2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu-barrier.h"
26 #if !defined(CONFIG_SOFTMMU)
38 #include <sys/ucontext.h>
42 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
43 // Work around ugly bugs in glibc that mangle global register contents
45 #define env cpu_single_env
48 int tb_invalidated_flag
;
50 //#define CONFIG_DEBUG_EXEC
51 //#define DEBUG_SIGNAL
53 int qemu_cpu_has_work(CPUState
*env
)
55 return cpu_has_work(env
);
58 void cpu_loop_exit(void)
60 env
->current_tb
= NULL
;
61 longjmp(env
->jmp_env
, 1);
64 /* exit the current TB from a signal handler. The host registers are
65 restored in a state compatible with the CPU emulator
67 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
69 #if !defined(CONFIG_SOFTMMU)
71 struct ucontext
*uc
= puc
;
72 #elif defined(__OpenBSD__)
73 struct sigcontext
*uc
= puc
;
79 /* XXX: restore cpu registers saved in host registers */
81 #if !defined(CONFIG_SOFTMMU)
83 /* XXX: use siglongjmp ? */
86 sigprocmask(SIG_SETMASK
, (sigset_t
*)&uc
->uc_sigmask
, NULL
);
88 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
90 #elif defined(__OpenBSD__)
91 sigprocmask(SIG_SETMASK
, &uc
->sc_mask
, NULL
);
95 env
->exception_index
= -1;
96 longjmp(env
->jmp_env
, 1);
99 /* Execute the code without caching the generated code. An interpreter
100 could be used if available. */
101 static void cpu_exec_nocache(int max_cycles
, TranslationBlock
*orig_tb
)
103 unsigned long next_tb
;
104 TranslationBlock
*tb
;
106 /* Should never happen.
107 We only end up here when an existing TB is too long. */
108 if (max_cycles
> CF_COUNT_MASK
)
109 max_cycles
= CF_COUNT_MASK
;
111 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
113 env
->current_tb
= tb
;
114 /* execute the generated code */
115 next_tb
= tcg_qemu_tb_exec(tb
->tc_ptr
);
116 env
->current_tb
= NULL
;
118 if ((next_tb
& 3) == 2) {
119 /* Restore PC. This may happen if async event occurs before
120 the TB starts executing. */
121 cpu_pc_from_tb(env
, tb
);
123 tb_phys_invalidate(tb
, -1);
127 static TranslationBlock
*tb_find_slow(target_ulong pc
,
128 target_ulong cs_base
,
131 TranslationBlock
*tb
, **ptb1
;
133 tb_page_addr_t phys_pc
, phys_page1
, phys_page2
;
134 target_ulong virt_page2
;
136 tb_invalidated_flag
= 0;
138 /* find translated block using physical mappings */
139 phys_pc
= get_page_addr_code(env
, pc
);
140 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
142 h
= tb_phys_hash_func(phys_pc
);
143 ptb1
= &tb_phys_hash
[h
];
149 tb
->page_addr
[0] == phys_page1
&&
150 tb
->cs_base
== cs_base
&&
151 tb
->flags
== flags
) {
152 /* check next page if needed */
153 if (tb
->page_addr
[1] != -1) {
154 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
156 phys_page2
= get_page_addr_code(env
, virt_page2
);
157 if (tb
->page_addr
[1] == phys_page2
)
163 ptb1
= &tb
->phys_hash_next
;
166 /* if no translated code available, then translate it now */
167 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
170 /* Move the last found TB to the head of the list */
172 *ptb1
= tb
->phys_hash_next
;
173 tb
->phys_hash_next
= tb_phys_hash
[h
];
174 tb_phys_hash
[h
] = tb
;
176 /* we add the TB in the virtual pc hash table */
177 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
181 static inline TranslationBlock
*tb_find_fast(void)
183 TranslationBlock
*tb
;
184 target_ulong cs_base
, pc
;
187 /* we record a subset of the CPU state. It will
188 always be the same before a given translated block
190 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
191 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
192 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
193 tb
->flags
!= flags
)) {
194 tb
= tb_find_slow(pc
, cs_base
, flags
);
199 /* main execution loop */
201 volatile sig_atomic_t exit_request
;
203 int cpu_exec(CPUState
*env1
)
