_t *phys_ptr, int *prot,
974 target_ulong *page_size)
976 int code;
977 uint32_t table;
978 uint32_t desc;
979 int type;
980 int ap;
981 int domain;
982 uint32_t phys_addr;
984 /* Pagetable walk. */
985 /* Lookup l1 descriptor. */
986 table = get_level1_table_address(env, address);
987 desc = ldl_phys(table);
988 type = (desc & 3);
989 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
990 if (type == 0) {
991 /* Section translation fault. */
992 code = 5;
993 goto do_fault;
995 if (domain == 0 || domain == 2) {
996 if (type == 2)
997 code = 9; /* Section domain fault. */
998 else
999 code = 11; /* Page domain fault. */
1000 goto do_fault;
1002 if (type == 2) {
1003 /* 1Mb section. */
1004 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1005 ap = (desc >> 10) & 3;
1006 code = 13;
1007 *page_size = 1024 * 1024;
1008 } else {
1009 /* Lookup l2 entry. */
1010 if (type == 1) {
1011 /* Coarse pagetable. */
1012 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1013 } else {
1014 /* Fine pagetable. */
1015 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1017 desc = ldl_phys(table);
1018 switch (desc & 3) {
1019 case 0: /* Page translation fault. */
1020 code = 7;
1021 goto do_fault;
1022 case 1: /* 64k page. */
1023 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1024 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1025 *page_size = 0x10000;
1026 break;
1027 case 2: /* 4k page. */
1028 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1029 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1030 *page_size = 0x1000;
1031 break;
1032 case 3: /* 1k page. */
1033 if (type == 1) {
1034 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1035 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1036 } else {
1037 /* Page translation fault. */
1038 code = 7;
1039 goto do_fault;
1041 } else {
1042 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1044 ap = (desc >> 4) & 3;
1045 *page_size = 0x400;
1046 break;
1047 default:
1048 /* Never happens, but compiler isn't smart enough to tell. */
1049 abort();
1051 code = 15;
1053 *prot = check_ap(env, ap, domain, access_type, is_user);
1054 if (!*prot) {
1055 /* Access permission fault. */
1056 goto do_fault;
1058 *prot |= PAGE_EXEC;
1059 *phys_ptr = phys_addr;
1060 return 0;
1061 do_fault:
1062 return code | (domain << 4);
1065 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
1066 int is_user, uint32_t *phys_ptr, int *prot,
1067 target_ulong *page_size)
1069 int code;
1070 uint32_t table;
1071 uint32_t desc;
1072 uint32_t xn;
1073 int type;
1074 int ap;
1075 int domain;
1076 uint32_t phys_addr;
1078 /* Pagetable walk. */
1079 /* Lookup l1 descriptor. */
1080 table = get_level1_table_address(env, address);
1081 desc = ldl_phys(table);
1082 type = (desc & 3);
1083 if (type == 0) {
1084 /* Section translation fault. */
1085 code = 5;
1086 domain = 0;
1087 goto do_fault;
1088 } else if (type == 2 && (desc & (1 << 18))) {
1089 /* Supersection. */
1090 domain = 0;
1091 } else {
1092 /* Section or page. */
1093 domain = (desc >> 4) & 0x1e;
1095 domain = (env->cp15.c3 >> domain) & 3;
1096 if (domain == 0 || domain == 2) {
1097 if (type == 2)
1098 code = 9; /* Section domain fault. */
1099 else
1100 code = 11; /* Page domain fault. */
1101 goto do_fault;
1103 if (type == 2) {
1104 if (desc & (1 << 18)) {
1105 /* Supersection. */
1106 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1107 *page_size = 0x1000000;
1108 } else {
1109 /* Section. */
1110 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1111 *page_size = 0x100000;
1113 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1114 xn = desc & (1 << 4);
1115 code = 13;
1116 } else {
1117 /* Lookup l2 entry. */
1118 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1119 desc = ldl_phys(table);
1120 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1121 switch (desc & 3) {
1122 case 0: /* Page translation fault. */
1123 code = 7;
1124 goto do_fault;
1125 case 1: /* 64k page. */
1126 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1127 xn = desc & (1 << 15);
1128 *page_size = 0x10000;
1129 break;
1130 case 2: case 3: /* 4k page. */
1131 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1132 xn = desc & 1;
1133 *page_size = 0x1000;
1134 break;
1135 default:
1136 /* Never happens, but compiler isn't smart enough to tell. */
1137 abort();
1139 code = 15;
1141 if (domain == 3) {
1142 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1143 } else {
1144 if (xn && access_type == 2)
1145 goto do_fault;
1147 /* The simplified model uses AP[0] as an access control bit. */
1148 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1149 /* Access flag fault. */
1150 code = (code == 15) ? 6 : 3;
1151 goto do_fault;
1153 *prot = check_ap(env, ap, domain, access_type, is_user);
1154 if (!*prot) {
1155 /* Access permission fault. */
1156 goto do_fault;
1158 if (!xn) {
1159 *prot |= PAGE_EXEC;
1162 *phys_ptr = phys_addr;
1163 return 0;
1164 do_fault:
1165 return code | (domain << 4);
1168 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1169 int is_user, uint32_t *phys_ptr, int *prot)
1171 int n;
1172 uint32_t mask;
1173 uint32_t base;
1175 *phys_ptr = address;
1176 for (n = 7; n >= 0; n--) {
1177 base = env->cp15.c6_region[n];
1178 if ((base & 1) == 0)
1179 continue;
1180 mask = 1 << ((base >> 1) & 0x1f);
1181 /* Keep this shift separate from the above to avoid an
1182 (undefined) << 32. */
1183 mask = (mask << 1) - 1;
1184 if (((base ^ address) & ~mask) == 0)
1185 break;
1187 if (n < 0)
1188 return 2;
1190 if (access_type == 2) {
1191 mask = env->cp15.c5_insn;
1192 } else {
1193 mask = env->cp15.c5_data;
1195 mask = (mask >> (n * 4)) & 0xf;
1196 switch (mask) {
1197 case 0:
1198 return 1;
1199 case 1:
1200 if (is_user)
1201 return 1;
1202 *prot = PAGE_READ | PAGE_WRITE;
1203 break;
1204 case 2:
1205 *prot = PAGE_READ;
1206 if (!is_user)
1207 *prot |= PAGE_WRITE;
1208 break;
1209 case 3:
1210 *prot = PAGE_READ | PAGE_WRITE;
1211 break;
1212 case 5:
1213 if (is_user)
1214 return 1;
1215 *prot = PAGE_READ;
1216 break;
1217 case 6:
1218 *prot = PAGE_READ;
1219 break;
1220 default:
1221 /* Bad permission. */
1222 return 1;
1224 *prot |= PAGE_EXEC;
1225 return 0;
1228 static inline int get_phys_addr(CPUState *env, uint32_t address,
1229 int access_type, int is_user,
1230 uint32_t *phys_ptr, int *prot,
1231 target_ulong *page_size)
1233 /* Fast Context Switch Extension. */
1234 if (address < 0x02000000)
1235 address += env->cp15.c13_fcse;
1237 if ((env->cp15.c1_sys & 1) == 0) {
1238 /* MMU/MPU disabled. */
1239 *phys_ptr = address;
1240 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1241 *page_size = TARGET_PAGE_SIZE;
1242 return 0;
1243 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1244 *page_size = TARGET_PAGE_SIZE;
