Avoid returning void
[qemu/agraf.git] / dma.h
blobf35c4b6632b5f29db1d228c5ae38919086cf975e
1 /*
2 * DMA helper functions
4 * Copyright (c) 2009 Red Hat
6 * This work is licensed under the terms of the GNU General Public License
7 * (GNU GPL), version 2 or later.
8 */
10 #ifndef DMA_H
11 #define DMA_H
13 #include <stdio.h>
14 #include "hw/hw.h"
15 #include "block.h"
16 #include "kvm.h"
18 typedef struct DMAContext DMAContext;
19 typedef struct ScatterGatherEntry ScatterGatherEntry;
21 typedef enum {
22 DMA_DIRECTION_TO_DEVICE = 0,
23 DMA_DIRECTION_FROM_DEVICE = 1,
24 } DMADirection;
26 struct QEMUSGList {
27 ScatterGatherEntry *sg;
28 int nsg;
29 int nalloc;
30 size_t size;
31 DMAContext *dma;
34 #if defined(TARGET_PHYS_ADDR_BITS)
37 * When an IOMMU is present, bus addresses become distinct from
38 * CPU/memory physical addresses and may be a different size. Because
39 * the IOVA size depends more on the bus than on the platform, we more
40 * or less have to treat these as 64-bit always to cover all (or at
41 * least most) cases.
43 typedef uint64_t dma_addr_t;
45 #define DMA_ADDR_BITS 64
46 #define DMA_ADDR_FMT "%" PRIx64
48 typedef int DMATranslateFunc(DMAContext *dma,
49 dma_addr_t addr,
50 target_phys_addr_t *paddr,
51 target_phys_addr_t *len,
52 DMADirection dir);
53 typedef void* DMAMapFunc(DMAContext *dma,
54 dma_addr_t addr,
55 dma_addr_t *len,
56 DMADirection dir);
57 typedef void DMAUnmapFunc(DMAContext *dma,
58 void *buffer,
59 dma_addr_t len,
60 DMADirection dir,
61 dma_addr_t access_len);
63 struct DMAContext {
64 DMATranslateFunc *translate;
65 DMAMapFunc *map;
66 DMAUnmapFunc *unmap;
69 static inline void dma_barrier(DMAContext *dma, DMADirection dir)
72 * This is called before DMA read and write operations
73 * unless the _relaxed form is used and is responsible
74 * for providing some sane ordering of accesses vs
75 * concurrently running VCPUs.
77 * Users of map(), unmap() or lower level st/ld_*
78 * operations are responsible for providing their own
79 * ordering via barriers.
81 * This primitive implementation does a simple smp_mb()
82 * before each operation which provides pretty much full
83 * ordering.
85 * A smarter implementation can be devised if needed to
86 * use lighter barriers based on the direction of the
87 * transfer, the DMA context, etc...
89 if (kvm_enabled()) {
90 smp_mb();
94 static inline bool dma_has_iommu(DMAContext *dma)
96 return !!dma;
99 /* Checks that the given range of addresses is valid for DMA. This is
100 * useful for certain cases, but usually you should just use
101 * dma_memory_{read,write}() and check for errors */
102 bool iommu_dma_memory_valid(DMAContext *dma, dma_addr_t addr, dma_addr_t len,
103 DMADirection dir);
104 static inline bool dma_memory_valid(DMAContext *dma,
105 dma_addr_t addr, dma_addr_t len,
106 DMADirection dir)
108 if (!dma_has_iommu(dma)) {
109 return true;
110 } else {
111 return iommu_dma_memory_valid(dma, addr, len, dir);
115 int iommu_dma_memory_rw(DMAContext *dma, dma_addr_t addr,
116 void *buf, dma_addr_t len, DMADirection dir);
117 static inline int dma_memory_rw_relaxed(DMAContext *dma, dma_addr_t addr,
118 void *buf, dma_addr_t len,
119 DMADirection dir)
121 if (!dma_has_iommu(dma)) {
122 /* Fast-path for no IOMMU */
123 cpu_physical_memory_rw(addr, buf, len,
124 dir == DMA_DIRECTION_FROM_DEVICE);
125 return 0;
126 } else {
127 return iommu_dma_memory_rw(dma, addr, buf, len, dir);
131 static inline int dma_memory_read_relaxed(DMAContext *dma, dma_addr_t addr,
132 void *buf, dma_addr_t len)
134 return dma_memory_rw_relaxed(dma, addr, buf, len, DMA_DIRECTION_TO_DEVICE);
137 static inline int dma_memory_write_relaxed(DMAContext *dma, dma_addr_t addr,
138 const void *buf, dma_addr_t len)
140 return dma_memory_rw_relaxed(dma, addr, (void *)buf, len,
141 DMA_DIRECTION_FROM_DEVICE);
144 static inline int dma_memory_rw(DMAContext *dma, dma_addr_t addr,
145 void *buf, dma_addr_t len,
