qemu-iotests/071: Avoid blockdev-add with id
[qemu.git] / target-s390x / kvm.c
blob4b847a3be4814197067ff109682b37637d11c480
1 /*
2 * QEMU S390x KVM implementation
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * Contributions after 2012-10-29 are licensed under the terms of the
18 * GNU GPL, version 2 or (at your option) any later version.
20 * You should have received a copy of the GNU (Lesser) General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include <sys/ioctl.h>
27 #include <linux/kvm.h>
28 #include <asm/ptrace.h>
30 #include "qemu-common.h"
31 #include "cpu.h"
32 #include "qemu/error-report.h"
33 #include "qemu/timer.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/kvm.h"
36 #include "hw/hw.h"
37 #include "sysemu/device_tree.h"
38 #include "qapi/qmp/qjson.h"
39 #include "exec/gdbstub.h"
40 #include "exec/address-spaces.h"
41 #include "trace.h"
42 #include "qapi-event.h"
43 #include "hw/s390x/s390-pci-inst.h"
44 #include "hw/s390x/s390-pci-bus.h"
45 #include "hw/s390x/ipl.h"
46 #include "hw/s390x/ebcdic.h"
47 #include "exec/memattrs.h"
48 #include "hw/s390x/s390-virtio-ccw.h"
50 /* #define DEBUG_KVM */
52 #ifdef DEBUG_KVM
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55 #else
56 #define DPRINTF(fmt, ...) \
57 do { } while (0)
58 #endif
60 #define kvm_vm_check_mem_attr(s, attr) \
61 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
63 #define IPA0_DIAG 0x8300
64 #define IPA0_SIGP 0xae00
65 #define IPA0_B2 0xb200
66 #define IPA0_B9 0xb900
67 #define IPA0_EB 0xeb00
68 #define IPA0_E3 0xe300
70 #define PRIV_B2_SCLP_CALL 0x20
71 #define PRIV_B2_CSCH 0x30
72 #define PRIV_B2_HSCH 0x31
73 #define PRIV_B2_MSCH 0x32
74 #define PRIV_B2_SSCH 0x33
75 #define PRIV_B2_STSCH 0x34
76 #define PRIV_B2_TSCH 0x35
77 #define PRIV_B2_TPI 0x36
78 #define PRIV_B2_SAL 0x37
79 #define PRIV_B2_RSCH 0x38
80 #define PRIV_B2_STCRW 0x39
81 #define PRIV_B2_STCPS 0x3a
82 #define PRIV_B2_RCHP 0x3b
83 #define PRIV_B2_SCHM 0x3c
84 #define PRIV_B2_CHSC 0x5f
85 #define PRIV_B2_SIGA 0x74
86 #define PRIV_B2_XSCH 0x76
88 #define PRIV_EB_SQBS 0x8a
89 #define PRIV_EB_PCISTB 0xd0
90 #define PRIV_EB_SIC 0xd1
92 #define PRIV_B9_EQBS 0x9c
93 #define PRIV_B9_CLP 0xa0
94 #define PRIV_B9_PCISTG 0xd0
95 #define PRIV_B9_PCILG 0xd2
96 #define PRIV_B9_RPCIT 0xd3
98 #define PRIV_E3_MPCIFC 0xd0
99 #define PRIV_E3_STPCIFC 0xd4
101 #define DIAG_TIMEREVENT 0x288
102 #define DIAG_IPL 0x308
103 #define DIAG_KVM_HYPERCALL 0x500
104 #define DIAG_KVM_BREAKPOINT 0x501
106 #define ICPT_INSTRUCTION 0x04
107 #define ICPT_PROGRAM 0x08
108 #define ICPT_EXT_INT 0x14
109 #define ICPT_WAITPSW 0x1c
110 #define ICPT_SOFT_INTERCEPT 0x24
111 #define ICPT_CPU_STOP 0x28
112 #define ICPT_OPEREXC 0x2c
113 #define ICPT_IO 0x40
115 #define NR_LOCAL_IRQS 32
117 * Needs to be big enough to contain max_cpus emergency signals
118 * and in addition NR_LOCAL_IRQS interrupts
120 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \
121 (max_cpus + NR_LOCAL_IRQS))
123 static CPUWatchpoint hw_watchpoint;
125 * We don't use a list because this structure is also used to transmit the
126 * hardware breakpoints to the kernel.
128 static struct kvm_hw_breakpoint *hw_breakpoints;
129 static int nb_hw_breakpoints;
131 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
132 KVM_CAP_LAST_INFO
135 static int cap_sync_regs;
136 static int cap_async_pf;
137 static int cap_mem_op;
138 static int cap_s390_irq;
139 static int cap_ri;
141 static void *legacy_s390_alloc(size_t size, uint64_t *align);
143 static int kvm_s390_query_mem_limit(KVMState *s, uint64_t *memory_limit)
145 struct kvm_device_attr attr = {
146 .group = KVM_S390_VM_MEM_CTRL,
147 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
148 .addr = (uint64_t) memory_limit,
151 return kvm_vm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
154 int kvm_s390_set_mem_limit(KVMState *s, uint64_t new_limit, uint64_t *hw_limit)
156 int rc;
158 struct kvm_device_attr attr = {
159 .group = KVM_S390_VM_MEM_CTRL,
160 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
161 .addr = (uint64_t) &new_limit,
164 if (!kvm_vm_check_mem_attr(s, KVM_S390_VM_MEM_LIMIT_SIZE)) {
165 return 0;
168 rc = kvm_s390_query_mem_limit(s, hw_limit);
169 if (rc) {
170 return rc;
171 } else if (*hw_limit < new_limit) {
172 return -E2BIG;
175 return kvm_vm_ioctl(s, KVM_SET_DEVICE_ATTR, &attr);
178 static bool kvm_s390_cmma_available(void)
180 static bool initialized, value;
182 if (!initialized) {
183 initialized = true;
184 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
185 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
187 return value;
190 void kvm_s390_cmma_reset(void)
192 int rc;
193 struct kvm_device_attr attr = {
194 .group = KVM_S390_VM_MEM_CTRL,
195 .attr = KVM_S390_VM_MEM_CLR_CMMA,
198 if (!mem_path || !kvm_s390_cmma_available()) {
199 return;
202 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
203 trace_kvm_clear_cmma(rc);
206 static void kvm_s390_enable_cmma(void)
208 int rc;
209 struct kvm_device_attr attr = {
210 .group = KVM_S390_VM_MEM_CTRL,
211 .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
214 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
215 trace_kvm_enable_cmma(rc);
218 static void kvm_s390_set_attr(uint64_t attr)
220 struct kvm_device_attr attribute = {
221 .group = KVM_S390_VM_CRYPTO,
222 .attr = attr,
225 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
227 if (ret) {
228 error_report("Failed to set crypto device attribute %lu: %s",
229 attr, strerror(-ret));
233 static void kvm_s390_init_aes_kw(void)
235 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
237 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
238 NULL)) {
239 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
242 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
243 kvm_s390_set_attr(attr);
247 static void kvm_s390_init_dea_kw(void)
249 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
251 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
252 NULL)) {
253 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
256 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
257 kvm_s390_set_attr(attr);
261 void kvm_s390_crypto_reset(void)
263 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
264 kvm_s390_init_aes_kw();
265 kvm_s390_init_dea_kw();
269 int kvm_arch_init(MachineState *ms, KVMState *s)
271 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
272 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
273 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
274 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
276 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
277 || !kvm_check_extension(s, KVM_CAP_S390_COW)) {
278 phys_mem_set_alloc(legacy_s390_alloc);
281 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
282 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
283 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
284 if (ri_allowed()) {
285 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
286 cap_ri = 1;
290 return 0;
293 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
295 return cpu->cpu_index;
298 int kvm_arch_init_vcpu(CPUState *cs)
300 S390CPU *cpu = S390_CPU(cs);
301 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
302 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE);
303 return 0;
306 void kvm_s390_reset_vcpu(S390CPU *cpu)
308 CPUState *cs = CPU(cpu);
310 /* The initial reset call is needed here to reset in-kernel
311 * vcpu data that we can't access directly from QEMU
312 * (i.e. with older kernels which don't support sync_regs/ONE_REG).
