net: Fix -net socket parameter checks
[qemu.git] / vl.c
blob04add689e5c4b210448a76cadc9d3f76076d5e48
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
35 #ifndef _WIN32
36 #include <pwd.h>
37 #include <sys/times.h>
38 #include <sys/wait.h>
39 #include <termios.h>
40 #include <sys/mman.h>
41 #include <sys/ioctl.h>
42 #include <sys/resource.h>
43 #include <sys/socket.h>
44 #include <netinet/in.h>
45 #include <net/if.h>
46 #if defined(__NetBSD__)
47 #include <net/if_tap.h>
48 #endif
49 #ifdef __linux__
50 #include <linux/if_tun.h>
51 #endif
52 #include <arpa/inet.h>
53 #include <dirent.h>
54 #include <netdb.h>
55 #include <sys/select.h>
56 #ifdef HOST_BSD
57 #include <sys/stat.h>
58 #if defined(__FreeBSD__) || defined(__DragonFly__)
59 #include <libutil.h>
60 #else
61 #include <util.h>
62 #endif
63 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64 #include <freebsd/stdlib.h>
65 #else
66 #ifdef __linux__
67 #include <pty.h>
68 #include <malloc.h>
69 #include <linux/rtc.h>
71 /* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73 /* #include <linux/hpet.h> */
74 #include "hpet.h"
76 #include <linux/ppdev.h>
77 #include <linux/parport.h>
78 #endif
79 #ifdef __sun__
80 #include <sys/stat.h>
81 #include <sys/ethernet.h>
82 #include <sys/sockio.h>
83 #include <netinet/arp.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h> // must come after ip.h
88 #include <netinet/udp.h>
89 #include <netinet/tcp.h>
90 #include <net/if.h>
91 #include <syslog.h>
92 #include <stropts.h>
93 #endif
94 #endif
95 #endif
97 #if defined(__OpenBSD__)
98 #include <util.h>
99 #endif
101 #if defined(CONFIG_VDE)
102 #include <libvdeplug.h>
103 #endif
105 #ifdef _WIN32
106 #include <windows.h>
107 #include <malloc.h>
108 #include <sys/timeb.h>
109 #include <mmsystem.h>
110 #define getopt_long_only getopt_long
111 #define memalign(align, size) malloc(size)
112 #endif
114 #ifdef CONFIG_SDL
115 #ifdef __APPLE__
116 #include <SDL/SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
120 qemu_main(argc, argv, NULL);
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "hw/smbios.h"
142 #include "hw/xen.h"
143 #include "bt-host.h"
144 #include "net.h"
145 #include "monitor.h"
146 #include "console.h"
147 #include "sysemu.h"
148 #include "gdbstub.h"
149 #include "qemu-timer.h"
150 #include "qemu-char.h"
151 #include "cache-utils.h"
152 #include "block.h"
153 #include "dma.h"
154 #include "audio/audio.h"
155 #include "migration.h"
156 #include "kvm.h"
157 #include "balloon.h"
159 #include "disas.h"
161 #include "exec-all.h"
163 #include "qemu_socket.h"
165 #if defined(CONFIG_SLIRP)
166 #include "libslirp.h"
167 #endif
169 //#define DEBUG_UNUSED_IOPORT
170 //#define DEBUG_IOPORT
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
175 #ifdef DEBUG_IOPORT
176 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
177 #else
178 # define LOG_IOPORT(...) do { } while (0)
179 #endif
181 #define DEFAULT_RAM_SIZE 128
183 /* Max number of USB devices that can be specified on the commandline. */
184 #define MAX_USB_CMDLINE 8
186 /* Max number of bluetooth switches on the commandline. */
187 #define MAX_BT_CMDLINE 10
189 /* XXX: use a two level table to limit memory usage */
190 #define MAX_IOPORTS 65536
192 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
193 const char *bios_name = NULL;
194 static void *ioport_opaque[MAX_IOPORTS];
195 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
196 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
197 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
198 to store the VM snapshots */
199 DriveInfo drives_table[MAX_DRIVES+1];
200 int nb_drives;
201 static int vga_ram_size;
202 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
203 static DisplayState *display_state;
204 int nographic;
205 static int curses;
206 static int sdl;
207 const char* keyboard_layout = NULL;
208 int64_t ticks_per_sec;
209 ram_addr_t ram_size;
210 int nb_nics;
211 NICInfo nd_table[MAX_NICS];
212 int vm_running;
213 static int autostart;
214 static int rtc_utc = 1;
215 static int rtc_date_offset = -1; /* -1 means no change */
216 int cirrus_vga_enabled = 1;
217 int std_vga_enabled = 0;
218 int vmsvga_enabled = 0;
219 int xenfb_enabled = 0;
220 #ifdef TARGET_SPARC
221 int graphic_width = 1024;
222 int graphic_height = 768;
223 int graphic_depth = 8;
224 #else
225 int graphic_width = 800;
226 int graphic_height = 600;
227 int graphic_depth = 15;
228 #endif
229 static int full_screen = 0;
230 #ifdef CONFIG_SDL
231 static int no_frame = 0;
232 #endif
233 int no_quit = 0;
234 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
235 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
236 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
237 #ifdef TARGET_I386
238 int win2k_install_hack = 0;
239 int rtc_td_hack = 0;
240 #endif
241 int usb_enabled = 0;
242 int singlestep = 0;
243 int smp_cpus = 1;
244 const char *vnc_display;
245 int acpi_enabled = 1;
246 int no_hpet = 0;
247 int fd_bootchk = 1;
248 int no_reboot = 0;
249 int no_shutdown = 0;
250 int cursor_hide = 1;
251 int graphic_rotate = 0;
252 #ifndef _WIN32
253 int daemonize = 0;
254 #endif
255 const char *option_rom[MAX_OPTION_ROMS];
256 int nb_option_roms;
257 int semihosting_enabled = 0;
258 #ifdef TARGET_ARM
259 int old_param = 0;
260 #endif
261 const char *qemu_name;
262 int alt_grab = 0;
263 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
264 unsigned int nb_prom_envs = 0;
265 const char *prom_envs[MAX_PROM_ENVS];
266 #endif
267 int nb_drives_opt;
268 struct drive_opt drives_opt[MAX_DRIVES];
270 int nb_numa_nodes;
271 uint64_t node_mem[MAX_NODES];
272 uint64_t node_cpumask[MAX_NODES];
274 static CPUState *cur_cpu;
275 static CPUState *next_cpu;
276 static int timer_alarm_pending = 1;
277 /* Conversion factor from emulated instructions to virtual clock ticks. */
278 static int icount_time_shift;
279 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
280 #define MAX_ICOUNT_SHIFT 10
281 /* Compensate for varying guest execution speed. */
282 static int64_t qemu_icount_bias;
283 static QEMUTimer *icount_rt_timer;
284 static QEMUTimer *icount_vm_timer;
285 static QEMUTimer *nographic_timer;
287 uint8_t qemu_uuid[16];
289 /***********************************************************/
290 /* x86 ISA bus support */
292 target_phys_addr_t isa_mem_base = 0;
293 PicState2 *isa_pic;
295 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
296 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
298 static uint32_t ioport_read(int index, uint32_t address)
300 static IOPortReadFunc *default_func[3] = {
301 default_ioport_readb,
302 default_ioport_readw,
303 default_ioport_readl
305 IOPortReadFunc *func = ioport_read_table[index][address];
306 if (!func)
307 func = default_func[index];
308 return func(ioport_opaque[address], address);
311 static void ioport_write(int index, uint32_t address, uint32_t data)
313 static IOPortWriteFunc *default_func[3] = {
314 default_ioport_writeb,
315 default_ioport_writew,
316 default_ioport_writel
318 IOPortWriteFunc *func = ioport_write_table[index][address];
319 if (!func)
320 func = default_func[index];
321 func(ioport_opaque[address], address, data);
324 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
326 #ifdef DEBUG_UNUSED_IOPORT
327 fprintf(stderr, "unused inb: port=0x%04x\n", address);
328 #endif
329 return 0xff;
332 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
334 #ifdef DEBUG_UNUSED_IOPORT
335 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
336 #endif
339 /* default is to make two byte accesses */
340 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
342 uint32_t data;
343 data = ioport_read(0, address);
344 address = (address + 1) & (MAX_IOPORTS - 1);
345 data |= ioport_read(0, address) << 8;
346 return data;
349 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
351 ioport_write(0, address, data & 0xff);
352 address = (address + 1) & (MAX_IOPORTS - 1);
353 ioport_write(0, address, (data >> 8) & 0xff);
356 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
358 #ifdef DEBUG_UNUSED_IOPORT
359 fprintf(stderr, "unused inl: port=0x%04x\n", address);
360 #endif
361 return 0xffffffff;
364 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
366 #ifdef DEBUG_UNUSED_IOPORT
367 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
368 #endif
371 /* size is the word size in byte */
372 int register_ioport_read(int start, int length, int size,
373 IOPortReadFunc *func, void *opaque)
375 int i, bsize;
377 if (size == 1) {
378 bsize = 0;
379 } else if (size == 2) {
380 bsize = 1;
381 } else if (size == 4) {
382 bsize = 2;
383 } else {
384 hw_error("register_ioport_read: invalid size");
385 return -1;
387 for(i = start; i < start + length; i += size) {
388 ioport_read_table[bsize][i] = func;
389 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
390 hw_error("register_ioport_read: invalid opaque");
391 ioport_opaque[i] = opaque;
393 return 0;
396 /* size is the word size in byte */
397 int register_ioport_write(int start, int length, int size,
398 IOPortWriteFunc *func, void *opaque)
400 int i, bsize;
402 if (size == 1) {
403 bsize = 0;
404 } else if (size == 2) {
405 bsize = 1;
406 } else if (size == 4) {
407 bsize = 2;
408 } else {
409 hw_error("register_ioport_write: invalid size");
410 return -1;
412 for(i = start; i < start + length; i += size) {
413 ioport_write_table[bsize][i] = func;
414 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
415 hw_error("register_ioport_write: invalid opaque");
416 ioport_opaque[i] = opaque;
418 return 0;
421 void isa_unassign_ioport(int start, int length)
423 int i;
425 for(i = start; i < start + length; i++) {
426 ioport_read_table[0][i] = default_ioport_readb;
427 ioport_read_table[1][i] = default_ioport_readw;
428 ioport_read_table[2][i] = default_ioport_readl;
430 ioport_write_table[0][i] = default_ioport_writeb;
431 ioport_write_table[1][i] = default_ioport_writew;
432 ioport_write_table[2][i] = default_ioport_writel;
434 ioport_opaque[i] = NULL;
438 /***********************************************************/
440 void cpu_outb(CPUState *env, int addr, int val)
442 LOG_IOPORT("outb: %04x %02x\n", addr, val);
443 ioport_write(0, addr, val);
444 #ifdef CONFIG_KQEMU
445 if (env)
446 env->last_io_time = cpu_get_time_fast();
447 #endif
450 void cpu_outw(CPUState *env, int addr, int val)
452 LOG_IOPORT("outw: %04x %04x\n", addr, val);
453 ioport_write(1, addr, val);
454 #ifdef CONFIG_KQEMU
455 if (env)
456 env->last_io_time = cpu_get_time_fast();
457 #endif
460 void cpu_outl(CPUState *env, int addr, int val)
462 LOG_IOPORT("outl: %04x %08x\n", addr, val);
463 ioport_write(2, addr, val);
464 #ifdef CONFIG_KQEMU
465 if (env)
466 env->last_io_time = cpu_get_time_fast();
467 #endif
470 int cpu_inb(CPUState *env, int addr)
472 int val;
473 val = ioport_read(0, addr);
474 LOG_IOPORT("inb : %04x %02x\n", addr, val);
475 #ifdef CONFIG_KQEMU
476 if (env)
477 env->last_io_time = cpu_get_time_fast();
478 #endif
479 return val;
482 int cpu_inw(CPUState *env, int addr)
484 int val;
485 val = ioport_read(1, addr);
486 LOG_IOPORT("inw : %04x %04x\n", addr, val);
487 #ifdef CONFIG_KQEMU
488 if (env)
489 env->last_io_time = cpu_get_time_fast();
490 #endif
491 return val;
494 int cpu_inl(CPUState *env, int addr)
496 int val;
497 val = ioport_read(2, addr);
498 LOG_IOPORT("inl : %04x %08x\n", addr, val);
499 #ifdef CONFIG_KQEMU
500 if (env)
501 env->last_io_time = cpu_get_time_fast();
502 #endif
503 return val;
506 /***********************************************************/
507 void hw_error(const char *fmt, ...)
509 va_list ap;
510 CPUState *env;
512 va_start(ap, fmt);
513 fprintf(stderr, "qemu: hardware error: ");
514 vfprintf(stderr, fmt, ap);
515 fprintf(stderr, "\n");
516 for(env = first_cpu; env != NULL; env = env->next_cpu) {
517 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
518 #ifdef TARGET_I386
519 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
520 #else
521 cpu_dump_state(env, stderr, fprintf, 0);
522 #endif
524 va_end(ap);
525 abort();
528 /***************/
529 /* ballooning */
531 static QEMUBalloonEvent *qemu_balloon_event;
532 void *qemu_balloon_event_opaque;
534 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
536 qemu_balloon_event = func;
537 qemu_balloon_event_opaque = opaque;
540 void qemu_balloon(ram_addr_t target)
542 if (qemu_balloon_event)
543 qemu_balloon_event(qemu_balloon_event_opaque, target);
546 ram_addr_t qemu_balloon_status(void)
548 if (qemu_balloon_event)
549 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
550 return 0;
553 /***********************************************************/
554 /* keyboard/mouse */
556 static QEMUPutKBDEvent *qemu_put_kbd_event;
557 static void *qemu_put_kbd_event_opaque;
558 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
559 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
561 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
563 qemu_put_kbd_event_opaque = opaque;
564 qemu_put_kbd_event = func;
567 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
568 void *opaque, int absolute,
569 const char *name)
571 QEMUPutMouseEntry *s, *cursor;
573 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
575 s->qemu_put_mouse_event = func;
576 s->qemu_put_mouse_event_opaque = opaque;
577 s->qemu_put_mouse_event_absolute = absolute;
578 s->qemu_put_mouse_event_name = qemu_strdup(name);
579 s->next = NULL;
581 if (!qemu_put_mouse_event_head) {
582 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
583 return s;
586 cursor = qemu_put_mouse_event_head;
587 while (cursor->next != NULL)
588 cursor = cursor->next;
590 cursor->next = s;
591 qemu_put_mouse_event_current = s;
593 return s;
596 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
598 QEMUPutMouseEntry *prev = NULL, *cursor;
600 if (!qemu_put_mouse_event_head || entry == NULL)
601 return;
603 cursor = qemu_put_mouse_event_head;
604 while (cursor != NULL && cursor != entry) {
605 prev = cursor;
606 cursor = cursor->next;
609 if (cursor == NULL) // does not exist or list empty
610 return;
611 else if (prev == NULL) { // entry is head
612 qemu_put_mouse_event_head = cursor->next;
613 if (qemu_put_mouse_event_current == entry)
614 qemu_put_mouse_event_current = cursor->next;
615 qemu_free(entry->qemu_put_mouse_event_name);
616 qemu_free(entry);
617 return;
620 prev->next = entry->next;
622 if (qemu_put_mouse_event_current == entry)
623 qemu_put_mouse_event_current = prev;
625 qemu_free(entry->qemu_put_mouse_event_name);
626 qemu_free(entry);
629 void kbd_put_keycode(int keycode)
631 if (qemu_put_kbd_event) {
632 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
636 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
638 QEMUPutMouseEvent *mouse_event;
639 void *mouse_event_opaque;
640 int width;
642 if (!qemu_put_mouse_event_current) {
643 return;
646 mouse_event =
647 qemu_put_mouse_event_current->qemu_put_mouse_event;
648 mouse_event_opaque =
649 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
651 if (mouse_event) {
652 if (graphic_rotate) {
653 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
654 width = 0x7fff;
655 else
656 width = graphic_width - 1;
657 mouse_event(mouse_event_opaque,
658 width - dy, dx, dz, buttons_state);
659 } else
660 mouse_event(mouse_event_opaque,
661 dx, dy, dz, buttons_state);
665 int kbd_mouse_is_absolute(void)
667 if (!qemu_put_mouse_event_current)
668 return 0;
670 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
673 void do_info_mice(Monitor *mon)
675 QEMUPutMouseEntry *cursor;
676 int index = 0;
678 if (!qemu_put_mouse_event_head) {
679 monitor_printf(mon, "No mouse devices connected\n");
680 return;
683 monitor_printf(mon, "Mouse devices available:\n");
684 cursor = qemu_put_mouse_event_head;
685 while (cursor != NULL) {
686 monitor_printf(mon, "%c Mouse #%d: %s\n",
687 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
688 index, cursor->qemu_put_mouse_event_name);
689 index++;
690 cursor = cursor->next;
694 void do_mouse_set(Monitor *mon, int index)
696 QEMUPutMouseEntry *cursor;
697 int i = 0;
699 if (!qemu_put_mouse_event_head) {
700 monitor_printf(mon, "No mouse devices connected\n");
701 return;
704 cursor = qemu_put_mouse_event_head;
705 while (cursor != NULL && index != i) {
706 i++;
707 cursor = cursor->next;
710 if (cursor != NULL)
711 qemu_put_mouse_event_current = cursor;
712 else
713 monitor_printf(mon, "Mouse at given index not found\n");
716 /* compute with 96 bit intermediate result: (a*b)/c */
717 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
719 union {
720 uint64_t ll;
721 struct {
722 #ifdef WORDS_BIGENDIAN
723 uint32_t high, low;
724 #else
725 uint32_t low, high;
726 #endif
727 } l;
728 } u, res;
729 uint64_t rl, rh;
731 u.ll = a;
732 rl = (uint64_t)u.l.low * (uint64_t)b;
733 rh = (uint64_t)u.l.high * (uint64_t)b;
734 rh += (rl >> 32);
735 res.l.high = rh / c;
736 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
737 return res.ll;
740 /***********************************************************/
741 /* real time host monotonic timer */
743 #define QEMU_TIMER_BASE 1000000000LL
745 #ifdef WIN32
747 static int64_t clock_freq;
749 static void init_get_clock(void)
751 LARGE_INTEGER freq;
752 int ret;
753 ret = QueryPerformanceFrequency(&freq);
754 if (ret == 0) {
755 fprintf(stderr, "Could not calibrate ticks\n");
756 exit(1);
758 clock_freq = freq.QuadPart;
761 static int64_t get_clock(void)
763 LARGE_INTEGER ti;
764 QueryPerformanceCounter(&ti);
765 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
768 #else
770 static int use_rt_clock;
772 static void init_get_clock(void)
774 use_rt_clock = 0;
775 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
776 || defined(__DragonFly__)
778 struct timespec ts;
779 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
780 use_rt_clock = 1;
783 #endif
786 static int64_t get_clock(void)
788 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
789 || defined(__DragonFly__)
790 if (use_rt_clock) {
791 struct timespec ts;
792 clock_gettime(CLOCK_MONOTONIC, &ts);
793 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
794 } else
795 #endif
797 /* XXX: using gettimeofday leads to problems if the date
798 changes, so it should be avoided. */
799 struct timeval tv;
800 gettimeofday(&tv, NULL);
801 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
804 #endif
806 /* Return the virtual CPU time, based on the instruction counter. */
807 static int64_t cpu_get_icount(void)
809 int64_t icount;
810 CPUState *env = cpu_single_env;;
811 icount = qemu_icount;
812 if (env) {
813 if (!can_do_io(env))
814 fprintf(stderr, "Bad clock read\n");
815 icount -= (env->icount_decr.u16.low + env->icount_extra);
817 return qemu_icount_bias + (icount << icount_time_shift);
820 /***********************************************************/
821 /* guest cycle counter */
823 static int64_t cpu_ticks_prev;
824 static int64_t cpu_ticks_offset;
825 static int64_t cpu_clock_offset;
826 static int cpu_ticks_enabled;
828 /* return the host CPU cycle counter and handle stop/restart */
829 int64_t cpu_get_ticks(void)
831 if (use_icount) {
832 return cpu_get_icount();
834 if (!cpu_ticks_enabled) {
835 return cpu_ticks_offset;
836 } else {
837 int64_t ticks;
838 ticks = cpu_get_real_ticks();
839 if (cpu_ticks_prev > ticks) {
840 /* Note: non increasing ticks may happen if the host uses
841 software suspend */
842 cpu_ticks_offset += cpu_ticks_prev - ticks;
844 cpu_ticks_prev = ticks;
845 return ticks + cpu_ticks_offset;
849 /* return the host CPU monotonic timer and handle stop/restart */
850 static int64_t cpu_get_clock(void)
852 int64_t ti;
853 if (!cpu_ticks_enabled) {
854 return cpu_clock_offset;
855 } else {
856 ti = get_clock();
857 return ti + cpu_clock_offset;
861 /* enable cpu_get_ticks() */
862 void cpu_enable_ticks(void)
864 if (!cpu_ticks_enabled) {
865 cpu_ticks_offset -= cpu_get_real_ticks();
866 cpu_clock_offset -= get_clock();
867 cpu_ticks_enabled = 1;
871 /* disable cpu_get_ticks() : the clock is stopped. You must not call
872 cpu_get_ticks() after that. */
873 void cpu_disable_ticks(void)
875 if (cpu_ticks_enabled) {
876 cpu_ticks_offset = cpu_get_ticks();
877 cpu_clock_offset = cpu_get_clock();
878 cpu_ticks_enabled = 0;
882 /***********************************************************/
883 /* timers */
885 #define QEMU_TIMER_REALTIME 0
886 #define QEMU_TIMER_VIRTUAL 1
888 struct QEMUClock {
889 int type;
890 /* XXX: add frequency */
893 struct QEMUTimer {
894 QEMUClock *clock;
895 int64_t expire_time;
896 QEMUTimerCB *cb;
897 void *opaque;
898 struct QEMUTimer *next;
901 struct qemu_alarm_timer {
902 char const *name;
903 unsigned int flags;
905 int (*start)(struct qemu_alarm_timer *t);
906 void (*stop)(struct qemu_alarm_timer *t);
907 void (*rearm)(struct qemu_alarm_timer *t);
908 void *priv;
911 #define ALARM_FLAG_DYNTICKS 0x1
912 #define ALARM_FLAG_EXPIRED 0x2
914 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
916 return t->flags & ALARM_FLAG_DYNTICKS;
919 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
921 if (!alarm_has_dynticks(t))
922 return;
924 t->rearm(t);
927 /* TODO: MIN_TIMER_REARM_US should be optimized */
928 #define MIN_TIMER_REARM_US 250
930 static struct qemu_alarm_timer *alarm_timer;
932 #ifdef _WIN32
934 struct qemu_alarm_win32 {
935 MMRESULT timerId;
936 unsigned int period;
937 } alarm_win32_data = {0, -1};
939 static int win32_start_timer(struct qemu_alarm_timer *t);
940 static void win32_stop_timer(struct qemu_alarm_timer *t);
941 static void win32_rearm_timer(struct qemu_alarm_timer *t);
943 #else
945 static int unix_start_timer(struct qemu_alarm_timer *t);
946 static void unix_stop_timer(struct qemu_alarm_timer *t);
948 #ifdef __linux__
950 static int dynticks_start_timer(struct qemu_alarm_timer *t);
951 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
952 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
954 static int hpet_start_timer(struct qemu_alarm_timer *t);
955 static void hpet_stop_timer(struct qemu_alarm_timer *t);
957 static int rtc_start_timer(struct qemu_alarm_timer *t);
958 static void rtc_stop_timer(struct qemu_alarm_timer *t);
960 #endif /* __linux__ */
962 #endif /* _WIN32 */
964 /* Correlation between real and virtual time is always going to be
965 fairly approximate, so ignore small variation.
