2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu-timer.h"
19 #include "migration.h"
21 static void qed_aio_cancel(BlockDriverAIOCB
*blockacb
)
23 QEDAIOCB
*acb
= (QEDAIOCB
*)blockacb
;
24 bool finished
= false;
26 /* Wait for the request to finish */
27 acb
->finished
= &finished
;
33 static AIOPool qed_aio_pool
= {
34 .aiocb_size
= sizeof(QEDAIOCB
),
35 .cancel
= qed_aio_cancel
,
38 static int bdrv_qed_probe(const uint8_t *buf
, int buf_size
,
41 const QEDHeader
*header
= (const QEDHeader
*)buf
;
43 if (buf_size
< sizeof(*header
)) {
46 if (le32_to_cpu(header
->magic
) != QED_MAGIC
) {
53 * Check whether an image format is raw
55 * @fmt: Backing file format, may be NULL
57 static bool qed_fmt_is_raw(const char *fmt
)
59 return fmt
&& strcmp(fmt
, "raw") == 0;
62 static void qed_header_le_to_cpu(const QEDHeader
*le
, QEDHeader
*cpu
)
64 cpu
->magic
= le32_to_cpu(le
->magic
);
65 cpu
->cluster_size
= le32_to_cpu(le
->cluster_size
);
66 cpu
->table_size
= le32_to_cpu(le
->table_size
);
67 cpu
->header_size
= le32_to_cpu(le
->header_size
);
68 cpu
->features
= le64_to_cpu(le
->features
);
69 cpu
->compat_features
= le64_to_cpu(le
->compat_features
);
70 cpu
->autoclear_features
= le64_to_cpu(le
->autoclear_features
);
71 cpu
->l1_table_offset
= le64_to_cpu(le
->l1_table_offset
);
72 cpu
->image_size
= le64_to_cpu(le
->image_size
);
73 cpu
->backing_filename_offset
= le32_to_cpu(le
->backing_filename_offset
);
74 cpu
->backing_filename_size
= le32_to_cpu(le
->backing_filename_size
);
77 static void qed_header_cpu_to_le(const QEDHeader
*cpu
, QEDHeader
*le
)
79 le
->magic
= cpu_to_le32(cpu
->magic
);
80 le
->cluster_size
= cpu_to_le32(cpu
->cluster_size
);
81 le
->table_size
= cpu_to_le32(cpu
->table_size
);
82 le
->header_size
= cpu_to_le32(cpu
->header_size
);
83 le
->features
= cpu_to_le64(cpu
->features
);
84 le
->compat_features
= cpu_to_le64(cpu
->compat_features
);
85 le
->autoclear_features
= cpu_to_le64(cpu
->autoclear_features
);
86 le
->l1_table_offset
= cpu_to_le64(cpu
->l1_table_offset
);
87 le
->image_size
= cpu_to_le64(cpu
->image_size
);
88 le
->backing_filename_offset
= cpu_to_le32(cpu
->backing_filename_offset
);
89 le
->backing_filename_size
= cpu_to_le32(cpu
->backing_filename_size
);
92 static int qed_write_header_sync(BDRVQEDState
*s
)
97 qed_header_cpu_to_le(&s
->header
, &le
);
98 ret
= bdrv_pwrite(s
->bs
->file
, 0, &le
, sizeof(le
));
99 if (ret
!= sizeof(le
)) {
114 static void qed_write_header_cb(void *opaque
, int ret
)
116 QEDWriteHeaderCB
*write_header_cb
= opaque
;
118 qemu_vfree(write_header_cb
->buf
);
119 gencb_complete(write_header_cb
, ret
);
122 static void qed_write_header_read_cb(void *opaque
, int ret
)
124 QEDWriteHeaderCB
*write_header_cb
= opaque
;
125 BDRVQEDState
*s
= write_header_cb
->s
;
128 qed_write_header_cb(write_header_cb
, ret
);
133 qed_header_cpu_to_le(&s
->header
, (QEDHeader
*)write_header_cb
->buf
);
135 bdrv_aio_writev(s
->bs
->file
, 0, &write_header_cb
->qiov
,
136 write_header_cb
->nsectors
, qed_write_header_cb
,
141 * Update header in-place (does not rewrite backing filename or other strings)
143 * This function only updates known header fields in-place and does not affect
144 * extra data after the QED header.
146 static void qed_write_header(BDRVQEDState
*s
, BlockDriverCompletionFunc cb
,
149 /* We must write full sectors for O_DIRECT but cannot necessarily generate
150 * the data following the header if an unrecognized compat feature is
151 * active. Therefore, first read the sectors containing the header, update
152 * them, and write back.
155 int nsectors
= (sizeof(QEDHeader
) + BDRV_SECTOR_SIZE
- 1) /
157 size_t len
= nsectors
* BDRV_SECTOR_SIZE
;
158 QEDWriteHeaderCB
*write_header_cb
= gencb_alloc(sizeof(*write_header_cb
),
161 write_header_cb
->s
= s
;
162 write_header_cb
->nsectors
= nsectors
;
163 write_header_cb
->buf
= qemu_blockalign(s
->bs
, len
);
164 write_header_cb
->iov
.iov_base
= write_header_cb
->buf
;
165 write_header_cb
->iov
.iov_len
= len
;
166 qemu_iovec_init_external(&write_header_cb
->qiov
, &write_header_cb
->iov
, 1);
168 bdrv_aio_readv(s
->bs
->file
, 0, &write_header_cb
->qiov
, nsectors
,
169 qed_write_header_read_cb
, write_header_cb
);
172 static uint64_t qed_max_image_size(uint32_t cluster_size
, uint32_t table_size
)
174 uint64_t table_entries
;
177 table_entries
= (table_size
* cluster_size
) / sizeof(uint64_t);
178 l2_size
= table_entries
* cluster_size
;
180 return l2_size
* table_entries
;
183 static bool qed_is_cluster_size_valid(uint32_t cluster_size
)
185 if (cluster_size
< QED_MIN_CLUSTER_SIZE
||
186 cluster_size
> QED_MAX_CLUSTER_SIZE
) {
189 if (cluster_size
& (cluster_size
- 1)) {
190 return false; /* not power of 2 */
195 static bool qed_is_table_size_valid(uint32_t table_size
)
197 if (table_size
< QED_MIN_TABLE_SIZE
||
198 table_size
> QED_MAX_TABLE_SIZE
) {
201 if (table_size
& (table_size
- 1)) {
202 return false; /* not power of 2 */
207 static bool qed_is_image_size_valid(uint64_t image_size
, uint32_t cluster_size
,
210 if (image_size
% BDRV_SECTOR_SIZE
!= 0) {
211 return false; /* not multiple of sector size */
213 if (image_size
> qed_max_image_size(cluster_size
, table_size
)) {
214 return false; /* image is too large */
220 * Read a string of known length from the image file
223 * @offset: File offset to start of string, in bytes
224 * @n: String length in bytes
225 * @buf: Destination buffer
226 * @buflen: Destination buffer length in bytes
227 * @ret: 0 on success, -errno on failure
229 * The string is NUL-terminated.