313 * Before this ioctl cpu_synchronize_state() is called in common kvm
314 * code (kvm-all) */
315 if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) {
316 error_report("Initial CPU reset failed on CPU %i", cs->cpu_index);
320 static int can_sync_regs(CPUState *cs, int regs)
322 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
325 int kvm_arch_put_registers(CPUState *cs, int level)
327 S390CPU *cpu = S390_CPU(cs);
328 CPUS390XState *env = &cpu->env;
329 struct kvm_sregs sregs;
330 struct kvm_regs regs;
331 struct kvm_fpu fpu = {};
332 int r;
333 int i;
335 /* always save the PSW and the GPRS*/
336 cs->kvm_run->psw_addr = env->psw.addr;
337 cs->kvm_run->psw_mask = env->psw.mask;
339 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
340 for (i = 0; i < 16; i++) {
341 cs->kvm_run->s.regs.gprs[i] = env->regs[i];
342 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
344 } else {
345 for (i = 0; i < 16; i++) {
346 regs.gprs[i] = env->regs[i];
348 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
349 if (r < 0) {
350 return r;
354 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
355 for (i = 0; i < 32; i++) {
356 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0].ll;
357 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1].ll;
359 cs->kvm_run->s.regs.fpc = env->fpc;
360 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
361 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
362 for (i = 0; i < 16; i++) {
363 cs->kvm_run->s.regs.fprs[i] = get_freg(env, i)->ll;
365 cs->kvm_run->s.regs.fpc = env->fpc;
366 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
367 } else {
368 /* Floating point */
369 for (i = 0; i < 16; i++) {
370 fpu.fprs[i] = get_freg(env, i)->ll;
372 fpu.fpc = env->fpc;
374 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
375 if (r < 0) {
376 return r;
380 /* Do we need to save more than that? */
381 if (level == KVM_PUT_RUNTIME_STATE) {
382 return 0;
385 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
386 cs->kvm_run->s.regs.cputm = env->cputm;
387 cs->kvm_run->s.regs.ckc = env->ckc;
388 cs->kvm_run->s.regs.todpr = env->todpr;
389 cs->kvm_run->s.regs.gbea = env->gbea;
390 cs->kvm_run->s.regs.pp = env->pp;
391 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
392 } else {
394 * These ONE_REGS are not protected by a capability. As they are only
395 * necessary for migration we just trace a possible error, but don't
396 * return with an error return code.
398 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
399 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
400 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
401 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
402 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
405 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
406 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
407 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
410 /* pfault parameters */
411 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
412 cs->kvm_run->s.regs.pft = env->pfault_token;
413 cs->kvm_run->s.regs.pfs = env->pfault_select;
414 cs->kvm_run->s.regs.pfc = env->pfault_compare;
415 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
416 } else if (cap_async_pf) {
417 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
418 if (r < 0) {
419 return r;
421 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
422 if (r < 0) {
423 return r;
425 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
426 if (r < 0) {
427 return r;
431 /* access registers and control registers*/
432 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
433 for (i = 0; i < 16; i++) {
434 cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
435 cs->kvm_run->s.regs.crs[i] = env->cregs[i];
437 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
438 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
439 } else {
440 for (i = 0; i < 16; i++) {
441 sregs.acrs[i] = env->aregs[i];
442 sregs.crs[i] = env->cregs[i];
444 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
445 if (r < 0) {
446 return r;
450 /* Finally the prefix */
451 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
452 cs->kvm_run->s.regs.prefix = env->psa;
453 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
454 } else {
455 /* prefix is only supported via sync regs */
457 return 0;
460 int kvm_arch_get_registers(CPUState *cs)
462 S390CPU *cpu = S390_CPU(cs);
463 CPUS390XState *env = &cpu->env;
464 struct kvm_sregs sregs;
465 struct kvm_regs regs;
466 struct kvm_fpu fpu;
467 int i, r;
469 /* get the PSW */
470 env->psw.addr = cs->kvm_run->psw_addr;
471 env->psw.mask = cs->kvm_run->psw_mask;
473 /* the GPRS */
474 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
475 for (i = 0; i < 16; i++) {
476 env->regs[i] = cs->kvm_run->s.regs.gprs[i];
478 } else {
479 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
480 if (r < 0) {
481 return r;
483 for (i = 0; i < 16; i++) {
484 env->regs[i] = regs.gprs[i];
488 /* The ACRS and CRS */
489 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
490 for (i = 0; i < 16; i++) {
491 env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
492 env->cregs[i] = cs->kvm_run->s.regs.crs[i];
494 } else {
495 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
496 if (r < 0) {
497 return r;
499 for (i = 0; i < 16; i++) {
500 env->aregs[i] = sregs.acrs[i];
501 env->cregs[i] = sregs.crs[i];
505 /* Floating point and vector registers */
506 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
507 for (i = 0; i < 32; i++) {
508 env->vregs[i][0].ll = cs->kvm_run->s.regs.vrs[i][0];
509 env->vregs[i][1].ll = cs->kvm_run->s.regs.vrs[i][1];
511 env->fpc = cs->kvm_run->s.regs.fpc;
512 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
513 for (i = 0; i < 16; i++) {
514 get_freg(env, i)->ll = cs->kvm_run->s.regs.fprs[i];
516 env->fpc = cs->kvm_run->s.regs.fpc;
517 } else {
518 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
519 if (r < 0) {
520 return r;
522 for (i = 0; i < 16; i++) {
523 get_freg(env, i)->ll = fpu.fprs[i];
525 env->fpc = fpu.fpc;
528 /* The prefix */
529 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
530 env->psa = cs->kvm_run->s.regs.prefix;
533 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
534 env->cputm = cs->kvm_run->s.regs.cputm;
535 env->ckc = cs->kvm_run->s.regs.ckc;
536 env->todpr = cs->kvm_run->s.regs.todpr;
537 env->gbea = cs->kvm_run->s.regs.gbea;
538 env->pp = cs->kvm_run->s.regs.pp;
539 } else {
541 * These ONE_REGS are not protected by a capability. As they are only
542 * necessary for migration we just trace a possible error, but don't
543 * return with an error return code.
545 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
546 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
547 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
548 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
549 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
552 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
553 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
556 /* pfault parameters */
557 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
558 env->pfault_token = cs->kvm_run->s.regs.pft;
559 env->pfault_select = cs->kvm_run->s.regs.pfs;
560 env->pfault_compare = cs->kvm_run->s.regs.pfc;
561 } else if (cap_async_pf) {
562 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
563 if (r < 0) {
564 return r;
566 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
567 if (r < 0) {
568 return r;
570 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
571 if (r < 0) {
572 return r;
576 return 0;
579 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
581 int r;
582 struct kvm_device_attr attr = {
583 .group = KVM_S390_VM_TOD,
584 .attr = KVM_S390_VM_TOD_LOW,
585 .addr = (uint64_t)tod_low,
588 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
589 if (r) {
590 return r;
593 attr.attr = KVM_S390_VM_TOD_HIGH;
594 attr.addr = (uint64_t)tod_high;
595 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
598 int kvm_s390_set_clock(uint8_t *tod_high, uint64_t *tod_low)
600 int r;
602 struct kvm_device_attr attr = {
603 .group = KVM_S390_VM_TOD,
604 .attr = KVM_S390_VM_TOD_LOW,
605 .addr = (uint64_t)tod_low,
608 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
609 if (r) {
610 return r;
613 attr.attr = KVM_S390_VM_TOD_HIGH;
614 attr.addr = (uint64_t)tod_high;
615 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
619 * kvm_s390_mem_op:
620 * @addr: the logical start address in guest memory
621 * @ar: the access register number
622 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
623 * @len: length that should be transferred
624 * @is_write: true = write, false = read
625 * Returns: 0 on success, non-zero if an exception or error occurred
627 * Use KVM ioctl to read/write from/to guest memory. An access exception
628 * is injected into the vCPU in case of translation errors.
630 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
631 int len, bool is_write)
633 struct kvm_s390_mem_op mem_op = {
634 .gaddr = addr,
635 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
636 .size = len,
637 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
638 : KVM_S390_MEMOP_LOGICAL_READ,
639 .buf = (uint64_t)hostbuf,
640 .ar = ar,
642 int ret;
644 if (!cap_mem_op) {
645 return -ENOSYS;
647 if (!hostbuf) {
648 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
651 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
652 if (ret < 0) {
653 error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret));
655 return ret;
659 * Legacy layout for s390:
660 * Older S390 KVM requires the topmost vma of the RAM to be
661 * smaller than an system defined value, which is at least 256GB.
662 * Larger systems have larger values. We put the guest between
663 * the end of data segment (system break) and this value. We
664 * use 32GB as a base to have enough room for the system break
665 * to grow. We also have to use MAP parameters that avoid
666 * read-only mapping of guest pages.