205 volatile host_reg_t saved_env_reg
;
206 int ret
, interrupt_request
;
207 TranslationBlock
*tb
;
209 unsigned long next_tb
;
212 if (!cpu_has_work(env1
)) {
219 cpu_single_env
= env1
;
221 /* the access to env below is actually saving the global register's
222 value, so that files not including target-xyz/exec.h are free to
224 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg
) != sizeof (env
));
225 saved_env_reg
= (host_reg_t
) env
;
229 if (unlikely(exit_request
)) {
230 env
->exit_request
= 1;
233 #if defined(TARGET_I386)
234 /* put eflags in CPU temporary format */
235 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
236 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
237 CC_OP
= CC_OP_EFLAGS
;
238 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
239 #elif defined(TARGET_SPARC)
240 #elif defined(TARGET_M68K)
241 env
->cc_op
= CC_OP_FLAGS
;
242 env
->cc_dest
= env
->sr
& 0xf;
243 env
->cc_x
= (env
->sr
>> 4) & 1;
244 #elif defined(TARGET_ALPHA)
245 #elif defined(TARGET_ARM)
246 #elif defined(TARGET_PPC)
247 #elif defined(TARGET_LM32)
248 #elif defined(TARGET_MICROBLAZE)
249 #elif defined(TARGET_MIPS)
250 #elif defined(TARGET_SH4)
251 #elif defined(TARGET_CRIS)
252 #elif defined(TARGET_S390X)
255 #error unsupported target CPU
257 env
->exception_index
= -1;
259 /* prepare setjmp context for exception handling */
261 if (setjmp(env
->jmp_env
) == 0) {
262 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
264 env
= cpu_single_env
;
265 #define env cpu_single_env
267 /* if an exception is pending, we execute it here */
268 if (env
->exception_index
>= 0) {
269 if (env
->exception_index
>= EXCP_INTERRUPT
) {
270 /* exit request from the cpu execution loop */
271 ret
= env
->exception_index
;
274 #if defined(CONFIG_USER_ONLY)
275 /* if user mode only, we simulate a fake exception
276 which will be handled outside the cpu execution
278 #if defined(TARGET_I386)
279 do_interrupt_user(env
->exception_index
,
280 env
->exception_is_int
,
282 env
->exception_next_eip
);
283 /* successfully delivered */
284 env
->old_exception
= -1;
286 ret
= env
->exception_index
;
289 #if defined(TARGET_I386)
290 /* simulate a real cpu exception. On i386, it can
291 trigger new exceptions, but we do not handle
292 double or triple faults yet. */
293 do_interrupt(env
->exception_index
,
294 env
->exception_is_int
,
296 env
->exception_next_eip
, 0);
297 /* successfully delivered */
298 env
->old_exception
= -1;
299 #elif defined(TARGET_PPC)
301 #elif defined(TARGET_LM32)
303 #elif defined(TARGET_MICROBLAZE)
305 #elif defined(TARGET_MIPS)
307 #elif defined(TARGET_SPARC)
309 #elif defined(TARGET_ARM)
311 #elif defined(TARGET_SH4)
313 #elif defined(TARGET_ALPHA)
315 #elif defined(TARGET_CRIS)
317 #elif defined(TARGET_M68K)
320 env
->exception_index
= -1;
325 next_tb
= 0; /* force lookup of first TB */
327 interrupt_request
= env
->interrupt_request
;
328 if (unlikely(interrupt_request
)) {
329 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
330 /* Mask out external interrupts for this step. */
331 interrupt_request
&= ~(CPU_INTERRUPT_HARD
|
336 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
337 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
338 env
->exception_index
= EXCP_DEBUG
;
341 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
342 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
343 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32)
344 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
345 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
347 env
->exception_index
= EXCP_HLT
;
351 #if defined(TARGET_I386)
352 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
353 svm_check_intercept(SVM_EXIT_INIT
);
355 env
->exception_index
= EXCP_HALTED
;
357 } else if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