1245 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1246 prot);
1247 } else if (env->cp15.c1_sys & (1 << 23)) {
1248 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1249 prot, page_size);
1250 } else {
1251 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1252 prot, page_size);
1256 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1257 int access_type, int mmu_idx, int is_softmmu)
1259 uint32_t phys_addr;
1260 target_ulong page_size;
1261 int prot;
1262 int ret, is_user;
1264 is_user = mmu_idx == MMU_USER_IDX;
1265 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1266 &page_size);
1267 if (ret == 0) {
1268 /* Map a single [sub]page. */
1269 phys_addr &= ~(uint32_t)0x3ff;
1270 address &= ~(uint32_t)0x3ff;
1271 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
1272 return 0;
1275 if (access_type == 2) {
1276 env->cp15.c5_insn = ret;
1277 env->cp15.c6_insn = address;
1278 env->exception_index = EXCP_PREFETCH_ABORT;
1279 } else {
1280 env->cp15.c5_data = ret;
1281 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1282 env->cp15.c5_data |= (1 << 11);
1283 env->cp15.c6_data = address;
1284 env->exception_index = EXCP_DATA_ABORT;
1286 return 1;
1289 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1291 uint32_t phys_addr;
1292 target_ulong page_size;
1293 int prot;
1294 int ret;
1296 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
1298 if (ret != 0)
1299 return -1;
1301 return phys_addr;
1304 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1306 int cp_num = (insn >> 8) & 0xf;
1307 int cp_info = (insn >> 5) & 7;
1308 int src = (insn >> 16) & 0xf;
1309 int operand = insn & 0xf;
1311 if (env->cp[cp_num].cp_write)
1312 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1313 cp_info, src, operand, val);
1316 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1318 int cp_num = (insn >> 8) & 0xf;
1319 int cp_info = (insn >> 5) & 7;
1320 int dest = (insn >> 16) & 0xf;
1321 int operand = insn & 0xf;
1323 if (env->cp[cp_num].cp_read)
1324 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1325 cp_info, dest, operand);
1326 return 0;
1329 /* Return basic MPU access permission bits. */
1330 static uint32_t simple_mpu_ap_bits(uint32_t val)
1332 uint32_t ret;
1333 uint32_t mask;
1334 int i;
1335 ret = 0;
1336 mask = 3;
1337 for (i = 0; i < 16; i += 2) {
1338 ret |= (val >> i) & mask;
1339 mask <<= 2;
1341 return ret;
1344 /* Pad basic MPU access permission bits to extended format. */
1345 static uint32_t extended_mpu_ap_bits(uint32_t val)
1347 uint32_t ret;
1348 uint32_t mask;
1349 int i;
1350 ret = 0;
1351 mask = 3;
1352 for (i = 0; i < 16; i += 2) {
1353 ret |= (val & mask) << i;
1354 mask <<= 2;
1356 return ret;
1359 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1361 int op1;
1362 int op2;
1363 int crm;
1365 op1 = (insn >> 21) & 7;
1366 op2 = (insn >> 5) & 7;
1367 crm = insn & 0xf;
1368 switch ((insn >> 16) & 0xf) {
1369 case 0:
1370 /* ID codes. */
1371 if (arm_feature(env, ARM_FEATURE_XSCALE))
1372 break;
1373 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1374 break;
1375 if (arm_feature(env, ARM_FEATURE_V7)
1376 && op1 == 2 && crm == 0 && op2 == 0) {
1377 env->cp15.c0_cssel = val & 0xf;
1378 break;
1380 goto bad_reg;
1381 case 1: /* System configuration. */
1382 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1383 op2 = 0;
1384 switch (op2) {
1385 case 0:
1386 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1387 env->cp15.c1_sys = val;
1388 /* ??? Lots of these bits are not implemented. */
1389 /* This may enable/disable the MMU, so do a TLB flush. */
1390 tlb_flush(env, 1);
1391 break;
1392 case 1: /* Auxiliary control register. */
1393 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1394 env->cp15.c1_xscaleauxcr = val;
1395 break;
1397 /* Not implemented. */
1398 break;
1399 case 2:
1400 if (arm_feature(env, ARM_FEATURE_XSCALE))
1401 goto bad_reg;
1402 if (env->cp15.c1_coproc != val) {
1403 env->cp15.c1_coproc = val;
1404 /* ??? Is this safe when called from within a TB? */
1405 tb_flush(env);
1407 break;
1408 default:
1409 goto bad_reg;
1411 break;
1412 case 2: /* MMU Page table control / MPU cache control. */
1413 if (arm_feature(env, ARM_FEATURE_MPU)) {
1414 switch (op2) {
1415 case 0:
1416 env->cp15.c2_data = val;
1417 break;
1418 case 1:
1419 env->cp15.c2_insn = val;
1420 break;
1421 default:
1422 goto bad_reg;
1424 } else {
1425 switch (op2) {
1426 case 0:
1427 env->cp15.c2_base0 = val;
1428 break;
1429 case 1:
1430 env->cp15.c2_base1 = val;
1431 break;
1432 case 2:
1433 val &= 7;
1434 env->cp15.c2_control = val;
1435 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1436 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1437 break;
1438 default:
1439 goto bad_reg;
1442 break;
1443 case 3: /* MMU Domain access control / MPU write buffer control. */
1444 env->cp15.c3 = val;
1445 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1446 break;
1447 case 4: /* Reserved. */
1448 goto bad_reg;
1449 case 5: /* MMU Fault status / MPU access permission. */
1450 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1451 op2 = 0;
1452 switch (op2) {
1453 case 0:
1454 if (arm_feature(env, ARM_FEATURE_MPU))
1455 val = extended_mpu_ap_bits(val);
1456 env->cp15.c5_data = val;
1457 break;
1458 case 1:
1459 if (arm_feature(env, ARM_FEATURE_MPU))
1460 val = extended_mpu_ap_bits(val);
1461 env->cp15.c5_insn = val;
1462 break;
1463 case 2:
1464 if (!arm_feature(env, ARM_FEATURE_MPU))
1465 goto bad_reg;
1466 env->cp15.c5_data = val;
1467 break;
1468 case 3:
1469 if (!arm_feature(env, ARM_FEATURE_MPU))
1470 goto bad_reg;
1471 env->cp15.c5_insn = val;
1472 break;
1473 default:
1474 goto bad_reg;
1476 break;
1477 case 6: /* MMU Fault address / MPU base/size. */
1478 if (arm_feature(env, ARM_FEATURE_MPU)) {
1479 if (crm >= 8)
1480 goto bad_reg;
1481 env->cp15.c6_region[crm] = val;
1482 } else {
1483 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1484 op2 = 0;
1485 switch (op2) {
1486 case 0:
1487 env->cp15.c6_data = val;
1488 break;
1489 case 1: /* ??? This is WFAR on armv6 */
1490 case 2:
1491 env->cp15.c6_insn = val;
1492 break;
1493 default:
1494 goto bad_reg;
1497 break;
1498 case 7: /* Cache control. */
1499 env->cp15.c15_i_max = 0x000;
1500 env->cp15.c15_i_min = 0xff0;
1501 if (op1 != 0) {
1502 goto bad_reg;
1504 /* No cache, so nothing to do except VA->PA translations. */
1505 if (arm_feature(env, ARM_FEATURE_V6K)) {
1506 switch (crm) {
1507 case 4:
1508 if (arm_feature(env, ARM_FEATURE_V7)) {
1509 env->cp15.c7_par = val & 0xfffff6ff;
1510 } else {
1511 env->cp15.c7_par = val & 0xfffff1ff;
1513 break;
1514 case 8: {
1515 uint32_t phys_addr;
1516 target_ulong page_size;
1517 int prot;
1518 int ret, is_user = op2 & 2;
1519 int access_type = op2 & 1;
1521 if (op2 & 4) {
1522 /* Other states are only available with TrustZone */