231 static int qed_read_string(BlockDriverState
*file
, uint64_t offset
, size_t n
,
232 char *buf
, size_t buflen
)
238 ret
= bdrv_pread(file
, offset
, buf
, n
);
247 * Allocate new clusters
250 * @n: Number of contiguous clusters to allocate
251 * @ret: Offset of first allocated cluster
253 * This function only produces the offset where the new clusters should be
254 * written. It updates BDRVQEDState but does not make any changes to the image
257 static uint64_t qed_alloc_clusters(BDRVQEDState
*s
, unsigned int n
)
259 uint64_t offset
= s
->file_size
;
260 s
->file_size
+= n
* s
->header
.cluster_size
;
264 QEDTable
*qed_alloc_table(BDRVQEDState
*s
)
266 /* Honor O_DIRECT memory alignment requirements */
267 return qemu_blockalign(s
->bs
,
268 s
->header
.cluster_size
* s
->header
.table_size
);
272 * Allocate a new zeroed L2 table
274 static CachedL2Table
*qed_new_l2_table(BDRVQEDState
*s
)
276 CachedL2Table
*l2_table
= qed_alloc_l2_cache_entry(&s
->l2_cache
);
278 l2_table
->table
= qed_alloc_table(s
);
279 l2_table
->offset
= qed_alloc_clusters(s
, s
->header
.table_size
);
281 memset(l2_table
->table
->offsets
, 0,
282 s
->header
.cluster_size
* s
->header
.table_size
);
286 static void qed_aio_next_io(void *opaque
, int ret
);
288 static void qed_plug_allocating_write_reqs(BDRVQEDState
*s
)
290 assert(!s
->allocating_write_reqs_plugged
);
292 s
->allocating_write_reqs_plugged
= true;
295 static void qed_unplug_allocating_write_reqs(BDRVQEDState
*s
)
299 assert(s
->allocating_write_reqs_plugged
);
301 s
->allocating_write_reqs_plugged
= false;
303 acb
= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
);
305 qed_aio_next_io(acb
, 0);
309 static void qed_finish_clear_need_check(void *opaque
, int ret
)
314 static void qed_flush_after_clear_need_check(void *opaque
, int ret
)
316 BDRVQEDState
*s
= opaque
;
318 bdrv_aio_flush(s
->bs
, qed_finish_clear_need_check
, s
);
320 /* No need to wait until flush completes */
321 qed_unplug_allocating_write_reqs(s
);
324 static void qed_clear_need_check(void *opaque
, int ret
)
326 BDRVQEDState
*s
= opaque
;
329 qed_unplug_allocating_write_reqs(s
);
333 s
->header
.features
&= ~QED_F_NEED_CHECK
;
334 qed_write_header(s
, qed_flush_after_clear_need_check
, s
);
337 static void qed_need_check_timer_cb(void *opaque
)
339 BDRVQEDState
*s
= opaque
;
341 /* The timer should only fire when allocating writes have drained */
342 assert(!QSIMPLEQ_FIRST(&s
->allocating_write_reqs
));
344 trace_qed_need_check_timer_cb(s
);
346 qed_plug_allocating_write_reqs(s
);
348 /* Ensure writes are on disk before clearing flag */
349 bdrv_aio_flush(s
->bs
, qed_clear_need_check
, s
);
352 static void qed_start_need_check_timer(BDRVQEDState
*s
)
354 trace_qed_start_need_check_timer(s
);
356 /* Use vm_clock so we don't alter the image file while suspended for
359 qemu_mod_timer(s
->need_check_timer
, qemu_get_clock_ns(vm_clock
) +
360 get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT
);
363 /* It's okay to call this multiple times or when no timer is started */
364 static void qed_cancel_need_check_timer(BDRVQEDState
*s
)
366 trace_qed_cancel_need_check_timer(s
);
367 qemu_del_timer(s
->need_check_timer
);
370 static int bdrv_qed_open(BlockDriverState
*bs
, int flags
)
372 BDRVQEDState
*s
= bs
->opaque
;
378 QSIMPLEQ_INIT(&s
->allocating_write_reqs
);
380 ret
= bdrv_pread(bs
->file
, 0, &le_header
, sizeof(le_header
));
384 qed_header_le_to_cpu(&le_header
, &s
->header
);
386 if (s
->header
.magic
!= QED_MAGIC
) {
389 if (s
->header
.features
& ~QED_FEATURE_MASK
) {
390 /* image uses unsupported feature bits */
392 snprintf(buf
, sizeof(buf
), "%" PRIx64
,
393 s
->header
.features
& ~QED_FEATURE_MASK
);
394 qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE
,
395 bs
->device_name
, "QED", buf
);
398 if (!qed_is_cluster_size_valid(s
->header
.cluster_size
)) {
402 /* Round down file size to the last cluster */
403 file_size
= bdrv_getlength(bs
->file
);
407 s
->file_size
= qed_start_of_cluster(s
, file_size
);
409 if (!qed_is_table_size_valid(s
->header
.table_size
)) {
412 if (!qed_is_image_size_valid(s
->header
.image_size
,
413 s
->header
.cluster_size
,
414 s
->header
.table_size
)) {
417 if (!qed_check_table_offset(s
, s
->header
.l1_table_offset
)) {
421 s
->table_nelems
= (s
->header
.cluster_size
* s
->header
.table_size
) /
423 s
->l2_shift
= ffs(s
->header
.cluster_size
) - 1;
424 s
->l2_mask
= s
->table_nelems
- 1;
425 s
->l1_shift
= s
->l2_shift
+ ffs(s
->table_nelems
) - 1;
427 if ((s
->header
.features
& QED_F_BACKING_FILE
)) {
428 if ((uint64_t)s
->header
.backing_filename_offset
+
429 s
->header
.backing_filename_size
>
430 s
->header
.cluster_size
* s
->header
.header_size
) {
434 ret
= qed_read_string(bs
->file
, s
->header
.backing_filename_offset
,
435 s
->header
.backing_filename_size
, bs
->backing_file
,
436 sizeof(bs
->backing_file
));
441 if (s
->header
.features
& QED_F_BACKING_FORMAT_NO_PROBE
) {
442 pstrcpy(bs
->backing_format
, sizeof(bs
->backing_format
), "raw");
446 /* Reset unknown autoclear feature bits. This is a backwards
447 * compatibility mechanism that allows images to be opened by older
448 * programs, which "knock out" unknown feature bits. When an image is
449 * opened by a newer program again it can detect that the autoclear
450 * feature is no longer valid.