668 static void *legacy_s390_alloc(size_t size, uint64_t *align)
670 void *mem;
672 mem = mmap((void *) 0x800000000ULL, size,
673 PROT_EXEC|PROT_READ|PROT_WRITE,
674 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
675 return mem == MAP_FAILED ? NULL : mem;
678 static uint8_t const *sw_bp_inst;
679 static uint8_t sw_bp_ilen;
681 static void determine_sw_breakpoint_instr(void)
683 /* DIAG 501 is used for sw breakpoints with old kernels */
684 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
685 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
686 static const uint8_t instr_0x0000[] = {0x00, 0x00};
688 if (sw_bp_inst) {
689 return;
691 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
692 sw_bp_inst = diag_501;
693 sw_bp_ilen = sizeof(diag_501);
694 DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
695 } else {
696 sw_bp_inst = instr_0x0000;
697 sw_bp_ilen = sizeof(instr_0x0000);
698 DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
702 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
704 determine_sw_breakpoint_instr();
706 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
707 sw_bp_ilen, 0) ||
708 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
709 return -EINVAL;
711 return 0;
714 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
716 uint8_t t[MAX_ILEN];
718 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
719 return -EINVAL;
720 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
721 return -EINVAL;
722 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
723 sw_bp_ilen, 1)) {
724 return -EINVAL;
727 return 0;
730 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
731 int len, int type)
733 int n;
735 for (n = 0; n < nb_hw_breakpoints; n++) {
736 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
737 (hw_breakpoints[n].len == len || len == -1)) {
738 return &hw_breakpoints[n];
742 return NULL;
745 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
747 int size;
749 if (find_hw_breakpoint(addr, len, type)) {
750 return -EEXIST;
753 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
755 if (!hw_breakpoints) {
756 nb_hw_breakpoints = 0;
757 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
758 } else {
759 hw_breakpoints =
760 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
763 if (!hw_breakpoints) {
764 nb_hw_breakpoints = 0;
765 return -ENOMEM;
768 hw_breakpoints[nb_hw_breakpoints].addr = addr;
769 hw_breakpoints[nb_hw_breakpoints].len = len;
770 hw_breakpoints[nb_hw_breakpoints].type = type;
772 nb_hw_breakpoints++;
774 return 0;
777 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
778 target_ulong len, int type)
780 switch (type) {
781 case GDB_BREAKPOINT_HW:
782 type = KVM_HW_BP;
783 break;
784 case GDB_WATCHPOINT_WRITE:
785 if (len < 1) {
786 return -EINVAL;
788 type = KVM_HW_WP_WRITE;
789 break;
790 default:
791 return -ENOSYS;
793 return insert_hw_breakpoint(addr, len, type);
796 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
797 target_ulong len, int type)
799 int size;
800 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
802 if (bp == NULL) {
803 return -ENOENT;
806 nb_hw_breakpoints--;
807 if (nb_hw_breakpoints > 0) {
809 * In order to trim the array, move the last element to the position to
810 * be removed - if necessary.
812 if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
813 *bp = hw_breakpoints[nb_hw_breakpoints];
815 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
816 hw_breakpoints =
817 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
818 } else {
819 g_free(hw_breakpoints);
820 hw_breakpoints = NULL;
823 return 0;
826 void kvm_arch_remove_all_hw_breakpoints(void)
828 nb_hw_breakpoints = 0;
829 g_free(hw_breakpoints);
830 hw_breakpoints = NULL;
833 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
835 int i;
837 if (nb_hw_breakpoints > 0) {
838 dbg->arch.nr_hw_bp = nb_hw_breakpoints;
839 dbg->arch.hw_bp = hw_breakpoints;
841 for (i = 0; i < nb_hw_breakpoints; ++i) {
842 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
843 hw_breakpoints[i].addr);
845 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
846 } else {
847 dbg->arch.nr_hw_bp = 0;
848 dbg->arch.hw_bp = NULL;
852 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
856 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
858 return MEMTXATTRS_UNSPECIFIED;
861 int kvm_arch_process_async_events(CPUState *cs)
863 return cs->halted;
866 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
867 struct kvm_s390_interrupt *interrupt)
869 int r = 0;
871 interrupt->type = irq->type;
872 switch (irq->type) {
873 case KVM_S390_INT_VIRTIO:
874 interrupt->parm = irq->u.ext.ext_params;
875 /* fall through */
876 case KVM_S390_INT_PFAULT_INIT:
877 case KVM_S390_INT_PFAULT_DONE:
878 interrupt->parm64 = irq->u.ext.ext_params2;
879 break;
880 case KVM_S390_PROGRAM_INT:
881 interrupt->parm = irq->u.pgm.code;
882 break;
883 case KVM_S390_SIGP_SET_PREFIX:
884 interrupt->parm = irq->u.prefix.address;
885 break;
886 case KVM_S390_INT_SERVICE:
887 interrupt->parm = irq->u.ext.ext_params;
888 break;
889 case KVM_S390_MCHK:
890 interrupt->parm = irq->u.mchk.cr14;
891 interrupt->parm64 = irq->u.mchk.mcic;
892 break;
893 case KVM_S390_INT_EXTERNAL_CALL:
894 interrupt->parm = irq->u.extcall.code;
895 break;
896 case KVM_S390_INT_EMERGENCY:
897 interrupt->parm = irq->u.emerg.code;
898 break;
899 case KVM_S390_SIGP_STOP:
900 case KVM_S390_RESTART:
901 break; /* These types have no parameters */
902 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
903 interrupt->parm = irq->u.io.subchannel_id << 16;
904 interrupt->parm |= irq->u.io.subchannel_nr;
905 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
906 interrupt->parm64 |= irq->u.io.io_int_word;
907 break;
908 default:
909 r = -EINVAL;
910 break;
912 return r;
915 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
917 struct kvm_s390_interrupt kvmint = {};
918 int r;
920 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
921 if (r < 0) {
922 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
923 exit(1);
926 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
927 if (r < 0) {
928 fprintf(stderr, "KVM failed to inject interrupt\n");
929 exit(1);
933 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
935 CPUState *cs = CPU(cpu);
936 int r;
938 if (cap_s390_irq) {
939 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
940 if (!r) {
941 return;
943 error_report("KVM failed to inject interrupt %llx", irq->type);
944 exit(1);
947 inject_vcpu_irq_legacy(cs, irq);
950 static void __kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
952 struct kvm_s390_interrupt kvmint = {};
953 int r;
955 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
956 if (r < 0) {
957 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
958 exit(1);
961 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
962 if (r < 0) {
963 fprintf(stderr, "KVM failed to inject interrupt\n");
964 exit(1);
968 void kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
970 static bool use_flic = true;
971 int r;
973 if (use_flic) {
974 r = kvm_s390_inject_flic(irq);
975 if (r == -ENOSYS) {
976 use_flic = false;
978 if (!r) {
979 return;
982 __kvm_s390_floating_interrupt(irq);
985 void kvm_s390_service_interrupt(uint32_t parm)
987 struct kvm_s390_irq irq = {
988 .type = KVM_S390_INT_SERVICE,
989 .u.ext.ext_params = parm,
992 kvm_s390_floating_interrupt(&irq);
995 static void enter_pgmcheck(S390CPU *cpu, uint16_t code)
997 struct kvm_s390_irq irq = {
998 .type = KVM_S390_PROGRAM_INT,
999 .u.pgm.code = code,
1002 kvm_s390_vcpu_interrupt(cpu, &irq);
1005 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1007 struct kvm_s390_irq irq = {
1008 .type = KVM_S390_PROGRAM_INT,
1009 .u.pgm.code = code,
1010 .u.pgm.trans_exc_code = te_code,
1011 .u.pgm.exc_access_id = te_code & 3,
1014 kvm_s390_vcpu_interrupt(cpu, &irq);
1017 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1018 uint16_t ipbh0)
1020 CPUS390XState *env = &cpu->env;
1021 uint64_t sccb;