359 } else if (env
->hflags2
& HF2_GIF_MASK
) {
360 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
361 !(env
->hflags
& HF_SMM_MASK
)) {
362 svm_check_intercept(SVM_EXIT_SMI
);
363 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
366 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
367 !(env
->hflags2
& HF2_NMI_MASK
)) {
368 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
369 env
->hflags2
|= HF2_NMI_MASK
;
370 do_interrupt(EXCP02_NMI
, 0, 0, 0, 1);
372 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
373 env
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
374 do_interrupt(EXCP12_MCHK
, 0, 0, 0, 0);
376 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
377 (((env
->hflags2
& HF2_VINTR_MASK
) &&
378 (env
->hflags2
& HF2_HIF_MASK
)) ||
379 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
380 (env
->eflags
& IF_MASK
&&
381 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
383 svm_check_intercept(SVM_EXIT_INTR
);
384 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
385 intno
= cpu_get_pic_interrupt(env
);
386 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
387 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
389 env
= cpu_single_env
;
390 #define env cpu_single_env
392 do_interrupt(intno
, 0, 0, 0, 1);
393 /* ensure that no TB jump will be modified as
394 the program flow was changed */
396 #if !defined(CONFIG_USER_ONLY)
397 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
398 (env
->eflags
& IF_MASK
) &&
399 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
401 /* FIXME: this should respect TPR */
402 svm_check_intercept(SVM_EXIT_VINTR
);
403 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
404 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
405 do_interrupt(intno
, 0, 0, 0, 1);
406 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
411 #elif defined(TARGET_PPC)
413 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
417 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
418 ppc_hw_interrupt(env
);
419 if (env
->pending_interrupts
== 0)
420 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
423 #elif defined(TARGET_LM32)
424 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
425 && (env
->ie
& IE_IE
)) {
426 env
->exception_index
= EXCP_IRQ
;
430 #elif defined(TARGET_MICROBLAZE)
431 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
432 && (env
->sregs
[SR_MSR
] & MSR_IE
)
433 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
434 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
435 env
->exception_index
= EXCP_IRQ
;
439 #elif defined(TARGET_MIPS)
440 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
441 cpu_mips_hw_interrupts_pending(env
)) {
443 env
->exception_index
= EXCP_EXT_INTERRUPT
;
448 #elif defined(TARGET_SPARC)
449 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
450 if (cpu_interrupts_enabled(env
) &&
451 env
->interrupt_index
> 0) {
452 int pil
= env
->interrupt_index
& 0xf;
453 int type
= env
->interrupt_index
& 0xf0;
455 if (((type
== TT_EXTINT
) &&
456 cpu_pil_allowed(env
, pil
)) ||
458 env
->exception_index
= env
->interrupt_index
;
463 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
464 //do_interrupt(0, 0, 0, 0, 0);
465 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
467 #elif defined(TARGET_ARM)
468 if (interrupt_request
& CPU_INTERRUPT_FIQ
469 && !(env
->uncached_cpsr
& CPSR_F
)) {
470 env
->exception_index
= EXCP_FIQ
;
474 /* ARMv7-M interrupt return works by loading a magic value
475 into the PC. On real hardware the load causes the
476 return to occur. The qemu implementation performs the
477 jump normally, then does the exception return when the
478 CPU tries to execute code at the magic address.
479 This will cause the magic PC value to be pushed to
480 the stack if an interrupt occured at the wrong time.