452 if ((s
->header
.autoclear_features
& ~QED_AUTOCLEAR_FEATURE_MASK
) != 0 &&
453 !bdrv_is_read_only(bs
->file
) && !(flags
& BDRV_O_INCOMING
)) {
454 s
->header
.autoclear_features
&= QED_AUTOCLEAR_FEATURE_MASK
;
456 ret
= qed_write_header_sync(s
);
461 /* From here on only known autoclear feature bits are valid */
462 bdrv_flush(bs
->file
);
465 s
->l1_table
= qed_alloc_table(s
);
466 qed_init_l2_cache(&s
->l2_cache
);
468 ret
= qed_read_l1_table_sync(s
);
473 /* If image was not closed cleanly, check consistency */
474 if (s
->header
.features
& QED_F_NEED_CHECK
) {
475 /* Read-only images cannot be fixed. There is no risk of corruption
476 * since write operations are not possible. Therefore, allow
477 * potentially inconsistent images to be opened read-only. This can
478 * aid data recovery from an otherwise inconsistent image.
480 if (!bdrv_is_read_only(bs
->file
) &&
481 !(flags
& BDRV_O_INCOMING
)) {
482 BdrvCheckResult result
= {0};
484 ret
= qed_check(s
, &result
, true);
488 if (!result
.corruptions
&& !result
.check_errors
) {
489 /* Ensure fixes reach storage before clearing check bit */
492 s
->header
.features
&= ~QED_F_NEED_CHECK
;
493 qed_write_header_sync(s
);
498 s
->need_check_timer
= qemu_new_timer_ns(vm_clock
,
499 qed_need_check_timer_cb
, s
);
503 qed_free_l2_cache(&s
->l2_cache
);
504 qemu_vfree(s
->l1_table
);
509 static void bdrv_qed_close(BlockDriverState
*bs
)
511 BDRVQEDState
*s
= bs
->opaque
;
513 qed_cancel_need_check_timer(s
);
514 qemu_free_timer(s
->need_check_timer
);
516 /* Ensure writes reach stable storage */
517 bdrv_flush(bs
->file
);
519 /* Clean shutdown, no check required on next open */
520 if (s
->header
.features
& QED_F_NEED_CHECK
) {
521 s
->header
.features
&= ~QED_F_NEED_CHECK
;
522 qed_write_header_sync(s
);
525 qed_free_l2_cache(&s
->l2_cache
);
526 qemu_vfree(s
->l1_table
);
529 static int qed_create(const char *filename
, uint32_t cluster_size
,
530 uint64_t image_size
, uint32_t table_size
,
531 const char *backing_file
, const char *backing_fmt
)
535 .cluster_size
= cluster_size
,
536 .table_size
= table_size
,
539 .compat_features
= 0,
540 .l1_table_offset
= cluster_size
,
541 .image_size
= image_size
,
544 uint8_t *l1_table
= NULL
;
545 size_t l1_size
= header
.cluster_size
* header
.table_size
;
547 BlockDriverState
*bs
= NULL
;
549 ret
= bdrv_create_file(filename
, NULL
);
554 ret
= bdrv_file_open(&bs
, filename
, BDRV_O_RDWR
| BDRV_O_CACHE_WB
);
559 /* File must start empty and grow, check truncate is supported */
560 ret
= bdrv_truncate(bs
, 0);
566 header
.features
|= QED_F_BACKING_FILE
;
567 header
.backing_filename_offset
= sizeof(le_header
);
568 header
.backing_filename_size
= strlen(backing_file
);
570 if (qed_fmt_is_raw(backing_fmt
)) {
571 header
.features
|= QED_F_BACKING_FORMAT_NO_PROBE
;
575 qed_header_cpu_to_le(&header
, &le_header
);
576 ret
= bdrv_pwrite(bs
, 0, &le_header
, sizeof(le_header
));
580 ret
= bdrv_pwrite(bs
, sizeof(le_header
), backing_file
,
581 header
.backing_filename_size
);
586 l1_table
= g_malloc0(l1_size
);
587 ret
= bdrv_pwrite(bs
, header
.l1_table_offset
, l1_table
, l1_size
);
592 ret
= 0; /* success */
599 static int bdrv_qed_create(const char *filename
, QEMUOptionParameter
*options
)
601 uint64_t image_size
= 0;
602 uint32_t cluster_size
= QED_DEFAULT_CLUSTER_SIZE
;
603 uint32_t table_size
= QED_DEFAULT_TABLE_SIZE
;
604 const char *backing_file
= NULL
;
605 const char *backing_fmt
= NULL
;
607 while (options
&& options
->name
) {
608 if (!strcmp(options
->name
, BLOCK_OPT_SIZE
)) {
609 image_size
= options
->value
.n
;
610 } else if (!strcmp(options
->name
, BLOCK_OPT_BACKING_FILE
)) {
611 backing_file
= options
->value
.s
;
612 } else if (!strcmp(options
->name
, BLOCK_OPT_BACKING_FMT
)) {
613 backing_fmt
= options
->value
.s
;
614 } else if (!strcmp(options
->name
, BLOCK_OPT_CLUSTER_SIZE
)) {
615 if (options
->value
.n
) {
616 cluster_size
= options
->value
.n
;
618 } else if (!strcmp(options
->name
, BLOCK_OPT_TABLE_SIZE
)) {
619 if (options
->value
.n
) {
620 table_size
= options
->value
.n
;
626 if (!qed_is_cluster_size_valid(cluster_size
)) {
627 fprintf(stderr
, "QED cluster size must be within range [%u, %u] and power of 2\n",
628 QED_MIN_CLUSTER_SIZE
, QED_MAX_CLUSTER_SIZE
);
631 if (!qed_is_table_size_valid(table_size
)) {
632 fprintf(stderr
, "QED table size must be within range [%u, %u] and power of 2\n",
633 QED_MIN_TABLE_SIZE
, QED_MAX_TABLE_SIZE
);
636 if (!qed_is_image_size_valid(image_size
, cluster_size
, table_size
)) {
637 fprintf(stderr