966 When the guest is idle real and virtual time will be aligned in
967 the IO wait loop. */
968 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
970 static void icount_adjust(void)
972 int64_t cur_time;
973 int64_t cur_icount;
974 int64_t delta;
975 static int64_t last_delta;
976 /* If the VM is not running, then do nothing. */
977 if (!vm_running)
978 return;
980 cur_time = cpu_get_clock();
981 cur_icount = qemu_get_clock(vm_clock);
982 delta = cur_icount - cur_time;
983 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
984 if (delta > 0
985 && last_delta + ICOUNT_WOBBLE < delta * 2
986 && icount_time_shift > 0) {
987 /* The guest is getting too far ahead. Slow time down. */
988 icount_time_shift--;
990 if (delta < 0
991 && last_delta - ICOUNT_WOBBLE > delta * 2
992 && icount_time_shift < MAX_ICOUNT_SHIFT) {
993 /* The guest is getting too far behind. Speed time up. */
994 icount_time_shift++;
996 last_delta = delta;
997 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
1000 static void icount_adjust_rt(void * opaque)
1002 qemu_mod_timer(icount_rt_timer,
1003 qemu_get_clock(rt_clock) + 1000);
1004 icount_adjust();
1007 static void icount_adjust_vm(void * opaque)
1009 qemu_mod_timer(icount_vm_timer,
1010 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1011 icount_adjust();
1014 static void init_icount_adjust(void)
1016 /* Have both realtime and virtual time triggers for speed adjustment.
1017 The realtime trigger catches emulated time passing too slowly,
1018 the virtual time trigger catches emulated time passing too fast.
1019 Realtime triggers occur even when idle, so use them less frequently
1020 than VM triggers. */
1021 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1022 qemu_mod_timer(icount_rt_timer,
1023 qemu_get_clock(rt_clock) + 1000);
1024 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1025 qemu_mod_timer(icount_vm_timer,
1026 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1029 static struct qemu_alarm_timer alarm_timers[] = {
1030 #ifndef _WIN32
1031 #ifdef __linux__
1032 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1033 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1034 /* HPET - if available - is preferred */
1035 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1036 /* ...otherwise try RTC */
1037 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1038 #endif
1039 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1040 #else
1041 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1042 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1043 {"win32", 0, win32_start_timer,
1044 win32_stop_timer, NULL, &alarm_win32_data},
1045 #endif
1046 {NULL, }
1049 static void show_available_alarms(void)
1051 int i;
1053 printf("Available alarm timers, in order of precedence:\n");
1054 for (i = 0; alarm_timers[i].name; i++)
1055 printf("%s\n", alarm_timers[i].name);
1058 static void configure_alarms(char const *opt)
1060 int i;
1061 int cur = 0;
1062 int count = ARRAY_SIZE(alarm_timers) - 1;
1063 char *arg;
1064 char *name;
1065 struct qemu_alarm_timer tmp;
1067 if (!strcmp(opt, "?")) {
1068 show_available_alarms();
1069 exit(0);
1072 arg = strdup(opt);
1074 /* Reorder the array */
1075 name = strtok(arg, ",");
1076 while (name) {
1077 for (i = 0; i < count && alarm_timers[i].name; i++) {
1078 if (!strcmp(alarm_timers[i].name, name))
1079 break;
1082 if (i == count) {
1083 fprintf(stderr, "Unknown clock %s\n", name);
1084 goto next;
1087 if (i < cur)
1088 /* Ignore */
1089 goto next;
1091 /* Swap */
1092 tmp = alarm_timers[i];
1093 alarm_timers[i] = alarm_timers[cur];
1094 alarm_timers[cur] = tmp;
1096 cur++;
1097 next:
1098 name = strtok(NULL, ",");
1101 free(arg);
1103 if (cur) {
1104 /* Disable remaining timers */
1105 for (i = cur; i < count; i++)
1106 alarm_timers[i].name = NULL;
1107 } else {
1108 show_available_alarms();
1109 exit(1);
1113 QEMUClock *rt_clock;
1114 QEMUClock *vm_clock;
1116 static QEMUTimer *active_timers[2];
1118 static QEMUClock *qemu_new_clock(int type)
1120 QEMUClock *clock;
1121 clock = qemu_mallocz(sizeof(QEMUClock));
1122 clock->type = type;
1123 return clock;
1126 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1128 QEMUTimer *ts;
1130 ts = qemu_mallocz(sizeof(QEMUTimer));
1131 ts->clock = clock;
1132 ts->cb = cb;
1133 ts->opaque = opaque;
1134 return ts;
1137 void qemu_free_timer(QEMUTimer *ts)
1139 qemu_free(ts);
1142 /* stop a timer, but do not dealloc it */
1143 void qemu_del_timer(QEMUTimer *ts)
1145 QEMUTimer **pt, *t;
1147 /* NOTE: this code must be signal safe because
1148 qemu_timer_expired() can be called from a signal. */
1149 pt = &active_timers[ts->clock->type];
1150 for(;;) {
1151 t = *pt;
1152 if (!t)
1153 break;
1154 if (t == ts) {
1155 *pt = t->next;
1156 break;
1158 pt = &t->next;
1162 /* modify the current timer so that it will be fired when current_time
1163 >= expire_time. The corresponding callback will be called. */
1164 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1166 QEMUTimer **pt, *t;
1168 qemu_del_timer(ts);
1170 /* add the timer in the sorted list */
1171 /* NOTE: this code must be signal safe because
1172 qemu_timer_expired() can be called from a signal. */
1173 pt = &active_timers[ts->clock->type];
1174 for(;;) {
1175 t = *pt;
1176 if (!t)
1177 break;
1178 if (t->expire_time > expire_time)
1179 break;
1180 pt = &t->next;
1182 ts->expire_time = expire_time;
1183 ts->next = *pt;
1184 *pt = ts;
1186 /* Rearm if necessary */
1187 if (pt == &active_timers[ts->clock->type]) {
1188 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1189 qemu_rearm_alarm_timer(alarm_timer);
1191 /* Interrupt execution to force deadline recalculation. */
1192 if (use_icount)
1193 qemu_notify_event();
1197 int qemu_timer_pending(QEMUTimer *ts)
1199 QEMUTimer *t;
1200 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1201 if (t == ts)
1202 return 1;
1204 return 0;
1207 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1209 if (!timer_head)
1210 return 0;
1211 return (timer_head->expire_time <= current_time);
1214 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1216 QEMUTimer *ts;
1218 for(;;) {
1219 ts = *ptimer_head;
1220 if (!ts || ts->expire_time > current_time)
1221 break;
1222 /* remove timer from the list before calling the callback */
1223 *ptimer_head = ts->next;
1224 ts->next = NULL;
1226 /* run the callback (the timer list can be modified) */
1227 ts->cb(ts->opaque);
1231 int64_t qemu_get_clock(QEMUClock *clock)
1233 switch(clock->type) {
1234 case QEMU_TIMER_REALTIME:
1235 return get_clock() / 1000000;
1236 default:
1237 case QEMU_TIMER_VIRTUAL:
1238 if (use_icount) {
1239 return cpu_get_icount();
1240 } else {
1241 return cpu_get_clock();
1246 static void init_timers(void)
1248 init_get_clock();
1249 ticks_per_sec = QEMU_TIMER_BASE;
1250 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1251 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1254 /* save a timer */
1255 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1257 uint64_t expire_time;
1259 if (qemu_timer_pending(ts)) {
1260 expire_time = ts->expire_time;
1261 } else {
1262 expire_time = -1;
1264 qemu_put_be64(f, expire_time);
1267 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1269 uint64_t expire_time;
1271 expire_time = qemu_get_be64(f);
1272 if (expire_time != -1) {
1273 qemu_mod_timer(ts, expire_time);
1274 } else {
1275 qemu_del_timer(ts);
1279 static void timer_save(QEMUFile *f, void *opaque)
1281 if (cpu_ticks_enabled) {
1282 hw_error("cannot save state if virtual timers are running");
1284 qemu_put_be64(f, cpu_ticks_offset);
1285 qemu_put_be64(f, ticks_per_sec);
1286 qemu_put_be64(f, cpu_clock_offset);
1289 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1291 if (version_id != 1 && version_id != 2)
1292 return -EINVAL;
1293 if (cpu_ticks_enabled) {
1294 return -EINVAL;
1296 cpu_ticks_offset=qemu_get_be64(f);
1297 ticks_per_sec=qemu_get_be64(f);
1298 if (version_id == 2) {
1299 cpu_clock_offset=qemu_get_be64(f);
1301 return 0;
1304 static void qemu_event_increment(void);
1306 #ifdef _WIN32
1307 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1308 DWORD_PTR dwUser, DWORD_PTR dw1,
1309 DWORD_PTR dw2)
1310 #else
1311 static void host_alarm_handler(int host_signum)
1312 #endif
1314 #if 0
1315 #define DISP_FREQ 1000
1317 static int64_t delta_min = INT64_MAX;
1318 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1319 static int count;
1320 ti = qemu_get_clock(vm_clock);
1321 if (last_clock != 0) {
1322 delta = ti - last_clock;
1323 if (delta < delta_min)
1324 delta_min = delta;
1325 if (delta > delta_max)
1326 delta_max = delta;
1327 delta_cum += delta;
1328 if (++count == DISP_FREQ) {
1329 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1330 muldiv64(delta_min, 1000000, ticks_per_sec),
1331 muldiv64(delta_max, 1000000, ticks_per_sec),
1332 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1333 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1334 count = 0;
1335 delta_min = INT64_MAX;
1336 delta_max = 0;
1337 delta_cum = 0;
1340 last_clock = ti;
1342 #endif
1343 if (alarm_has_dynticks(alarm_timer) ||
1344 (!use_icount &&
1345 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1346 qemu_get_clock(vm_clock))) ||
1347 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1348 qemu_get_clock(rt_clock))) {
1349 qemu_event_increment();
1350 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1352 #ifndef CONFIG_IOTHREAD
1353 if (next_cpu) {
1354 /* stop the currently executing cpu because a timer occured */
1355 cpu_exit(next_cpu);
1356 #ifdef CONFIG_KQEMU
1357 if (next_cpu->kqemu_enabled) {
1358 kqemu_cpu_interrupt(next_cpu);
1360 #endif
1362 #endif
1363 timer_alarm_pending = 1;
1364 qemu_notify_event();
1368 static int64_t qemu_next_deadline(void)
1370 int64_t delta;
1372 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1373 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1374 qemu_get_clock(vm_clock);
1375 } else {
1376 /* To avoid problems with overflow limit this to 2^32. */
1377 delta = INT32_MAX;
1380 if (delta < 0)
1381 delta = 0;
1383 return delta;
1386 #if defined(__linux__) || defined(_WIN32)
1387 static uint64_t qemu_next_deadline_dyntick(void)
1389 int64_t delta;
1390 int64_t rtdelta;
1392 if (use_icount)
1393 delta = INT32_MAX;
1394 else
1395 delta = (qemu_next_deadline() + 999) / 1000;
1397 if (active_timers[QEMU_TIMER_REALTIME]) {
1398 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1399 qemu_get_clock(rt_clock))*1000;
1400 if (rtdelta < delta)
1401 delta = rtdelta;
1404 if (delta < MIN_TIMER_REARM_US)
1405 delta = MIN_TIMER_REARM_US;
1407 return delta;
1409 #endif
1411 #ifndef _WIN32
1413 /* Sets a specific flag */
1414 static int fcntl_setfl(int fd, int flag)
1416 int flags;
1418 flags = fcntl(fd, F_GETFL);
1419 if (flags == -1)
1420 return -errno;
1422 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1423 return -errno;
1425 return 0;
1428 #if defined(__linux__)
1430 #define RTC_FREQ 1024
1432 static void enable_sigio_timer(int fd)
1434 struct sigaction act;
1436 /* timer signal */
1437 sigfillset(&act.sa_mask);
1438 act.sa_flags = 0;
1439 act.sa_handler = host_alarm_handler;
1441 sigaction(SIGIO, &act, NULL);
1442 fcntl_setfl(fd, O_ASYNC);
1443 fcntl(fd, F_SETOWN, getpid());
1446 static int hpet_start_timer(struct qemu_alarm_timer *t)
1448 struct hpet_info info;
1449 int r, fd;
1451 fd = open("/dev/hpet", O_RDONLY);
1452 if (fd < 0)
1453 return -1;
1455 /* Set frequency */
1456 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1457 if (r < 0) {
1458 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1459 "error, but for better emulation accuracy type:\n"
1460 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1461 goto fail;
1464 /* Check capabilities */
1465 r = ioctl(fd, HPET_INFO, &info);
1466 if (r < 0)
1467 goto fail;
1469 /* Enable periodic mode */
1470 r = ioctl(fd, HPET_EPI, 0);
1471 if (info.hi_flags && (r < 0))
1472 goto fail;
1474 /* Enable interrupt */
1475 r = ioctl(fd, HPET_IE_ON, 0);
1476 if (r < 0)
1477 goto fail;
1479 enable_sigio_timer(fd);
1480 t->priv = (void *)(long)fd;
1482 return 0;
1483 fail:
1484 close(fd);
1485 return -1;
1488 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1490 int fd = (long)t->priv;
1492 close(fd);
1495 static int rtc_start_timer(struct qemu_alarm_timer *t)
1497 int rtc_fd;
1498 unsigned long current_rtc_freq = 0;
1500 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1501 if (rtc_fd < 0)
1502 return -1;
1503 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1504 if (current_rtc_freq != RTC_FREQ &&
1505 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1506 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1507 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1508 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1509 goto fail;
1511 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1512 fail:
1513 close(rtc_fd);
1514 return -1;
1517 enable_sigio_timer(rtc_fd);
1519 t->priv = (void *)(long)rtc_fd;
1521 return 0;
1524 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1526 int rtc_fd = (long)t->priv;
1528 close(rtc_fd);
1531 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1533 struct sigevent ev;
1534 timer_t host_timer;
1535 struct sigaction act;
1537 sigfillset(&act.sa_mask);
1538 act.sa_flags = 0;
1539 act.sa_handler = host_alarm_handler;
1541 sigaction(SIGALRM, &act, NULL);
1543 ev.sigev_value.sival_int = 0;
1544 ev.sigev_notify = SIGEV_SIGNAL;
1545 ev.sigev_signo = SIGALRM;
1547 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1548 perror("timer_create");
1550 /* disable dynticks */
1551 fprintf(stderr, "Dynamic Ticks disabled\n");
1553 return -1;
1556 t->priv = (void *)(long)host_timer;
1558 return 0;
1561 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1563 timer_t host_timer = (timer_t)(long)t->priv;
1565 timer_delete(host_timer);
1568 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1570 timer_t host_timer = (timer_t)(long)t->priv;
1571 struct itimerspec timeout;
1572 int64_t nearest_delta_us = INT64_MAX;
1573 int64_t current_us;
1575 if (!active_timers[QEMU_TIMER_REALTIME] &&
1576 !active_timers[QEMU_TIMER_VIRTUAL])
1577 return;
1579 nearest_delta_us = qemu_next_deadline_dyntick();
1581 /* check whether a timer is already running */
1582 if (timer_gettime(host_timer, &timeout)) {
1583 perror("gettime");
1584 fprintf(stderr, "Internal timer error: aborting\n");
1585 exit(1);
1587 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1588 if (current_us && current_us <= nearest_delta_us)
1589 return;
1591 timeout.it_interval.tv_sec = 0;
1592 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1593 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1594 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1595 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1596 perror("settime");
1597 fprintf(stderr, "Internal timer error: aborting\n");
1598 exit(1);
1602 #endif /* defined(__linux__) */
1604 static int unix_start_timer(struct qemu_alarm_timer *t)
1606 struct sigaction act;
1607 struct itimerval itv;
1608 int err;
1610 /* timer signal */
1611 sigfillset(&act.sa_mask);
1612 act.sa_flags = 0;
1613 act.sa_handler = host_alarm_handler;
1615 sigaction(SIGALRM, &act, NULL);
1617 itv.it_interval.tv_sec = 0;
1618 /* for i386 kernel 2.6 to get 1 ms */
1619 itv.it_interval.tv_usec = 999;
1620 itv.it_value.tv_sec = 0;
1621 itv.it_value.tv_usec = 10 * 1000;
1623 err = setitimer(ITIMER_REAL, &itv, NULL);
1624 if (err)
1625 return -1;
1627 return 0;
1630 static void unix_stop_timer(struct qemu_alarm_timer *t)
1632 struct itimerval itv;
1634 memset(&itv, 0, sizeof(itv));
1635 setitimer(ITIMER_REAL, &itv, NULL);
1638 #endif /* !defined(_WIN32) */
1641 #ifdef _WIN32
1643 static int win32_start_timer(struct qemu_alarm_timer *t)
1645 TIMECAPS tc;
1646 struct qemu_alarm_win32 *data = t->priv;
1647 UINT flags;
1649 memset(&tc, 0, sizeof(tc));
1650 timeGetDevCaps(&tc, sizeof(tc));
1652 if (data->period < tc.wPeriodMin)
1653 data->period = tc.wPeriodMin;
1655 timeBeginPeriod(data->period);
1657 flags = TIME_CALLBACK_FUNCTION;