481 We avoid this by disabling interrupts when
482 pc contains a magic address. */
483 if (interrupt_request
& CPU_INTERRUPT_HARD
484 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
485 || !(env
->uncached_cpsr
& CPSR_I
))) {
486 env
->exception_index
= EXCP_IRQ
;
490 #elif defined(TARGET_SH4)
491 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
495 #elif defined(TARGET_ALPHA)
496 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
500 #elif defined(TARGET_CRIS)
501 if (interrupt_request
& CPU_INTERRUPT_HARD
502 && (env
->pregs
[PR_CCS
] & I_FLAG
)
503 && !env
->locked_irq
) {
504 env
->exception_index
= EXCP_IRQ
;
508 if (interrupt_request
& CPU_INTERRUPT_NMI
509 && (env
->pregs
[PR_CCS
] & M_FLAG
)) {
510 env
->exception_index
= EXCP_NMI
;
514 #elif defined(TARGET_M68K)
515 if (interrupt_request
& CPU_INTERRUPT_HARD
516 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
517 < env
->pending_level
) {
518 /* Real hardware gets the interrupt vector via an
519 IACK cycle at this point. Current emulated
520 hardware doesn't rely on this, so we
521 provide/save the vector when the interrupt is
523 env
->exception_index
= env
->pending_vector
;
528 /* Don't use the cached interupt_request value,
529 do_interrupt may have updated the EXITTB flag. */
530 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
531 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
532 /* ensure that no TB jump will be modified as
533 the program flow was changed */
537 if (unlikely(env
->exit_request
)) {
538 env
->exit_request
= 0;
539 env
->exception_index
= EXCP_INTERRUPT
;
542 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
543 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
544 /* restore flags in standard format */
545 #if defined(TARGET_I386)
546 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
547 log_cpu_state(env
, X86_DUMP_CCOP
);
548 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
549 #elif defined(TARGET_M68K)
550 cpu_m68k_flush_flags(env
, env
->cc_op
);
551 env
->cc_op
= CC_OP_FLAGS
;
552 env
->sr
= (env
->sr
& 0xffe0)
553 | env
->cc_dest
| (env
->cc_x
<< 4);
554 log_cpu_state(env
, 0);
556 log_cpu_state(env
, 0);
559 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
562 /* Note: we do it here to avoid a gcc bug on Mac OS X when
563 doing it in tb_find_slow */
564 if (tb_invalidated_flag
) {
565 /* as some TB could have been invalidated because
566 of memory exceptions while generating the code, we
567 must recompute the hash index here */
569 tb_invalidated_flag
= 0;
571 #ifdef CONFIG_DEBUG_EXEC
572 qemu_log_mask(CPU_LOG_EXEC
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
573 (long)tb
->tc_ptr
, tb
->pc
,
574 lookup_symbol(tb
->pc
));
576 /* see if we can patch the calling TB. When the TB
577 spans two pages, we cannot safely do a direct
579 if (next_tb
!= 0 && tb
->page_addr
[1] == -1) {
580 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
582 spin_unlock(&tb_lock
);
584 /* cpu_interrupt might be called while translating the
585 TB, but before it is linked into a potentially
586 infinite loop and becomes env->current_tb. Avoid
587 starting execution if there is a pending interrupt. */
588 env
->current_tb
= tb
;
590 if (likely(!env
->exit_request
)) {
592 /* execute the generated code */
593 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
595 env
= cpu_single_env
;
596 #define env cpu_single_env
598 next_tb
= tcg_qemu_tb_exec(tc_ptr
);
599 if ((next_tb
& 3) == 2) {
600 /* Instruction counter expired. */
602 tb
= (TranslationBlock
*)(long)(next_tb
& ~3);