, "QED image size must be a non-zero multiple of "
638 "cluster size and less than %" PRIu64
" bytes\n",
639 qed_max_image_size(cluster_size
, table_size
));
643 return qed_create(filename
, cluster_size
, image_size
, table_size
,
644 backing_file
, backing_fmt
);
653 static void qed_is_allocated_cb(void *opaque
, int ret
, uint64_t offset
, size_t len
)
655 QEDIsAllocatedCB
*cb
= opaque
;
656 *cb
->pnum
= len
/ BDRV_SECTOR_SIZE
;
657 cb
->is_allocated
= (ret
== QED_CLUSTER_FOUND
|| ret
== QED_CLUSTER_ZERO
);
659 qemu_coroutine_enter(cb
->co
, NULL
);
663 static int coroutine_fn
bdrv_qed_co_is_allocated(BlockDriverState
*bs
,
665 int nb_sectors
, int *pnum
)
667 BDRVQEDState
*s
= bs
->opaque
;
668 uint64_t pos
= (uint64_t)sector_num
* BDRV_SECTOR_SIZE
;
669 size_t len
= (size_t)nb_sectors
* BDRV_SECTOR_SIZE
;
670 QEDIsAllocatedCB cb
= {
674 QEDRequest request
= { .l2_table
= NULL
};
676 qed_find_cluster(s
, &request
, pos
, len
, qed_is_allocated_cb
, &cb
);
678 /* Now sleep if the callback wasn't invoked immediately */
679 while (cb
.is_allocated
== -1) {
680 cb
.co
= qemu_coroutine_self();
681 qemu_coroutine_yield();
684 qed_unref_l2_cache_entry(request
.l2_table
);
686 return cb
.is_allocated
;
689 static int bdrv_qed_make_empty(BlockDriverState
*bs
)
694 static BDRVQEDState
*acb_to_s(QEDAIOCB
*acb
)
696 return acb
->common
.bs
->opaque
;
700 * Read from the backing file or zero-fill if no backing file
703 * @pos: Byte position in device
704 * @qiov: Destination I/O vector
705 * @cb: Completion function
706 * @opaque: User data for completion function
708 * This function reads qiov->size bytes starting at pos from the backing file.
709 * If there is no backing file then zeroes are read.
711 static void qed_read_backing_file(BDRVQEDState
*s
, uint64_t pos
,
713 BlockDriverCompletionFunc
*cb
, void *opaque
)
715 uint64_t backing_length
= 0;
718 /* If there is a backing file, get its length. Treat the absence of a
719 * backing file like a zero length backing file.
721 if (s
->bs
->backing_hd
) {
722 int64_t l
= bdrv_getlength(s
->bs
->backing_hd
);
730 /* Zero all sectors if reading beyond the end of the backing file */
731 if (pos
>= backing_length
||
732 pos
+ qiov
->size
> backing_length
) {
733 qemu_iovec_memset(qiov
, 0, qiov
->size
);
736 /* Complete now if there are no backing file sectors to read */
737 if (pos
>= backing_length
) {
742 /* If the read straddles the end of the backing file, shorten it */
743 size
= MIN((uint64_t)backing_length
- pos
, qiov
->size
);
745 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_READ_BACKING
);
746 bdrv_aio_readv(s
->bs
->backing_hd
, pos
/ BDRV_SECTOR_SIZE
,
747 qiov
, size
/ BDRV_SECTOR_SIZE
, cb
, opaque
);
756 } CopyFromBackingFileCB
;
758 static void qed_copy_from_backing_file_cb(void *opaque
, int ret
)
760 CopyFromBackingFileCB
*copy_cb
= opaque
;
761 qemu_vfree(copy_cb
->iov
.iov_base
);
762 gencb_complete(©_cb
->gencb
, ret
);
765 static void qed_copy_from_backing_file_write(void *opaque
, int ret
)
767 CopyFromBackingFileCB
*copy_cb
= opaque
;
768 BDRVQEDState
*s
= copy_cb
->s
;
771 qed_copy_from_backing_file_cb(copy_cb
, ret
);
775 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_COW_WRITE
);
776 bdrv_aio_writev(s
->bs
->file
, copy_cb
->offset
/ BDRV_SECTOR_SIZE
,
777 ©_cb
->qiov
, copy_cb
->qiov
.size
/ BDRV_SECTOR_SIZE
,
778 qed_copy_from_backing_file_cb
, copy_cb
);
782 * Copy data from backing file into the image
785 * @pos: Byte position in device
786 * @len: Number of bytes
787 * @offset: Byte offset in image file
788 * @cb: Completion function
789 * @opaque: User data for completion function
791 static void qed_copy_from_backing_file(BDRVQEDState
*s
, uint64_t pos
,
792 uint64_t len
, uint64_t offset
,
793 BlockDriverCompletionFunc
*cb
,
796 CopyFromBackingFileCB
*copy_cb
;
798 /* Skip copy entirely if there is no work to do */
804 copy_cb
= gencb_alloc(sizeof(*copy_cb
), cb
, opaque
);
806 copy_cb
->offset
= offset
;
807 copy_cb
->iov
.iov_base
= qemu_blockalign(s
->bs
, len
);
808 copy_cb
->iov
.iov_len
= len
;
809 qemu_iovec_init_external(©_cb
->qiov
, ©_cb
->iov
, 1);
811 qed_read_backing_file(s
, pos
, ©_cb
->qiov
,
812 qed_copy_from_backing_file_write
, copy_cb
);
816 * Link one or more contiguous clusters into a table
820 * @index: First cluster index
821 * @n: Number of contiguous clusters
822 * @cluster: First cluster offset
824 * The cluster offset may be an allocated byte offset in the image file, the
825 * zero cluster marker, or the unallocated cluster marker.