1022 uint32_t code;
1023 int r = 0;
1025 cpu_synchronize_state(CPU(cpu));
1026 sccb = env->regs[ipbh0 & 0xf];
1027 code = env->regs[(ipbh0 & 0xf0) >> 4];
1029 r = sclp_service_call(env, sccb, code);
1030 if (r < 0) {
1031 enter_pgmcheck(cpu, -r);
1032 } else {
1033 setcc(cpu, r);
1036 return 0;
1039 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1041 CPUS390XState *env = &cpu->env;
1042 int rc = 0;
1043 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1045 cpu_synchronize_state(CPU(cpu));
1047 switch (ipa1) {
1048 case PRIV_B2_XSCH:
1049 ioinst_handle_xsch(cpu, env->regs[1]);
1050 break;
1051 case PRIV_B2_CSCH:
1052 ioinst_handle_csch(cpu, env->regs[1]);
1053 break;
1054 case PRIV_B2_HSCH:
1055 ioinst_handle_hsch(cpu, env->regs[1]);
1056 break;
1057 case PRIV_B2_MSCH:
1058 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb);
1059 break;
1060 case PRIV_B2_SSCH:
1061 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb);
1062 break;
1063 case PRIV_B2_STCRW:
1064 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb);
1065 break;
1066 case PRIV_B2_STSCH:
1067 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb);
1068 break;
1069 case PRIV_B2_TSCH:
1070 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1071 fprintf(stderr, "Spurious tsch intercept\n");
1072 break;
1073 case PRIV_B2_CHSC:
1074 ioinst_handle_chsc(cpu, run->s390_sieic.ipb);
1075 break;
1076 case PRIV_B2_TPI:
1077 /* This should have been handled by kvm already. */
1078 fprintf(stderr, "Spurious tpi intercept\n");
1079 break;
1080 case PRIV_B2_SCHM:
1081 ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1082 run->s390_sieic.ipb);
1083 break;
1084 case PRIV_B2_RSCH:
1085 ioinst_handle_rsch(cpu, env->regs[1]);
1086 break;
1087 case PRIV_B2_RCHP:
1088 ioinst_handle_rchp(cpu, env->regs[1]);
1089 break;
1090 case PRIV_B2_STCPS:
1091 /* We do not provide this instruction, it is suppressed. */
1092 break;
1093 case PRIV_B2_SAL:
1094 ioinst_handle_sal(cpu, env->regs[1]);
1095 break;
1096 case PRIV_B2_SIGA:
1097 /* Not provided, set CC = 3 for subchannel not operational */
1098 setcc(cpu, 3);
1099 break;
1100 case PRIV_B2_SCLP_CALL:
1101 rc = kvm_sclp_service_call(cpu, run, ipbh0);
1102 break;
1103 default:
1104 rc = -1;
1105 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1106 break;
1109 return rc;
1112 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1113 uint8_t *ar)
1115 CPUS390XState *env = &cpu->env;
1116 uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1117 uint32_t base2 = run->s390_sieic.ipb >> 28;
1118 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1119 ((run->s390_sieic.ipb & 0xff00) << 4);
1121 if (disp2 & 0x80000) {
1122 disp2 += 0xfff00000;
1124 if (ar) {
1125 *ar = base2;
1128 return (base2 ? env->regs[base2] : 0) +
1129 (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1132 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1133 uint8_t *ar)
1135 CPUS390XState *env = &cpu->env;
1136 uint32_t base2 = run->s390_sieic.ipb >> 28;
1137 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1138 ((run->s390_sieic.ipb & 0xff00) << 4);
1140 if (disp2 & 0x80000) {
1141 disp2 += 0xfff00000;
1143 if (ar) {
1144 *ar = base2;
1147 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1150 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1152 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1154 return clp_service_call(cpu, r2);
1157 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1159 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1160 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1162 return pcilg_service_call(cpu, r1, r2);
1165 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1167 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1168 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1170 return pcistg_service_call(cpu, r1, r2);
1173 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1175 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1176 uint64_t fiba;
1177 uint8_t ar;
1179 cpu_synchronize_state(CPU(cpu));
1180 fiba = get_base_disp_rxy(cpu, run, &ar);
1182 return stpcifc_service_call(cpu, r1, fiba, ar);
1185 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1187 /* NOOP */
1188 return 0;
1191 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1193 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1194 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1196 return rpcit_service_call(cpu, r1, r2);
1199 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1201 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1202 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1203 uint64_t gaddr;
1204 uint8_t ar;
1206 cpu_synchronize_state(CPU(cpu));
1207 gaddr = get_base_disp_rsy(cpu, run, &ar);
1209 return pcistb_service_call(cpu, r1, r3, gaddr, ar);
1212 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1214 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1215 uint64_t fiba;
1216 uint8_t ar;
1218 cpu_synchronize_state(CPU(cpu));
1219 fiba = get_base_disp_rxy(cpu, run, &ar);
1221 return mpcifc_service_call(cpu, r1, fiba, ar);
1224 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1226 int r = 0;
1228 switch (ipa1) {
1229 case PRIV_B9_CLP:
1230 r = kvm_clp_service_call(cpu, run);
1231 break;
1232 case PRIV_B9_PCISTG:
1233 r = kvm_pcistg_service_call(cpu, run);
1234 break;
1235 case PRIV_B9_PCILG:
1236 r = kvm_pcilg_service_call(cpu, run);
1237 break;
1238 case PRIV_B9_RPCIT:
1239 r = kvm_rpcit_service_call(cpu, run);
1240 break;
1241 case PRIV_B9_EQBS:
1242 /* just inject exception */
1243 r = -1;
1244 break;
1245 default:
1246 r = -1;
1247 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1248 break;
1251 return r;
1254 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1256 int r = 0;
1258 switch (ipbl) {
1259 case PRIV_EB_PCISTB:
1260 r = kvm_pcistb_service_call(cpu, run);
1261 break;
1262 case PRIV_EB_SIC:
1263 r = kvm_sic_service_call(cpu, run);
1264 break;
1265 case PRIV_EB_SQBS:
1266 /* just inject exception */
1267 r = -1;
1268 break;
1269 default:
1270 r = -1;
1271 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1272 break;
1275 return r;
1278 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1280 int r = 0;
1282 switch (ipbl) {
1283 case PRIV_E3_MPCIFC:
1284 r = kvm_mpcifc_service_call(cpu, run);
1285 break;
1286 case PRIV_E3_STPCIFC:
1287 r = kvm_stpcifc_service_call(cpu, run);
1288 break;
1289 default:
1290 r = -1;
1291 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1292 break;
1295 return r;
1298 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1300 CPUS390XState *env = &cpu->env;
1301 int ret;
1303 cpu_synchronize_state(CPU(cpu));
1304 ret = s390_virtio_hypercall(env);
1305 if (ret == -EINVAL) {
1306 enter_pgmcheck(cpu, PGM_SPECIFICATION);
1307 return 0;
1310 return ret;
1313 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1315 uint64_t r1, r3;
1316 int rc;
1318 cpu_synchronize_state(CPU(cpu));
1319 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1320 r3 = run->s390_sieic.ipa & 0x000f;
1321 rc = handle_diag_288(&cpu->env, r1, r3);
1322 if (rc) {
1323 enter_pgmcheck(cpu, PGM_SPECIFICATION);
1327 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1329 uint64_t r1, r3;
1331 cpu_synchronize_state(CPU(cpu));
1332 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1333 r3 = run->s390_sieic.ipa & 0x000f;
1334 handle_diag_308(&cpu->env, r1, r3);
1337 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1339 CPUS390XState *env = &cpu->env;
1340 unsigned long pc;
1342 cpu_synchronize_state(CPU(cpu));
1344 pc = env->psw.addr - sw_bp_ilen;
1345 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1346 env->psw.addr = pc;
1347 return EXCP_DEBUG;
1350 return -ENOENT;
1353 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1355 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1357 int r = 0;
1358 uint16_t func_code;
1361 * For any diagnose call we support, bits 48-63 of the resulting
1362 * address specify the function code; the remainder is ignored.