1523 goto bad_reg;
1525 ret = get_phys_addr(env, val, access_type, is_user,
1526 &phys_addr, &prot, &page_size);
1527 if (ret == 0) {
1528 /* We do not set any attribute bits in the PAR */
1529 if (page_size == (1 << 24)
1530 && arm_feature(env, ARM_FEATURE_V7)) {
1531 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1532 } else {
1533 env->cp15.c7_par = phys_addr & 0xfffff000;
1535 } else {
1536 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1537 ((ret & (12 << 1)) >> 6) |
1538 ((ret & 0xf) << 1) | 1;
1540 break;
1544 break;
1545 case 8: /* MMU TLB control. */
1546 switch (op2) {
1547 case 0: /* Invalidate all. */
1548 tlb_flush(env, 0);
1549 break;
1550 case 1: /* Invalidate single TLB entry. */
1551 tlb_flush_page(env, val & TARGET_PAGE_MASK);
1552 break;
1553 case 2: /* Invalidate on ASID. */
1554 tlb_flush(env, val == 0);
1555 break;
1556 case 3: /* Invalidate single entry on MVA. */
1557 /* ??? This is like case 1, but ignores ASID. */
1558 tlb_flush(env, 1);
1559 break;
1560 default:
1561 goto bad_reg;
1563 break;
1564 case 9:
1565 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1566 break;
1567 if (arm_feature(env, ARM_FEATURE_STRONGARM))
1568 break; /* Ignore ReadBuffer access */
1569 switch (crm) {
1570 case 0: /* Cache lockdown. */
1571 switch (op1) {
1572 case 0: /* L1 cache. */
1573 switch (op2) {
1574 case 0:
1575 env->cp15.c9_data = val;
1576 break;
1577 case 1:
1578 env->cp15.c9_insn = val;
1579 break;
1580 default:
1581 goto bad_reg;
1583 break;
1584 case 1: /* L2 cache. */
1585 /* Ignore writes to L2 lockdown/auxiliary registers. */
1586 break;
1587 default:
1588 goto bad_reg;
1590 break;
1591 case 1: /* TCM memory region registers. */
1592 /* Not implemented. */
1593 goto bad_reg;
1594 case 12: /* Performance monitor control */
1595 /* Performance monitors are implementation defined in v7,
1596 * but with an ARM recommended set of registers, which we
1597 * follow (although we don't actually implement any counters)
1599 if (!arm_feature(env, ARM_FEATURE_V7)) {
1600 goto bad_reg;
1602 switch (op2) {
1603 case 0: /* performance monitor control register */
1604 /* only the DP, X, D and E bits are writable */
1605 env->cp15.c9_pmcr &= ~0x39;
1606 env->cp15.c9_pmcr |= (val & 0x39);
1607 break;
1608 case 1: /* Count enable set register */
1609 val &= (1 << 31);
1610 env->cp15.c9_pmcnten |= val;
1611 break;
1612 case 2: /* Count enable clear */
1613 val &= (1 << 31);
1614 env->cp15.c9_pmcnten &= ~val;
1615 break;
1616 case 3: /* Overflow flag status */
1617 env->cp15.c9_pmovsr &= ~val;
1618 break;
1619 case 4: /* Software increment */
1620 /* RAZ/WI since we don't implement the software-count event */
1621 break;
1622 case 5: /* Event counter selection register */
1623 /* Since we don't implement any events, writing to this register
1624 * is actually UNPREDICTABLE. So we choose to RAZ/WI.
1626 break;
1627 default:
1628 goto bad_reg;
1630 break;
1631 case 13: /* Performance counters */
1632 if (!arm_feature(env, ARM_FEATURE_V7)) {
1633 goto bad_reg;
1635 switch (op2) {
1636 case 0: /* Cycle count register: not implemented, so RAZ/WI */
1637 break;
1638 case 1: /* Event type select */
1639 env->cp15.c9_pmxevtyper = val & 0xff;
1640 break;
1641 case 2: /* Event count register */
1642 /* Unimplemented (we have no events), RAZ/WI */
1643 break;
1644 default:
1645 goto bad_reg;
1647 break;
1648 case 14: /* Performance monitor control */
1649 if (!arm_feature(env, ARM_FEATURE_V7)) {
1650 goto bad_reg;
1652 switch (op2) {
1653 case 0: /* user enable */
1654 env->cp15.c9_pmuserenr = val & 1;
1655 /* changes access rights for cp registers, so flush tbs */
1656 tb_flush(env);
1657 break;
1658 case 1: /* interrupt enable set */
1659 /* We have no event counters so only the C bit can be changed */
1660 val &= (1 << 31);
1661 env->cp15.c9_pminten |= val;
1662 break;
1663 case 2: /* interrupt enable clear */
1664 val &= (1 << 31);
1665 env->cp15.c9_pminten &= ~val;
1666 break;
1668 break;
1669 default:
1670 goto bad_reg;
1672 break;
1673 case 10: /* MMU TLB lockdown. */
1674 /* ??? TLB lockdown not implemented. */
1675 break;
1676 case 12: /* Reserved. */
1677 goto bad_reg;
1678 case 13: /* Process ID. */
1679 switch (op2) {
1680 case 0:
1681 /* Unlike real hardware the qemu TLB uses virtual addresses,
1682 not modified virtual addresses, so this causes a TLB flush.
1684 if (env->cp15.c13_fcse != val)
1685 tlb_flush(env, 1);
1686 env->cp15.c13_fcse = val;
1687 break;
1688 case 1:
1689 /* This changes the ASID, so do a TLB flush. */
1690 if (env->cp15.c13_context != val
1691 && !arm_feature(env, ARM_FEATURE_MPU))
1692 tlb_flush(env, 0);
1693 env->cp15.c13_context = val;
1694 break;
1695 default:
1696 goto bad_reg;
1698 break;
1699 case 14: /* Reserved. */
1700 goto bad_reg;
1701 case 15: /* Implementation specific. */
1702 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1703 if (op2 == 0 && crm == 1) {
1704 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1705 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1706 tb_flush(env);
1707 env->cp15.c15_cpar = val & 0x3fff;
1709 break;
1711 goto bad_reg;
1713 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1714 switch (crm) {
1715 case 0:
1716 break;
1717 case 1: /* Set TI925T configuration. */
1718 env->cp15.c15_ticonfig = val & 0xe7;
1719 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1720 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1721 break;
1722 case 2: /* Set I_max. */
1723 env->cp15.c15_i_max = val;
1724 break;
1725 case 3: /* Set I_min. */
1726 env->cp15.c15_i_min = val;
1727 break;
1728 case 4: /* Set thread-ID. */
1729 env->cp15.c15_threadid = val & 0xffff;
1730 break;
1731 case 8: /* Wait-for-interrupt (deprecated). */
1732 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1733 break;
1734 default:
1735 goto bad_reg;
1738 break;
1740 return;
1741 bad_reg:
1742 /* ??? For debugging only. Should raise illegal instruction exception. */
1743 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1744 (insn >> 16) & 0xf, crm, op1, op2);
1747 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1749 int op1;
1750 int op2;
1751 int crm;
1753 op1 = (insn >> 21) & 7;
1754 op2 = (insn >> 5) & 7;
1755 crm = insn & 0xf;
1756 switch ((insn >> 16) & 0xf) {
1757 case 0: /* ID codes. */
1758 switch (op1) {
1759 case 0:
1760 switch (crm) {
1761 case 0:
1762 switch (op2) {
1763 case 0: /* Device ID. */
1764 return env->cp15.c0_cpuid;
1765 case 1: /* Cache Type. */
1766 return env->cp15.c0_cachetype;
1767 case 2: /* TCM status. */
1768 return 0;
1769 case 3: /* TLB type register. */
1770 return 0; /* No lockable TLB entries. */
1771 case 5: /* MPIDR */
1772 /* The MPIDR was standardised in v7; prior to
1773 * this it was implemented only in the 11MPCore.