827 static void qed_update_l2_table(BDRVQEDState
*s
, QEDTable
*table
, int index
,
828 unsigned int n
, uint64_t cluster
)
831 for (i
= index
; i
< index
+ n
; i
++) {
832 table
->offsets
[i
] = cluster
;
833 if (!qed_offset_is_unalloc_cluster(cluster
) &&
834 !qed_offset_is_zero_cluster(cluster
)) {
835 cluster
+= s
->header
.cluster_size
;
840 static void qed_aio_complete_bh(void *opaque
)
842 QEDAIOCB
*acb
= opaque
;
843 BlockDriverCompletionFunc
*cb
= acb
->common
.cb
;
844 void *user_opaque
= acb
->common
.opaque
;
845 int ret
= acb
->bh_ret
;
846 bool *finished
= acb
->finished
;
848 qemu_bh_delete(acb
->bh
);
849 qemu_aio_release(acb
);
851 /* Invoke callback */
852 cb(user_opaque
, ret
);
854 /* Signal cancel completion */
860 static void qed_aio_complete(QEDAIOCB
*acb
, int ret
)
862 BDRVQEDState
*s
= acb_to_s(acb
);
864 trace_qed_aio_complete(s
, acb
, ret
);
867 qemu_iovec_destroy(&acb
->cur_qiov
);
868 qed_unref_l2_cache_entry(acb
->request
.l2_table
);
870 /* Free the buffer we may have allocated for zero writes */
871 if (acb
->flags
& QED_AIOCB_ZERO
) {
872 qemu_vfree(acb
->qiov
->iov
[0].iov_base
);
873 acb
->qiov
->iov
[0].iov_base
= NULL
;
876 /* Arrange for a bh to invoke the completion function */
878 acb
->bh
= qemu_bh_new(qed_aio_complete_bh
, acb
);
879 qemu_bh_schedule(acb
->bh
);
881 /* Start next allocating write request waiting behind this one. Note that
882 * requests enqueue themselves when they first hit an unallocated cluster
883 * but they wait until the entire request is finished before waking up the
884 * next request in the queue. This ensures that we don't cycle through
885 * requests multiple times but rather finish one at a time completely.
887 if (acb
== QSIMPLEQ_FIRST(&s
->allocating_write_reqs
)) {
888 QSIMPLEQ_REMOVE_HEAD(&s
->allocating_write_reqs
, next
);
889 acb
= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
);
891 qed_aio_next_io(acb
, 0);
892 } else if (s
->header
.features
& QED_F_NEED_CHECK
) {
893 qed_start_need_check_timer(s
);
899 * Commit the current L2 table to the cache
901 static void qed_commit_l2_update(void *opaque
, int ret
)
903 QEDAIOCB
*acb
= opaque
;
904 BDRVQEDState
*s
= acb_to_s(acb
);
905 CachedL2Table
*l2_table
= acb
->request
.l2_table
;
906 uint64_t l2_offset
= l2_table
->offset
;
908 qed_commit_l2_cache_entry(&s
->l2_cache
, l2_table
);
910 /* This is guaranteed to succeed because we just committed the entry to the
913 acb
->request
.l2_table
= qed_find_l2_cache_entry(&s
->l2_cache
, l2_offset
);
914 assert(acb
->request
.l2_table
!= NULL
);
916 qed_aio_next_io(opaque
, ret
);
920 * Update L1 table with new L2 table offset and write it out
922 static void qed_aio_write_l1_update(void *opaque
, int ret
)
924 QEDAIOCB
*acb
= opaque
;
925 BDRVQEDState
*s
= acb_to_s(acb
);
929 qed_aio_complete(acb
, ret
);
933 index
= qed_l1_index(s
, acb
->cur_pos
);
934 s
->l1_table
->offsets
[index
] = acb
->request
.l2_table
->offset
;
936 qed_write_l1_table(s
, index
, 1, qed_commit_l2_update
, acb
);
940 * Update L2 table with new cluster offsets and write them out
942 static void qed_aio_write_l2_update(QEDAIOCB
*acb
, int ret
, uint64_t offset
)
944 BDRVQEDState
*s
= acb_to_s(acb
);
945 bool need_alloc
= acb
->find_cluster_ret
== QED_CLUSTER_L1
;
953 qed_unref_l2_cache_entry(acb
->request
.l2_table
);
954 acb
->request
.l2_table
= qed_new_l2_table(s
);
957 index
= qed_l2_index(s
, acb
->cur_pos
);
958 qed_update_l2_table(s
, acb
->request
.l2_table
->table
, index
, acb
->cur_nclusters
,
962 /* Write out the whole new L2 table */
963 qed_write_l2_table(s
, &acb
->request
, 0, s
->table_nelems
, true,
964 qed_aio_write_l1_update
, acb
);
966 /* Write out only the updated part of the L2 table */
967 qed_write_l2_table(s
, &acb
->request
, index
, acb
->cur_nclusters
, false,
968 qed_aio_next_io
, acb
);
973 qed_aio_complete(acb
, ret
);
976 static void qed_aio_write_l2_update_cb(void *opaque
, int ret
)
978 QEDAIOCB
*acb
= opaque
;
979 qed_aio_write_l2_update(acb
, ret
, acb
->cur_cluster
);
983 * Flush new data clusters before updating the L2 table
985 * This flush is necessary when a backing file is in use. A crash during an
986 * allocating write could result in empty clusters in the image. If the write
987 * only touched a subregion of the cluster, then backing image sectors have
988 * been lost in the untouched region. The solution is to flush after writing a
989 * new data cluster and before updating the L2 table.