1658 if (alarm_has_dynticks(t))
1659 flags |= TIME_ONESHOT;
1660 else
1661 flags |= TIME_PERIODIC;
1663 data->timerId = timeSetEvent(1, // interval (ms)
1664 data->period, // resolution
1665 host_alarm_handler, // function
1666 (DWORD)t, // parameter
1667 flags);
1669 if (!data->timerId) {
1670 perror("Failed to initialize win32 alarm timer");
1671 timeEndPeriod(data->period);
1672 return -1;
1675 return 0;
1678 static void win32_stop_timer(struct qemu_alarm_timer *t)
1680 struct qemu_alarm_win32 *data = t->priv;
1682 timeKillEvent(data->timerId);
1683 timeEndPeriod(data->period);
1686 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1688 struct qemu_alarm_win32 *data = t->priv;
1689 uint64_t nearest_delta_us;
1691 if (!active_timers[QEMU_TIMER_REALTIME] &&
1692 !active_timers[QEMU_TIMER_VIRTUAL])
1693 return;
1695 nearest_delta_us = qemu_next_deadline_dyntick();
1696 nearest_delta_us /= 1000;
1698 timeKillEvent(data->timerId);
1700 data->timerId = timeSetEvent(1,
1701 data->period,
1702 host_alarm_handler,
1703 (DWORD)t,
1704 TIME_ONESHOT | TIME_PERIODIC);
1706 if (!data->timerId) {
1707 perror("Failed to re-arm win32 alarm timer");
1709 timeEndPeriod(data->period);
1710 exit(1);
1714 #endif /* _WIN32 */
1716 static int init_timer_alarm(void)
1718 struct qemu_alarm_timer *t = NULL;
1719 int i, err = -1;
1721 for (i = 0; alarm_timers[i].name; i++) {
1722 t = &alarm_timers[i];
1724 err = t->start(t);
1725 if (!err)
1726 break;
1729 if (err) {
1730 err = -ENOENT;
1731 goto fail;
1734 alarm_timer = t;
1736 return 0;
1738 fail:
1739 return err;
1742 static void quit_timers(void)
1744 alarm_timer->stop(alarm_timer);
1745 alarm_timer = NULL;
1748 /***********************************************************/
1749 /* host time/date access */
1750 void qemu_get_timedate(struct tm *tm, int offset)
1752 time_t ti;
1753 struct tm *ret;
1755 time(&ti);
1756 ti += offset;
1757 if (rtc_date_offset == -1) {
1758 if (rtc_utc)
1759 ret = gmtime(&ti);
1760 else
1761 ret = localtime(&ti);
1762 } else {
1763 ti -= rtc_date_offset;
1764 ret = gmtime(&ti);
1767 memcpy(tm, ret, sizeof(struct tm));
1770 int qemu_timedate_diff(struct tm *tm)
1772 time_t seconds;
1774 if (rtc_date_offset == -1)
1775 if (rtc_utc)
1776 seconds = mktimegm(tm);
1777 else
1778 seconds = mktime(tm);
1779 else
1780 seconds = mktimegm(tm) + rtc_date_offset;
1782 return seconds - time(NULL);
1785 #ifdef _WIN32
1786 static void socket_cleanup(void)
1788 WSACleanup();
1791 static int socket_init(void)
1793 WSADATA Data;
1794 int ret, err;
1796 ret = WSAStartup(MAKEWORD(2,2), &Data);
1797 if (ret != 0) {
1798 err = WSAGetLastError();
1799 fprintf(stderr, "WSAStartup: %d\n", err);
1800 return -1;
1802 atexit(socket_cleanup);
1803 return 0;
1805 #endif
1807 const char *get_opt_name(char *buf, int buf_size, const char *p, char delim)
1809 char *q;
1811 q = buf;
1812 while (*p != '\0' && *p != delim) {
1813 if (q && (q - buf) < buf_size - 1)
1814 *q++ = *p;
1815 p++;
1817 if (q)
1818 *q = '\0';
1820 return p;
1823 const char *get_opt_value(char *buf, int buf_size, const char *p)
1825 char *q;
1827 q = buf;
1828 while (*p != '\0') {
1829 if (*p == ',') {
1830 if (*(p + 1) != ',')
1831 break;
1832 p++;
1834 if (q && (q - buf) < buf_size - 1)
1835 *q++ = *p;
1836 p++;
1838 if (q)
1839 *q = '\0';
1841 return p;
1844 int get_param_value(char *buf, int buf_size,
1845 const char *tag, const char *str)
1847 const char *p;
1848 char option[128];
1850 p = str;
1851 for(;;) {
1852 p = get_opt_name(option, sizeof(option), p, '=');
1853 if (*p != '=')
1854 break;
1855 p++;
1856 if (!strcmp(tag, option)) {
1857 (void)get_opt_value(buf, buf_size, p);
1858 return strlen(buf);
1859 } else {
1860 p = get_opt_value(NULL, 0, p);
1862 if (*p != ',')
1863 break;
1864 p++;
1866 return 0;
1869 int check_params(const char * const *params, const char *str)
1871 int name_buf_size = 1;
1872 const char *p;
1873 char *name_buf;
1874 int i, len;
1875 int ret = 0;
1877 for (i = 0; params[i] != NULL; i++) {
1878 len = strlen(params[i]) + 1;
1879 if (len > name_buf_size) {
1880 name_buf_size = len;
1883 name_buf = qemu_malloc(name_buf_size);
1885 p = str;
1886 while (*p != '\0') {
1887 p = get_opt_name(name_buf, name_buf_size, p, '=');
1888 if (*p != '=') {
1889 ret = -1;
1890 break;
1892 p++;
1893 for(i = 0; params[i] != NULL; i++)
1894 if (!strcmp(params[i], name_buf))
1895 break;
1896 if (params[i] == NULL) {
1897 ret = -1;
1898 break;
1900 p = get_opt_value(NULL, 0, p);
1901 if (*p != ',')
1902 break;
1903 p++;
1906 qemu_free(name_buf);
1907 return ret;
1910 /***********************************************************/
1911 /* Bluetooth support */
1912 static int nb_hcis;
1913 static int cur_hci;
1914 static struct HCIInfo *hci_table[MAX_NICS];
1916 static struct bt_vlan_s {
1917 struct bt_scatternet_s net;
1918 int id;
1919 struct bt_vlan_s *next;
1920 } *first_bt_vlan;
1922 /* find or alloc a new bluetooth "VLAN" */
1923 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1925 struct bt_vlan_s **pvlan, *vlan;
1926 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1927 if (vlan->id == id)
1928 return &vlan->net;
1930 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1931 vlan->id = id;
1932 pvlan = &first_bt_vlan;
1933 while (*pvlan != NULL)
1934 pvlan = &(*pvlan)->next;
1935 *pvlan = vlan;
1936 return &vlan->net;
1939 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1943 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1945 return -ENOTSUP;
1948 static struct HCIInfo null_hci = {
1949 .cmd_send = null_hci_send,
1950 .sco_send = null_hci_send,
1951 .acl_send = null_hci_send,
1952 .bdaddr_set = null_hci_addr_set,
1955 struct HCIInfo *qemu_next_hci(void)
1957 if (cur_hci == nb_hcis)
1958 return &null_hci;
1960 return hci_table[cur_hci++];
1963 static struct HCIInfo *hci_init(const char *str)
1965 char *endp;
1966 struct bt_scatternet_s *vlan = 0;
1968 if (!strcmp(str, "null"))
1969 /* null */
1970 return &null_hci;
1971 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1972 /* host[:hciN] */
1973 return bt_host_hci(str[4] ? str + 5 : "hci0");
1974 else if (!strncmp(str, "hci", 3)) {
1975 /* hci[,vlan=n] */
1976 if (str[3]) {
1977 if (!strncmp(str + 3, ",vlan=", 6)) {
1978 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1979 if (*endp)
1980 vlan = 0;
1982 } else
1983 vlan = qemu_find_bt_vlan(0);
1984 if (vlan)
1985 return bt_new_hci(vlan);
1988 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1990 return 0;
1993 static int bt_hci_parse(const char *str)
1995 struct HCIInfo *hci;
1996 bdaddr_t bdaddr;
1998 if (nb_hcis >= MAX_NICS) {
1999 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2000 return -1;
2003 hci = hci_init(str);
2004 if (!hci)
2005 return -1;
2007 bdaddr.b[0] = 0x52;
2008 bdaddr.b[1] = 0x54;
2009 bdaddr.b[2] = 0x00;
2010 bdaddr.b[3] = 0x12;
2011 bdaddr.b[4] = 0x34;
2012 bdaddr.b[5] = 0x56 + nb_hcis;
2013 hci->bdaddr_set(hci, bdaddr.b);
2015 hci_table[nb_hcis++] = hci;
2017 return 0;
2020 static void bt_vhci_add(int vlan_id)
2022 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2024 if (!vlan->slave)
2025 fprintf(stderr, "qemu: warning: adding a VHCI to "
2026 "an empty scatternet %i\n", vlan_id);
2028 bt_vhci_init(bt_new_hci(vlan));
2031 static struct bt_device_s *bt_device_add(const char *opt)
2033 struct bt_scatternet_s *vlan;
2034 int vlan_id = 0;
2035 char *endp = strstr(opt, ",vlan=");
2036 int len = (endp ? endp - opt : strlen(opt)) + 1;
2037 char devname[10];
2039 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2041 if (endp) {
2042 vlan_id = strtol(endp + 6, &endp, 0);
2043 if (*endp) {
2044 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2045 return 0;
2049 vlan = qemu_find_bt_vlan(vlan_id);
2051 if (!vlan->slave)
2052 fprintf(stderr, "qemu: warning: adding a slave device to "
2053 "an empty scatternet %i\n", vlan_id);
2055 if (!strcmp(devname, "keyboard"))
2056 return bt_keyboard_init(vlan);
2058 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2059 return 0;
2062 static int bt_parse(const char *opt)
2064 const char *endp, *p;
2065 int vlan;
2067 if (strstart(opt, "hci", &endp)) {
2068 if (!*endp || *endp == ',') {
2069 if (*endp)
2070 if (!strstart(endp, ",vlan=", 0))
2071 opt = endp + 1;
2073 return bt_hci_parse(opt);
2075 } else if (strstart(opt, "vhci", &endp)) {
2076 if (!*endp || *endp == ',') {
2077 if (*endp) {
2078 if (strstart(endp, ",vlan=", &p)) {
2079 vlan = strtol(p, (char **) &endp, 0);
2080 if (*endp) {
2081 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2082 return 1;
2084 } else {
2085 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2086 return 1;
2088 } else
2089 vlan = 0;
2091 bt_vhci_add(vlan);
2092 return 0;
2094 } else if (strstart(opt, "device:", &endp))
2095 return !bt_device_add(endp);
2097 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2098 return 1;
2101 /***********************************************************/
2102 /* QEMU Block devices */
2104 #define HD_ALIAS "index=%d,media=disk"
2105 #define CDROM_ALIAS "index=2,media=cdrom"
2106 #define FD_ALIAS "index=%d,if=floppy"
2107 #define PFLASH_ALIAS "if=pflash"
2108 #define MTD_ALIAS "if=mtd"
2109 #define SD_ALIAS "index=0,if=sd"
2111 static int drive_opt_get_free_idx(void)
2113 int index;
2115 for (index = 0; index < MAX_DRIVES; index++)
2116 if (!drives_opt[index].used) {
2117 drives_opt[index].used = 1;
2118 return index;
2121 return -1;
2124 static int drive_get_free_idx(void)
2126 int index;
2128 for (index = 0; index < MAX_DRIVES; index++)
2129 if (!drives_table[index].used) {
2130 drives_table[index].used = 1;
2131 return index;
2134 return -1;
2137 int drive_add(const char *file, const char *fmt, ...)
2139 va_list ap;
2140 int index = drive_opt_get_free_idx();
2142 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2143 fprintf(stderr, "qemu: too many drives\n");
2144 return -1;
2147 drives_opt[index].file = file;
2148 va_start(ap, fmt);
2149 vsnprintf(drives_opt[index].opt,
2150 sizeof(drives_opt[0].opt), fmt, ap);
2151 va_end(ap);
2153 nb_drives_opt++;
2154 return index;
2157 void drive_remove(int index)
2159 drives_opt[index].used = 0;
2160 nb_drives_opt--;
2163 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2165 int index;
2167 /* seek interface, bus and unit */
2169 for (index = 0; index < MAX_DRIVES; index++)
2170 if (drives_table[index].type == type &&
2171 drives_table[index].bus == bus &&
2172 drives_table[index].unit == unit &&
2173 drives_table[index].used)
2174 return index;
2176 return -1;
2179 int drive_get_max_bus(BlockInterfaceType type)
2181 int max_bus;
2182 int index;
2184 max_bus = -1;
2185 for (index = 0; index < nb_drives; index++) {
2186 if(drives_table[index].type == type &&
2187 drives_table[index].bus > max_bus)
2188 max_bus = drives_table[index].bus;
2190 return max_bus;
2193 const char *drive_get_serial(BlockDriverState *bdrv)
2195 int index;
2197 for (index = 0; index < nb_drives; index++)
2198 if (drives_table[index].bdrv == bdrv)
2199 return drives_table[index].serial;
2201 return "\0";
2204 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2206 int index;
2208 for (index = 0; index < nb_drives; index++)
2209 if (drives_table[index].bdrv == bdrv)
2210 return drives_table[index].onerror;
2212 return BLOCK_ERR_STOP_ENOSPC;
2215 static void bdrv_format_print(void *opaque, const char *name)
2217 fprintf(stderr, " %s", name);
2220 void drive_uninit(BlockDriverState *bdrv)
2222 int i;
2224 for (i = 0; i < MAX_DRIVES; i++)
2225 if (drives_table[i].bdrv == bdrv) {
2226 drives_table[i].bdrv = NULL;
2227 drives_table[i].used = 0;
2228 drive_remove(drives_table[i].drive_opt_idx);
2229 nb_drives--;
2230 break;
2234 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2236 char buf[128];
2237 char file[1024];
2238 char devname[128];
2239 char serial[21];
2240 const char *mediastr = "";
2241 BlockInterfaceType type;
2242 enum { MEDIA_DISK, MEDIA_CDROM } media;
2243 int bus_id, unit_id;
2244 int cyls, heads, secs, translation;
2245 BlockDriverState *bdrv;
2246 BlockDriver *drv = NULL;
2247 QEMUMachine *machine = opaque;
2248 int max_devs;
2249 int index;
2250 int cache;
2251 int bdrv_flags, onerror;
2252 int drives_table_idx;
2253 char *str = arg->opt;
2254 static const char * const params[] = { "bus", "unit", "if", "index",
2255 "cyls", "heads", "secs", "trans",
2256 "media", "snapshot", "file",
2257 "cache", "format", "serial", "werror",
2258 NULL };
2260 if (check_params(params, str) < 0) {
2261 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2262 buf, str);
2263 return -1;
2266 file[0] = 0;
2267 cyls = heads = secs = 0;
2268 bus_id = 0;
2269 unit_id = -1;
2270 translation = BIOS_ATA_TRANSLATION_AUTO;
2271 index = -1;
2272 cache = 3;
2274 if (machine->use_scsi) {
2275 type = IF_SCSI;
2276 max_devs = MAX_SCSI_DEVS;
2277 pstrcpy(devname, sizeof(devname), "scsi");
2278 } else {
2279 type = IF_IDE;
2280 max_devs = MAX_IDE_DEVS;
2281 pstrcpy(devname, sizeof(devname), "ide");
2283 media = MEDIA_DISK;
2285 /* extract parameters */
2287 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2288 bus_id = strtol(buf, NULL, 0);
2289 if (bus_id < 0) {
2290 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2291 return -1;
2295 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2296 unit_id = strtol(buf, NULL, 0);
2297 if (unit_id < 0) {
2298 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2299 return -1;
2303 if (get_param_value(buf, sizeof(buf), "if", str)) {
2304 pstrcpy(devname, sizeof(devname), buf);
2305 if (!strcmp(buf, "ide")) {
2306 type = IF_IDE;
2307 max_devs = MAX_IDE_DEVS;
2308 } else if (!strcmp(buf, "scsi")) {
2309 type = IF_SCSI;
2310 max_devs = MAX_SCSI_DEVS;
2311 } else if (!strcmp(buf, "floppy")) {
2312 type = IF_FLOPPY;
2313 max_devs = 0;
2314 } else if (!strcmp(buf, "pflash")) {
2315 type = IF_PFLASH;
2316 max_devs = 0;
2317 } else if (!strcmp(buf, "mtd")) {
2318 type = IF_MTD;
2319 max_devs = 0;
2320 } else if (!strcmp(buf, "sd")) {
2321 type = IF_SD;
2322 max_devs = 0;
2323 } else if (!strcmp(buf, "virtio")) {
2324 type = IF_VIRTIO;
2325 max_devs = 0;
2326 } else if (!strcmp(buf, "xen")) {
2327 type = IF_XEN;
2328 max_devs = 0;
2329 } else {
2330 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2331 return -1;
2335 if (get_param_value(buf, sizeof(buf), "index", str)) {
2336 index = strtol(buf, NULL, 0);
2337 if (index < 0) {
2338 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2339 return -1;
2343 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2344 cyls = strtol(buf, NULL, 0);
2347 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2348 heads = strtol(buf, NULL, 0);
2351 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2352 secs = strtol(buf, NULL, 0);
2355 if (cyls || heads || secs) {
2356 if (cyls < 1 || cyls > 16383) {
2357 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2358 return -1;
2360 if (heads < 1 || heads > 16) {
2361 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2362 return -1;
2364 if (secs < 1 || secs > 63) {
2365 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2366 return -1;
2370 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2371 if (!cyls) {
2372 fprintf(stderr,
2373 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2374 str);
2375 return -1;
2377 if (!strcmp(buf, "none"))
2378 translation = BIOS_ATA_TRANSLATION_NONE;
2379 else if (!strcmp(buf, "lba"))
2380 translation = BIOS_ATA_TRANSLATION_LBA;
2381 else if (!strcmp(buf, "auto"))
2382 translation = BIOS_ATA_TRANSLATION_AUTO;
2383 else {
2384 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2385 return -1;
2389 if (get_param_value(buf, sizeof(buf), "media", str)) {
2390 if (!strcmp(buf, "disk")) {
2391 media = MEDIA_DISK;
2392 } else if (!strcmp(buf, "cdrom")) {
2393 if (cyls || secs || heads) {
2394 fprintf(stderr,
2395 "qemu: '%s' invalid physical CHS format\n", str);
2396 return -1;
2398 media = MEDIA_CDROM;
2399 } else {
2400 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2401 return -1;
2405 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2406 if (!strcmp(buf, "on"))
2407 snapshot = 1;