604 cpu_pc_from_tb(env
, tb
);
605 insns_left
= env
->icount_decr
.u32
;
606 if (env
->icount_extra
&& insns_left
>= 0) {
607 /* Refill decrementer and continue execution. */
608 env
->icount_extra
+= insns_left
;
609 if (env
->icount_extra
> 0xffff) {
612 insns_left
= env
->icount_extra
;
614 env
->icount_extra
-= insns_left
;
615 env
->icount_decr
.u16
.low
= insns_left
;
617 if (insns_left
> 0) {
618 /* Execute remaining instructions. */
619 cpu_exec_nocache(insns_left
, tb
);
621 env
->exception_index
= EXCP_INTERRUPT
;
627 env
->current_tb
= NULL
;
628 /* reset soft MMU for next block (it can currently
629 only be set by a memory fault) */
635 #if defined(TARGET_I386)
636 /* restore flags in standard format */
637 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
638 #elif defined(TARGET_ARM)
639 /* XXX: Save/restore host fpu exception state?. */
640 #elif defined(TARGET_SPARC)
641 #elif defined(TARGET_PPC)
642 #elif defined(TARGET_LM32)
643 #elif defined(TARGET_M68K)
644 cpu_m68k_flush_flags(env
, env
->cc_op
);
645 env
->cc_op
= CC_OP_FLAGS
;
646 env
->sr
= (env
->sr
& 0xffe0)
647 | env
->cc_dest
| (env
->cc_x
<< 4);
648 #elif defined(TARGET_MICROBLAZE)
649 #elif defined(TARGET_MIPS)
650 #elif defined(TARGET_SH4)
651 #elif defined(TARGET_ALPHA)
652 #elif defined(TARGET_CRIS)
653 #elif defined(TARGET_S390X)
656 #error unsupported target CPU
659 /* restore global registers */
661 env
= (void *) saved_env_reg
;
663 /* fail safe : never use cpu_single_env outside cpu_exec() */
664 cpu_single_env
= NULL
;
668 /* must only be called from the generated code as an exception can be
670 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
672 /* XXX: cannot enable it yet because it yields to MMU exception
673 where NIP != read address on PowerPC */
675 target_ulong phys_addr
;
676 phys_addr
= get_phys_addr_code(env
, start
);
677 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
681 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
683 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
685 CPUX86State
*saved_env
;
689 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
691 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
692 (selector
<< 4), 0xffff, 0);
694 helper_load_seg(seg_reg
, selector
);
699 void cpu_x86_fsave(CPUX86State
*s
, target_ulong ptr
, int data32
)
701 CPUX86State
*saved_env
;
706 helper_fsave(ptr
, data32
);
711 void cpu_x86_frstor(CPUX86State
*s
, target_ulong ptr
, int data32
)
713 CPUX86State
*saved_env
;
718 helper_frstor(ptr
, data32
);
723 #endif /* TARGET_I386 */
725 #if !defined(CONFIG_SOFTMMU)
727 #if defined(TARGET_I386)
728 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
730 #define EXCEPTION_ACTION cpu_loop_exit()
733 /* 'pc' is the host PC at which the exception was raised. 'address' is
734 the effective address of the memory exception. 'is_write' is 1 if a
735 write caused the exception and otherwise 0'. 'old_set' is the
736 signal set which should be restored */
737 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
738 int is_write
, sigset_t
*old_set
,
741 TranslationBlock
*tb
;
745 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
746 #if defined(DEBUG_SIGNAL)
747 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
748 pc
, address
, is_write
, *(unsigned long *)old_set
);
750 /* XXX: locking issue */
751 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
755 /* see if it is an MMU fault */
756 ret
= cpu_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
758 return 0; /* not an MMU fault */
760 return 1; /* the MMU fault was handled without causing real CPU fault */