991 static void qed_aio_write_flush_before_l2_update(void *opaque
, int ret
)
993 QEDAIOCB
*acb
= opaque
;
994 BDRVQEDState
*s
= acb_to_s(acb
);
996 if (!bdrv_aio_flush(s
->bs
->file
, qed_aio_write_l2_update_cb
, opaque
)) {
997 qed_aio_complete(acb
, -EIO
);
1002 * Write data to the image file
1004 static void qed_aio_write_main(void *opaque
, int ret
)
1006 QEDAIOCB
*acb
= opaque
;
1007 BDRVQEDState
*s
= acb_to_s(acb
);
1008 uint64_t offset
= acb
->cur_cluster
+
1009 qed_offset_into_cluster(s
, acb
->cur_pos
);
1010 BlockDriverCompletionFunc
*next_fn
;
1012 trace_qed_aio_write_main(s
, acb
, ret
, offset
, acb
->cur_qiov
.size
);
1015 qed_aio_complete(acb
, ret
);
1019 if (acb
->find_cluster_ret
== QED_CLUSTER_FOUND
) {
1020 next_fn
= qed_aio_next_io
;
1022 if (s
->bs
->backing_hd
) {
1023 next_fn
= qed_aio_write_flush_before_l2_update
;
1025 next_fn
= qed_aio_write_l2_update_cb
;
1029 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_WRITE_AIO
);
1030 bdrv_aio_writev(s
->bs
->file
, offset
/ BDRV_SECTOR_SIZE
,
1031 &acb
->cur_qiov
, acb
->cur_qiov
.size
/ BDRV_SECTOR_SIZE
,
1036 * Populate back untouched region of new data cluster
1038 static void qed_aio_write_postfill(void *opaque
, int ret
)
1040 QEDAIOCB
*acb
= opaque
;
1041 BDRVQEDState
*s
= acb_to_s(acb
);
1042 uint64_t start
= acb
->cur_pos
+ acb
->cur_qiov
.size
;
1044 qed_start_of_cluster(s
, start
+ s
->header
.cluster_size
- 1) - start
;
1045 uint64_t offset
= acb
->cur_cluster
+
1046 qed_offset_into_cluster(s
, acb
->cur_pos
) +
1050 qed_aio_complete(acb
, ret
);
1054 trace_qed_aio_write_postfill(s
, acb
, start
, len
, offset
);
1055 qed_copy_from_backing_file(s
, start
, len
, offset
,
1056 qed_aio_write_main
, acb
);
1060 * Populate front untouched region of new data cluster
1062 static void qed_aio_write_prefill(void *opaque
, int ret
)
1064 QEDAIOCB
*acb
= opaque
;
1065 BDRVQEDState
*s
= acb_to_s(acb
);
1066 uint64_t start
= qed_start_of_cluster(s
, acb
->cur_pos
);
1067 uint64_t len
= qed_offset_into_cluster(s
, acb
->cur_pos
);
1069 trace_qed_aio_write_prefill(s
, acb
, start
, len
, acb
->cur_cluster
);
1070 qed_copy_from_backing_file(s
, start
, len
, acb
->cur_cluster
,
1071 qed_aio_write_postfill
, acb
);
1075 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1077 static bool qed_should_set_need_check(BDRVQEDState
*s
)
1079 /* The flush before L2 update path ensures consistency */
1080 if (s
->bs
->backing_hd
) {
1084 return !(s
->header
.features
& QED_F_NEED_CHECK
);
1087 static void qed_aio_write_zero_cluster(void *opaque
, int ret
)
1089 QEDAIOCB
*acb
= opaque
;
1092 qed_aio_complete(acb
, ret
);
1096 qed_aio_write_l2_update(acb
, 0, 1);
1100 * Write new data cluster
1102 * @acb: Write request
1103 * @len: Length in bytes
1105 * This path is taken when writing to previously unallocated clusters.
1107 static void qed_aio_write_alloc(QEDAIOCB
*acb
, size_t len
)
1109 BDRVQEDState
*s
= acb_to_s(acb
);
1110 BlockDriverCompletionFunc
*cb
;
1112 /* Cancel timer when the first allocating request comes in */
1113 if (QSIMPLEQ_EMPTY(&s
->allocating_write_reqs
)) {
1114 qed_cancel_need_check_timer(s
);
1117 /* Freeze this request if another allocating write is in progress */
1118 if (acb
!= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
)) {
1119 QSIMPLEQ_INSERT_TAIL(&s
->allocating_write_reqs
, acb
, next
);
1121 if (acb
!= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
) ||
1122 s
->allocating_write_reqs_plugged
) {
1123 return; /* wait for existing request to finish */
1126 acb
->cur_nclusters
= qed_bytes_to_clusters(s
,
1127 qed_offset_into_cluster(s
, acb
->cur_pos
) + len
);
1128 qemu_iovec_copy(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1130 if (acb
->flags
& QED_AIOCB_ZERO
) {
1131 /* Skip ahead if the clusters are already zero */
1132 if (acb
->find_cluster_ret
== QED_CLUSTER_ZERO
) {
1133 qed_aio_next_io(acb
, 0);
1137 cb
= qed_aio_write_zero_cluster
;
1139 cb
= qed_aio_write_prefill
;
1140 acb
->cur_cluster
= qed_alloc_clusters(s
, acb
->cur_nclusters
);
1143 if (qed_should_set_need_check(s
)) {
1144 s
->header
.features
|= QED_F_NEED_CHECK
;
1145 qed_write_header(s
, cb
, acb
);
1152 * Write data cluster in place
1154 * @acb: Write request
1155 * @offset: Cluster offset in bytes
1156 * @len: Length in bytes
1158 * This path is taken when writing to already allocated clusters.
1160 static void qed_aio_write_inplace(QEDAIOCB
*acb
, uint64_t offset
, size_t len
)
1162 /* Allocate buffer for zero writes */
1163 if (acb
->flags
& QED_AIOCB_ZERO
) {
1164 struct iovec
*iov
= acb
->qiov
->iov
;
1166 if (!iov
->iov_base
) {
1167 iov
->iov_base
= qemu_blockalign(acb
->common
.bs
, iov
->iov_len
);
1168 memset(iov
->iov_base
, 0, iov
->iov_len
);
1172 /* Calculate the I/O vector */
1173 acb
->cur_cluster
= offset
;
1174 qemu_iovec_copy(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1176 /* Do the actual write */
1177 qed_aio_write_main(acb
, 0);
1181 * Write data cluster
1183 * @opaque: Write request
1184 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1186 * @offset: Cluster offset in bytes
1187 * @len: Length in bytes
1189 * Callback from qed_find_cluster().