1364 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1365 switch (func_code) {
1366 case DIAG_TIMEREVENT:
1367 kvm_handle_diag_288(cpu, run);
1368 break;
1369 case DIAG_IPL:
1370 kvm_handle_diag_308(cpu, run);
1371 break;
1372 case DIAG_KVM_HYPERCALL:
1373 r = handle_hypercall(cpu, run);
1374 break;
1375 case DIAG_KVM_BREAKPOINT:
1376 r = handle_sw_breakpoint(cpu, run);
1377 break;
1378 default:
1379 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1380 enter_pgmcheck(cpu, PGM_SPECIFICATION);
1381 break;
1384 return r;
1387 typedef struct SigpInfo {
1388 S390CPU *cpu;
1389 uint64_t param;
1390 int cc;
1391 uint64_t *status_reg;
1392 } SigpInfo;
1394 static void set_sigp_status(SigpInfo *si, uint64_t status)
1396 *si->status_reg &= 0xffffffff00000000ULL;
1397 *si->status_reg |= status;
1398 si->cc = SIGP_CC_STATUS_STORED;
1401 static void sigp_start(void *arg)
1403 SigpInfo *si = arg;
1405 if (s390_cpu_get_state(si->cpu) != CPU_STATE_STOPPED) {
1406 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1407 return;
1410 s390_cpu_set_state(CPU_STATE_OPERATING, si->cpu);
1411 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1414 static void sigp_stop(void *arg)
1416 SigpInfo *si = arg;
1417 struct kvm_s390_irq irq = {
1418 .type = KVM_S390_SIGP_STOP,
1421 if (s390_cpu_get_state(si->cpu) != CPU_STATE_OPERATING) {
1422 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1423 return;
1426 /* disabled wait - sleeping in user space */
1427 if (CPU(si->cpu)->halted) {
1428 s390_cpu_set_state(CPU_STATE_STOPPED, si->cpu);
1429 } else {
1430 /* execute the stop function */
1431 si->cpu->env.sigp_order = SIGP_STOP;
1432 kvm_s390_vcpu_interrupt(si->cpu, &irq);
1434 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1437 #define ADTL_SAVE_AREA_SIZE 1024
1438 static int kvm_s390_store_adtl_status(S390CPU *cpu, hwaddr addr)
1440 void *mem;
1441 hwaddr len = ADTL_SAVE_AREA_SIZE;
1443 mem = cpu_physical_memory_map(addr, &len, 1);
1444 if (!mem) {
1445 return -EFAULT;
1447 if (len != ADTL_SAVE_AREA_SIZE) {
1448 cpu_physical_memory_unmap(mem, len, 1, 0);
1449 return -EFAULT;
1452 memcpy(mem, &cpu->env.vregs, 512);
1454 cpu_physical_memory_unmap(mem, len, 1, len);
1456 return 0;
1459 #define KVM_S390_STORE_STATUS_DEF_ADDR offsetof(LowCore, floating_pt_save_area)
1460 #define SAVE_AREA_SIZE 512
1461 static int kvm_s390_store_status(S390CPU *cpu, hwaddr addr, bool store_arch)
1463 static const uint8_t ar_id = 1;
1464 uint64_t ckc = cpu->env.ckc >> 8;
1465 void *mem;
1466 int i;
1467 hwaddr len = SAVE_AREA_SIZE;
1469 mem = cpu_physical_memory_map(addr, &len, 1);
1470 if (!mem) {
1471 return -EFAULT;
1473 if (len != SAVE_AREA_SIZE) {
1474 cpu_physical_memory_unmap(mem, len, 1, 0);
1475 return -EFAULT;
1478 if (store_arch) {
1479 cpu_physical_memory_write(offsetof(LowCore, ar_access_id), &ar_id, 1);
1481 for (i = 0; i < 16; ++i) {
1482 *((uint64_t *)mem + i) = get_freg(&cpu->env, i)->ll;
1484 memcpy(mem + 128, &cpu->env.regs, 128);
1485 memcpy(mem + 256, &cpu->env.psw, 16);
1486 memcpy(mem + 280, &cpu->env.psa, 4);
1487 memcpy(mem + 284, &cpu->env.fpc, 4);
1488 memcpy(mem + 292, &cpu->env.todpr, 4);
1489 memcpy(mem + 296, &cpu->env.cputm, 8);
1490 memcpy(mem + 304, &ckc, 8);
1491 memcpy(mem + 320, &cpu->env.aregs, 64);
1492 memcpy(mem + 384, &cpu->env.cregs, 128);
1494 cpu_physical_memory_unmap(mem, len, 1, len);
1496 return 0;
1499 static void sigp_stop_and_store_status(void *arg)
1501 SigpInfo *si = arg;
1502 struct kvm_s390_irq irq = {
1503 .type = KVM_S390_SIGP_STOP,
1506 /* disabled wait - sleeping in user space */
1507 if (s390_cpu_get_state(si->cpu) == CPU_STATE_OPERATING &&
1508 CPU(si->cpu)->halted) {
1509 s390_cpu_set_state(CPU_STATE_STOPPED, si->cpu);
1512 switch (s390_cpu_get_state(si->cpu)) {
1513 case CPU_STATE_OPERATING:
1514 si->cpu->env.sigp_order = SIGP_STOP_STORE_STATUS;
1515 kvm_s390_vcpu_interrupt(si->cpu, &irq);
1516 /* store will be performed when handling the stop intercept */
1517 break;
1518 case CPU_STATE_STOPPED:
1519 /* already stopped, just store the status */
1520 cpu_synchronize_state(CPU(si->cpu));
1521 kvm_s390_store_status(si->cpu, KVM_S390_STORE_STATUS_DEF_ADDR, true);
1522 break;
1524 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1527 static void sigp_store_status_at_address(void *arg)
1529 SigpInfo *si = arg;
1530 uint32_t address = si->param & 0x7ffffe00u;
1532 /* cpu has to be stopped */
1533 if (s390_cpu_get_state(si->cpu) != CPU_STATE_STOPPED) {
1534 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1535 return;
1538 cpu_synchronize_state(CPU(si->cpu));
1540 if (kvm_s390_store_status(si->cpu, address, false)) {
1541 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1542 return;
1544 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1547 static void sigp_store_adtl_status(void *arg)
1549 SigpInfo *si = arg;
1551 if (!s390_has_feat(S390_FEAT_VECTOR)) {
1552 set_sigp_status(si, SIGP_STAT_INVALID_ORDER);
1553 return;
1556 /* cpu has to be stopped */
1557 if (s390_cpu_get_state(si->cpu) != CPU_STATE_STOPPED) {
1558 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1559 return;
1562 /* parameter must be aligned to 1024-byte boundary */
1563 if (si->param & 0x3ff) {
1564 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1565 return;
1568 cpu_synchronize_state(CPU(si->cpu));
1570 if (kvm_s390_store_adtl_status(si->cpu, si->param)) {
1571 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1572 return;
1574 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1577 static void sigp_restart(void *arg)
1579 SigpInfo *si = arg;
1580 struct kvm_s390_irq irq = {
1581 .type = KVM_S390_RESTART,
1584 switch (s390_cpu_get_state(si->cpu)) {
1585 case CPU_STATE_STOPPED:
1586 /* the restart irq has to be delivered prior to any other pending irq */
1587 cpu_synchronize_state(CPU(si->cpu));
1588 do_restart_interrupt(&si->cpu->env);
1589 s390_cpu_set_state(CPU_STATE_OPERATING, si->cpu);
1590 break;
1591 case CPU_STATE_OPERATING:
1592 kvm_s390_vcpu_interrupt(si->cpu, &irq);
1593 break;
1595 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1598 int kvm_s390_cpu_restart(S390CPU *cpu)
1600 SigpInfo si = {
1601 .cpu = cpu,
1604 run_on_cpu(CPU(cpu), sigp_restart, &si);
1605 DPRINTF("DONE: KVM cpu restart: %p\n", &cpu->env);
1606 return 0;
1609 static void sigp_initial_cpu_reset(void *arg)
1611 SigpInfo *si = arg;
1612 CPUState *cs = CPU(si->cpu);
1613 S390CPUClass *scc = S390_CPU_GET_CLASS(si->cpu);
1615 cpu_synchronize_state(cs);
1616 scc->initial_cpu_reset(cs);
1617 cpu_synchronize_post_reset(cs);
1618 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1621 static void sigp_cpu_reset(void *arg)
1623 SigpInfo *si = arg;
1624 CPUState *cs = CPU(si->cpu);
1625 S390CPUClass *scc = S390_CPU_GET_CLASS(si->cpu);
1627 cpu_synchronize_state(cs);
1628 scc->cpu_reset(cs);
1629 cpu_synchronize_post_reset(cs);
1630 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1633 static void sigp_set_prefix(void *arg)
1635 SigpInfo *si = arg;
1636 uint32_t addr = si->param & 0x7fffe000u;
1638 cpu_synchronize_state(CPU(si->cpu));
1640 if (!address_space_access_valid(&address_space_memory, addr,
1641 sizeof(struct LowCore), false)) {
1642 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1643 return;
1646 /* cpu has to be stopped */
1647 if (s390_cpu_get_state(si->cpu) != CPU_STATE_STOPPED) {
1648 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1649 return;
1652 si->cpu->env.psa = addr;
1653 cpu_synchronize_post_init(CPU(si->cpu));
1654 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1657 static int handle_sigp_single_dst(S390CPU *dst_cpu, uint8_t order,
1658 uint64_t param, uint64_t *status_reg)
1660 SigpInfo si = {
1661 .cpu = dst_cpu,
1662 .param = param,
1663 .status_reg = status_reg,
1666 /* cpu available? */