1774 * For all other pre-v7 cores it does not exist.
1776 if (arm_feature(env, ARM_FEATURE_V7) ||
1777 ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
1778 int mpidr = env->cpu_index;
1779 /* We don't support setting cluster ID ([8..11])
1780 * so these bits always RAZ.
1782 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1783 mpidr |= (1 << 31);
1784 /* Cores which are uniprocessor (non-coherent)
1785 * but still implement the MP extensions set
1786 * bit 30. (For instance, A9UP.) However we do
1787 * not currently model any of those cores.
1790 return mpidr;
1792 /* otherwise fall through to the unimplemented-reg case */
1793 default:
1794 goto bad_reg;
1796 case 1:
1797 if (!arm_feature(env, ARM_FEATURE_V6))
1798 goto bad_reg;
1799 return env->cp15.c0_c1[op2];
1800 case 2:
1801 if (!arm_feature(env, ARM_FEATURE_V6))
1802 goto bad_reg;
1803 return env->cp15.c0_c2[op2];
1804 case 3: case 4: case 5: case 6: case 7:
1805 return 0;
1806 default:
1807 goto bad_reg;
1809 case 1:
1810 /* These registers aren't documented on arm11 cores. However
1811 Linux looks at them anyway. */
1812 if (!arm_feature(env, ARM_FEATURE_V6))
1813 goto bad_reg;
1814 if (crm != 0)
1815 goto bad_reg;
1816 if (!arm_feature(env, ARM_FEATURE_V7))
1817 return 0;
1819 switch (op2) {
1820 case 0:
1821 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1822 case 1:
1823 return env->cp15.c0_clid;
1824 case 7:
1825 return 0;
1827 goto bad_reg;
1828 case 2:
1829 if (op2 != 0 || crm != 0)
1830 goto bad_reg;
1831 return env->cp15.c0_cssel;
1832 default:
1833 goto bad_reg;
1835 case 1: /* System configuration. */
1836 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1837 op2 = 0;
1838 switch (op2) {
1839 case 0: /* Control register. */
1840 return env->cp15.c1_sys;
1841 case 1: /* Auxiliary control register. */
1842 if (arm_feature(env, ARM_FEATURE_XSCALE))
1843 return env->cp15.c1_xscaleauxcr;
1844 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1845 goto bad_reg;
1846 switch (ARM_CPUID(env)) {
1847 case ARM_CPUID_ARM1026:
1848 return 1;
1849 case ARM_CPUID_ARM1136:
1850 case ARM_CPUID_ARM1136_R2:
1851 return 7;
1852 case ARM_CPUID_ARM11MPCORE:
1853 return 1;
1854 case ARM_CPUID_CORTEXA8:
1855 return 2;
1856 case ARM_CPUID_CORTEXA9:
1857 return 0;
1858 default:
1859 goto bad_reg;
1861 case 2: /* Coprocessor access register. */
1862 if (arm_feature(env, ARM_FEATURE_XSCALE))
1863 goto bad_reg;
1864 return env->cp15.c1_coproc;
1865 default:
1866 goto bad_reg;
1868 case 2: /* MMU Page table control / MPU cache control. */
1869 if (arm_feature(env, ARM_FEATURE_MPU)) {
1870 switch (op2) {
1871 case 0:
1872 return env->cp15.c2_data;
1873 break;
1874 case 1:
1875 return env->cp15.c2_insn;
1876 break;
1877 default:
1878 goto bad_reg;
1880 } else {
1881 switch (op2) {
1882 case 0:
1883 return env->cp15.c2_base0;
1884 case 1:
1885 return env->cp15.c2_base1;
1886 case 2:
1887 return env->cp15.c2_control;
1888 default:
1889 goto bad_reg;
1892 case 3: /* MMU Domain access control / MPU write buffer control. */
1893 return env->cp15.c3;
1894 case 4: /* Reserved. */
1895 goto bad_reg;
1896 case 5: /* MMU Fault status / MPU access permission. */
1897 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1898 op2 = 0;
1899 switch (op2) {
1900 case 0:
1901 if (arm_feature(env, ARM_FEATURE_MPU))
1902 return simple_mpu_ap_bits(env->cp15.c5_data);
1903 return env->cp15.c5_data;
1904 case 1:
1905 if (arm_feature(env, ARM_FEATURE_MPU))
1906 return simple_mpu_ap_bits(env->cp15.c5_data);
1907 return env->cp15.c5_insn;
1908 case 2:
1909 if (!arm_feature(env, ARM_FEATURE_MPU))
1910 goto bad_reg;
1911 return env->cp15.c5_data;
1912 case 3:
1913 if (!arm_feature(env, ARM_FEATURE_MPU))
1914 goto bad_reg;
1915 return env->cp15.c5_insn;
1916 default:
1917 goto bad_reg;
1919 case 6: /* MMU Fault address. */
1920 if (arm_feature(env, ARM_FEATURE_MPU)) {
1921 if (crm >= 8)
1922 goto bad_reg;
1923 return env->cp15.c6_region[crm];
1924 } else {
1925 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1926 op2 = 0;
1927 switch (op2) {
1928 case 0:
1929 return env->cp15.c6_data;
1930 case 1:
1931 if (arm_feature(env, ARM_FEATURE_V6)) {
1932 /* Watchpoint Fault Adrress. */
1933 return 0; /* Not implemented. */
1934 } else {
1935 /* Instruction Fault Adrress. */
1936 /* Arm9 doesn't have an IFAR, but implementing it anyway
1937 shouldn't do any harm. */
1938 return env->cp15.c6_insn;
1940 case 2:
1941 if (arm_feature(env, ARM_FEATURE_V6)) {
1942 /* Instruction Fault Adrress. */
1943 return env->cp15.c6_insn;
1944 } else {
1945 goto bad_reg;
1947 default:
1948 goto bad_reg;
1951 case 7: /* Cache control. */
1952 if (crm == 4 && op1 == 0 && op2 == 0) {
1953 return env->cp15.c7_par;
1955 /* FIXME: Should only clear Z flag if destination is r15. */
1956 env->ZF = 0;
1957 return 0;
1958 case 8: /* MMU TLB control. */
1959 goto bad_reg;
1960 case 9:
1961 switch (crm) {
1962 case 0: /* Cache lockdown */
1963 switch (op1) {
1964 case 0: /* L1 cache. */
1965 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1966 return 0;
1968 switch (op2) {
1969 case 0:
1970 return env->cp15.c9_data;
1971 case 1:
1972 return env->cp15.c9_insn;
1973 default:
1974 goto bad_reg;
1976 case 1: /* L2 cache */
1977 if (crm != 0) {
1978 goto bad_reg;
1980 /* L2 Lockdown and Auxiliary control. */
1981 return 0;
1982 default:
1983 goto bad_reg;
1985 break;
1986 case 12: /* Performance monitor control */
1987 if (!arm_feature(env, ARM_FEATURE_V7)) {
1988 goto bad_reg;
1990 switch (op2) {
1991 case 0: /* performance monitor control register */
1992 return env->cp15.c9_pmcr;
1993 case 1: /* count enable set */
1994 case 2: /* count enable clear */
1995 return env->cp15.c9_pmcnten;
1996 case 3: /* overflow flag status */
1997 return env->cp15.c9_pmovsr;
1998 case 4: /* software increment */
1999 case 5: /* event counter selection register */
2000 return 0; /* Unimplemented, RAZ/WI */
2001 default:
2002 goto bad_reg;
2004 case 13: /* Performance counters */
2005 if (!arm_feature(env, ARM_FEATURE_V7)) {
2006 goto bad_reg;
2008 switch (op2) {
2009 case 1: /* Event type select */
2010 return env->cp15.c9_pmxevtyper;
2011 case 0: /* Cycle count register */
2012 case 2: /* Event count register */
2013 /* Unimplemented, so RAZ/WI */
2014 return 0;
2015 default:
2016 goto bad_reg;
2018 case 14: /* Performance monitor control */
2019 if (!arm_feature(env, ARM_FEATURE_V7)) {
2020 goto bad_reg;
2022 switch (op2) {
2023 case 0: /* user enable */
2024 return env->cp15.c9_pmuserenr;
2025 case 1: /* interrupt enable set */
2026 case 2: /* interrupt enable clear */
2027 return env->cp15.c9_pminten;
2028 default:
2029 goto bad_reg;
2031 default:
2032 goto bad_reg;
2034 break;
2035 case 10: /* MMU TLB lockdown. */
2036 /* ??? TLB lockdown not implemented. */
2037 return 0;
2038 case 11: /* TCM DMA control. */
2039 case 12: /* Reserved. */
2040 goto bad_reg;
2041 case 13: /* Process ID. */
2042 switch (op2) {
2043 case 0:
2044 return env->cp15.c13_fcse;
2045 case 1:
2046 return env->cp15.c13_context;
2047 default:
2048 goto bad_reg;
2050 case 14: /* Reserved. */
2051 goto bad_reg;
2052 case 15: /* Implementation specific. */
2053 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2054 if (op2 == 0 && crm == 1)
2055 return env->cp15.c15_cpar;
2057 goto bad_reg;
2059 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2060 switch (crm) {
2061 case 0:
2062 return 0;
2063 case 1: /* Read TI925T configuration. */
2064 return env->cp15.c15_ticonfig;
2065 case 2: /* Read I_max. */
2066 return env->cp15.c15_i_max;
2067 case 3: /* Read I_min. */
2068 return env->cp15.c15_i_min;
2069 case 4: /* Read thread-ID. */
2070 return env->cp15.c15_threadid;
2071 case 8: /* TI925T_status */
2072 return 0;
2074 /* TODO: Peripheral port remap register:
2075 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
2076 * controller base address at $rn & ~0xfff and map size of
2077 * 0x200 << ($rn & 0xfff), when MMU is off. */
2078 goto bad_reg;
2080 return 0;
2082 bad_reg:
2083 /* ??? For debugging only. Should raise illegal instruction exception. */
2084 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
2085 (insn >> 16) & 0xf, crm, op1, op2);
2086 return 0;
2089 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
2091 if ((env->uncached_cpsr & CPSR_M) == mode) {
2092 env->regs[13] = val;
2093 } else {
2094 env->banked_r13[bank_number(mode)] = val;
2098 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
2100 if ((env->uncached_cpsr & CPSR_M) == mode) {
2101 return env->regs[13];
2102 } else {
2103 return env->banked_r13[bank_number(mode)];
2107 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
2109 switch (reg) {
2110 case 0: /* APSR */
2111 return xpsr_read(env) & 0xf8000000;
2112 case 1: /* IAPSR */
2113 return xpsr_read(env) & 0xf80001ff;
2114 case 2: /* EAPSR */
2115 return xpsr_read(env) & 0xff00fc00;
2116 case 3: /* xPSR */
2117 return xpsr_read(env) & 0xff00fdff;
2118 case 5: /* IPSR */
2119 return xpsr_read(env) & 0x000001ff;
2120 case 6: /* EPSR */
2121 return xpsr_read(env) & 0x0700fc00;
2122 case 7: /* IEPSR */
2123 return xpsr_read(env) & 0x0700edff;
2124 case 8: /* MSP */
2125 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2126 case 9: /* PSP */
2127 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2128 case 16: /* PRIMASK */
2129 return (env->uncached_cpsr & CPSR_I) != 0;
2130 case 17: /* BASEPRI */
2131 case 18: /* BASEPRI_MAX */
2132 return env->v7m.basepri;
2133 case 19: /* FAULTMASK */
2134 return (env->uncached_cpsr & CPSR_F) != 0;
2135 case 20: /* CONTROL */
2136 return env->v7m.control;
2137 default:
2138 /* ??? For debugging only. */
2139 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2140 return 0;
2144 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
2146 switch (reg) {
2147 case 0: /* APSR */
2148 xpsr_write(env, val, 0xf8000000);
2149 break;
2150 case 1: /* IAPSR */
2151 xpsr_write(env, val, 0xf8000000);
2152 break;
2153 case 2: /* EAPSR */
2154 xpsr_write(env, val, 0xfe00fc00);
2155 break;
2156 case 3: /* xPSR */
2157 xpsr_write(env, val, 0xfe00fc00);
2158 break;
2159 case 5: /* IPSR */
2160 /* IPSR bits are readonly. */
2161 break;
2162 case 6: /* EPSR */
2163 xpsr_write(env, val, 0x0600fc00);
2164 break;
2165 case 7: /* IEPSR */
2166 xpsr_write(env, val, 0x0600fc00);
2167 break;
2168 case 8: /* MSP */
2169 if (env->v7m.current_sp)
2170 env->v7m.other_sp = val;
2171 else
2172 env->regs[13] = val;
2173 break;
2174 case 9: /* PSP */
2175 if (env->v7m.current_sp)
2176 env->regs[13] = val;
2177 else
2178 env->v7m.other_sp = val;
2179 break;
2180 case 16: /* PRIMASK */
2181 if (val & 1)
2182 env->uncached_cpsr |= CPSR_I;
2183 else
2184 env->uncached_cpsr &= ~CPSR_I;
2185 break;
2186 case 17: /* BASEPRI */
2187 env->v7m.basepri = val & 0xff;
2188 break;
2189 case 18: /* BASEPRI_MAX */
2190 val &= 0xff;
2191 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2192 env->v7m.basepri = val;
2193 break;
2194 case 19: /* FAULTMASK */
2195 if (val & 1)
2196 env->uncached_cpsr |= CPSR_F;
2197 else
2198 env->uncached_cpsr &= ~CPSR_F;
2199 break;
2200 case 20: /* CONTROL */
2201 env->v7m.control = val & 3;
2202 switch_v7m_sp(env, (val & 2) != 0);
2203 break;
2204 default:
2205 /* ??? For debugging only. */
2206 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2207 return;
2211 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
2212 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
2213 void *opaque)
2215 if (cpnum < 0 || cpnum > 14) {
2216 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
2217 return;
2220 env->cp[cpnum].cp_read = cp_read;
2221 env->cp[cpnum].cp_write = cp_write;
2222 env->cp[cpnum].opaque = opaque;
2225 #endif
2227 /* Note that signed overflow is undefined in C. The following routines are
2228 careful to use unsigned types where modulo arithmetic is required.