1191 static void qed_aio_write_data(void *opaque
, int ret
,
1192 uint64_t offset
, size_t len
)
1194 QEDAIOCB
*acb
= opaque
;
1196 trace_qed_aio_write_data(acb_to_s(acb
), acb
, ret
, offset
, len
);
1198 acb
->find_cluster_ret
= ret
;
1201 case QED_CLUSTER_FOUND
:
1202 qed_aio_write_inplace(acb
, offset
, len
);
1205 case QED_CLUSTER_L2
:
1206 case QED_CLUSTER_L1
:
1207 case QED_CLUSTER_ZERO
:
1208 qed_aio_write_alloc(acb
, len
);
1212 qed_aio_complete(acb
, ret
);
1220 * @opaque: Read request
1221 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1223 * @offset: Cluster offset in bytes
1224 * @len: Length in bytes
1226 * Callback from qed_find_cluster().
1228 static void qed_aio_read_data(void *opaque
, int ret
,
1229 uint64_t offset
, size_t len
)
1231 QEDAIOCB
*acb
= opaque
;
1232 BDRVQEDState
*s
= acb_to_s(acb
);
1233 BlockDriverState
*bs
= acb
->common
.bs
;
1235 /* Adjust offset into cluster */
1236 offset
+= qed_offset_into_cluster(s
, acb
->cur_pos
);
1238 trace_qed_aio_read_data(s
, acb
, ret
, offset
, len
);
1244 qemu_iovec_copy(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1246 /* Handle zero cluster and backing file reads */
1247 if (ret
== QED_CLUSTER_ZERO
) {
1248 qemu_iovec_memset(&acb
->cur_qiov
, 0, acb
->cur_qiov
.size
);
1249 qed_aio_next_io(acb
, 0);
1251 } else if (ret
!= QED_CLUSTER_FOUND
) {
1252 qed_read_backing_file(s
, acb
->cur_pos
, &acb
->cur_qiov
,
1253 qed_aio_next_io
, acb
);
1257 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_AIO
);
1258 bdrv_aio_readv(bs
->file
, offset
/ BDRV_SECTOR_SIZE
,
1259 &acb
->cur_qiov
, acb
->cur_qiov
.size
/ BDRV_SECTOR_SIZE
,
1260 qed_aio_next_io
, acb
);
1264 qed_aio_complete(acb
, ret
);
1268 * Begin next I/O or complete the request
1270 static void qed_aio_next_io(void *opaque
, int ret
)
1272 QEDAIOCB
*acb
= opaque
;
1273 BDRVQEDState
*s
= acb_to_s(acb
);
1274 QEDFindClusterFunc
*io_fn
= (acb
->flags
& QED_AIOCB_WRITE
) ?
1275 qed_aio_write_data
: qed_aio_read_data
;
1277 trace_qed_aio_next_io(s
, acb
, ret
, acb
->cur_pos
+ acb
->cur_qiov
.size
);
1279 /* Handle I/O error */
1281 qed_aio_complete(acb
, ret
);
1285 acb
->qiov_offset
+= acb
->cur_qiov
.size
;
1286 acb
->cur_pos
+= acb
->cur_qiov
.size
;
1287 qemu_iovec_reset(&acb
->cur_qiov
);
1289 /* Complete request */
1290 if (acb
->cur_pos
>= acb
->end_pos
) {
1291 qed_aio_complete(acb
, 0);
1295 /* Find next cluster and start I/O */
1296 qed_find_cluster(s
, &acb
->request
,
1297 acb
->cur_pos
, acb
->end_pos
- acb
->cur_pos
,
1301 static BlockDriverAIOCB
*qed_aio_setup(BlockDriverState
*bs
,
1303 QEMUIOVector
*qiov
, int nb_sectors
,
1304 BlockDriverCompletionFunc
*cb
,
1305 void *opaque
, int flags
)
1307 QEDAIOCB
*acb
= qemu_aio_get(&qed_aio_pool
, bs
, cb
, opaque
);
1309 trace_qed_aio_setup(bs
->opaque
, acb
, sector_num
, nb_sectors
,
1313 acb
->finished
= NULL
;
1315 acb
->qiov_offset
= 0;
1316 acb
->cur_pos
= (uint64_t)sector_num
* BDRV_SECTOR_SIZE
;
1317 acb
->end_pos
= acb
->cur_pos
+ nb_sectors
* BDRV_SECTOR_SIZE
;
1318 acb
->request
.l2_table
= NULL
;
1319 qemu_iovec_init(&acb
->cur_qiov
, qiov
->niov
);
1322 qed_aio_next_io(acb
, 0);
1323 return &acb
->common
;
1326 static BlockDriverAIOCB
*bdrv_qed_aio_readv(BlockDriverState
*bs
,
1328 QEMUIOVector
*qiov
, int nb_sectors
,
1329 BlockDriverCompletionFunc
*cb
,
1332 return qed_aio_setup(bs
, sector_num
, qiov
, nb_sectors
, cb
, opaque
, 0);
1335 static BlockDriverAIOCB
*bdrv_qed_aio_writev(BlockDriverState
*bs
,
1337 QEMUIOVector
*qiov
, int nb_sectors
,
1338 BlockDriverCompletionFunc
*cb
,
1341 return qed_aio_setup(bs
, sector_num
, qiov
, nb_sectors
, cb
,
1342 opaque
, QED_AIOCB_WRITE
);
1351 static void coroutine_fn
qed_co_write_zeroes_cb(void *opaque
, int ret
)
1353 QEDWriteZeroesCB
*cb
= opaque
;
1358 qemu_coroutine_enter(cb
->co
, NULL
);
1362 static int coroutine_fn
bdrv_qed_co_write_zeroes(BlockDriverState
*bs
,
1366 BlockDriverAIOCB
*blockacb
;
1367 QEDWriteZeroesCB cb
= { .done
= false };
1371 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1372 * then it will be allocated during request processing.