1667 if (dst_cpu == NULL) {
1668 return SIGP_CC_NOT_OPERATIONAL;
1671 /* only resets can break pending orders */
1672 if (dst_cpu->env.sigp_order != 0 &&
1673 order != SIGP_CPU_RESET &&
1674 order != SIGP_INITIAL_CPU_RESET) {
1675 return SIGP_CC_BUSY;
1678 switch (order) {
1679 case SIGP_START:
1680 run_on_cpu(CPU(dst_cpu), sigp_start, &si);
1681 break;
1682 case SIGP_STOP:
1683 run_on_cpu(CPU(dst_cpu), sigp_stop, &si);
1684 break;
1685 case SIGP_RESTART:
1686 run_on_cpu(CPU(dst_cpu), sigp_restart, &si);
1687 break;
1688 case SIGP_STOP_STORE_STATUS:
1689 run_on_cpu(CPU(dst_cpu), sigp_stop_and_store_status, &si);
1690 break;
1691 case SIGP_STORE_STATUS_ADDR:
1692 run_on_cpu(CPU(dst_cpu), sigp_store_status_at_address, &si);
1693 break;
1694 case SIGP_STORE_ADTL_STATUS:
1695 run_on_cpu(CPU(dst_cpu), sigp_store_adtl_status, &si);
1696 break;
1697 case SIGP_SET_PREFIX:
1698 run_on_cpu(CPU(dst_cpu), sigp_set_prefix, &si);
1699 break;
1700 case SIGP_INITIAL_CPU_RESET:
1701 run_on_cpu(CPU(dst_cpu), sigp_initial_cpu_reset, &si);
1702 break;
1703 case SIGP_CPU_RESET:
1704 run_on_cpu(CPU(dst_cpu), sigp_cpu_reset, &si);
1705 break;
1706 default:
1707 DPRINTF("KVM: unknown SIGP: 0x%x\n", order);
1708 set_sigp_status(&si, SIGP_STAT_INVALID_ORDER);
1711 return si.cc;
1714 static int sigp_set_architecture(S390CPU *cpu, uint32_t param,
1715 uint64_t *status_reg)
1717 CPUState *cur_cs;
1718 S390CPU *cur_cpu;
1720 /* due to the BQL, we are the only active cpu */
1721 CPU_FOREACH(cur_cs) {
1722 cur_cpu = S390_CPU(cur_cs);
1723 if (cur_cpu->env.sigp_order != 0) {
1724 return SIGP_CC_BUSY;
1726 cpu_synchronize_state(cur_cs);
1727 /* all but the current one have to be stopped */
1728 if (cur_cpu != cpu &&
1729 s390_cpu_get_state(cur_cpu) != CPU_STATE_STOPPED) {
1730 *status_reg &= 0xffffffff00000000ULL;
1731 *status_reg |= SIGP_STAT_INCORRECT_STATE;
1732 return SIGP_CC_STATUS_STORED;
1736 switch (param & 0xff) {
1737 case SIGP_MODE_ESA_S390:
1738 /* not supported */
1739 return SIGP_CC_NOT_OPERATIONAL;
1740 case SIGP_MODE_Z_ARCH_TRANS_ALL_PSW:
1741 case SIGP_MODE_Z_ARCH_TRANS_CUR_PSW:
1742 CPU_FOREACH(cur_cs) {
1743 cur_cpu = S390_CPU(cur_cs);
1744 cur_cpu->env.pfault_token = -1UL;
1746 break;
1747 default:
1748 *status_reg &= 0xffffffff00000000ULL;
1749 *status_reg |= SIGP_STAT_INVALID_PARAMETER;
1750 return SIGP_CC_STATUS_STORED;
1753 return SIGP_CC_ORDER_CODE_ACCEPTED;
1756 #define SIGP_ORDER_MASK 0x000000ff
1758 static int handle_sigp(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1760 CPUS390XState *env = &cpu->env;
1761 const uint8_t r1 = ipa1 >> 4;
1762 const uint8_t r3 = ipa1 & 0x0f;
1763 int ret;
1764 uint8_t order;
1765 uint64_t *status_reg;
1766 uint64_t param;
1767 S390CPU *dst_cpu = NULL;
1769 cpu_synchronize_state(CPU(cpu));
1771 /* get order code */
1772 order = decode_basedisp_rs(env, run->s390_sieic.ipb, NULL)
1773 & SIGP_ORDER_MASK;
1774 status_reg = &env->regs[r1];
1775 param = (r1 % 2) ? env->regs[r1] : env->regs[r1 + 1];
1777 switch (order) {
1778 case SIGP_SET_ARCH:
1779 ret = sigp_set_architecture(cpu, param, status_reg);
1780 break;
1781 default:
1782 /* all other sigp orders target a single vcpu */
1783 dst_cpu = s390_cpu_addr2state(env->regs[r3]);
1784 ret = handle_sigp_single_dst(dst_cpu, order, param, status_reg);
1787 trace_kvm_sigp_finished(order, CPU(cpu)->cpu_index,
1788 dst_cpu ? CPU(dst_cpu)->cpu_index : -1, ret);
1790 if (ret >= 0) {
1791 setcc(cpu, ret);
1792 return 0;
1795 return ret;
1798 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1800 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1801 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1802 int r = -1;
1804 DPRINTF("handle_instruction 0x%x 0x%x\n",
1805 run->s390_sieic.ipa, run->s390_sieic.ipb);
1806 switch (ipa0) {
1807 case IPA0_B2:
1808 r = handle_b2(cpu, run, ipa1);
1809 break;
1810 case IPA0_B9:
1811 r = handle_b9(cpu, run, ipa1);
1812 break;
1813 case IPA0_EB:
1814 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1815 break;
1816 case IPA0_E3:
1817 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1818 break;
1819 case IPA0_DIAG:
1820 r = handle_diag(cpu, run, run->s390_sieic.ipb);
1821 break;
1822 case IPA0_SIGP:
1823 r = handle_sigp(cpu, run, ipa1);
1824 break;
1827 if (r < 0) {
1828 r = 0;
1829 enter_pgmcheck(cpu, 0x0001);
1832 return r;
1835 static bool is_special_wait_psw(CPUState *cs)
1837 /* signal quiesce */
1838 return cs->kvm_run->psw_addr == 0xfffUL;
1841 static void unmanageable_intercept(S390CPU *cpu, const char *str, int pswoffset)
1843 CPUState *cs = CPU(cpu);
1845 error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx",
1846 str, cs->cpu_index, ldq_phys(cs->as, cpu->env.psa + pswoffset),
1847 ldq_phys(cs->as, cpu->env.psa + pswoffset + 8));
1848 s390_cpu_halt(cpu);
1849 qemu_system_guest_panicked();
1852 static int handle_intercept(S390CPU *cpu)
1854 CPUState *cs = CPU(cpu);
1855 struct kvm_run *run = cs->kvm_run;
1856 int icpt_code = run->s390_sieic.icptcode;
1857 int r = 0;
1859 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
1860 (long)cs->kvm_run->psw_addr);
1861 switch (icpt_code) {
1862 case ICPT_INSTRUCTION:
1863 r = handle_instruction(cpu, run);
1864 break;
1865 case ICPT_PROGRAM:
1866 unmanageable_intercept(cpu, "program interrupt",
1867 offsetof(LowCore, program_new_psw));
1868 r = EXCP_HALTED;
1869 break;
1870 case ICPT_EXT_INT:
1871 unmanageable_intercept(cpu, "external interrupt",
1872 offsetof(LowCore, external_new_psw));
1873 r = EXCP_HALTED;
1874 break;
1875 case ICPT_WAITPSW:
1876 /* disabled wait, since enabled wait is handled in kernel */
1877 cpu_synchronize_state(cs);
1878 if (s390_cpu_halt(cpu) == 0) {
1879 if (is_special_wait_psw(cs)) {
1880 qemu_system_shutdown_request();
1881 } else {
1882 qemu_system_guest_panicked();
1885 r = EXCP_HALTED;
1886 break;
1887 case ICPT_CPU_STOP:
1888 if (s390_cpu_set_state(CPU_STATE_STOPPED, cpu) == 0) {
1889 qemu_system_shutdown_request();
1891 if (cpu->env.sigp_order == SIGP_STOP_STORE_STATUS) {
1892 kvm_s390_store_status(cpu, KVM_S390_STORE_STATUS_DEF_ADDR,
1893 true);
1895 cpu->env.sigp_order = 0;
1896 r = EXCP_HALTED;
1897 break;
1898 case ICPT_OPEREXC:
1899 /* currently only instr 0x0000 after enabled via capability */
1900 r = handle_sw_breakpoint(cpu, run);
1901 if (r == -ENOENT) {
1902 enter_pgmcheck(cpu, PGM_OPERATION);
1903 r = 0;
1905 break;
1906 case ICPT_SOFT_INTERCEPT:
1907 fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1908 exit(1);
1909 break;
1910 case ICPT_IO:
1911 fprintf(stderr, "KVM unimplemented icpt IO\n");
1912 exit(1);
1913 break;
1914 default:
1915 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1916 exit(1);
1917 break;
1920 return r;
1923 static int handle_tsch(S390CPU *cpu)
1925 CPUState *cs = CPU(cpu);
1926 struct kvm_run *run = cs->kvm_run;
1927 int ret;
1929 cpu_synchronize_state(cs);
1931 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb);
1932 if (ret < 0) {
1934 * Failure.
1935 * If an I/O interrupt had been dequeued, we have to reinject it.
1937 if (run->s390_tsch.dequeued) {
1938 kvm_s390_io_interrupt(run->s390_tsch.subchannel_id,
1939 run->s390_tsch.subchannel_nr,
1940 run->s390_tsch.io_int_parm,
1941 run->s390_tsch.io_int_word);
1943 ret = 0;
1945 return ret;
1948 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1950 struct sysib_322 sysib;
1951 int del;
1953 if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1954 return;
1956 /* Shift the stack of Extended Names to prepare for our own data */
1957 memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1958 sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1959 /* First virt level, that doesn't provide Ext Names delimits stack. It is
1960 * assumed it's not capable of managing Extended Names for lower levels.