761 /* now we have a real cpu fault */
764 /* the PC is inside the translated code. It means that we have
765 a virtual CPU fault */
766 cpu_restore_state(tb
, env
, pc
, puc
);
769 /* we restore the process signal mask as the sigreturn should
770 do it (XXX: use sigsetjmp) */
771 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
774 /* never comes here */
778 #if defined(__i386__)
780 #if defined(__APPLE__)
781 # include <sys/ucontext.h>
783 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
784 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
785 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
786 # define MASK_sig(context) ((context)->uc_sigmask)
787 #elif defined (__NetBSD__)
788 # include <ucontext.h>
790 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
791 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
792 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
793 # define MASK_sig(context) ((context)->uc_sigmask)
794 #elif defined (__FreeBSD__) || defined(__DragonFly__)
795 # include <ucontext.h>
797 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
798 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
799 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
800 # define MASK_sig(context) ((context)->uc_sigmask)
801 #elif defined(__OpenBSD__)
802 # define EIP_sig(context) ((context)->sc_eip)
803 # define TRAP_sig(context) ((context)->sc_trapno)
804 # define ERROR_sig(context) ((context)->sc_err)
805 # define MASK_sig(context) ((context)->sc_mask)
807 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
808 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
809 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
810 # define MASK_sig(context) ((context)->uc_sigmask)
813 int cpu_signal_handler(int host_signum
, void *pinfo
,
816 siginfo_t
*info
= pinfo
;
817 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
818 ucontext_t
*uc
= puc
;
819 #elif defined(__OpenBSD__)
820 struct sigcontext
*uc
= puc
;
822 struct ucontext
*uc
= puc
;
831 #define REG_TRAPNO TRAPNO
834 trapno
= TRAP_sig(uc
);
835 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
837 (ERROR_sig(uc
) >> 1) & 1 : 0,
841 #elif defined(__x86_64__)
844 #define PC_sig(context) _UC_MACHINE_PC(context)
845 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
846 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
847 #define MASK_sig(context) ((context)->uc_sigmask)
848 #elif defined(__OpenBSD__)
849 #define PC_sig(context) ((context)->sc_rip)
850 #define TRAP_sig(context) ((context)->sc_trapno)
851 #define ERROR_sig(context) ((context)->sc_err)
852 #define MASK_sig(context) ((context)->sc_mask)
853 #elif defined (__FreeBSD__) || defined(__DragonFly__)
854 #include <ucontext.h>
856 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
857 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
858 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
859 #define MASK_sig(context) ((context)->uc_sigmask)
861 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
862 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
863 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
864 #define MASK_sig(context) ((context)->uc_sigmask)
867 int cpu_signal_handler(int host_signum
, void *pinfo
,
870 siginfo_t
*info
= pinfo
;
872 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
873 ucontext_t
*uc
= puc
;
874 #elif defined(__OpenBSD__)
875 struct sigcontext
*uc
= puc
;
877 struct ucontext
*uc
= puc
;
881 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
882 TRAP_sig(uc
) == 0xe ?