2408 else if (!strcmp(buf, "off"))
2409 snapshot = 0;
2410 else {
2411 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2412 return -1;
2416 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2417 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2418 cache = 0;
2419 else if (!strcmp(buf, "writethrough"))
2420 cache = 1;
2421 else if (!strcmp(buf, "writeback"))
2422 cache = 2;
2423 else {
2424 fprintf(stderr, "qemu: invalid cache option\n");
2425 return -1;
2429 if (get_param_value(buf, sizeof(buf), "format", str)) {
2430 if (strcmp(buf, "?") == 0) {
2431 fprintf(stderr, "qemu: Supported formats:");
2432 bdrv_iterate_format(bdrv_format_print, NULL);
2433 fprintf(stderr, "\n");
2434 return -1;
2436 drv = bdrv_find_format(buf);
2437 if (!drv) {
2438 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2439 return -1;
2443 if (arg->file == NULL)
2444 get_param_value(file, sizeof(file), "file", str);
2445 else
2446 pstrcpy(file, sizeof(file), arg->file);
2448 if (!get_param_value(serial, sizeof(serial), "serial", str))
2449 memset(serial, 0, sizeof(serial));
2451 onerror = BLOCK_ERR_STOP_ENOSPC;
2452 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2453 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2454 fprintf(stderr, "werror is no supported by this format\n");
2455 return -1;
2457 if (!strcmp(buf, "ignore"))
2458 onerror = BLOCK_ERR_IGNORE;
2459 else if (!strcmp(buf, "enospc"))
2460 onerror = BLOCK_ERR_STOP_ENOSPC;
2461 else if (!strcmp(buf, "stop"))
2462 onerror = BLOCK_ERR_STOP_ANY;
2463 else if (!strcmp(buf, "report"))
2464 onerror = BLOCK_ERR_REPORT;
2465 else {
2466 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2467 return -1;
2471 /* compute bus and unit according index */
2473 if (index != -1) {
2474 if (bus_id != 0 || unit_id != -1) {
2475 fprintf(stderr,
2476 "qemu: '%s' index cannot be used with bus and unit\n", str);
2477 return -1;
2479 if (max_devs == 0)
2481 unit_id = index;
2482 bus_id = 0;
2483 } else {
2484 unit_id = index % max_devs;
2485 bus_id = index / max_devs;
2489 /* if user doesn't specify a unit_id,
2490 * try to find the first free
2493 if (unit_id == -1) {
2494 unit_id = 0;
2495 while (drive_get_index(type, bus_id, unit_id) != -1) {
2496 unit_id++;
2497 if (max_devs && unit_id >= max_devs) {
2498 unit_id -= max_devs;
2499 bus_id++;
2504 /* check unit id */
2506 if (max_devs && unit_id >= max_devs) {
2507 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2508 str, unit_id, max_devs - 1);
2509 return -1;
2513 * ignore multiple definitions
2516 if (drive_get_index(type, bus_id, unit_id) != -1)
2517 return -2;
2519 /* init */
2521 if (type == IF_IDE || type == IF_SCSI)
2522 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2523 if (max_devs)
2524 snprintf(buf, sizeof(buf), "%s%i%s%i",
2525 devname, bus_id, mediastr, unit_id);
2526 else
2527 snprintf(buf, sizeof(buf), "%s%s%i",
2528 devname, mediastr, unit_id);
2529 bdrv = bdrv_new(buf);
2530 drives_table_idx = drive_get_free_idx();
2531 drives_table[drives_table_idx].bdrv = bdrv;
2532 drives_table[drives_table_idx].type = type;
2533 drives_table[drives_table_idx].bus = bus_id;
2534 drives_table[drives_table_idx].unit = unit_id;
2535 drives_table[drives_table_idx].onerror = onerror;
2536 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2537 strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2538 nb_drives++;
2540 switch(type) {
2541 case IF_IDE:
2542 case IF_SCSI:
2543 case IF_XEN:
2544 switch(media) {
2545 case MEDIA_DISK:
2546 if (cyls != 0) {
2547 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2548 bdrv_set_translation_hint(bdrv, translation);
2550 break;
2551 case MEDIA_CDROM:
2552 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2553 break;
2555 break;
2556 case IF_SD:
2557 /* FIXME: This isn't really a floppy, but it's a reasonable
2558 approximation. */
2559 case IF_FLOPPY:
2560 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2561 break;
2562 case IF_PFLASH:
2563 case IF_MTD:
2564 case IF_VIRTIO:
2565 break;
2567 if (!file[0])
2568 return -2;
2569 bdrv_flags = 0;
2570 if (snapshot) {
2571 bdrv_flags |= BDRV_O_SNAPSHOT;
2572 cache = 2; /* always use write-back with snapshot */
2574 if (cache == 0) /* no caching */
2575 bdrv_flags |= BDRV_O_NOCACHE;
2576 else if (cache == 2) /* write-back */
2577 bdrv_flags |= BDRV_O_CACHE_WB;
2578 else if (cache == 3) /* not specified */
2579 bdrv_flags |= BDRV_O_CACHE_DEF;
2580 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2581 fprintf(stderr, "qemu: could not open disk image %s\n",
2582 file);
2583 return -1;
2585 if (bdrv_key_required(bdrv))
2586 autostart = 0;
2587 return drives_table_idx;
2590 static void numa_add(const char *optarg)
2592 char option[128];
2593 char *endptr;
2594 unsigned long long value, endvalue;
2595 int nodenr;
2597 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2598 if (!strcmp(option, "node")) {
2599 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2600 nodenr = nb_numa_nodes;
2601 } else {
2602 nodenr = strtoull(option, NULL, 10);
2605 if (get_param_value(option, 128, "mem", optarg) == 0) {
2606 node_mem[nodenr] = 0;
2607 } else {
2608 value = strtoull(option, &endptr, 0);
2609 switch (*endptr) {
2610 case 0: case 'M': case 'm':
2611 value <<= 20;
2612 break;
2613 case 'G': case 'g':
2614 value <<= 30;
2615 break;
2617 node_mem[nodenr] = value;
2619 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2620 node_cpumask[nodenr] = 0;
2621 } else {
2622 value = strtoull(option, &endptr, 10);
2623 if (value >= 64) {
2624 value = 63;
2625 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2626 } else {
2627 if (*endptr == '-') {
2628 endvalue = strtoull(endptr+1, &endptr, 10);
2629 if (endvalue >= 63) {
2630 endvalue = 62;
2631 fprintf(stderr,
2632 "only 63 CPUs in NUMA mode supported.\n");
2634 value = (1 << (endvalue + 1)) - (1 << value);
2635 } else {
2636 value = 1 << value;
2639 node_cpumask[nodenr] = value;
2641 nb_numa_nodes++;
2643 return;
2646 /***********************************************************/
2647 /* USB devices */
2649 static USBPort *used_usb_ports;
2650 static USBPort *free_usb_ports;
2652 /* ??? Maybe change this to register a hub to keep track of the topology. */
2653 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2654 usb_attachfn attach)
2656 port->opaque = opaque;
2657 port->index = index;
2658 port->attach = attach;
2659 port->next = free_usb_ports;
2660 free_usb_ports = port;
2663 int usb_device_add_dev(USBDevice *dev)
2665 USBPort *port;
2667 /* Find a USB port to add the device to. */
2668 port = free_usb_ports;
2669 if (!port->next) {
2670 USBDevice *hub;
2672 /* Create a new hub and chain it on. */
2673 free_usb_ports = NULL;
2674 port->next = used_usb_ports;
2675 used_usb_ports = port;
2677 hub = usb_hub_init(VM_USB_HUB_SIZE);
2678 usb_attach(port, hub);
2679 port = free_usb_ports;
2682 free_usb_ports = port->next;
2683 port->next = used_usb_ports;
2684 used_usb_ports = port;
2685 usb_attach(port, dev);
2686 return 0;
2689 static void usb_msd_password_cb(void *opaque, int err)
2691 USBDevice *dev = opaque;
2693 if (!err)
2694 usb_device_add_dev(dev);
2695 else
2696 dev->handle_destroy(dev);
2699 static int usb_device_add(const char *devname, int is_hotplug)
2701 const char *p;
2702 USBDevice *dev;
2704 if (!free_usb_ports)
2705 return -1;
2707 if (strstart(devname, "host:", &p)) {
2708 dev = usb_host_device_open(p);
2709 } else if (!strcmp(devname, "mouse")) {
2710 dev = usb_mouse_init();
2711 } else if (!strcmp(devname, "tablet")) {
2712 dev = usb_tablet_init();
2713 } else if (!strcmp(devname, "keyboard")) {
2714 dev = usb_keyboard_init();
2715 } else if (strstart(devname, "disk:", &p)) {
2716 BlockDriverState *bs;
2718 dev = usb_msd_init(p);
2719 if (!dev)
2720 return -1;
2721 bs = usb_msd_get_bdrv(dev);
2722 if (bdrv_key_required(bs)) {
2723 autostart = 0;
2724 if (is_hotplug) {
2725 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2726 dev);
2727 return 0;
2730 } else if (!strcmp(devname, "wacom-tablet")) {
2731 dev = usb_wacom_init();
2732 } else if (strstart(devname, "serial:", &p)) {
2733 dev = usb_serial_init(p);
2734 #ifdef CONFIG_BRLAPI
2735 } else if (!strcmp(devname, "braille")) {
2736 dev = usb_baum_init();
2737 #endif
2738 } else if (strstart(devname, "net:", &p)) {
2739 int nic = nb_nics;
2741 if (net_client_init("nic", p) < 0)
2742 return -1;
2743 nd_table[nic].model = "usb";
2744 dev = usb_net_init(&nd_table[nic]);
2745 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2746 dev = usb_bt_init(devname[2] ? hci_init(p) :
2747 bt_new_hci(qemu_find_bt_vlan(0)));
2748 } else {
2749 return -1;
2751 if (!dev)
2752 return -1;
2754 return usb_device_add_dev(dev);
2757 int usb_device_del_addr(int bus_num, int addr)
2759 USBPort *port;
2760 USBPort **lastp;
2761 USBDevice *dev;
2763 if (!used_usb_ports)
2764 return -1;
2766 if (bus_num != 0)
2767 return -1;
2769 lastp = &used_usb_ports;
2770 port = used_usb_ports;
2771 while (port && port->dev->addr != addr) {
2772 lastp = &port->next;
2773 port = port->next;
2776 if (!port)
2777 return -1;
2779 dev = port->dev;
2780 *lastp = port->next;
2781 usb_attach(port, NULL);
2782 dev->handle_destroy(dev);
2783 port->next = free_usb_ports;
2784 free_usb_ports = port;
2785 return 0;
2788 static int usb_device_del(const char *devname)
2790 int bus_num, addr;
2791 const char *p;
2793 if (strstart(devname, "host:", &p))
2794 return usb_host_device_close(p);
2796 if (!used_usb_ports)
2797 return -1;
2799 p = strchr(devname, '.');
2800 if (!p)
2801 return -1;
2802 bus_num = strtoul(devname, NULL, 0);
2803 addr = strtoul(p + 1, NULL, 0);
2805 return usb_device_del_addr(bus_num, addr);
2808 void do_usb_add(Monitor *mon, const char *devname)
2810 usb_device_add(devname, 1);
2813 void do_usb_del(Monitor *mon, const char *devname)
2815 usb_device_del(devname);
2818 void usb_info(Monitor *mon)
2820 USBDevice *dev;
2821 USBPort *port;
2822 const char *speed_str;
2824 if (!usb_enabled) {
2825 monitor_printf(mon, "USB support not enabled\n");
2826 return;
2829 for (port = used_usb_ports; port; port = port->next) {
2830 dev = port->dev;
2831 if (!dev)
2832 continue;
2833 switch(dev->speed) {
2834 case USB_SPEED_LOW:
2835 speed_str = "1.5";
2836 break;
2837 case USB_SPEED_FULL:
2838 speed_str = "12";
2839 break;
2840 case USB_SPEED_HIGH:
2841 speed_str = "480";
2842 break;
2843 default:
2844 speed_str = "?";
2845 break;
2847 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2848 0, dev->addr, speed_str, dev->devname);
2852 /***********************************************************/
2853 /* PCMCIA/Cardbus */
2855 static struct pcmcia_socket_entry_s {
2856 struct pcmcia_socket_s *socket;
2857 struct pcmcia_socket_entry_s *next;
2858 } *pcmcia_sockets = 0;
2860 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2862 struct pcmcia_socket_entry_s *entry;
2864 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2865 entry->socket = socket;
2866 entry->next = pcmcia_sockets;
2867 pcmcia_sockets = entry;
2870 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2872 struct pcmcia_socket_entry_s *entry, **ptr;
2874 ptr = &pcmcia_sockets;
2875 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2876 if (entry->socket == socket) {
2877 *ptr = entry->next;
2878 qemu_free(entry);
2882 void pcmcia_info(Monitor *mon)
2884 struct pcmcia_socket_entry_s *iter;
2886 if (!pcmcia_sockets)
2887 monitor_printf(mon, "No PCMCIA sockets\n");
2889 for (iter = pcmcia_sockets; iter; iter = iter->next)
2890 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2891 iter->socket->attached ? iter->socket->card_string :
2892 "Empty");
2895 /***********************************************************/
2896 /* register display */
2898 struct DisplayAllocator default_allocator = {
2899 defaultallocator_create_displaysurface,
2900 defaultallocator_resize_displaysurface,
2901 defaultallocator_free_displaysurface
2904 void register_displaystate(DisplayState *ds)
2906 DisplayState **s;
2907 s = &display_state;
2908 while (*s != NULL)
2909 s = &(*s)->next;
2910 ds->next = NULL;
2911 *s = ds;
2914 DisplayState *get_displaystate(void)
2916 return display_state;
2919 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2921 if(ds->allocator == &default_allocator) ds->allocator = da;
2922 return ds->allocator;
2925 /* dumb display */
2927 static void dumb_display_init(void)
2929 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2930 ds->allocator = &default_allocator;
2931 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2932 register_displaystate(ds);
2935 /***********************************************************/
2936 /* I/O handling */
2938 typedef struct IOHandlerRecord {
2939 int fd;
2940 IOCanRWHandler *fd_read_poll;
2941 IOHandler *fd_read;
2942 IOHandler *fd_write;
2943 int deleted;
2944 void *opaque;
2945 /* temporary data */
2946 struct pollfd *ufd;
2947 struct IOHandlerRecord *next;
2948 } IOHandlerRecord;
2950 static IOHandlerRecord *first_io_handler;
2952 /* XXX: fd_read_poll should be suppressed, but an API change is
2953 necessary in the character devices to suppress fd_can_read(). */
2954 int qemu_set_fd_handler2(int fd,
2955 IOCanRWHandler *fd_read_poll,
2956 IOHandler *fd_read,
2957 IOHandler *fd_write,
2958 void *opaque)
2960 IOHandlerRecord **pioh, *ioh;
2962 if (!fd_read && !fd_write) {
2963 pioh = &first_io_handler;
2964 for(;;) {
2965 ioh = *pioh;
2966 if (ioh == NULL)
2967 break;
2968 if (ioh->fd == fd) {
2969 ioh->deleted = 1;
2970 break;
2972 pioh = &ioh->next;
2974 } else {
2975 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2976 if (ioh->fd == fd)
2977 goto found;
2979 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2980 ioh->next = first_io_handler;
2981 first_io_handler = ioh;
2982 found:
2983 ioh->fd = fd;
2984 ioh->fd_read_poll = fd_read_poll;
2985 ioh->fd_read = fd_read;
2986 ioh->fd_write = fd_write;
2987 ioh->opaque = opaque;
2988 ioh->deleted = 0;
2990 return 0;
2993 int qemu_set_fd_handler(int fd,
2994 IOHandler *fd_read,
2995 IOHandler *fd_write,
2996 void *opaque)
2998 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
3001 #ifdef _WIN32
3002 /***********************************************************/
3003 /* Polling handling */
3005 typedef struct PollingEntry {
3006 PollingFunc *func;
3007 void *opaque;
3008 struct PollingEntry *next;
3009 } PollingEntry;
3011 static PollingEntry *first_polling_entry;
3013 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
3015 PollingEntry **ppe, *pe;
3016 pe = qemu_mallocz(sizeof(PollingEntry));
3017 pe->func = func;
3018 pe->opaque = opaque;
3019 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3020 *ppe = pe;
3021 return 0;
3024 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3026 PollingEntry **ppe, *pe;
3027 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3028 pe = *ppe;
3029 if (pe->func == func && pe->opaque == opaque) {
3030 *ppe = pe->next;
3031 qemu_free(pe);
3032 break;
3037 /***********************************************************/
3038 /* Wait objects support */
3039 typedef struct WaitObjects {
3040 int num;
3041 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3042 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3043 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3044 } WaitObjects;
3046 static WaitObjects wait_objects = {0};
3048 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3050 WaitObjects *w = &wait_objects;
3052 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3053 return -1;
3054 w->events[w->num] = handle;
3055 w->func[w->num] = func;
3056 w->opaque[w->num] = opaque;
3057 w->num++;
3058 return 0;
3061 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3063 int i, found;
3064 WaitObjects *w = &wait_objects;
3066 found = 0;
3067 for (i = 0; i < w->num; i++) {
3068 if (w->events[i] == handle)
3069 found = 1;
3070 if (found) {
3071 w->events[i] = w->events[i + 1];
3072 w->func[i] = w->func[i + 1];
3073 w->opaque[i] = w->opaque[i + 1];
3076 if (found)
3077 w->num--;
3079 #endif
3081 /***********************************************************/