1374 iov
.iov_base
= NULL
,
1375 iov
.iov_len
= nb_sectors
* BDRV_SECTOR_SIZE
,
1377 qemu_iovec_init_external(&qiov
, &iov
, 1);
1378 blockacb
= qed_aio_setup(bs
, sector_num
, &qiov
, nb_sectors
,
1379 qed_co_write_zeroes_cb
, &cb
,
1380 QED_AIOCB_WRITE
| QED_AIOCB_ZERO
);
1385 cb
.co
= qemu_coroutine_self();
1386 qemu_coroutine_yield();
1392 static int bdrv_qed_truncate(BlockDriverState
*bs
, int64_t offset
)
1394 BDRVQEDState
*s
= bs
->opaque
;
1395 uint64_t old_image_size
;
1398 if (!qed_is_image_size_valid(offset
, s
->header
.cluster_size
,
1399 s
->header
.table_size
)) {
1403 /* Shrinking is currently not supported */
1404 if ((uint64_t)offset
< s
->header
.image_size
) {
1408 old_image_size
= s
->header
.image_size
;
1409 s
->header
.image_size
= offset
;
1410 ret
= qed_write_header_sync(s
);
1412 s
->header
.image_size
= old_image_size
;
1417 static int64_t bdrv_qed_getlength(BlockDriverState
*bs
)
1419 BDRVQEDState
*s
= bs
->opaque
;
1420 return s
->header
.image_size
;
1423 static int bdrv_qed_get_info(BlockDriverState
*bs
, BlockDriverInfo
*bdi
)
1425 BDRVQEDState
*s
= bs
->opaque
;
1427 memset(bdi
, 0, sizeof(*bdi
));
1428 bdi
->cluster_size
= s
->header
.cluster_size
;
1429 bdi
->is_dirty
= s
->header
.features
& QED_F_NEED_CHECK
;
1433 static int bdrv_qed_change_backing_file(BlockDriverState
*bs
,
1434 const char *backing_file
,
1435 const char *backing_fmt
)
1437 BDRVQEDState
*s
= bs
->opaque
;
1438 QEDHeader new_header
, le_header
;
1440 size_t buffer_len
, backing_file_len
;
1443 /* Refuse to set backing filename if unknown compat feature bits are
1444 * active. If the image uses an unknown compat feature then we may not
1445 * know the layout of data following the header structure and cannot safely
1448 if (backing_file
&& (s
->header
.compat_features
&
1449 ~QED_COMPAT_FEATURE_MASK
)) {
1453 memcpy(&new_header
, &s
->header
, sizeof(new_header
));
1455 new_header
.features
&= ~(QED_F_BACKING_FILE
|
1456 QED_F_BACKING_FORMAT_NO_PROBE
);
1458 /* Adjust feature flags */
1460 new_header
.features
|= QED_F_BACKING_FILE
;
1462 if (qed_fmt_is_raw(backing_fmt
)) {
1463 new_header
.features
|= QED_F_BACKING_FORMAT_NO_PROBE
;
1467 /* Calculate new header size */
1468 backing_file_len
= 0;
1471 backing_file_len
= strlen(backing_file
);
1474 buffer_len
= sizeof(new_header
);
1475 new_header
.backing_filename_offset
= buffer_len
;
1476 new_header
.backing_filename_size
= backing_file_len
;
1477 buffer_len
+= backing_file_len
;
1479 /* Make sure we can rewrite header without failing */
1480 if (buffer_len
> new_header
.header_size
* new_header
.cluster_size
) {
1484 /* Prepare new header */
1485 buffer
= g_malloc(buffer_len
);
1487 qed_header_cpu_to_le(&new_header
, &le_header
);
1488 memcpy(buffer
, &le_header
, sizeof(le_header
));
1489 buffer_len
= sizeof(le_header
);
1492 memcpy(buffer
+ buffer_len
, backing_file
, backing_file_len
);
1493 buffer_len
+= backing_file_len
;
1496 /* Write new header */
1497 ret
= bdrv_pwrite_sync(bs
->file
, 0, buffer
, buffer_len
);
1500 memcpy(&s
->header
, &new_header
, sizeof(new_header
));
1505 static void bdrv_qed_invalidate_cache(BlockDriverState
*bs
)
1507 BDRVQEDState
*s
= bs
->opaque
;
1510 memset(s
, 0, sizeof(BDRVQEDState
));
1511 bdrv_qed_open(bs
, bs
->open_flags
);
1514 static int bdrv_qed_check(BlockDriverState
*bs
, BdrvCheckResult
*result
)
1516 BDRVQEDState
*s
= bs
->opaque
;
1518 return qed_check(s
, result
, false);
1521 static QEMUOptionParameter qed_create_options
[] = {
1523 .name
= BLOCK_OPT_SIZE
,
1525 .help
= "Virtual disk size (in bytes)"
1527 .name
= BLOCK_OPT_BACKING_FILE
,
1529 .help
= "File name of a base image"
1531 .name
= BLOCK_OPT_BACKING_FMT
,
1533 .help
= "Image format of the base image"
1535 .name
= BLOCK_OPT_CLUSTER_SIZE
,
1537 .help
= "Cluster size (in bytes)",
1538 .value
= { .n
= QED_DEFAULT_CLUSTER_SIZE
},
1540 .name
= BLOCK_OPT_TABLE_SIZE
,
1542 .help
= "L1/L2 table size (in clusters)"
1544 { /* end of list */ }
1547 static BlockDriver bdrv_qed
= {
1548 .format_name
= "qed",
1549 .instance_size
= sizeof(BDRVQEDState
),
1550 .create_options
= qed_create_options
,
1552 .bdrv_probe
= bdrv_qed_probe
,
1553 .bdrv_open
= bdrv_qed_open
,
1554 .bdrv_close
= bdrv_qed_close
,
1555 .bdrv_create
= bdrv_qed_create
,
1556 .bdrv_co_is_allocated
= bdrv_qed_co_is_allocated
,
1557 .bdrv_make_empty
= bdrv_qed_make_empty
,
1558 .bdrv_aio_readv
= bdrv_qed_aio_readv
,
1559 .bdrv_aio_writev
= bdrv_qed_aio_writev
,
1560 .bdrv_co_write_zeroes
= bdrv_qed_co_write_zeroes
,
1561 .bdrv_truncate
= bdrv_qed_truncate
,
1562 .bdrv_getlength
= bdrv_qed_getlength
,
1563 .bdrv_get_info
= bdrv_qed_get_info
,
1564 .bdrv_change_backing_file
= bdrv_qed_change_backing_file
,
1565 .bdrv_invalidate_cache
= bdrv_qed_invalidate_cache
,
1566 .bdrv_check
= bdrv_qed_check
,
1569 static void bdrv_qed_init(void)
1571 bdrv_register(&bdrv_qed
);
1574 block_init(bdrv_qed_init
);