2229 Failure to do so _will_ break on newer gcc. */
2231 /* Signed saturating arithmetic. */
2233 /* Perform 16-bit signed saturating addition. */
2234 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2236 uint16_t res;
2238 res = a + b;
2239 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2240 if (a & 0x8000)
2241 res = 0x8000;
2242 else
2243 res = 0x7fff;
2245 return res;
2248 /* Perform 8-bit signed saturating addition. */
2249 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2251 uint8_t res;
2253 res = a + b;
2254 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2255 if (a & 0x80)
2256 res = 0x80;
2257 else
2258 res = 0x7f;
2260 return res;
2263 /* Perform 16-bit signed saturating subtraction. */
2264 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2266 uint16_t res;
2268 res = a - b;
2269 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2270 if (a & 0x8000)
2271 res = 0x8000;
2272 else
2273 res = 0x7fff;
2275 return res;
2278 /* Perform 8-bit signed saturating subtraction. */
2279 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2281 uint8_t res;
2283 res = a - b;
2284 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2285 if (a & 0x80)
2286 res = 0x80;
2287 else
2288 res = 0x7f;
2290 return res;
2293 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2294 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2295 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2296 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2297 #define PFX q
2299 #include "op_addsub.h"
2301 /* Unsigned saturating arithmetic. */
2302 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2304 uint16_t res;
2305 res = a + b;
2306 if (res < a)
2307 res = 0xffff;
2308 return res;
2311 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2313 if (a > b)
2314 return a - b;
2315 else
2316 return 0;
2319 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2321 uint8_t res;
2322 res = a + b;
2323 if (res < a)
2324 res = 0xff;
2325 return res;
2328 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2330 if (a > b)
2331 return a - b;
2332 else
2333 return 0;
2336 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2337 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2338 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2339 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2340 #define PFX uq
2342 #include "op_addsub.h"
2344 /* Signed modulo arithmetic. */
2345 #define SARITH16(a, b, n, op) do { \
2346 int32_t sum; \
2347 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2348 RESULT(sum, n, 16); \
2349 if (sum >= 0) \
2350 ge |= 3 << (n * 2); \
2351 } while(0)
2353 #define SARITH8(a, b, n, op) do { \
2354 int32_t sum; \
2355 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2356 RESULT(sum, n, 8); \
2357 if (sum >= 0) \
2358 ge |= 1 << n; \
2359 } while(0)
2362 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2363 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2364 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2365 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2366 #define PFX s
2367 #define ARITH_GE
2369 #include "op_addsub.h"
2371 /* Unsigned modulo arithmetic. */
2372 #define ADD16(a, b, n) do { \
2373 uint32_t sum; \
2374 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2375 RESULT(sum, n, 16); \
2376 if ((sum >> 16) == 1) \
2377 ge |= 3 << (n * 2); \
2378 } while(0)
2380 #define ADD8(a, b, n) do { \
2381 uint32_t sum; \
2382 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2383 RESULT(sum, n, 8); \
2384 if ((sum >> 8) == 1) \
2385 ge |= 1 << n; \
2386 } while(0)
2388 #define SUB16(a, b, n) do { \
2389 uint32_t sum; \
2390 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2391 RESULT(sum, n, 16); \
2392 if ((sum >> 16) == 0) \
2393 ge |= 3 << (n * 2); \
2394 } while(0)
2396 #define SUB8(a, b, n) do { \
2397 uint32_t sum; \
2398 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2399 RESULT(sum, n, 8); \
2400 if ((sum >> 8) == 0) \
2401 ge |= 1 << n; \
2402 } while(0)
2404 #define PFX u
2405 #define ARITH_GE
2407 #include "op_addsub.h"
2409 /* Halved signed arithmetic. */
2410 #define ADD16(a, b, n) \
2411 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2412 #define SUB16(a, b, n) \
2413 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2414 #define ADD8(a, b, n) \
2415 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2416 #define SUB8(a, b, n) \
2417 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2418 #define PFX sh
2420 #include "op_addsub.h"
2422 /* Halved unsigned arithmetic. */
2423 #define ADD16(a, b, n) \
2424 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2425 #define SUB16(a, b, n) \
2426 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2427 #define ADD8(a, b, n) \
2428 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2429 #define SUB8(a, b, n) \
2430 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2431 #define PFX uh
2433 #include "op_addsub.h"
2435 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2437 if (a > b)
2438 return a - b;
2439 else
2440 return b - a;
2443 /* Unsigned sum of absolute byte differences. */
2444 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2446 uint32_t sum;
2447 sum = do_usad(a, b);
2448 sum += do_usad(a >> 8, b >> 8);
2449 sum += do_usad(a >> 16, b >>16);
2450 sum += do_usad(a >> 24, b >> 24);
2451 return sum;
2454 /* For ARMv6 SEL instruction. */
2455 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2457 uint32_t mask;
2459 mask = 0;
2460 if (flags & 1)
2461 mask |= 0xff;
2462 if (flags & 2)
2463 mask |= 0xff00;
2464 if (flags & 4)
2465 mask |= 0xff0000;
2466 if (flags & 8)
2467 mask |= 0xff000000;
2468 return (a & mask) | (b & ~mask);
2471 uint32_t HELPER(logicq_cc)(uint64_t val)
2473 return (val >> 32) | (val != 0);
2476 /* VFP support. We follow the convention used for VFP instrunctions:
2477 Single precition routines have a "s" suffix, double precision a
2478 "d" suffix. */
2480 /* Convert host exception flags to vfp form. */
2481 static inline int vfp_exceptbits_from_host(int host_bits)
2483 int target_bits = 0;
2485 if (host_bits & float_flag_invalid)
2486 target_bits |= 1;
2487 if (host_bits & float_flag_divbyzero)
2488 target_bits |= 2;
2489 if (host_bits & float_flag_overflow)
2490 target_bits |= 4;
2491 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
2492 target_bits |= 8;
2493 if (host_bits & float_flag_inexact)
2494 target_bits |= 0x10;
2495 if (host_bits & float_flag_input_denormal)
2496 target_bits |= 0x80;
2497 return target_bits;
2500 uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2502 int i;
2503 uint32_t fpscr;
2505 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2506 | (env->vfp.vec_len << 16)
2507 | (env->vfp.vec_stride << 20);
2508 i = get_float_exception_flags(&env->vfp.fp_status);
2509 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2510 fpscr |= vfp_exceptbits_from_host(i);
2511 return fpscr;
2514 uint32_t vfp_get_fpscr(CPUState *env)
2516 return HELPER(vfp_get_fpscr)(env);
2519 /* Convert vfp exception flags to target form. */
2520 static inline int vfp_exceptbits_to_host(int target_bits)
2522 int host_bits = 0;
2524 if (target_bits & 1)
2525 host_bits |= float_flag_invalid;
2526 if (target_bits & 2)
2527 host_bits |= float_flag_divbyzero;
2528 if (target_bits & 4)
2529 host_bits |= float_flag_overflow;
2530 if (target_bits & 8)
2531 host_bits |= float_flag_underflow;
2532 if (target_bits & 0x10)
2533 host_bits |= float_flag_inexact;
2534 if (target_bits & 0x80)
2535 host_bits |= float_flag_input_denormal;
2536 return host_bits;
2539 void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2541 int i;
2542 uint32_t changed;
2544 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2545 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2546 env->vfp.vec_len = (val >> 16) & 7;
2547 env->vfp.vec_stride = (val >> 20) & 3;
2549 changed ^= val;
2550 if (changed & (3 << 22)) {