3082 /* ram save/restore */
3084 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3086 int v;
3088 v = qemu_get_byte(f);
3089 switch(v) {
3090 case 0:
3091 if (qemu_get_buffer(f, buf, len) != len)
3092 return -EIO;
3093 break;
3094 case 1:
3095 v = qemu_get_byte(f);
3096 memset(buf, v, len);
3097 break;
3098 default:
3099 return -EINVAL;
3102 if (qemu_file_has_error(f))
3103 return -EIO;
3105 return 0;
3108 static int ram_load_v1(QEMUFile *f, void *opaque)
3110 int ret;
3111 ram_addr_t i;
3113 if (qemu_get_be32(f) != last_ram_offset)
3114 return -EINVAL;
3115 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3116 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3117 if (ret)
3118 return ret;
3120 return 0;
3123 #define BDRV_HASH_BLOCK_SIZE 1024
3124 #define IOBUF_SIZE 4096
3125 #define RAM_CBLOCK_MAGIC 0xfabe
3127 typedef struct RamDecompressState {
3128 z_stream zstream;
3129 QEMUFile *f;
3130 uint8_t buf[IOBUF_SIZE];
3131 } RamDecompressState;
3133 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3135 int ret;
3136 memset(s, 0, sizeof(*s));
3137 s->f = f;
3138 ret = inflateInit(&s->zstream);
3139 if (ret != Z_OK)
3140 return -1;
3141 return 0;
3144 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3146 int ret, clen;
3148 s->zstream.avail_out = len;
3149 s->zstream.next_out = buf;
3150 while (s->zstream.avail_out > 0) {
3151 if (s->zstream.avail_in == 0) {
3152 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3153 return -1;
3154 clen = qemu_get_be16(s->f);
3155 if (clen > IOBUF_SIZE)
3156 return -1;
3157 qemu_get_buffer(s->f, s->buf, clen);
3158 s->zstream.avail_in = clen;
3159 s->zstream.next_in = s->buf;
3161 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3162 if (ret != Z_OK && ret != Z_STREAM_END) {
3163 return -1;
3166 return 0;
3169 static void ram_decompress_close(RamDecompressState *s)
3171 inflateEnd(&s->zstream);
3174 #define RAM_SAVE_FLAG_FULL 0x01
3175 #define RAM_SAVE_FLAG_COMPRESS 0x02
3176 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3177 #define RAM_SAVE_FLAG_PAGE 0x08
3178 #define RAM_SAVE_FLAG_EOS 0x10
3180 static int is_dup_page(uint8_t *page, uint8_t ch)
3182 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3183 uint32_t *array = (uint32_t *)page;
3184 int i;
3186 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3187 if (array[i] != val)
3188 return 0;
3191 return 1;
3194 static int ram_save_block(QEMUFile *f)
3196 static ram_addr_t current_addr = 0;
3197 ram_addr_t saved_addr = current_addr;
3198 ram_addr_t addr = 0;
3199 int found = 0;
3201 while (addr < last_ram_offset) {
3202 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3203 uint8_t *p;
3205 cpu_physical_memory_reset_dirty(current_addr,
3206 current_addr + TARGET_PAGE_SIZE,
3207 MIGRATION_DIRTY_FLAG);
3209 p = qemu_get_ram_ptr(current_addr);
3211 if (is_dup_page(p, *p)) {
3212 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3213 qemu_put_byte(f, *p);
3214 } else {
3215 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3216 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3219 found = 1;
3220 break;
3222 addr += TARGET_PAGE_SIZE;
3223 current_addr = (saved_addr + addr) % last_ram_offset;
3226 return found;
3229 static ram_addr_t ram_save_threshold = 10;
3231 static ram_addr_t ram_save_remaining(void)
3233 ram_addr_t addr;
3234 ram_addr_t count = 0;
3236 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3237 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3238 count++;
3241 return count;
3244 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3246 ram_addr_t addr;
3248 if (stage == 1) {
3249 /* Make sure all dirty bits are set */
3250 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3251 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3252 cpu_physical_memory_set_dirty(addr);
3255 /* Enable dirty memory tracking */
3256 cpu_physical_memory_set_dirty_tracking(1);
3258 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3261 while (!qemu_file_rate_limit(f)) {
3262 int ret;
3264 ret = ram_save_block(f);
3265 if (ret == 0) /* no more blocks */
3266 break;
3269 /* try transferring iterative blocks of memory */
3271 if (stage == 3) {
3273 /* flush all remaining blocks regardless of rate limiting */
3274 while (ram_save_block(f) != 0);
3275 cpu_physical_memory_set_dirty_tracking(0);
3278 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3280 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3283 static int ram_load_dead(QEMUFile *f, void *opaque)
3285 RamDecompressState s1, *s = &s1;
3286 uint8_t buf[10];
3287 ram_addr_t i;
3289 if (ram_decompress_open(s, f) < 0)
3290 return -EINVAL;
3291 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3292 if (ram_decompress_buf(s, buf, 1) < 0) {
3293 fprintf(stderr, "Error while reading ram block header\n");
3294 goto error;
3296 if (buf[0] == 0) {
3297 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3298 BDRV_HASH_BLOCK_SIZE) < 0) {
3299 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3300 goto error;
3302 } else {
3303 error:
3304 printf("Error block header\n");
3305 return -EINVAL;
3308 ram_decompress_close(s);
3310 return 0;
3313 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3315 ram_addr_t addr;
3316 int flags;
3318 if (version_id == 1)
3319 return ram_load_v1(f, opaque);
3321 if (version_id == 2) {
3322 if (qemu_get_be32(f) != last_ram_offset)
3323 return -EINVAL;
3324 return ram_load_dead(f, opaque);
3327 if (version_id != 3)
3328 return -EINVAL;
3330 do {
3331 addr = qemu_get_be64(f);
3333 flags = addr & ~TARGET_PAGE_MASK;
3334 addr &= TARGET_PAGE_MASK;
3336 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3337 if (addr != last_ram_offset)
3338 return -EINVAL;
3341 if (flags & RAM_SAVE_FLAG_FULL) {
3342 if (ram_load_dead(f, opaque) < 0)
3343 return -EINVAL;
3346 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3347 uint8_t ch = qemu_get_byte(f);
3348 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3349 } else if (flags & RAM_SAVE_FLAG_PAGE)
3350 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3351 } while (!(flags & RAM_SAVE_FLAG_EOS));
3353 return 0;
3356 void qemu_service_io(void)
3358 qemu_notify_event();
3361 /***********************************************************/
3362 /* bottom halves (can be seen as timers which expire ASAP) */
3364 struct QEMUBH {
3365 QEMUBHFunc *cb;
3366 void *opaque;
3367 int scheduled;
3368 int idle;
3369 int deleted;
3370 QEMUBH *next;
3373 static QEMUBH *first_bh = NULL;
3375 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3377 QEMUBH *bh;
3378 bh = qemu_mallocz(sizeof(QEMUBH));
3379 bh->cb = cb;
3380 bh->opaque = opaque;
3381 bh->next = first_bh;
3382 first_bh = bh;
3383 return bh;
3386 int qemu_bh_poll(void)
3388 QEMUBH *bh, **bhp;
3389 int ret;
3391 ret = 0;
3392 for (bh = first_bh; bh; bh = bh->next) {
3393 if (!bh->deleted && bh->scheduled) {
3394 bh->scheduled = 0;
3395 if (!bh->idle)
3396 ret = 1;
3397 bh->idle = 0;
3398 bh->cb(bh->opaque);
3402 /* remove deleted bhs */
3403 bhp = &first_bh;
3404 while (*bhp) {
3405 bh = *bhp;
3406 if (bh->deleted) {
3407 *bhp = bh->next;
3408 qemu_free(bh);
3409 } else
3410 bhp = &bh->next;
3413 return ret;
3416 void qemu_bh_schedule_idle(QEMUBH *bh)
3418 if (bh->scheduled)
3419 return;
3420 bh->scheduled = 1;
3421 bh->idle = 1;
3424 void qemu_bh_schedule(QEMUBH *bh)
3426 if (bh->scheduled)
3427 return;
3428 bh->scheduled = 1;
3429 bh->idle = 0;
3430 /* stop the currently executing CPU to execute the BH ASAP */
3431 qemu_notify_event();
3434 void qemu_bh_cancel(QEMUBH *bh)
3436 bh->scheduled = 0;
3439 void qemu_bh_delete(QEMUBH *bh)
3441 bh->scheduled = 0;
3442 bh->deleted = 1;
3445 static void qemu_bh_update_timeout(int *timeout)
3447 QEMUBH *bh;
3449 for (bh = first_bh; bh; bh = bh->next) {
3450 if (!bh->deleted && bh->scheduled) {
3451 if (bh->idle) {
3452 /* idle bottom halves will be polled at least
3453 * every 10ms */
3454 *timeout = MIN(10, *timeout);
3455 } else {
3456 /* non-idle bottom halves will be executed
3457 * immediately */
3458 *timeout = 0;
3459 break;
3465 /***********************************************************/
3466 /* machine registration */
3468 static QEMUMachine *first_machine = NULL;
3469 QEMUMachine *current_machine = NULL;
3471 int qemu_register_machine(QEMUMachine *m)
3473 QEMUMachine **pm;
3474 pm = &first_machine;
3475 while (*pm != NULL)
3476 pm = &(*pm)->next;
3477 m->next = NULL;
3478 *pm = m;
3479 return 0;
3482 static QEMUMachine *find_machine(const char *name)
3484 QEMUMachine *m;
3486 for(m = first_machine; m != NULL; m = m->next) {
3487 if (!strcmp(m->name, name))
3488 return m;
3490 return NULL;
3493 /***********************************************************/
3494 /* main execution loop */
3496 static void gui_update(void *opaque)
3498 uint64_t interval = GUI_REFRESH_INTERVAL;
3499 DisplayState *ds = opaque;
3500 DisplayChangeListener *dcl = ds->listeners;
3502 dpy_refresh(ds);
3504 while (dcl != NULL) {
3505 if (dcl->gui_timer_interval &&
3506 dcl->gui_timer_interval < interval)
3507 interval = dcl->gui_timer_interval;
3508 dcl = dcl->next;
3510 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3513 static void nographic_update(void *opaque)
3515 uint64_t interval = GUI_REFRESH_INTERVAL;
3517 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3520 struct vm_change_state_entry {
3521 VMChangeStateHandler *cb;
3522 void *opaque;
3523 LIST_ENTRY (vm_change_state_entry) entries;
3526 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3528 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3529 void *opaque)
3531 VMChangeStateEntry *e;
3533 e = qemu_mallocz(sizeof (*e));
3535 e->cb = cb;
3536 e->opaque = opaque;
3537 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3538 return e;
3541 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3543 LIST_REMOVE (e, entries);
3544 qemu_free (e);
3547 static void vm_state_notify(int running, int reason)
3549 VMChangeStateEntry *e;
3551 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3552 e->cb(e->opaque, running, reason);
3556 static void resume_all_vcpus(void);
3557 static void pause_all_vcpus(void);
3559 void vm_start(void)
3561 if (!vm_running) {
3562 cpu_enable_ticks();
3563 vm_running = 1;
3564 vm_state_notify(1, 0);
3565 qemu_rearm_alarm_timer(alarm_timer);
3566 resume_all_vcpus();
3570 /* reset/shutdown handler */
3572 typedef struct QEMUResetEntry {
3573 QEMUResetHandler *func;
3574 void *opaque;
3575 struct QEMUResetEntry *next;
3576 } QEMUResetEntry;
3578 static QEMUResetEntry *first_reset_entry;
3579 static int reset_requested;
3580 static int shutdown_requested;
3581 static int powerdown_requested;
3582 static int debug_requested;
3583 static int vmstop_requested;
3585 int qemu_shutdown_requested(void)
3587 int r = shutdown_requested;
3588 shutdown_requested = 0;
3589 return r;
3592 int qemu_reset_requested(void)
3594 int r = reset_requested;
3595 reset_requested = 0;
3596 return r;
3599 int qemu_powerdown_requested(void)
3601 int r = powerdown_requested;
3602 powerdown_requested = 0;
3603 return r;
3606 static int qemu_debug_requested(void)
3608 int r = debug_requested;
3609 debug_requested = 0;
3610 return r;
3613 static int qemu_vmstop_requested(void)
3615 int r = vmstop_requested;
3616 vmstop_requested = 0;
3617 return r;
3620 static void do_vm_stop(int reason)
3622 if (vm_running) {
3623 cpu_disable_ticks();
3624 vm_running = 0;
3625 pause_all_vcpus();
3626 vm_state_notify(0, reason);
3630 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3632 QEMUResetEntry **pre, *re;
3634 pre = &first_reset_entry;
3635 while (*pre != NULL)
3636 pre = &(*pre)->next;
3637 re = qemu_mallocz(sizeof(QEMUResetEntry));
3638 re->func = func;
3639 re->opaque = opaque;
3640 re->next = NULL;
3641 *pre = re;
3644 void qemu_system_reset(void)
3646 QEMUResetEntry *re;
3648 /* reset all devices */
3649 for(re = first_reset_entry; re != NULL; re = re->next) {
3650 re->func(re->opaque);
3652 if (kvm_enabled())
3653 kvm_sync_vcpus();
3656 void qemu_system_reset_request(void)
3658 if (no_reboot) {
3659 shutdown_requested = 1;
3660 } else {
3661 reset_requested = 1;
3663 qemu_notify_event();
3666 void qemu_system_shutdown_request(void)
3668 shutdown_requested = 1;
3669 qemu_notify_event();
3672 void qemu_system_powerdown_request(void)
3674 powerdown_requested = 1;
3675 qemu_notify_event();
3678 #ifdef CONFIG_IOTHREAD
3679 static void qemu_system_vmstop_request(int reason)
3681 vmstop_requested = reason;
3682 qemu_notify_event();
3684 #endif
3686 #ifndef _WIN32
3687 static int io_thread_fd = -1;
3689 static void qemu_event_increment(void)
3691 static const char byte = 0;
3693 if (io_thread_fd == -1)
3694 return;
3696 write(io_thread_fd, &byte, sizeof(byte));
3699 static void qemu_event_read(void *opaque)
3701 int fd = (unsigned long)opaque;
3702 ssize_t len;
3704 /* Drain the notify pipe */
3705 do {
3706 char buffer[512];
3707 len = read(fd, buffer, sizeof(buffer));
3708 } while ((len == -1 && errno == EINTR) || len > 0);
3711 static int qemu_event_init(void)
3713 int err;
3714 int fds[2];
3716 err = pipe(fds);
3717 if (err == -1)
3718 return -errno;
3720 err = fcntl_setfl(fds[0], O_NONBLOCK);
3721 if (err < 0)
3722 goto fail;
3724 err = fcntl_setfl(fds[1], O_NONBLOCK);
3725 if (err < 0)
3726 goto fail;
3728 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3729 (void *)(unsigned long)fds[0]);
3731 io_thread_fd = fds[1];
3732 return 0;
3734 fail:
3735 close(fds[0]);
3736 close(fds[1]);
3737 return err;
3739 #else
3740 HANDLE qemu_event_handle;
3742 static void dummy_event_handler(void *opaque)
3746 static int qemu_event_init(void)
3748 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3749 if (!qemu_event_handle) {
3750 perror("Failed CreateEvent");
3751 return -1;
3753 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3754 return 0;
3757 static void qemu_event_increment(void)
3759 SetEvent(qemu_event_handle);
3761 #endif
3763 static int cpu_can_run(CPUState *env)
3765 if (env->stop)
3766 return 0;
3767 if (env->stopped)
3768 return 0;
3769 return 1;
3772 #ifndef CONFIG_IOTHREAD
3773 static int qemu_init_main_loop(void)
3775 return qemu_event_init();
3778 void qemu_init_vcpu(void *_env)
3780 CPUState *env = _env;
3782 if (kvm_enabled())
3783 kvm_init_vcpu(env);
3784 return;
3787 int qemu_cpu_self(void *env)
3789 return 1;
3792 static void resume_all_vcpus(void)
3796 static void pause_all_vcpus(void)
3800 void qemu_cpu_kick(void *env)
3802 return;
3805 void qemu_notify_event(void)
3807 CPUState *env = cpu_single_env;
3809 if (env) {
3810 cpu_exit(env);
3811 #ifdef USE_KQEMU
3812 if (env->kqemu_enabled)
3813 kqemu_cpu_interrupt(env);
3814 #endif
3818 #define qemu_mutex_lock_iothread() do { } while (0)
3819 #define qemu_mutex_unlock_iothread() do { } while (0)
3821 void vm_stop(int reason)
3823 do_vm_stop(reason);
3826 #else /* CONFIG_IOTHREAD */
3828 #include "qemu-thread.h"
3830 QemuMutex qemu_global_mutex;
3831 static QemuMutex qemu_fair_mutex;
3833 static QemuThread io_thread;
3835 static QemuThread *tcg_cpu_thread;
3836 static QemuCond *tcg_halt_cond;
3838 static int qemu_system_ready;
3839 /* cpu creation */
3840 static QemuCond qemu_cpu_cond;
3841 /* system init */
3842 static QemuCond qemu_system_cond;
3843 static QemuCond qemu_pause_cond;
3845 static void block_io_signals(void);
3846 static void unblock_io_signals(void);
3847 static int tcg_has_work(void);
3849 static int qemu_init_main_loop(void)
3851 int ret;
3853 ret = qemu_event_init();
3854 if (ret)
3855 return ret;
3857 qemu_cond_init(&qemu_pause_cond);
3858 qemu_mutex_init(&qemu_fair_mutex);
3859 qemu_mutex_init(&qemu_global_mutex);
3860 qemu_mutex_lock(&qemu_global_mutex);
3862 unblock_io_signals();
3863 qemu_thread_self(&io_thread);
3865 return 0;
3868 static void qemu_wait_io_event(CPUState *env)
3870 while (!tcg_has_work())
3871 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3873 qemu_mutex_unlock(&qemu_global_mutex);
3876 * Users of qemu_global_mutex can be starved, having no chance
3877 * to acquire it since this path will get to it first.
3878 * So use another lock to provide fairness.