883 (ERROR_sig(uc
) >> 1) & 1 : 0,
887 #elif defined(_ARCH_PPC)
889 /***********************************************************************
890 * signal context platform-specific definitions
894 /* All Registers access - only for local access */
895 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
896 /* Gpr Registers access */
897 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
898 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
899 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
900 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
901 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
902 # define LR_sig(context) REG_sig(link, context) /* Link register */
903 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
904 /* Float Registers access */
905 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
906 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
907 /* Exception Registers access */
908 # define DAR_sig(context) REG_sig(dar, context)
909 # define DSISR_sig(context) REG_sig(dsisr, context)
910 # define TRAP_sig(context) REG_sig(trap, context)
913 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
914 #include <ucontext.h>
915 # define IAR_sig(context) ((context)->uc_mcontext.mc_srr0)
916 # define MSR_sig(context) ((context)->uc_mcontext.mc_srr1)
917 # define CTR_sig(context) ((context)->uc_mcontext.mc_ctr)
918 # define XER_sig(context) ((context)->uc_mcontext.mc_xer)
919 # define LR_sig(context) ((context)->uc_mcontext.mc_lr)
920 # define CR_sig(context) ((context)->uc_mcontext.mc_cr)
921 /* Exception Registers access */
922 # define DAR_sig(context) ((context)->uc_mcontext.mc_dar)
923 # define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr)
924 # define TRAP_sig(context) ((context)->uc_mcontext.mc_exc)
925 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
928 # include <sys/ucontext.h>
929 typedef struct ucontext SIGCONTEXT
;
930 /* All Registers access - only for local access */
931 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
932 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
933 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
934 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
935 /* Gpr Registers access */
936 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
937 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
938 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
939 # define CTR_sig(context) REG_sig(ctr, context)
940 # define XER_sig(context) REG_sig(xer, context) /* Link register */
941 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
942 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
943 /* Float Registers access */
944 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
945 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
946 /* Exception Registers access */
947 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
948 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
949 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
950 #endif /* __APPLE__ */
952 int cpu_signal_handler(int host_signum
, void *pinfo
,
955 siginfo_t
*info
= pinfo
;
956 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
957 ucontext_t
*uc
= puc
;
959 struct ucontext
*uc
= puc
;
968 if (DSISR_sig(uc
) & 0x00800000)
971 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
974 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
975 is_write
, &uc
->uc_sigmask
, puc
);
978 #elif defined(__alpha__)
980 int cpu_signal_handler(int host_signum
, void *pinfo
,
983 siginfo_t
*info
= pinfo
;
984 struct ucontext
*uc
= puc
;
985 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
989 /* XXX: need kernel patch to get write flag faster */
990 switch (insn
>> 26) {
1005 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1006 is_write
, &uc
->uc_sigmask
, puc
);
1008 #elif defined(__sparc__)
1010 int cpu_signal_handler(int host_signum
, void *pinfo
,
1013 siginfo_t
*info
= pinfo
;
1016 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1017 uint32_t *regs
= (uint32_t *)(info
+ 1);
1018 void *sigmask
= (regs
+ 20);
1019 /* XXX: is there a standard glibc define ? */
1020 unsigned long pc
= regs
[1];
1023 struct sigcontext
*sc
= puc
;
1024 unsigned long pc
= sc
->sigc_regs
.tpc
;
1025 void *sigmask
= (void *)sc
->sigc_mask
;
1026 #elif defined(__OpenBSD__)
1027 struct sigcontext
*uc
= puc
;
1028 unsigned long pc
= uc
->sc_pc
;
1029 void *sigmask
= (void *)(long)uc
->sc_mask
;
1033 /* XXX: need kernel patch to get write flag faster */
1035 insn
= *(uint32_t *)pc
;
1036 if ((insn
>> 30) == 3) {
1037 switch((insn
>> 19) & 0x3f) {
1061 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1062 is_write
, sigmask
, NULL
);
1065 #elif defined(__arm__)
1067 int cpu_signal_handler(int host_signum
, void *pinfo
,
1070 siginfo_t
*info
= pinfo
;
1071 struct ucontext
*uc
= puc
;
1075 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1076 pc
= uc
->uc_mcontext
.gregs
[R15
];
1078 pc
= uc
->uc_mcontext
.arm_pc
;
1080 /* XXX: compute is_write */
1082 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1084 &uc
->uc_sigmask
, puc
);
1087 #elif defined(__mc68000)
1089 int cpu_signal_handler(int host_signum
, void *pinfo
,
1092 siginfo_t
*info
= pinfo
;
1093 struct ucontext
*uc
= puc
;
1097 pc
= uc
->uc_mcontext
.gregs
[16];
1098 /* XXX: compute is_write */
1100 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1102 &uc
->uc_sigmask
, puc
);
1105 #elif defined(__ia64)
1108 /* This ought to be in <bits/siginfo.h>... */
1109 # define __ISR_VALID 1
1112 int cpu_signal_handler(int host_signum
, void *pinfo
, void *puc
)
1114 siginfo_t
*info
= pinfo
;
1115 struct ucontext
*uc
= puc
;
1119 ip
= uc
->uc_mcontext
.sc_ip
;
1120 switch (host_signum
) {
1126 if (info
->si_code
&& (info
->si_segvflags
& __ISR_VALID
))
1127 /* ISR.W (write-access) is bit 33: */
1128 is_write
= (info
->si_isr
>> 33) & 1;
1134 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1136 (sigset_t
*)&uc
->uc_sigmask
, puc
);
1139 #elif defined(__s390__)
1141 int cpu_signal_handler(int host_signum
, void *pinfo
,
1144 siginfo_t
*info
= pinfo
;
1145 struct ucontext
*uc
= puc
;
1150 pc
= uc
->uc_mcontext
.psw
.addr
;
1152 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
1153 of the normal 2 arguments. The 3rd argument contains the "int_code"
1154 from the hardware which does in fact contain the is_write value.