2551 i = (val >> 22) & 3;
2552 switch (i) {
2553 case 0:
2554 i = float_round_nearest_even;
2555 break;
2556 case 1:
2557 i = float_round_up;
2558 break;
2559 case 2:
2560 i = float_round_down;
2561 break;
2562 case 3:
2563 i = float_round_to_zero;
2564 break;
2566 set_float_rounding_mode(i, &env->vfp.fp_status);
2568 if (changed & (1 << 24)) {
2569 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2570 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2572 if (changed & (1 << 25))
2573 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2575 i = vfp_exceptbits_to_host(val);
2576 set_float_exception_flags(i, &env->vfp.fp_status);
2577 set_float_exception_flags(0, &env->vfp.standard_fp_status);
2580 void vfp_set_fpscr(CPUState *env, uint32_t val)
2582 HELPER(vfp_set_fpscr)(env, val);
2585 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2587 #define VFP_BINOP(name) \
2588 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
2590 float_status *fpst = fpstp; \
2591 return float32_ ## name(a, b, fpst); \
2593 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
2595 float_status *fpst = fpstp; \
2596 return float64_ ## name(a, b, fpst); \
2598 VFP_BINOP(add)
2599 VFP_BINOP(sub)
2600 VFP_BINOP(mul)
2601 VFP_BINOP(div)
2602 #undef VFP_BINOP
2604 float32 VFP_HELPER(neg, s)(float32 a)
2606 return float32_chs(a);
2609 float64 VFP_HELPER(neg, d)(float64 a)
2611 return float64_chs(a);
2614 float32 VFP_HELPER(abs, s)(float32 a)
2616 return float32_abs(a);
2619 float64 VFP_HELPER(abs, d)(float64 a)
2621 return float64_abs(a);
2624 float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2626 return float32_sqrt(a, &env->vfp.fp_status);
2629 float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2631 return float64_sqrt(a, &env->vfp.fp_status);
2634 /* XXX: check quiet/signaling case */
2635 #define DO_VFP_cmp(p, type) \
2636 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2638 uint32_t flags; \
2639 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2640 case 0: flags = 0x6; break; \
2641 case -1: flags = 0x8; break; \
2642 case 1: flags = 0x2; break; \
2643 default: case 2: flags = 0x3; break; \
2645 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2646 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2648 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2650 uint32_t flags; \
2651 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2652 case 0: flags = 0x6; break; \
2653 case -1: flags = 0x8; break; \
2654 case 1: flags = 0x2; break; \
2655 default: case 2: flags = 0x3; break; \
2657 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2658 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2660 DO_VFP_cmp(s, float32)
2661 DO_VFP_cmp(d, float64)
2662 #undef DO_VFP_cmp
2664 /* Integer to float and float to integer conversions */
2666 #define CONV_ITOF(name, fsz, sign) \
2667 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2669 float_status *fpst = fpstp; \
2670 return sign##int32_to_##float##fsz(x, fpst); \
2673 #define CONV_FTOI(name, fsz, sign, round) \
2674 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2676 float_status *fpst = fpstp; \
2677 if (float##fsz##_is_any_nan(x)) { \
2678 float_raise(float_flag_invalid, fpst); \
2679 return 0; \
2681 return float##fsz##_to_##sign##int32##round(x, fpst); \
2684 #define FLOAT_CONVS(name, p, fsz, sign) \
2685 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2686 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2687 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
2689 FLOAT_CONVS(si, s, 32, )
2690 FLOAT_CONVS(si, d, 64, )
2691 FLOAT_CONVS(ui, s, 32, u)
2692 FLOAT_CONVS(ui, d, 64, u)
2694 #undef CONV_ITOF
2695 #undef CONV_FTOI
2696 #undef FLOAT_CONVS
2698 /* floating point conversion */
2699 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2701 float64 r = float32_to_float64(x, &env->vfp.fp_status);
2702 /* ARM requires that S<->D conversion of any kind of NaN generates
2703 * a quiet NaN by forcing the most significant frac bit to 1.
2705 return float64_maybe_silence_nan(r);
2708 float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2710 float32 r = float64_to_float32(x, &env->vfp.fp_status);
2711 /* ARM requires that S<->D conversion of any kind of NaN generates
2712 * a quiet NaN by forcing the most significant frac bit to 1.
2714 return float32_maybe_silence_nan(r);
2717 /* VFP3 fixed point conversion. */
2718 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2719 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
2720 void *fpstp) \
2722 float_status *fpst = fpstp; \
2723 float##fsz tmp; \
2724 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2725 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
2727 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2728 void *fpstp) \
2730 float_status *fpst = fpstp; \
2731 float##fsz tmp; \
2732 if (float##fsz##_is_any_nan(x)) { \
2733 float_raise(float_flag_invalid, fpst); \
2734 return 0; \
2736 tmp = float##fsz##_scalbn(x, shift, fpst); \
2737 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
2740 VFP_CONV_FIX(sh, d, 64, int16, )
2741 VFP_CONV_FIX(sl, d, 64, int32, )
2742 VFP_CONV_FIX(uh, d, 64, uint16, u)
2743 VFP_CONV_FIX(ul, d, 64, uint32, u)
2744 VFP_CONV_FIX(sh, s, 32, int16, )
2745 VFP_CONV_FIX(sl, s, 32, int32, )
2746 VFP_CONV_FIX(uh, s, 32, uint16, u)
2747 VFP_CONV_FIX(ul, s, 32, uint32, u)
2748 #undef VFP_CONV_FIX
2750 /* Half precision conversions. */
2751 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUState *env, float_status *s)
2753 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2754 float32 r = float16_to_float32(make_float16(a), ieee, s);
2755 if (ieee) {
2756 return float32_maybe_silence_nan(r);
2758 return r;
2761 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUState *env, float_status *s)
2763 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2764 float16 r = float32_to_float16(a, ieee, s);
2765 if (ieee) {
2766 r = float16_maybe_silence_nan(r);
2768 return float16_val(r);
2771 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2773 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
2776 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUState *env)
2778 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
2781 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2783 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
2786 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env)
2788 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
2791 #define float32_two make_float32(0x40000000)
2792 #define float32_three make_float32(0x40400000)
2793 #define float32_one_point_five make_float32(0x3fc00000)
2795 float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2797 float_status *s = &env->vfp.standard_fp_status;
2798 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2799 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2800 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2801 float_raise(float_flag_input_denormal, s);
2803 return float32_two;
2805 return float32_sub(float32_two, float32_mul(a, b, s), s);
2808 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2810 float_status *s = &env->vfp.standard_fp_status;
2811 float32 product;
2812 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2813 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2814 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2815 float_raise(float_flag_input_denormal, s);
2817 return float32_one_point_five;
2819 product = float32_mul(a, b, s);
2820 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
2823 /* NEON helpers. */
2825 /* Constants 256 and 512 are used in some helpers; we avoid relying on
2826 * int->float conversions at run-time. */
2827 #define float64_256 make_float64(0x4070000000000000LL)
2828 #define float64_512 make_float64(0x4080000000000000LL)
2830 /* The algorithm that must be used to calculate the estimate
2831 * is specified by the ARM ARM.