146 DMADirection dir)
148 dma_barrier(dma, dir);
150 return dma_memory_rw_relaxed(dma, addr, buf, len, dir);
153 static inline int dma_memory_read(DMAContext *dma, dma_addr_t addr,
154 void *buf, dma_addr_t len)
156 return dma_memory_rw(dma, addr, buf, len, DMA_DIRECTION_TO_DEVICE);
159 static inline int dma_memory_write(DMAContext *dma, dma_addr_t addr,
160 const void *buf, dma_addr_t len)
162 return dma_memory_rw(dma, addr, (void *)buf, len,
163 DMA_DIRECTION_FROM_DEVICE);
166 int iommu_dma_memory_set(DMAContext *dma, dma_addr_t addr, uint8_t c,
167 dma_addr_t len);
169 int dma_memory_set(DMAContext *dma, dma_addr_t addr, uint8_t c, dma_addr_t len);
171 void *iommu_dma_memory_map(DMAContext *dma,
172 dma_addr_t addr, dma_addr_t *len,
173 DMADirection dir);
174 static inline void *dma_memory_map(DMAContext *dma,
175 dma_addr_t addr, dma_addr_t *len,
176 DMADirection dir)
178 if (!dma_has_iommu(dma)) {
179 target_phys_addr_t xlen = *len;
180 void *p;
182 p = cpu_physical_memory_map(addr, &xlen,
183 dir == DMA_DIRECTION_FROM_DEVICE);
184 *len = xlen;
185 return p;
186 } else {
187 return iommu_dma_memory_map(dma, addr, len, dir);
191 void iommu_dma_memory_unmap(DMAContext *dma,
192 void *buffer, dma_addr_t len,
193 DMADirection dir, dma_addr_t access_len);
194 static inline void dma_memory_unmap(DMAContext *dma,
195 void *buffer, dma_addr_t len,
196 DMADirection dir, dma_addr_t access_len)
198 if (!dma_has_iommu(dma)) {
199 cpu_physical_memory_unmap(buffer, (target_phys_addr_t)len,
200 dir == DMA_DIRECTION_FROM_DEVICE,
201 access_len);
202 } else {
203 iommu_dma_memory_unmap(dma, buffer, len, dir, access_len);
207 #define DEFINE_LDST_DMA(_lname, _sname, _bits, _end) \
208 static inline uint##_bits##_t ld##_lname##_##_end##_dma(DMAContext *dma, \
209 dma_addr_t addr) \
211 uint##_bits##_t val; \
212 dma_memory_read(dma, addr, &val, (_bits) / 8); \
213 return _end##_bits##_to_cpu(val); \
215 static inline void st##_sname##_##_end##_dma(DMAContext *dma, \
216 dma_addr_t addr, \
217 uint##_bits##_t val) \
219 val = cpu_to_##_end##_bits(val); \
220 dma_memory_write(dma, addr, &val, (_bits) / 8); \
223 static inline uint8_t ldub_dma(DMAContext *dma, dma_addr_t addr)
225 uint8_t val;
227 dma_memory_read(dma, addr, &val, 1);
228 return val;
231 static inline void stb_dma(DMAContext *dma, dma_addr_t addr, uint8_t val)
233 dma_memory_write(dma, addr, &val, 1);
236 DEFINE_LDST_DMA(uw, w, 16, le);
237 DEFINE_LDST_DMA(l, l, 32, le);
238 DEFINE_LDST_DMA(q, q, 64, le);
239 DEFINE_LDST_DMA(uw, w, 16, be);
240 DEFINE_LDST_DMA(l, l, 32, be);
241 DEFINE_LDST_DMA(q, q, 64, be);
243 #undef DEFINE_LDST_DMA
245 void dma_context_init(DMAContext *dma, DMATranslateFunc translate,
246 DMAMapFunc map, DMAUnmapFunc unmap);
248 struct ScatterGatherEntry {
249 dma_addr_t base;
250 dma_addr_t len;
253 void qemu_sglist_init(QEMUSGList *qsg, int alloc_hint, DMAContext *dma);
254 void qemu_sglist_add(QEMUSGList *qsg, dma_addr_t base, dma_addr_t len);
255 void qemu_sglist_destroy(QEMUSGList *qsg);
256 #endif
258 typedef BlockDriverAIOCB *DMAIOFunc(BlockDriverState *bs, int64_t sector_num,
259 QEMUIOVector *iov, int nb_sectors,
260 BlockDriverCompletionFunc *cb, void *opaque);
262 BlockDriverAIOCB *dma_bdrv_io(BlockDriverState *bs,
263 QEMUSGList *sg, uint64_t sector_num,
264 DMAIOFunc *io_func, BlockDriverCompletionFunc *cb,
265 void *opaque, DMADirection dir);
266 BlockDriverAIOCB *dma_bdrv_read(BlockDriverState *bs,
267 QEMUSGList *sg, uint64_t sector,
268 BlockDriverCompletionFunc *cb, void *opaque);
269 BlockDriverAIOCB *dma_bdrv_write(BlockDriverState *bs,
270 QEMUSGList *sg, uint64_t sector,
271 BlockDriverCompletionFunc *cb, void *opaque);
272 uint64_t dma_buf_read(uint8_t *ptr, int32_t len, QEMUSGList *sg);
273 uint64_t dma_buf_write(uint8_t *ptr, int32_t len, QEMUSGList *sg);
275 void dma_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie,
276 QEMUSGList *sg, enum BlockAcctType type);
278 #endif