3880 qemu_mutex_lock(&qemu_fair_mutex);
3881 qemu_mutex_unlock(&qemu_fair_mutex);
3883 qemu_mutex_lock(&qemu_global_mutex);
3884 if (env->stop) {
3885 env->stop = 0;
3886 env->stopped = 1;
3887 qemu_cond_signal(&qemu_pause_cond);
3891 static int qemu_cpu_exec(CPUState *env);
3893 static void *kvm_cpu_thread_fn(void *arg)
3895 CPUState *env = arg;
3897 block_io_signals();
3898 qemu_thread_self(env->thread);
3900 /* signal CPU creation */
3901 qemu_mutex_lock(&qemu_global_mutex);
3902 env->created = 1;
3903 qemu_cond_signal(&qemu_cpu_cond);
3905 /* and wait for machine initialization */
3906 while (!qemu_system_ready)
3907 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3909 while (1) {
3910 if (cpu_can_run(env))
3911 qemu_cpu_exec(env);
3912 qemu_wait_io_event(env);
3915 return NULL;
3918 static void tcg_cpu_exec(void);
3920 static void *tcg_cpu_thread_fn(void *arg)
3922 CPUState *env = arg;
3924 block_io_signals();
3925 qemu_thread_self(env->thread);
3927 /* signal CPU creation */
3928 qemu_mutex_lock(&qemu_global_mutex);
3929 for (env = first_cpu; env != NULL; env = env->next_cpu)
3930 env->created = 1;
3931 qemu_cond_signal(&qemu_cpu_cond);
3933 /* and wait for machine initialization */
3934 while (!qemu_system_ready)
3935 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3937 while (1) {
3938 tcg_cpu_exec();
3939 qemu_wait_io_event(cur_cpu);
3942 return NULL;
3945 void qemu_cpu_kick(void *_env)
3947 CPUState *env = _env;
3948 qemu_cond_broadcast(env->halt_cond);
3949 if (kvm_enabled())
3950 qemu_thread_signal(env->thread, SIGUSR1);
3953 int qemu_cpu_self(void *env)
3955 return (cpu_single_env != NULL);
3958 static void cpu_signal(int sig)
3960 if (cpu_single_env)
3961 cpu_exit(cpu_single_env);
3964 static void block_io_signals(void)
3966 sigset_t set;
3967 struct sigaction sigact;
3969 sigemptyset(&set);
3970 sigaddset(&set, SIGUSR2);
3971 sigaddset(&set, SIGIO);
3972 sigaddset(&set, SIGALRM);
3973 pthread_sigmask(SIG_BLOCK, &set, NULL);
3975 sigemptyset(&set);
3976 sigaddset(&set, SIGUSR1);
3977 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3979 memset(&sigact, 0, sizeof(sigact));
3980 sigact.sa_handler = cpu_signal;
3981 sigaction(SIGUSR1, &sigact, NULL);
3984 static void unblock_io_signals(void)
3986 sigset_t set;
3988 sigemptyset(&set);
3989 sigaddset(&set, SIGUSR2);
3990 sigaddset(&set, SIGIO);
3991 sigaddset(&set, SIGALRM);
3992 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3994 sigemptyset(&set);
3995 sigaddset(&set, SIGUSR1);
3996 pthread_sigmask(SIG_BLOCK, &set, NULL);
3999 static void qemu_signal_lock(unsigned int msecs)
4001 qemu_mutex_lock(&qemu_fair_mutex);
4003 while (qemu_mutex_trylock(&qemu_global_mutex)) {
4004 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4005 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4006 break;
4008 qemu_mutex_unlock(&qemu_fair_mutex);
4011 static void qemu_mutex_lock_iothread(void)
4013 if (kvm_enabled()) {
4014 qemu_mutex_lock(&qemu_fair_mutex);
4015 qemu_mutex_lock(&qemu_global_mutex);
4016 qemu_mutex_unlock(&qemu_fair_mutex);
4017 } else
4018 qemu_signal_lock(100);
4021 static void qemu_mutex_unlock_iothread(void)
4023 qemu_mutex_unlock(&qemu_global_mutex);
4026 static int all_vcpus_paused(void)
4028 CPUState *penv = first_cpu;
4030 while (penv) {
4031 if (!penv->stopped)
4032 return 0;
4033 penv = (CPUState *)penv->next_cpu;
4036 return 1;
4039 static void pause_all_vcpus(void)
4041 CPUState *penv = first_cpu;
4043 while (penv) {
4044 penv->stop = 1;
4045 qemu_thread_signal(penv->thread, SIGUSR1);
4046 qemu_cpu_kick(penv);
4047 penv = (CPUState *)penv->next_cpu;
4050 while (!all_vcpus_paused()) {
4051 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4052 penv = first_cpu;
4053 while (penv) {
4054 qemu_thread_signal(penv->thread, SIGUSR1);
4055 penv = (CPUState *)penv->next_cpu;
4060 static void resume_all_vcpus(void)
4062 CPUState *penv = first_cpu;
4064 while (penv) {
4065 penv->stop = 0;
4066 penv->stopped = 0;
4067 qemu_thread_signal(penv->thread, SIGUSR1);
4068 qemu_cpu_kick(penv);
4069 penv = (CPUState *)penv->next_cpu;
4073 static void tcg_init_vcpu(void *_env)
4075 CPUState *env = _env;
4076 /* share a single thread for all cpus with TCG */
4077 if (!tcg_cpu_thread) {
4078 env->thread = qemu_mallocz(sizeof(QemuThread));
4079 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4080 qemu_cond_init(env->halt_cond);
4081 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4082 while (env->created == 0)
4083 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4084 tcg_cpu_thread = env->thread;
4085 tcg_halt_cond = env->halt_cond;
4086 } else {
4087 env->thread = tcg_cpu_thread;
4088 env->halt_cond = tcg_halt_cond;
4092 static void kvm_start_vcpu(CPUState *env)
4094 kvm_init_vcpu(env);
4095 env->thread = qemu_mallocz(sizeof(QemuThread));
4096 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4097 qemu_cond_init(env->halt_cond);
4098 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4099 while (env->created == 0)
4100 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4103 void qemu_init_vcpu(void *_env)
4105 CPUState *env = _env;
4107 if (kvm_enabled())
4108 kvm_start_vcpu(env);
4109 else
4110 tcg_init_vcpu(env);
4113 void qemu_notify_event(void)
4115 qemu_event_increment();
4118 void vm_stop(int reason)
4120 QemuThread me;
4121 qemu_thread_self(&me);
4123 if (!qemu_thread_equal(&me, &io_thread)) {
4124 qemu_system_vmstop_request(reason);
4126 * FIXME: should not return to device code in case
4127 * vm_stop() has been requested.
4129 if (cpu_single_env) {
4130 cpu_exit(cpu_single_env);
4131 cpu_single_env->stop = 1;
4133 return;
4135 do_vm_stop(reason);
4138 #endif
4141 #ifdef _WIN32
4142 static void host_main_loop_wait(int *timeout)
4144 int ret, ret2, i;
4145 PollingEntry *pe;
4148 /* XXX: need to suppress polling by better using win32 events */
4149 ret = 0;
4150 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4151 ret |= pe->func(pe->opaque);
4153 if (ret == 0) {
4154 int err;
4155 WaitObjects *w = &wait_objects;
4157 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4158 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4159 if (w->func[ret - WAIT_OBJECT_0])
4160 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4162 /* Check for additional signaled events */
4163 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4165 /* Check if event is signaled */
4166 ret2 = WaitForSingleObject(w->events[i], 0);
4167 if(ret2 == WAIT_OBJECT_0) {
4168 if (w->func[i])
4169 w->func[i](w->opaque[i]);
4170 } else if (ret2 == WAIT_TIMEOUT) {
4171 } else {
4172 err = GetLastError();
4173 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4176 } else if (ret == WAIT_TIMEOUT) {
4177 } else {
4178 err = GetLastError();
4179 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4183 *timeout = 0;
4185 #else
4186 static void host_main_loop_wait(int *timeout)
4189 #endif
4191 void main_loop_wait(int timeout)
4193 IOHandlerRecord *ioh;
4194 fd_set rfds, wfds, xfds;
4195 int ret, nfds;
4196 struct timeval tv;
4198 qemu_bh_update_timeout(&timeout);
4200 host_main_loop_wait(&timeout);
4202 /* poll any events */
4203 /* XXX: separate device handlers from system ones */
4204 nfds = -1;
4205 FD_ZERO(&rfds);
4206 FD_ZERO(&wfds);
4207 FD_ZERO(&xfds);
4208 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4209 if (ioh->deleted)
4210 continue;
4211 if (ioh->fd_read &&
4212 (!ioh->fd_read_poll ||
4213 ioh->fd_read_poll(ioh->opaque) != 0)) {
4214 FD_SET(ioh->fd, &rfds);
4215 if (ioh->fd > nfds)
4216 nfds = ioh->fd;
4218 if (ioh->fd_write) {
4219 FD_SET(ioh->fd, &wfds);
4220 if (ioh->fd > nfds)
4221 nfds = ioh->fd;
4225 tv.tv_sec = timeout / 1000;
4226 tv.tv_usec = (timeout % 1000) * 1000;
4228 #if defined(CONFIG_SLIRP)
4229 if (slirp_is_inited()) {
4230 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4232 #endif
4233 qemu_mutex_unlock_iothread();
4234 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4235 qemu_mutex_lock_iothread();
4236 if (ret > 0) {
4237 IOHandlerRecord **pioh;
4239 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4240 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4241 ioh->fd_read(ioh->opaque);
4243 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4244 ioh->fd_write(ioh->opaque);
4248 /* remove deleted IO handlers */
4249 pioh = &first_io_handler;
4250 while (*pioh) {
4251 ioh = *pioh;
4252 if (ioh->deleted) {
4253 *pioh = ioh->next;
4254 qemu_free(ioh);
4255 } else
4256 pioh = &ioh->next;
4259 #if defined(CONFIG_SLIRP)
4260 if (slirp_is_inited()) {
4261 if (ret < 0) {
4262 FD_ZERO(&rfds);
4263 FD_ZERO(&wfds);
4264 FD_ZERO(&xfds);
4266 slirp_select_poll(&rfds, &wfds, &xfds);
4268 #endif
4270 /* rearm timer, if not periodic */
4271 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4272 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4273 qemu_rearm_alarm_timer(alarm_timer);
4276 /* vm time timers */
4277 if (vm_running) {
4278 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4279 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4280 qemu_get_clock(vm_clock));
4283 /* real time timers */
4284 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4285 qemu_get_clock(rt_clock));
4287 /* Check bottom-halves last in case any of the earlier events triggered
4288 them. */
4289 qemu_bh_poll();
4293 static int qemu_cpu_exec(CPUState *env)
4295 int ret;
4296 #ifdef CONFIG_PROFILER
4297 int64_t ti;
4298 #endif
4300 #ifdef CONFIG_PROFILER
4301 ti = profile_getclock();
4302 #endif
4303 if (use_icount) {
4304 int64_t count;
4305 int decr;
4306 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4307 env->icount_decr.u16.low = 0;
4308 env->icount_extra = 0;
4309 count = qemu_next_deadline();
4310 count = (count + (1 << icount_time_shift) - 1)
4311 >> icount_time_shift;
4312 qemu_icount += count;
4313 decr = (count > 0xffff) ? 0xffff : count;
4314 count -= decr;
4315 env->icount_decr.u16.low = decr;
4316 env->icount_extra = count;
4318 ret = cpu_exec(env);
4319 #ifdef CONFIG_PROFILER
4320 qemu_time += profile_getclock() - ti;
4321 #endif
4322 if (use_icount) {
4323 /* Fold pending instructions back into the
4324 instruction counter, and clear the interrupt flag. */
4325 qemu_icount -= (env->icount_decr.u16.low
4326 + env->icount_extra);
4327 env->icount_decr.u32 = 0;
4328 env->icount_extra = 0;
4330 return ret;
4333 static void tcg_cpu_exec(void)
4335 int ret = 0;
4337 if (next_cpu == NULL)
4338 next_cpu = first_cpu;
4339 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4340 CPUState *env = cur_cpu = next_cpu;
4342 if (!vm_running)
4343 break;
4344 if (timer_alarm_pending) {
4345 timer_alarm_pending = 0;
4346 break;
4348 if (cpu_can_run(env))
4349 ret = qemu_cpu_exec(env);
4350 if (ret == EXCP_DEBUG) {
4351 gdb_set_stop_cpu(env);
4352 debug_requested = 1;
4353 break;
4358 static int cpu_has_work(CPUState *env)
4360 if (env->stop)
4361 return 1;
4362 if (env->stopped)
4363 return 0;
4364 if (!env->halted)
4365 return 1;
4366 if (qemu_cpu_has_work(env))
4367 return 1;
4368 return 0;
4371 static int tcg_has_work(void)
4373 CPUState *env;
4375 for (env = first_cpu; env != NULL; env = env->next_cpu)
4376 if (cpu_has_work(env))
4377 return 1;
4378 return 0;
4381 static int qemu_calculate_timeout(void)
4383 int timeout;
4385 if (!vm_running)
4386 timeout = 5000;
4387 else if (tcg_has_work())
4388 timeout = 0;
4389 else if (!use_icount)
4390 timeout = 5000;
4391 else {
4392 /* XXX: use timeout computed from timers */
4393 int64_t add;
4394 int64_t delta;
4395 /* Advance virtual time to the next event. */
4396 if (use_icount == 1) {
4397 /* When not using an adaptive execution frequency
4398 we tend to get badly out of sync with real time,
4399 so just delay for a reasonable amount of time. */
4400 delta = 0;
4401 } else {
4402 delta = cpu_get_icount() - cpu_get_clock();
4404 if (delta > 0) {
4405 /* If virtual time is ahead of real time then just
4406 wait for IO. */
4407 timeout = (delta / 1000000) + 1;
4408 } else {
4409 /* Wait for either IO to occur or the next
4410 timer event. */
4411 add = qemu_next_deadline();
4412 /* We advance the timer before checking for IO.
4413 Limit the amount we advance so that early IO
4414 activity won't get the guest too far ahead. */
4415 if (add > 10000000)
4416 add = 10000000;
4417 delta += add;
4418 add = (add + (1 << icount_time_shift) - 1)
4419 >> icount_time_shift;
4420 qemu_icount += add;
4421 timeout = delta / 1000000;
4422 if (timeout < 0)
4423 timeout = 0;
4427 return timeout;
4430 static int vm_can_run(void)
4432 if (powerdown_requested)
4433 return 0;
4434 if (reset_requested)
4435 return 0;
4436 if (shutdown_requested)
4437 return 0;
4438 if (debug_requested)
4439 return 0;
4440 return 1;
4443 static void main_loop(void)
4445 int r;
4447 #ifdef CONFIG_IOTHREAD
4448 qemu_system_ready = 1;
4449 qemu_cond_broadcast(&qemu_system_cond);
4450 #endif
4452 for (;;) {
4453 do {
4454 #ifdef CONFIG_PROFILER
4455 int64_t ti;
4456 #endif
4457 #ifndef CONFIG_IOTHREAD
4458 tcg_cpu_exec();
4459 #endif
4460 #ifdef CONFIG_PROFILER
4461 ti = profile_getclock();
4462 #endif
4463 #ifdef CONFIG_IOTHREAD
4464 main_loop_wait(1000);
4465 #else
4466 main_loop_wait(qemu_calculate_timeout());
4467 #endif
4468 #ifdef CONFIG_PROFILER
4469 dev_time += profile_getclock() - ti;
4470 #endif
4471 } while (vm_can_run());
4473 if (qemu_debug_requested())
4474 vm_stop(EXCP_DEBUG);
4475 if (qemu_shutdown_requested()) {
4476 if (no_shutdown) {
4477 vm_stop(0);
4478 no_shutdown = 0;
4479 } else
4480 break;
4482 if (qemu_reset_requested()) {
4483 pause_all_vcpus();
4484 qemu_system_reset();
4485 resume_all_vcpus();
4487 if (qemu_powerdown_requested())
4488 qemu_system_powerdown();
4489 if ((r = qemu_vmstop_requested()))
4490 vm_stop(r);
4492 pause_all_vcpus();
4495 static void version(void)
4497 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4500 static void help(int exitcode)
4502 version();
4503 printf("usage: %s [options] [disk_image]\n"
4504 "\n"
4505 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4506 "\n"
4507 #define DEF(option, opt_arg, opt_enum, opt_help) \
4508 opt_help
4509 #define DEFHEADING(text) stringify(text) "\n"
4510 #include "qemu-options.h"
4511 #undef DEF
4512 #undef DEFHEADING
4513 #undef GEN_DOCS
4514 "\n"
4515 "During emulation, the following keys are useful:\n"
4516 "ctrl-alt-f toggle full screen\n"
4517 "ctrl-alt-n switch to virtual console 'n'\n"
4518 "ctrl-alt toggle mouse and keyboard grab\n"
4519 "\n"
4520 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4522 "qemu",
4523 DEFAULT_RAM_SIZE,
4524 #ifndef _WIN32
4525 DEFAULT_NETWORK_SCRIPT,
4526 DEFAULT_NETWORK_DOWN_SCRIPT,
4527 #endif
4528 DEFAULT_GDBSTUB_PORT,
4529 "/tmp/qemu.log");
4530 exit(exitcode);
4533 #define HAS_ARG 0x0001
4535 enum {
4536 #define DEF(option, opt_arg, opt_enum, opt_help) \
4537 opt_enum,
4538 #define DEFHEADING(text)
4539 #include "qemu-options.h"
4540 #undef DEF
4541 #undef DEFHEADING
4542 #undef GEN_DOCS
4545 typedef struct QEMUOption {
4546 const char *name;
4547 int flags;
4548 int index;
4549 } QEMUOption;
4551 static const QEMUOption qemu_options[] = {
4552 { "h", 0, QEMU_OPTION_h },
4553 #define DEF(option, opt_arg, opt_enum, opt_help) \
4554 { option, opt_arg, opt_enum },
4555 #define DEFHEADING(text)
4556 #include "qemu-options.h"
4557 #undef DEF
4558 #undef DEFHEADING
4559 #undef GEN_DOCS
4560 { NULL },
4563 #ifdef HAS_AUDIO
4564 struct soundhw soundhw[] = {
4565 #ifdef HAS_AUDIO_CHOICE
4566 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4568 "pcspk",
4569 "PC speaker",
4572 { .init_isa = pcspk_audio_init }
4574 #endif
4576 #ifdef CONFIG_SB16
4578 "sb16",
4579 "Creative Sound Blaster 16",
4582 { .init_isa = SB16_init }
4584 #endif
4586 #ifdef CONFIG_CS4231A
4588 "cs4231a",
4589 "CS4231A",
4592 { .init_isa = cs4231a_init }
4594 #endif
4596 #ifdef CONFIG_ADLIB
4598 "adlib",
4599 #ifdef HAS_YMF262
4600 "Yamaha YMF262 (OPL3)",
4601 #else
4602 "Yamaha YM3812 (OPL2)",
4603 #endif
4606 { .init_isa = Adlib_init }
4608 #endif
4610 #ifdef CONFIG_GUS
4612 "gus",
4613 "Gravis Ultrasound GF1",
4616 { .init_isa = GUS_init }
4618 #endif
4620 #ifdef CONFIG_AC97
4622 "ac97",
4623 "Intel 82801AA AC97 Audio",
4626 { .init_pci = ac97_init }
4628 #endif
4630 #ifdef CONFIG_ES1370
4632 "es1370",
4633 "ENSONIQ AudioPCI ES1370",
4636 { .init_pci = es1370_init }
4638 #endif
4640 #endif /* HAS_AUDIO_CHOICE */
4642 { NULL, NULL, 0, 0, { NULL } }
4645 static void select_soundhw (const char *optarg)
4647 struct soundhw *c;
4649 if (*optarg == '?') {
4650 show_valid_cards:
4652 printf ("Valid sound card names (comma separated):\n");
4653 for (c = soundhw; c->name; ++c) {
4654 printf ("%-11s %s\n", c->name, c->descr);
4656 printf ("\n-soundhw all will enable all of the above\n");
4657 exit (*optarg != '?');
4659 else {
4660 size_t l;
4661 const char *p;
4662 char *e;
4663 int bad_card = 0;
4665 if (!strcmp (optarg, "all")) {
4666 for (c = soundhw; c->name; ++c) {
4667 c->enabled = 1;
4669 return;
4672 p = optarg;
4673 while (*p) {
4674 e = strchr (p, ',');
4675 l = !e ? strlen (p) : (size_t) (e - p);
4677 for (c = soundhw; c->name; ++c) {
4678 if (!strncmp (c->name, p, l)) {
4679 c->enabled = 1;
4680 break;
4684 if (!c->name) {
4685 if (l > 80) {
4686 fprintf (stderr,
4687 "Unknown sound card name (too big to show)\n");
4689 else {
4690 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4691 (int) l, p);
4693 bad_card = 1;
4695 p += l + (e != NULL);
4698 if (bad_card)
4699 goto show_valid_cards;
4702 #endif