2833 static float64 recip_estimate(float64 a, CPUState *env)
2835 /* These calculations mustn't set any fp exception flags,
2836 * so we use a local copy of the fp_status.
2838 float_status dummy_status = env->vfp.standard_fp_status;
2839 float_status *s = &dummy_status;
2840 /* q = (int)(a * 512.0) */
2841 float64 q = float64_mul(float64_512, a, s);
2842 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2844 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
2845 q = int64_to_float64(q_int, s);
2846 q = float64_add(q, float64_half, s);
2847 q = float64_div(q, float64_512, s);
2848 q = float64_div(float64_one, q, s);
2850 /* s = (int)(256.0 * r + 0.5) */
2851 q = float64_mul(q, float64_256, s);
2852 q = float64_add(q, float64_half, s);
2853 q_int = float64_to_int64_round_to_zero(q, s);
2855 /* return (double)s / 256.0 */
2856 return float64_div(int64_to_float64(q_int, s), float64_256, s);
2859 float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2861 float_status *s = &env->vfp.standard_fp_status;
2862 float64 f64;
2863 uint32_t val32 = float32_val(a);
2865 int result_exp;
2866 int a_exp = (val32 & 0x7f800000) >> 23;
2867 int sign = val32 & 0x80000000;
2869 if (float32_is_any_nan(a)) {
2870 if (float32_is_signaling_nan(a)) {
2871 float_raise(float_flag_invalid, s);
2873 return float32_default_nan;
2874 } else if (float32_is_infinity(a)) {
2875 return float32_set_sign(float32_zero, float32_is_neg(a));
2876 } else if (float32_is_zero_or_denormal(a)) {
2877 if (!float32_is_zero(a)) {
2878 float_raise(float_flag_input_denormal, s);
2880 float_raise(float_flag_divbyzero, s);
2881 return float32_set_sign(float32_infinity, float32_is_neg(a));
2882 } else if (a_exp >= 253) {
2883 float_raise(float_flag_underflow, s);
2884 return float32_set_sign(float32_zero, float32_is_neg(a));
2887 f64 = make_float64((0x3feULL << 52)
2888 | ((int64_t)(val32 & 0x7fffff) << 29));
2890 result_exp = 253 - a_exp;
2892 f64 = recip_estimate(f64, env);
2894 val32 = sign
2895 | ((result_exp & 0xff) << 23)
2896 | ((float64_val(f64) >> 29) & 0x7fffff);
2897 return make_float32(val32);
2900 /* The algorithm that must be used to calculate the estimate
2901 * is specified by the ARM ARM.
2903 static float64 recip_sqrt_estimate(float64 a, CPUState *env)
2905 /* These calculations mustn't set any fp exception flags,
2906 * so we use a local copy of the fp_status.
2908 float_status dummy_status = env->vfp.standard_fp_status;
2909 float_status *s = &dummy_status;
2910 float64 q;
2911 int64_t q_int;
2913 if (float64_lt(a, float64_half, s)) {
2914 /* range 0.25 <= a < 0.5 */
2916 /* a in units of 1/512 rounded down */
2917 /* q0 = (int)(a * 512.0); */
2918 q = float64_mul(float64_512, a, s);
2919 q_int = float64_to_int64_round_to_zero(q, s);
2921 /* reciprocal root r */
2922 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
2923 q = int64_to_float64(q_int, s);
2924 q = float64_add(q, float64_half, s);
2925 q = float64_div(q, float64_512, s);
2926 q = float64_sqrt(q, s);
2927 q = float64_div(float64_one, q, s);
2928 } else {
2929 /* range 0.5 <= a < 1.0 */
2931 /* a in units of 1/256 rounded down */
2932 /* q1 = (int)(a * 256.0); */
2933 q = float64_mul(float64_256, a, s);
2934 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2936 /* reciprocal root r */
2937 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
2938 q = int64_to_float64(q_int, s);
2939 q = float64_add(q, float64_half, s);
2940 q = float64_div(q, float64_256, s);
2941 q = float64_sqrt(q, s);
2942 q = float64_div(float64_one, q, s);
2944 /* r in units of 1/256 rounded to nearest */
2945 /* s = (int)(256.0 * r + 0.5); */
2947 q = float64_mul(q, float64_256,s );
2948 q = float64_add(q, float64_half, s);
2949 q_int = float64_to_int64_round_to_zero(q, s);
2951 /* return (double)s / 256.0;*/
2952 return float64_div(int64_to_float64(q_int, s), float64_256, s);
2955 float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2957 float_status *s = &env->vfp.standard_fp_status;
2958 int result_exp;
2959 float64 f64;
2960 uint32_t val;
2961 uint64_t val64;
2963 val = float32_val(a);
2965 if (float32_is_any_nan(a)) {
2966 if (float32_is_signaling_nan(a)) {
2967 float_raise(float_flag_invalid, s);
2969 return float32_default_nan;
2970 } else if (float32_is_zero_or_denormal(a)) {
2971 if (!float32_is_zero(a)) {
2972 float_raise(float_flag_input_denormal, s);
2974 float_raise(float_flag_divbyzero, s);
2975 return float32_set_sign(float32_infinity, float32_is_neg(a));
2976 } else if (float32_is_neg(a)) {
2977 float_raise(float_flag_invalid, s);
2978 return float32_default_nan;
2979 } else if (float32_is_infinity(a)) {
2980 return float32_zero;
2983 /* Normalize to a double-precision value between 0.25 and 1.0,
2984 * preserving the parity of the exponent. */
2985 if ((val & 0x800000) == 0) {
2986 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
2987 | (0x3feULL << 52)
2988 | ((uint64_t)(val & 0x7fffff) << 29));
2989 } else {
2990 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
2991 | (0x3fdULL << 52)
2992 | ((uint64_t)(val & 0x7fffff) << 29));
2995 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
2997 f64 = recip_sqrt_estimate(f64, env);
2999 val64 = float64_val(f64);
3001 val = ((val64 >> 63) & 0x80000000)
3002 | ((result_exp & 0xff) << 23)
3003 | ((val64 >> 29) & 0x7fffff);
3004 return make_float32(val);
3007 uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
3009 float64 f64;
3011 if ((a & 0x80000000) == 0) {
3012 return 0xffffffff;
3015 f64 = make_float64((0x3feULL << 52)
3016 | ((int64_t)(a & 0x7fffffff) << 21));
3018 f64 = recip_estimate (f64, env);
3020 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3023 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
3025 float64 f64;
3027 if ((a & 0xc0000000) == 0) {
3028 return 0xffffffff;
3031 if (a & 0x80000000) {
3032 f64 = make_float64((0x3feULL << 52)
3033 | ((uint64_t)(a & 0x7fffffff) << 21));
3034 } else { /* bits 31-30 == '01' */
3035 f64 = make_float64((0x3fdULL << 52)
3036 | ((uint64_t)(a & 0x3fffffff) << 22));
3039 f64 = recip_sqrt_estimate(f64, env);
3041 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3044 void HELPER(set_teecr)(CPUState *env, uint32_t val)
3046 val &= 1;
3047 if (env->teecr != val) {
3048 env->teecr = val;
3049 tb_flush(env);