1155 The rt signal handler, as far as I can tell, does not give this value
1156 at all. Not that we could get to it from here even if it were. */
1157 /* ??? This is not even close to complete, since it ignores all
1158 of the read-modify-write instructions. */
1159 pinsn
= (uint16_t *)pc
;
1160 switch (pinsn
[0] >> 8) {
1162 case 0x42: /* STC */
1163 case 0x40: /* STH */
1166 case 0xc4: /* RIL format insns */
1167 switch (pinsn
[0] & 0xf) {
1168 case 0xf: /* STRL */
1169 case 0xb: /* STGRL */
1170 case 0x7: /* STHRL */
1174 case 0xe3: /* RXY format insns */
1175 switch (pinsn
[2] & 0xff) {
1176 case 0x50: /* STY */
1177 case 0x24: /* STG */
1178 case 0x72: /* STCY */
1179 case 0x70: /* STHY */
1180 case 0x8e: /* STPQ */
1181 case 0x3f: /* STRVH */
1182 case 0x3e: /* STRV */
1183 case 0x2f: /* STRVG */
1188 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1189 is_write
, &uc
->uc_sigmask
, puc
);
1192 #elif defined(__mips__)
1194 int cpu_signal_handler(int host_signum
, void *pinfo
,
1197 siginfo_t
*info
= pinfo
;
1198 struct ucontext
*uc
= puc
;
1199 greg_t pc
= uc
->uc_mcontext
.pc
;
1202 /* XXX: compute is_write */
1204 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1205 is_write
, &uc
->uc_sigmask
, puc
);
1208 #elif defined(__hppa__)
1210 int cpu_signal_handler(int host_signum
, void *pinfo
,
1213 struct siginfo
*info
= pinfo
;
1214 struct ucontext
*uc
= puc
;
1215 unsigned long pc
= uc
->uc_mcontext
.sc_iaoq
[0];
1216 uint32_t insn
= *(uint32_t *)pc
;
1219 /* XXX: need kernel patch to get write flag faster. */
1220 switch (insn
>> 26) {
1221 case 0x1a: /* STW */
1222 case 0x19: /* STH */
1223 case 0x18: /* STB */
1224 case 0x1b: /* STWM */
1228 case 0x09: /* CSTWX, FSTWX, FSTWS */
1229 case 0x0b: /* CSTDX, FSTDX, FSTDS */
1230 /* Distinguish from coprocessor load ... */
1231 is_write
= (insn
>> 9) & 1;
1235 switch ((insn
>> 6) & 15) {
1236 case 0xa: /* STWS */
1237 case 0x9: /* STHS */
1238 case 0x8: /* STBS */
1239 case 0xe: /* STWAS */
1240 case 0xc: /* STBYS */
1246 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1247 is_write
, &uc
->uc_sigmask
, puc
);
1252 #error host CPU specific signal handler needed
1256 #endif /* !defined(CONFIG_SOFTMMU) */