4704 static void select_vgahw (const char *p)
4706 const char *opts;
4708 cirrus_vga_enabled = 0;
4709 std_vga_enabled = 0;
4710 vmsvga_enabled = 0;
4711 xenfb_enabled = 0;
4712 if (strstart(p, "std", &opts)) {
4713 std_vga_enabled = 1;
4714 } else if (strstart(p, "cirrus", &opts)) {
4715 cirrus_vga_enabled = 1;
4716 } else if (strstart(p, "vmware", &opts)) {
4717 vmsvga_enabled = 1;
4718 } else if (strstart(p, "xenfb", &opts)) {
4719 xenfb_enabled = 1;
4720 } else if (!strstart(p, "none", &opts)) {
4721 invalid_vga:
4722 fprintf(stderr, "Unknown vga type: %s\n", p);
4723 exit(1);
4725 while (*opts) {
4726 const char *nextopt;
4728 if (strstart(opts, ",retrace=", &nextopt)) {
4729 opts = nextopt;
4730 if (strstart(opts, "dumb", &nextopt))
4731 vga_retrace_method = VGA_RETRACE_DUMB;
4732 else if (strstart(opts, "precise", &nextopt))
4733 vga_retrace_method = VGA_RETRACE_PRECISE;
4734 else goto invalid_vga;
4735 } else goto invalid_vga;
4736 opts = nextopt;
4740 #ifdef _WIN32
4741 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4743 exit(STATUS_CONTROL_C_EXIT);
4744 return TRUE;
4746 #endif
4748 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4750 int ret;
4752 if(strlen(str) != 36)
4753 return -1;
4755 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4756 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4757 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4759 if(ret != 16)
4760 return -1;
4762 #ifdef TARGET_I386
4763 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4764 #endif
4766 return 0;
4769 #define MAX_NET_CLIENTS 32
4771 #ifndef _WIN32
4773 static void termsig_handler(int signal)
4775 qemu_system_shutdown_request();
4778 static void termsig_setup(void)
4780 struct sigaction act;
4782 memset(&act, 0, sizeof(act));
4783 act.sa_handler = termsig_handler;
4784 sigaction(SIGINT, &act, NULL);
4785 sigaction(SIGHUP, &act, NULL);
4786 sigaction(SIGTERM, &act, NULL);
4789 #endif
4791 int main(int argc, char **argv, char **envp)
4793 #ifdef CONFIG_GDBSTUB
4794 const char *gdbstub_dev = NULL;
4795 #endif
4796 uint32_t boot_devices_bitmap = 0;
4797 int i;
4798 int snapshot, linux_boot, net_boot;
4799 const char *initrd_filename;
4800 const char *kernel_filename, *kernel_cmdline;
4801 const char *boot_devices = "";
4802 DisplayState *ds;
4803 DisplayChangeListener *dcl;
4804 int cyls, heads, secs, translation;
4805 const char *net_clients[MAX_NET_CLIENTS];
4806 int nb_net_clients;
4807 const char *bt_opts[MAX_BT_CMDLINE];
4808 int nb_bt_opts;
4809 int hda_index;
4810 int optind;
4811 const char *r, *optarg;
4812 CharDriverState *monitor_hd = NULL;
4813 const char *monitor_device;
4814 const char *serial_devices[MAX_SERIAL_PORTS];
4815 int serial_device_index;
4816 const char *parallel_devices[MAX_PARALLEL_PORTS];
4817 int parallel_device_index;
4818 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4819 int virtio_console_index;
4820 const char *loadvm = NULL;
4821 QEMUMachine *machine;
4822 const char *cpu_model;
4823 const char *usb_devices[MAX_USB_CMDLINE];
4824 int usb_devices_index;
4825 #ifndef _WIN32
4826 int fds[2];
4827 #endif
4828 int tb_size;
4829 const char *pid_file = NULL;
4830 const char *incoming = NULL;
4831 #ifndef _WIN32
4832 int fd = 0;
4833 struct passwd *pwd = NULL;
4834 const char *chroot_dir = NULL;
4835 const char *run_as = NULL;
4836 #endif
4837 CPUState *env;
4839 qemu_cache_utils_init(envp);
4841 LIST_INIT (&vm_change_state_head);
4842 #ifndef _WIN32
4844 struct sigaction act;
4845 sigfillset(&act.sa_mask);
4846 act.sa_flags = 0;
4847 act.sa_handler = SIG_IGN;
4848 sigaction(SIGPIPE, &act, NULL);
4850 #else
4851 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4852 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4853 QEMU to run on a single CPU */
4855 HANDLE h;
4856 DWORD mask, smask;
4857 int i;
4858 h = GetCurrentProcess();
4859 if (GetProcessAffinityMask(h, &mask, &smask)) {
4860 for(i = 0; i < 32; i++) {
4861 if (mask & (1 << i))
4862 break;
4864 if (i != 32) {
4865 mask = 1 << i;
4866 SetProcessAffinityMask(h, mask);
4870 #endif
4872 register_machines();
4873 machine = first_machine;
4874 cpu_model = NULL;
4875 initrd_filename = NULL;
4876 ram_size = 0;
4877 vga_ram_size = VGA_RAM_SIZE;
4878 snapshot = 0;
4879 nographic = 0;
4880 curses = 0;
4881 kernel_filename = NULL;
4882 kernel_cmdline = "";
4883 cyls = heads = secs = 0;
4884 translation = BIOS_ATA_TRANSLATION_AUTO;
4885 monitor_device = "vc:80Cx24C";
4887 serial_devices[0] = "vc:80Cx24C";
4888 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4889 serial_devices[i] = NULL;
4890 serial_device_index = 0;
4892 parallel_devices[0] = "vc:80Cx24C";
4893 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4894 parallel_devices[i] = NULL;
4895 parallel_device_index = 0;
4897 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4898 virtio_consoles[i] = NULL;
4899 virtio_console_index = 0;
4901 for (i = 0; i < MAX_NODES; i++) {
4902 node_mem[i] = 0;
4903 node_cpumask[i] = 0;
4906 usb_devices_index = 0;
4908 nb_net_clients = 0;
4909 nb_bt_opts = 0;
4910 nb_drives = 0;
4911 nb_drives_opt = 0;
4912 nb_numa_nodes = 0;
4913 hda_index = -1;
4915 nb_nics = 0;
4917 tb_size = 0;
4918 autostart= 1;
4920 optind = 1;
4921 for(;;) {
4922 if (optind >= argc)
4923 break;
4924 r = argv[optind];
4925 if (r[0] != '-') {
4926 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4927 } else {
4928 const QEMUOption *popt;
4930 optind++;
4931 /* Treat --foo the same as -foo. */
4932 if (r[1] == '-')
4933 r++;
4934 popt = qemu_options;
4935 for(;;) {
4936 if (!popt->name) {
4937 fprintf(stderr, "%s: invalid option -- '%s'\n",
4938 argv[0], r);
4939 exit(1);
4941 if (!strcmp(popt->name, r + 1))
4942 break;
4943 popt++;
4945 if (popt->flags & HAS_ARG) {
4946 if (optind >= argc) {
4947 fprintf(stderr, "%s: option '%s' requires an argument\n",
4948 argv[0], r);
4949 exit(1);
4951 optarg = argv[optind++];
4952 } else {
4953 optarg = NULL;
4956 switch(popt->index) {
4957 case QEMU_OPTION_M:
4958 machine = find_machine(optarg);
4959 if (!machine) {
4960 QEMUMachine *m;
4961 printf("Supported machines are:\n");
4962 for(m = first_machine; m != NULL; m = m->next) {
4963 printf("%-10s %s%s\n",
4964 m->name, m->desc,
4965 m == first_machine ? " (default)" : "");
4967 exit(*optarg != '?');
4969 break;
4970 case QEMU_OPTION_cpu:
4971 /* hw initialization will check this */
4972 if (*optarg == '?') {
4973 /* XXX: implement xxx_cpu_list for targets that still miss it */
4974 #if defined(cpu_list)
4975 cpu_list(stdout, &fprintf);
4976 #endif
4977 exit(0);
4978 } else {
4979 cpu_model = optarg;
4981 break;
4982 case QEMU_OPTION_initrd:
4983 initrd_filename = optarg;
4984 break;
4985 case QEMU_OPTION_hda:
4986 if (cyls == 0)
4987 hda_index = drive_add(optarg, HD_ALIAS, 0);
4988 else
4989 hda_index = drive_add(optarg, HD_ALIAS
4990 ",cyls=%d,heads=%d,secs=%d%s",
4991 0, cyls, heads, secs,
4992 translation == BIOS_ATA_TRANSLATION_LBA ?
4993 ",trans=lba" :
4994 translation == BIOS_ATA_TRANSLATION_NONE ?
4995 ",trans=none" : "");
4996 break;
4997 case QEMU_OPTION_hdb:
4998 case QEMU_OPTION_hdc:
4999 case QEMU_OPTION_hdd:
5000 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5001 break;
5002 case QEMU_OPTION_drive:
5003 drive_add(NULL, "%s", optarg);
5004 break;
5005 case QEMU_OPTION_mtdblock:
5006 drive_add(optarg, MTD_ALIAS);
5007 break;
5008 case QEMU_OPTION_sd:
5009 drive_add(optarg, SD_ALIAS);
5010 break;
5011 case QEMU_OPTION_pflash:
5012 drive_add(optarg, PFLASH_ALIAS);
5013 break;
5014 case QEMU_OPTION_snapshot:
5015 snapshot = 1;
5016 break;
5017 case QEMU_OPTION_hdachs:
5019 const char *p;
5020 p = optarg;
5021 cyls = strtol(p, (char **)&p, 0);
5022 if (cyls < 1 || cyls > 16383)
5023 goto chs_fail;
5024 if (*p != ',')
5025 goto chs_fail;
5026 p++;
5027 heads = strtol(p, (char **)&p, 0);
5028 if (heads < 1 || heads > 16)
5029 goto chs_fail;
5030 if (*p != ',')
5031 goto chs_fail;
5032 p++;
5033 secs = strtol(p, (char **)&p, 0);
5034 if (secs < 1 || secs > 63)
5035 goto chs_fail;
5036 if (*p == ',') {
5037 p++;
5038 if (!strcmp(p, "none"))
5039 translation = BIOS_ATA_TRANSLATION_NONE;
5040 else if (!strcmp(p, "lba"))
5041 translation = BIOS_ATA_TRANSLATION_LBA;
5042 else if (!strcmp(p, "auto"))
5043 translation = BIOS_ATA_TRANSLATION_AUTO;
5044 else
5045 goto chs_fail;
5046 } else if (*p != '\0') {
5047 chs_fail:
5048 fprintf(stderr, "qemu: invalid physical CHS format\n");
5049 exit(1);
5051 if (hda_index != -1)
5052 snprintf(drives_opt[hda_index].opt,
5053 sizeof(drives_opt[hda_index].opt),
5054 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5055 0, cyls, heads, secs,
5056 translation == BIOS_ATA_TRANSLATION_LBA ?
5057 ",trans=lba" :
5058 translation == BIOS_ATA_TRANSLATION_NONE ?
5059 ",trans=none" : "");
5061 break;
5062 case QEMU_OPTION_numa:
5063 if (nb_numa_nodes >= MAX_NODES) {
5064 fprintf(stderr, "qemu: too many NUMA nodes\n");
5065 exit(1);
5067 numa_add(optarg);
5068 break;
5069 case QEMU_OPTION_nographic:
5070 nographic = 1;
5071 break;
5072 #ifdef CONFIG_CURSES
5073 case QEMU_OPTION_curses:
5074 curses = 1;
5075 break;
5076 #endif
5077 case QEMU_OPTION_portrait:
5078 graphic_rotate = 1;
5079 break;
5080 case QEMU_OPTION_kernel:
5081 kernel_filename = optarg;
5082 break;
5083 case QEMU_OPTION_append:
5084 kernel_cmdline = optarg;
5085 break;
5086 case QEMU_OPTION_cdrom:
5087 drive_add(optarg, CDROM_ALIAS);
5088 break;
5089 case QEMU_OPTION_boot:
5090 boot_devices = optarg;
5091 /* We just do some generic consistency checks */
5093 /* Could easily be extended to 64 devices if needed */
5094 const char *p;
5096 boot_devices_bitmap = 0;
5097 for (p = boot_devices; *p != '\0'; p++) {
5098 /* Allowed boot devices are:
5099 * a b : floppy disk drives
5100 * c ... f : IDE disk drives
5101 * g ... m : machine implementation dependant drives
5102 * n ... p : network devices
5103 * It's up to each machine implementation to check
5104 * if the given boot devices match the actual hardware
5105 * implementation and firmware features.
5107 if (*p < 'a' || *p > 'q') {
5108 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5109 exit(1);
5111 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5112 fprintf(stderr,
5113 "Boot device '%c' was given twice\n",*p);
5114 exit(1);
5116 boot_devices_bitmap |= 1 << (*p - 'a');
5119 break;
5120 case QEMU_OPTION_fda:
5121 case QEMU_OPTION_fdb:
5122 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5123 break;
5124 #ifdef TARGET_I386
5125 case QEMU_OPTION_no_fd_bootchk:
5126 fd_bootchk = 0;
5127 break;
5128 #endif
5129 case QEMU_OPTION_net:
5130 if (nb_net_clients >= MAX_NET_CLIENTS) {
5131 fprintf(stderr, "qemu: too many network clients\n");
5132 exit(1);
5134 net_clients[nb_net_clients] = optarg;
5135 nb_net_clients++;
5136 break;
5137 #ifdef CONFIG_SLIRP
5138 case QEMU_OPTION_tftp:
5139 tftp_prefix = optarg;
5140 break;
5141 case QEMU_OPTION_bootp:
5142 bootp_filename = optarg;
5143 break;
5144 #ifndef _WIN32
5145 case QEMU_OPTION_smb:
5146 net_slirp_smb(optarg);
5147 break;
5148 #endif
5149 case QEMU_OPTION_redir:
5150 net_slirp_redir(NULL, optarg);
5151 break;
5152 #endif
5153 case QEMU_OPTION_bt:
5154 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5155 fprintf(stderr, "qemu: too many bluetooth options\n");
5156 exit(1);
5158 bt_opts[nb_bt_opts++] = optarg;
5159 break;
5160 #ifdef HAS_AUDIO
5161 case QEMU_OPTION_audio_help:
5162 AUD_help ();
5163 exit (0);
5164 break;
5165 case QEMU_OPTION_soundhw:
5166 select_soundhw (optarg);
5167 break;
5168 #endif
5169 case QEMU_OPTION_h:
5170 help(0);
5171 break;
5172 case QEMU_OPTION_version:
5173 version();
5174 exit(0);
5175 break;
5176 case QEMU_OPTION_m: {
5177 uint64_t value;
5178 char *ptr;
5180 value = strtoul(optarg, &ptr, 10);
5181 switch (*ptr) {
5182 case 0: case 'M': case 'm':
5183 value <<= 20;
5184 break;
5185 case 'G': case 'g':
5186 value <<= 30;
5187 break;
5188 default:
5189 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5190 exit(1);
5193 /* On 32-bit hosts, QEMU is limited by virtual address space */
5194 if (value > (2047 << 20)
5195 #ifndef CONFIG_KQEMU
5196 && HOST_LONG_BITS == 32
5197 #endif
5199 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5200 exit(1);
5202 if (value != (uint64_t)(ram_addr_t)value) {
5203 fprintf(stderr, "qemu: ram size too large\n");
5204 exit(1);
5206 ram_size = value;
5207 break;
5209 case QEMU_OPTION_d:
5211 int mask;
5212 const CPULogItem *item;
5214 mask = cpu_str_to_log_mask(optarg);
5215 if (!mask) {
5216 printf("Log items (comma separated):\n");
5217 for(item = cpu_log_items; item->mask != 0; item++) {
5218 printf("%-10s %s\n", item->name, item->help);
5220 exit(1);
5222 cpu_set_log(mask);
5224 break;
5225 #ifdef CONFIG_GDBSTUB
5226 case QEMU_OPTION_s:
5227 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5228 break;
5229 case QEMU_OPTION_gdb:
5230 gdbstub_dev = optarg;
5231 break;
5232 #endif
5233 case QEMU_OPTION_L:
5234 bios_dir = optarg;
5235 break;
5236 case QEMU_OPTION_bios:
5237 bios_name = optarg;
5238 break;
5239 case QEMU_OPTION_singlestep:
5240 singlestep = 1;
5241 break;
5242 case QEMU_OPTION_S:
5243 autostart = 0;
5244 break;
5245 #ifndef _WIN32
5246 case QEMU_OPTION_k:
5247 keyboard_layout = optarg;
5248 break;
5249 #endif
5250 case QEMU_OPTION_localtime:
5251 rtc_utc = 0;
5252 break;
5253 case QEMU_OPTION_vga:
5254 select_vgahw (optarg);
5255 break;
5256 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5257 case QEMU_OPTION_g:
5259 const char *p;
5260 int w, h, depth;
5261 p = optarg;
5262 w = strtol(p, (char **)&p, 10);
5263 if (w <= 0) {
5264 graphic_error:
5265 fprintf(stderr, "qemu: invalid resolution or depth\n");
5266 exit(1);
5268 if (*p != 'x')
5269 goto graphic_error;
5270 p++;
5271 h = strtol(p, (char **)&p, 10);
5272 if (h <= 0)
5273 goto graphic_error;
5274 if (*p == 'x') {
5275 p++;
5276 depth = strtol(p, (char **)&p, 10);
5277 if (depth != 8 && depth != 15 && depth != 16 &&
5278 depth != 24 && depth != 32)
5279 goto graphic_error;
5280 } else if (*p == '\0') {
5281 depth = graphic_depth;
5282 } else {
5283 goto graphic_error;
5286 graphic_width = w;
5287 graphic_height = h;
5288 graphic_depth = depth;
5290 break;
5291 #endif
5292 case QEMU_OPTION_echr:
5294 char *r;
5295 term_escape_char = strtol(optarg, &r, 0);
5296 if (r == optarg)
5297 printf("Bad argument to echr\n");
5298 break;
5300 case QEMU_OPTION_monitor:
5301 monitor_device = optarg;
5302 break;
5303 case QEMU_OPTION_serial:
5304 if (serial_device_index >= MAX_SERIAL_PORTS) {
5305 fprintf(stderr, "qemu: too many serial ports\n");
5306 exit(1);
5308 serial_devices[serial_device_index] = optarg;
5309 serial_device_index++;
5310 break;
5311 case QEMU_OPTION_virtiocon:
5312 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5313 fprintf(stderr, "qemu: too many virtio consoles\n");
5314 exit(1);
5316 virtio_consoles[virtio_console_index] = optarg;
5317 virtio_console_index++;
5318 break;
5319 case QEMU_OPTION_parallel:
5320 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5321 fprintf(stderr, "qemu: too many parallel ports\n");
5322 exit(1);
5324 parallel_devices[parallel_device_index] = optarg;
5325 parallel_device_index++;
5326 break;
5327 case QEMU_OPTION_loadvm:
5328 loadvm = optarg;
5329 break;
5330 case QEMU_OPTION_full_screen:
5331 full_screen = 1;
5332 break;
5333 #ifdef CONFIG_SDL
5334 case QEMU_OPTION_no_frame:
5335 no_frame = 1;
5336 break;
5337 case QEMU_OPTION_alt_grab:
5338 alt_grab = 1;
5339 break;
5340 case QEMU_OPTION_no_quit:
5341 no_quit = 1;
5342 break;
5343 case QEMU_OPTION_sdl:
5344 sdl = 1;
5345 break;
5346 #endif
5347 case QEMU_OPTION_pidfile:
5348 pid_file = optarg;
5349 break;
5350 #ifdef TARGET_I386
5351 case QEMU_OPTION_win2k_hack:
5352 win2k_install_hack = 1;
5353 break;
5354 case QEMU_OPTION_rtc_td_hack:
5355 rtc_td_hack = 1;
5356 break;
5357 case QEMU_OPTION_acpitable:
5358 if(acpi_table_add(optarg) < 0) {
5359 fprintf(stderr, "Wrong acpi table provided\n");
5360 exit(1);
5362 break;
5363 case QEMU_OPTION_smbios:
5364 if(smbios_entry_add(optarg) < 0) {
5365 fprintf(stderr, "Wrong smbios provided\n");
5366 exit(1);
5368 break;
5369 #endif
5370 #ifdef CONFIG_KQEMU
5371 case QEMU_OPTION_no_kqemu:
5372 kqemu_allowed = 0;
5373 break;
5374 case QEMU_OPTION_kernel_kqemu:
5375 kqemu_allowed = 2;
5376 break;
5377 #endif
5378 #ifdef CONFIG_KVM
5379 case QEMU_OPTION_enable_kvm:
5380 kvm_allowed = 1;
5381 #ifdef CONFIG_KQEMU
5382 kqemu_allowed = 0;
5383 #endif
5384 break;
5385 #endif
5386 case QEMU_OPTION_usb:
5387 usb_enabled = 1;
5388 break;
5389 case QEMU_OPTION_usbdevice:
5390 usb_enabled = 1;
5391 if (usb_devices_index >= MAX_USB_CMDLINE) {
5392 fprintf(stderr, "Too many USB devices\n");
5393 exit(1);
5395 usb_devices[usb_devices_index] = optarg;
5396 usb_devices_index++;
5397 break;
5398 case QEMU_OPTION_smp:
5399 smp_cpus = atoi(optarg);
5400 if (smp_cpus < 1) {
5401 fprintf(stderr, "Invalid number of CPUs\n");
5402 exit(1);
5404 break;
5405 case QEMU_OPTION_vnc:
5406 vnc_display = optarg;
5407 break;
5408 #ifdef TARGET_I386
5409 case QEMU_OPTION_no_acpi:
5410 acpi_enabled = 0;
5411 break;
5412 case QEMU_OPTION_no_hpet:
5413 no_hpet = 1;
5414 break;
5415 #endif
5416 case QEMU_OPTION_no_reboot:
5417 no_reboot = 1;
5418 break;
5419 case QEMU_OPTION_no_shutdown:
5420 no_shutdown = 1;
5421 break;
5422 case QEMU_OPTION_show_cursor:
5423 cursor_hide = 0;
5424 break;
5425 case QEMU_OPTION_uuid:
5426 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5427 fprintf(stderr, "Fail to parse UUID string."