1962 for (del = 1; del < sysib.count; del++) {
1963 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1964 break;
1967 if (del < sysib.count) {
1968 memset(sysib.ext_names[del], 0,
1969 sizeof(sysib.ext_names[0]) * (sysib.count - del));
1971 /* Insert short machine name in EBCDIC, padded with blanks */
1972 if (qemu_name) {
1973 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1974 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1975 strlen(qemu_name)));
1977 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1978 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0]));
1979 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1980 * considered by s390 as not capable of providing any Extended Name.
1981 * Therefore if no name was specified on qemu invocation, we go with the
1982 * same "KVMguest" default, which KVM has filled into short name field.
1984 if (qemu_name) {
1985 strncpy((char *)sysib.ext_names[0], qemu_name,
1986 sizeof(sysib.ext_names[0]));
1987 } else {
1988 strcpy((char *)sysib.ext_names[0], "KVMguest");
1990 /* Insert UUID */
1991 memcpy(sysib.vm[0].uuid, qemu_uuid, sizeof(sysib.vm[0].uuid));
1993 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1996 static int handle_stsi(S390CPU *cpu)
1998 CPUState *cs = CPU(cpu);
1999 struct kvm_run *run = cs->kvm_run;
2001 switch (run->s390_stsi.fc) {
2002 case 3:
2003 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
2004 return 0;
2006 /* Only sysib 3.2.2 needs post-handling for now. */
2007 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
2008 return 0;
2009 default:
2010 return 0;
2014 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
2016 CPUState *cs = CPU(cpu);
2017 struct kvm_run *run = cs->kvm_run;
2019 int ret = 0;
2020 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
2022 switch (arch_info->type) {
2023 case KVM_HW_WP_WRITE:
2024 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
2025 cs->watchpoint_hit = &hw_watchpoint;
2026 hw_watchpoint.vaddr = arch_info->addr;
2027 hw_watchpoint.flags = BP_MEM_WRITE;
2028 ret = EXCP_DEBUG;
2030 break;
2031 case KVM_HW_BP:
2032 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
2033 ret = EXCP_DEBUG;
2035 break;
2036 case KVM_SINGLESTEP:
2037 if (cs->singlestep_enabled) {
2038 ret = EXCP_DEBUG;
2040 break;
2041 default:
2042 ret = -ENOSYS;
2045 return ret;
2048 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2050 S390CPU *cpu = S390_CPU(cs);
2051 int ret = 0;
2053 qemu_mutex_lock_iothread();
2055 switch (run->exit_reason) {
2056 case KVM_EXIT_S390_SIEIC:
2057 ret = handle_intercept(cpu);
2058 break;
2059 case KVM_EXIT_S390_RESET:
2060 s390_reipl_request();
2061 break;
2062 case KVM_EXIT_S390_TSCH:
2063 ret = handle_tsch(cpu);
2064 break;
2065 case KVM_EXIT_S390_STSI:
2066 ret = handle_stsi(cpu);
2067 break;
2068 case KVM_EXIT_DEBUG:
2069 ret = kvm_arch_handle_debug_exit(cpu);
2070 break;
2071 default:
2072 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
2073 break;
2075 qemu_mutex_unlock_iothread();
2077 if (ret == 0) {
2078 ret = EXCP_INTERRUPT;
2080 return ret;
2083 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2085 return true;
2088 int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2090 return 1;
2093 int kvm_arch_on_sigbus(int code, void *addr)
2095 return 1;
2098 void kvm_s390_io_interrupt(uint16_t subchannel_id,
2099 uint16_t subchannel_nr, uint32_t io_int_parm,
2100 uint32_t io_int_word)
2102 struct kvm_s390_irq irq = {
2103 .u.io.subchannel_id = subchannel_id,
2104 .u.io.subchannel_nr = subchannel_nr,
2105 .u.io.io_int_parm = io_int_parm,
2106 .u.io.io_int_word = io_int_word,
2109 if (io_int_word & IO_INT_WORD_AI) {
2110 irq.type = KVM_S390_INT_IO(1, 0, 0, 0);
2111 } else {
2112 irq.type = KVM_S390_INT_IO(0, (subchannel_id & 0xff00) >> 8,
2113 (subchannel_id & 0x0006),
2114 subchannel_nr);
2116 kvm_s390_floating_interrupt(&irq);
2119 static uint64_t build_channel_report_mcic(void)
2121 uint64_t mcic;
2123 /* subclass: indicate channel report pending */
2124 mcic = MCIC_SC_CP |
2125 /* subclass modifiers: none */
2126 /* storage errors: none */
2127 /* validity bits: no damage */
2128 MCIC_VB_WP | MCIC_VB_MS | MCIC_VB_PM | MCIC_VB_IA | MCIC_VB_FP |
2129 MCIC_VB_GR | MCIC_VB_CR | MCIC_VB_ST | MCIC_VB_AR | MCIC_VB_PR |
2130 MCIC_VB_FC | MCIC_VB_CT | MCIC_VB_CC;
2131 if (s390_has_feat(S390_FEAT_VECTOR)) {
2132 mcic |= MCIC_VB_VR;
2134 return mcic;
2137 void kvm_s390_crw_mchk(void)
2139 struct kvm_s390_irq irq = {
2140 .type = KVM_S390_MCHK,
2141 .u.mchk.cr14 = 1 << 28,
2142 .u.mchk.mcic = build_channel_report_mcic(),
2144 kvm_s390_floating_interrupt(&irq);
2147 void kvm_s390_enable_css_support(S390CPU *cpu)
2149 int r;
2151 /* Activate host kernel channel subsystem support. */
2152 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
2153 assert(r == 0);
2156 void kvm_arch_init_irq_routing(KVMState *s)
2159 * Note that while irqchip capabilities generally imply that cpustates
2160 * are handled in-kernel, it is not true for s390 (yet); therefore, we
2161 * have to override the common code kvm_halt_in_kernel_allowed setting.
2163 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2164 kvm_gsi_routing_allowed = true;
2165 kvm_halt_in_kernel_allowed = false;
2169 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
2170 int vq, bool assign)
2172 struct kvm_ioeventfd kick = {
2173 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
2174 KVM_IOEVENTFD_FLAG_DATAMATCH,
2175 .fd = event_notifier_get_fd(notifier),
2176 .datamatch = vq,
2177 .addr = sch,
2178 .len = 8,
2180 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
2181 return -ENOSYS;
2183 if (!assign) {
2184 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2186 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2189 int kvm_s390_get_memslot_count(KVMState *s)
2191 return kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2194 int kvm_s390_get_ri(void)
2196 return cap_ri;
2199 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
2201 struct kvm_mp_state mp_state = {};
2202 int ret;
2204 /* the kvm part might not have been initialized yet */
2205 if (CPU(cpu)->kvm_state == NULL) {
2206 return 0;
2209 switch (cpu_state) {
2210 case CPU_STATE_STOPPED:
2211 mp_state.mp_state = KVM_MP_STATE_STOPPED;
2212 break;
2213 case CPU_STATE_CHECK_STOP:
2214 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2215 break;
2216 case CPU_STATE_OPERATING:
2217 mp_state.mp_state = KVM_MP_STATE_OPERATING;
2218 break;
2219 case CPU_STATE_LOAD:
2220 mp_state.mp_state = KVM_MP_STATE_LOAD;
2221 break;
2222 default:
2223 error_report("Requested CPU state is not a valid S390 CPU state: %u",
2224 cpu_state);
2225 exit(1);
2228 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2229 if (ret) {
2230 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2231 strerror(-ret));
2234 return ret;
2237 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
2239 struct kvm_s390_irq_state irq_state;
2240 CPUState *cs = CPU(cpu);
2241 int32_t bytes;
2243 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2244 return;
2247 irq_state.buf = (uint64_t) cpu->irqstate;
2248 irq_state.len = VCPU_IRQ_BUF_SIZE;
2250 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2251 if (bytes < 0) {
2252 cpu->irqstate_saved_size = 0;
2253 error_report("Migration of interrupt state failed");
2254 return;
2257 cpu->irqstate_saved_size = bytes;
2260 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2262 CPUState *cs = CPU(cpu);
2263 struct kvm_s390_irq_state irq_state;
2264 int r;
2266 if (cpu->irqstate_saved_size == 0) {
2267 return 0;
2270 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2271 return -ENOSYS;
2274 irq_state.buf = (uint64_t) cpu->irqstate;
2275 irq_state.len = cpu->irqstate_saved_size;
2277 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2278 if (r) {
2279 error_report("Setting interrupt state failed %d", r);
2281 return r;
2284 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2285 uint64_t address, uint32_t data, PCIDevice *dev)
2287 S390PCIBusDevice *pbdev;
2288 uint32_t idx = data >> ZPCI_MSI_VEC_BITS;
2289 uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2291 pbdev = s390_pci_find_dev_by_idx(idx);
2292 if (!pbdev) {
2293 DPRINTF("add_msi_route no dev\n");
2294 return -ENODEV;
2297 pbdev->routes.adapter.ind_offset = vec;
2299 route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2300 route->flags = 0;
2301 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2302 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2303 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2304 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset;
2305 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2306 return 0;
2309 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2310 int vector, PCIDevice *dev)
2312 return 0;
2315 int kvm_arch_release_virq_post(int virq)
2317 return 0;
2320 int kvm_arch_msi_data_to_gsi(uint32_t data)
2322 abort();
2325 static inline int test_bit_inv(long nr, const unsigned long *addr)
2327 return test_bit(BE_BIT_NR(nr), addr);
2330 static inline void set_bit_inv(long nr, unsigned long *addr)
2332 set_bit(BE_BIT_NR(nr), addr);
2335 static int query_cpu_subfunc(S390FeatBitmap features)
2337 struct kvm_s390_vm_cpu_subfunc prop;
2338 struct kvm_device_attr attr = {
2339 .group = KVM_S390_VM_CPU_MODEL,
2340 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2341 .addr = (uint64_t) &prop,
2343 int rc;
2345 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2346 if (rc) {
2347 return rc;
2351 * We're going to add all subfunctions now, if the corresponding feature
2352 * is available that unlocks the query functions.