5428 " Wrong format.\n");
5429 exit(1);
5431 break;
5432 #ifndef _WIN32
5433 case QEMU_OPTION_daemonize:
5434 daemonize = 1;
5435 break;
5436 #endif
5437 case QEMU_OPTION_option_rom:
5438 if (nb_option_roms >= MAX_OPTION_ROMS) {
5439 fprintf(stderr, "Too many option ROMs\n");
5440 exit(1);
5442 option_rom[nb_option_roms] = optarg;
5443 nb_option_roms++;
5444 break;
5445 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5446 case QEMU_OPTION_semihosting:
5447 semihosting_enabled = 1;
5448 break;
5449 #endif
5450 case QEMU_OPTION_name:
5451 qemu_name = optarg;
5452 break;
5453 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5454 case QEMU_OPTION_prom_env:
5455 if (nb_prom_envs >= MAX_PROM_ENVS) {
5456 fprintf(stderr, "Too many prom variables\n");
5457 exit(1);
5459 prom_envs[nb_prom_envs] = optarg;
5460 nb_prom_envs++;
5461 break;
5462 #endif
5463 #ifdef TARGET_ARM
5464 case QEMU_OPTION_old_param:
5465 old_param = 1;
5466 break;
5467 #endif
5468 case QEMU_OPTION_clock:
5469 configure_alarms(optarg);
5470 break;
5471 case QEMU_OPTION_startdate:
5473 struct tm tm;
5474 time_t rtc_start_date;
5475 if (!strcmp(optarg, "now")) {
5476 rtc_date_offset = -1;
5477 } else {
5478 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5479 &tm.tm_year,
5480 &tm.tm_mon,
5481 &tm.tm_mday,
5482 &tm.tm_hour,
5483 &tm.tm_min,
5484 &tm.tm_sec) == 6) {
5485 /* OK */
5486 } else if (sscanf(optarg, "%d-%d-%d",
5487 &tm.tm_year,
5488 &tm.tm_mon,
5489 &tm.tm_mday) == 3) {
5490 tm.tm_hour = 0;
5491 tm.tm_min = 0;
5492 tm.tm_sec = 0;
5493 } else {
5494 goto date_fail;
5496 tm.tm_year -= 1900;
5497 tm.tm_mon--;
5498 rtc_start_date = mktimegm(&tm);
5499 if (rtc_start_date == -1) {
5500 date_fail:
5501 fprintf(stderr, "Invalid date format. Valid format are:\n"
5502 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5503 exit(1);
5505 rtc_date_offset = time(NULL) - rtc_start_date;
5508 break;
5509 case QEMU_OPTION_tb_size:
5510 tb_size = strtol(optarg, NULL, 0);
5511 if (tb_size < 0)
5512 tb_size = 0;
5513 break;
5514 case QEMU_OPTION_icount:
5515 use_icount = 1;
5516 if (strcmp(optarg, "auto") == 0) {
5517 icount_time_shift = -1;
5518 } else {
5519 icount_time_shift = strtol(optarg, NULL, 0);
5521 break;
5522 case QEMU_OPTION_incoming:
5523 incoming = optarg;
5524 break;
5525 #ifndef _WIN32
5526 case QEMU_OPTION_chroot:
5527 chroot_dir = optarg;
5528 break;
5529 case QEMU_OPTION_runas:
5530 run_as = optarg;
5531 break;
5532 #endif
5533 #ifdef CONFIG_XEN
5534 case QEMU_OPTION_xen_domid:
5535 xen_domid = atoi(optarg);
5536 break;
5537 case QEMU_OPTION_xen_create:
5538 xen_mode = XEN_CREATE;
5539 break;
5540 case QEMU_OPTION_xen_attach:
5541 xen_mode = XEN_ATTACH;
5542 break;
5543 #endif
5548 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5549 if (kvm_allowed && kqemu_allowed) {
5550 fprintf(stderr,
5551 "You can not enable both KVM and kqemu at the same time\n");
5552 exit(1);
5554 #endif
5556 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5557 if (smp_cpus > machine->max_cpus) {
5558 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5559 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5560 machine->max_cpus);
5561 exit(1);
5564 if (nographic) {
5565 if (serial_device_index == 0)
5566 serial_devices[0] = "stdio";
5567 if (parallel_device_index == 0)
5568 parallel_devices[0] = "null";
5569 if (strncmp(monitor_device, "vc", 2) == 0)
5570 monitor_device = "stdio";
5573 #ifndef _WIN32
5574 if (daemonize) {
5575 pid_t pid;
5577 if (pipe(fds) == -1)
5578 exit(1);
5580 pid = fork();
5581 if (pid > 0) {
5582 uint8_t status;
5583 ssize_t len;
5585 close(fds[1]);
5587 again:
5588 len = read(fds[0], &status, 1);
5589 if (len == -1 && (errno == EINTR))
5590 goto again;
5592 if (len != 1)
5593 exit(1);
5594 else if (status == 1) {
5595 fprintf(stderr, "Could not acquire pidfile\n");
5596 exit(1);
5597 } else
5598 exit(0);
5599 } else if (pid < 0)
5600 exit(1);
5602 setsid();
5604 pid = fork();
5605 if (pid > 0)
5606 exit(0);
5607 else if (pid < 0)
5608 exit(1);
5610 umask(027);
5612 signal(SIGTSTP, SIG_IGN);
5613 signal(SIGTTOU, SIG_IGN);
5614 signal(SIGTTIN, SIG_IGN);
5617 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5618 if (daemonize) {
5619 uint8_t status = 1;
5620 write(fds[1], &status, 1);
5621 } else
5622 fprintf(stderr, "Could not acquire pid file\n");
5623 exit(1);
5625 #endif
5627 #ifdef CONFIG_KQEMU
5628 if (smp_cpus > 1)
5629 kqemu_allowed = 0;
5630 #endif
5631 if (qemu_init_main_loop()) {
5632 fprintf(stderr, "qemu_init_main_loop failed\n");
5633 exit(1);
5635 linux_boot = (kernel_filename != NULL);
5636 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5638 if (!linux_boot && *kernel_cmdline != '\0') {
5639 fprintf(stderr, "-append only allowed with -kernel option\n");
5640 exit(1);
5643 if (!linux_boot && initrd_filename != NULL) {
5644 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5645 exit(1);
5648 /* boot to floppy or the default cd if no hard disk defined yet */
5649 if (!boot_devices[0]) {
5650 boot_devices = "cad";
5652 setvbuf(stdout, NULL, _IOLBF, 0);
5654 init_timers();
5655 if (init_timer_alarm() < 0) {
5656 fprintf(stderr, "could not initialize alarm timer\n");
5657 exit(1);
5659 if (use_icount && icount_time_shift < 0) {
5660 use_icount = 2;
5661 /* 125MIPS seems a reasonable initial guess at the guest speed.
5662 It will be corrected fairly quickly anyway. */
5663 icount_time_shift = 3;
5664 init_icount_adjust();
5667 #ifdef _WIN32
5668 socket_init();
5669 #endif
5671 /* init network clients */
5672 if (nb_net_clients == 0) {
5673 /* if no clients, we use a default config */
5674 net_clients[nb_net_clients++] = "nic";
5675 #ifdef CONFIG_SLIRP
5676 net_clients[nb_net_clients++] = "user";
5677 #endif
5680 for(i = 0;i < nb_net_clients; i++) {
5681 if (net_client_parse(net_clients[i]) < 0)
5682 exit(1);
5684 net_client_check();
5686 #ifdef TARGET_I386
5687 /* XXX: this should be moved in the PC machine instantiation code */
5688 if (net_boot != 0) {
5689 int netroms = 0;
5690 for (i = 0; i < nb_nics && i < 4; i++) {
5691 const char *model = nd_table[i].model;
5692 char buf[1024];
5693 if (net_boot & (1 << i)) {
5694 if (model == NULL)
5695 model = "ne2k_pci";
5696 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5697 if (get_image_size(buf) > 0) {
5698 if (nb_option_roms >= MAX_OPTION_ROMS) {
5699 fprintf(stderr, "Too many option ROMs\n");
5700 exit(1);
5702 option_rom[nb_option_roms] = strdup(buf);
5703 nb_option_roms++;
5704 netroms++;
5708 if (netroms == 0) {
5709 fprintf(stderr, "No valid PXE rom found for network device\n");
5710 exit(1);
5713 #endif
5715 /* init the bluetooth world */
5716 for (i = 0; i < nb_bt_opts; i++)
5717 if (bt_parse(bt_opts[i]))
5718 exit(1);
5720 /* init the memory */
5721 if (ram_size == 0)
5722 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5724 #ifdef CONFIG_KQEMU
5725 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5726 guest ram allocation. It needs to go away. */
5727 if (kqemu_allowed) {
5728 kqemu_phys_ram_size = ram_size + VGA_RAM_SIZE + 4 * 1024 * 1024;
5729 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5730 if (!kqemu_phys_ram_base) {
5731 fprintf(stderr, "Could not allocate physical memory\n");
5732 exit(1);
5735 #endif
5737 /* init the dynamic translator */
5738 cpu_exec_init_all(tb_size * 1024 * 1024);
5740 bdrv_init();
5741 dma_helper_init();
5743 /* we always create the cdrom drive, even if no disk is there */
5745 if (nb_drives_opt < MAX_DRIVES)
5746 drive_add(NULL, CDROM_ALIAS);
5748 /* we always create at least one floppy */
5750 if (nb_drives_opt < MAX_DRIVES)
5751 drive_add(NULL, FD_ALIAS, 0);
5753 /* we always create one sd slot, even if no card is in it */
5755 if (nb_drives_opt < MAX_DRIVES)
5756 drive_add(NULL, SD_ALIAS);
5758 /* open the virtual block devices */
5760 for(i = 0; i < nb_drives_opt; i++)
5761 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5762 exit(1);
5764 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5765 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5767 #ifndef _WIN32
5768 /* must be after terminal init, SDL library changes signal handlers */
5769 termsig_setup();
5770 #endif
5772 /* Maintain compatibility with multiple stdio monitors */
5773 if (!strcmp(monitor_device,"stdio")) {
5774 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5775 const char *devname = serial_devices[i];
5776 if (devname && !strcmp(devname,"mon:stdio")) {
5777 monitor_device = NULL;
5778 break;
5779 } else if (devname && !strcmp(devname,"stdio")) {
5780 monitor_device = NULL;
5781 serial_devices[i] = "mon:stdio";
5782 break;
5787 if (nb_numa_nodes > 0) {
5788 int i;
5790 if (nb_numa_nodes > smp_cpus) {
5791 nb_numa_nodes = smp_cpus;
5794 /* If no memory size if given for any node, assume the default case
5795 * and distribute the available memory equally across all nodes
5797 for (i = 0; i < nb_numa_nodes; i++) {
5798 if (node_mem[i] != 0)
5799 break;
5801 if (i == nb_numa_nodes) {
5802 uint64_t usedmem = 0;
5804 /* On Linux, the each node's border has to be 8MB aligned,
5805 * the final node gets the rest.
5807 for (i = 0; i < nb_numa_nodes - 1; i++) {
5808 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5809 usedmem += node_mem[i];
5811 node_mem[i] = ram_size - usedmem;
5814 for (i = 0; i < nb_numa_nodes; i++) {
5815 if (node_cpumask[i] != 0)
5816 break;
5818 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5819 * must cope with this anyway, because there are BIOSes out there in
5820 * real machines which also use this scheme.
5822 if (i == nb_numa_nodes) {
5823 for (i = 0; i < smp_cpus; i++) {
5824 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5829 if (kvm_enabled()) {
5830 int ret;
5832 ret = kvm_init(smp_cpus);
5833 if (ret < 0) {
5834 fprintf(stderr, "failed to initialize KVM\n");
5835 exit(1);
5839 if (monitor_device) {
5840 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5841 if (!monitor_hd) {
5842 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5843 exit(1);
5847 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5848 const char *devname = serial_devices[i];
5849 if (devname && strcmp(devname, "none")) {
5850 char label[32];
5851 snprintf(label, sizeof(label), "serial%d", i);
5852 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5853 if (!serial_hds[i]) {
5854 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5855 devname);
5856 exit(1);
5861 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5862 const char *devname = parallel_devices[i];
5863 if (devname && strcmp(devname, "none")) {
5864 char label[32];
5865 snprintf(label, sizeof(label), "parallel%d", i);
5866 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5867 if (!parallel_hds[i]) {
5868 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5869 devname);
5870 exit(1);
5875 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5876 const char *devname = virtio_consoles[i];
5877 if (devname && strcmp(devname, "none")) {
5878 char label[32];
5879 snprintf(label, sizeof(label), "virtcon%d", i);
5880 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5881 if (!virtcon_hds[i]) {
5882 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5883 devname);
5884 exit(1);
5889 machine->init(ram_size, vga_ram_size, boot_devices,
5890 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5893 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5894 for (i = 0; i < nb_numa_nodes; i++) {
5895 if (node_cpumask[i] & (1 << env->cpu_index)) {
5896 env->numa_node = i;
5901 current_machine = machine;
5903 /* Set KVM's vcpu state to qemu's initial CPUState. */
5904 if (kvm_enabled()) {
5905 int ret;
5907 ret = kvm_sync_vcpus();
5908 if (ret < 0) {
5909 fprintf(stderr, "failed to initialize vcpus\n");
5910 exit(1);
5914 /* init USB devices */
5915 if (usb_enabled) {
5916 for(i = 0; i < usb_devices_index; i++) {
5917 if (usb_device_add(usb_devices[i], 0) < 0) {
5918 fprintf(stderr, "Warning: could not add USB device %s\n",
5919 usb_devices[i]);
5924 if (!display_state)
5925 dumb_display_init();
5926 /* just use the first displaystate for the moment */
5927 ds = display_state;
5928 /* terminal init */
5929 if (nographic) {
5930 if (curses) {
5931 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5932 exit(1);
5934 } else {
5935 #if defined(CONFIG_CURSES)
5936 if (curses) {
5937 /* At the moment curses cannot be used with other displays */
5938 curses_display_init(ds, full_screen);
5939 } else
5940 #endif
5942 if (vnc_display != NULL) {
5943 vnc_display_init(ds);
5944 if (vnc_display_open(ds, vnc_display) < 0)
5945 exit(1);
5947 #if defined(CONFIG_SDL)
5948 if (sdl || !vnc_display)
5949 sdl_display_init(ds, full_screen, no_frame);
5950 #elif defined(CONFIG_COCOA)
5951 if (sdl || !vnc_display)
5952 cocoa_display_init(ds, full_screen);
5953 #endif
5956 dpy_resize(ds);
5958 dcl = ds->listeners;
5959 while (dcl != NULL) {
5960 if (dcl->dpy_refresh != NULL) {
5961 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5962 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5964 dcl = dcl->next;
5967 if (nographic || (vnc_display && !sdl)) {
5968 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5969 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5972 text_consoles_set_display(display_state);
5973 qemu_chr_initial_reset();
5975 if (monitor_device && monitor_hd)
5976 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
5978 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5979 const char *devname = serial_devices[i];
5980 if (devname && strcmp(devname, "none")) {
5981 char label[32];
5982 snprintf(label, sizeof(label), "serial%d", i);
5983 if (strstart(devname, "vc", 0))
5984 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5988 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5989 const char *devname = parallel_devices[i];
5990 if (devname && strcmp(devname, "none")) {
5991 char label[32];
5992 snprintf(label, sizeof(label), "parallel%d", i);
5993 if (strstart(devname, "vc", 0))
5994 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5998 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5999 const char *devname = virtio_consoles[i];
6000 if (virtcon_hds[i] && devname) {
6001 char label[32];
6002 snprintf(label, sizeof(label), "virtcon%d", i);
6003 if (strstart(devname, "vc", 0))
6004 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6008 #ifdef CONFIG_GDBSTUB
6009 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6010 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6011 gdbstub_dev);
6012 exit(1);
6014 #endif
6016 if (loadvm)
6017 do_loadvm(cur_mon, loadvm);
6019 if (incoming) {
6020 autostart = 0; /* fixme how to deal with -daemonize */
6021 qemu_start_incoming_migration(incoming);
6024 if (autostart)
6025 vm_start();
6027 #ifndef _WIN32
6028 if (daemonize) {
6029 uint8_t status = 0;
6030 ssize_t len;
6032 again1:
6033 len = write(fds[1], &status, 1);
6034 if (len == -1 && (errno == EINTR))
6035 goto again1;
6037 if (len != 1)
6038 exit(1);
6040 chdir("/");
6041 TFR(fd = open("/dev/null", O_RDWR));
6042 if (fd == -1)
6043 exit(1);
6046 if (run_as) {
6047 pwd = getpwnam(run_as);
6048 if (!pwd) {
6049 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6050 exit(1);
6054 if (chroot_dir) {
6055 if (chroot(chroot_dir) < 0) {
6056 fprintf(stderr, "chroot failed\n");
6057 exit(1);
6059 chdir("/");
6062 if (run_as) {
6063 if (setgid(pwd->pw_gid) < 0) {
6064 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6065 exit(1);
6067 if (setuid(pwd->pw_uid) < 0) {
6068 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6069 exit(1);
6071 if (setuid(0) != -1) {
6072 fprintf(stderr, "Dropping privileges failed\n");
6073 exit(1);
6077 if (daemonize) {
6078 dup2(fd, 0);
6079 dup2(fd, 1);
6080 dup2(fd, 2);
6082 close(fd);
6084 #endif
6086 main_loop();
6087 quit_timers();
6088 net_cleanup();
6090 return 0;