2354 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2355 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2356 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2358 if (test_bit(S390_FEAT_MSA, features)) {
2359 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2360 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2361 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2362 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2363 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2365 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2366 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2368 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2369 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2370 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2371 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2372 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2374 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2375 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2377 return 0;
2380 static int configure_cpu_subfunc(const S390FeatBitmap features)
2382 struct kvm_s390_vm_cpu_subfunc prop = {};
2383 struct kvm_device_attr attr = {
2384 .group = KVM_S390_VM_CPU_MODEL,
2385 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2386 .addr = (uint64_t) &prop,
2389 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2390 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2391 /* hardware support might be missing, IBC will handle most of this */
2392 return 0;
2395 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2396 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2397 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2398 prop.ptff[0] |= 0x80; /* query is always available */
2400 if (test_bit(S390_FEAT_MSA, features)) {
2401 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2402 prop.kmac[0] |= 0x80; /* query is always available */
2403 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2404 prop.kmc[0] |= 0x80; /* query is always available */
2405 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2406 prop.km[0] |= 0x80; /* query is always available */
2407 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2408 prop.kimd[0] |= 0x80; /* query is always available */
2409 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2410 prop.klmd[0] |= 0x80; /* query is always available */
2412 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2413 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2414 prop.pckmo[0] |= 0x80; /* query is always available */
2416 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2417 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2418 prop.kmctr[0] |= 0x80; /* query is always available */
2419 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2420 prop.kmf[0] |= 0x80; /* query is always available */
2421 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2422 prop.kmo[0] |= 0x80; /* query is always available */
2423 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2424 prop.pcc[0] |= 0x80; /* query is always available */
2426 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2427 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2428 prop.ppno[0] |= 0x80; /* query is always available */
2430 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2433 static int kvm_to_feat[][2] = {
2434 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2435 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2436 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2437 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2438 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2439 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2440 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2441 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2442 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2443 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2444 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2445 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2446 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2449 static int query_cpu_feat(S390FeatBitmap features)
2451 struct kvm_s390_vm_cpu_feat prop;
2452 struct kvm_device_attr attr = {
2453 .group = KVM_S390_VM_CPU_MODEL,
2454 .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2455 .addr = (uint64_t) &prop,
2457 int rc;
2458 int i;
2460 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2461 if (rc) {
2462 return rc;
2465 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2466 if (test_bit_inv(kvm_to_feat[i][0], (unsigned long *)prop.feat)) {
2467 set_bit(kvm_to_feat[i][1], features);
2470 return 0;
2473 static int configure_cpu_feat(const S390FeatBitmap features)
2475 struct kvm_s390_vm_cpu_feat prop = {};
2476 struct kvm_device_attr attr = {
2477 .group = KVM_S390_VM_CPU_MODEL,
2478 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2479 .addr = (uint64_t) &prop,
2481 int i;
2483 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2484 if (test_bit(kvm_to_feat[i][1], features)) {
2485 set_bit_inv(kvm_to_feat[i][0], (unsigned long *)prop.feat);
2488 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2491 bool kvm_s390_cpu_models_supported(void)
2493 if (!cpu_model_allowed()) {
2494 /* compatibility machines interfere with the cpu model */
2495 return false;
2497 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2498 KVM_S390_VM_CPU_MACHINE) &&
2499 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2500 KVM_S390_VM_CPU_PROCESSOR) &&
2501 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2502 KVM_S390_VM_CPU_MACHINE_FEAT) &&
2503 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2504 KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2505 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2506 KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2509 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2511 struct kvm_s390_vm_cpu_machine prop = {};
2512 struct kvm_device_attr attr = {
2513 .group = KVM_S390_VM_CPU_MODEL,
2514 .attr = KVM_S390_VM_CPU_MACHINE,
2515 .addr = (uint64_t) &prop,
2517 uint16_t unblocked_ibc = 0, cpu_type = 0;
2518 int rc;
2520 memset(model, 0, sizeof(*model));
2522 if (!kvm_s390_cpu_models_supported()) {
2523 error_setg(errp, "KVM doesn't support CPU models");
2524 return;
2527 /* query the basic cpu model properties */
2528 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2529 if (rc) {
2530 error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2531 return;
2534 cpu_type = cpuid_type(prop.cpuid);
2535 if (has_ibc(prop.ibc)) {
2536 model->lowest_ibc = lowest_ibc(prop.ibc);
2537 unblocked_ibc = unblocked_ibc(prop.ibc);
2539 model->cpu_id = cpuid_id(prop.cpuid);
2540 model->cpu_ver = 0xff;
2542 /* get supported cpu features indicated via STFL(E) */
2543 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2544 (uint8_t *) prop.fac_mask);
2545 /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2546 if (test_bit(S390_FEAT_STFLE, model->features)) {
2547 set_bit(S390_FEAT_DAT_ENH_2, model->features);
2549 /* get supported cpu features indicated e.g. via SCLP */
2550 rc = query_cpu_feat(model->features);
2551 if (rc) {
2552 error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2553 return;
2555 /* get supported cpu subfunctions indicated via query / test bit */
2556 rc = query_cpu_subfunc(model->features);
2557 if (rc) {
2558 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2559 return;
2562 /* with cpu model support, CMM is only indicated if really available */
2563 if (kvm_s390_cmma_available()) {
2564 set_bit(S390_FEAT_CMM, model->features);
2567 if (s390_known_cpu_type(cpu_type)) {
2568 /* we want the exact model, even if some features are missing */
2569 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2570 ibc_ec_ga(unblocked_ibc), NULL);
2571 } else {
2572 /* model unknown, e.g. too new - search using features */
2573 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2574 ibc_ec_ga(unblocked_ibc),
2575 model->features);
2577 if (!model->def) {
2578 error_setg(errp, "KVM: host CPU model could not be identified");
2579 return;
2581 /* strip of features that are not part of the maximum model */
2582 bitmap_and(model->features, model->features, model->def->full_feat,
2583 S390_FEAT_MAX);
2586 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2588 struct kvm_s390_vm_cpu_processor prop = {
2589 .fac_list = { 0 },
2591 struct kvm_device_attr attr = {
2592 .group = KVM_S390_VM_CPU_MODEL,
2593 .attr = KVM_S390_VM_CPU_PROCESSOR,
2594 .addr = (uint64_t) &prop,
2596 int rc;
2598 if (!model) {
2599 /* compatibility handling if cpu models are disabled */
2600 if (kvm_s390_cmma_available() && !mem_path) {
2601 kvm_s390_enable_cmma();
2603 return;
2605 if (!kvm_s390_cpu_models_supported()) {
2606 error_setg(errp, "KVM doesn't support CPU models");
2607 return;
2609 prop.cpuid = s390_cpuid_from_cpu_model(model);
2610 prop.ibc = s390_ibc_from_cpu_model(model);
2611 /* configure cpu features indicated via STFL(e) */
2612 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2613 (uint8_t *) prop.fac_list);
2614 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2615 if (rc) {
2616 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2617 return;
2619 /* configure cpu features indicated e.g. via SCLP */
2620 rc = configure_cpu_feat(model->features);
2621 if (rc) {
2622 error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2623 return;
2625 /* configure cpu subfunctions indicated via query / test bit */
2626 rc = configure_cpu_subfunc(model->features);
2627 if (rc) {
2628 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2629 return;
2631 /* enable CMM via CMMA - disable on hugetlbfs */
2632 if (test_bit(S390_FEAT_CMM, model->features)) {
2633 if (mem_path) {
2634 error_report("Warning: CMM will not be enabled because it is not "
2635 "compatible to hugetlbfs.");
2636 } else {
2637 kvm_s390_enable_cmma();