qemu-io: Remove duplicate 'open' error message
[qemu.git] / bsd-user / main.c
blobf0a1268dda7792d81374ebc029b5d443c5759b54
1 /*
2 * qemu user main
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include <stdlib.h>
20 #include <stdio.h>
21 #include <stdarg.h>
22 #include <string.h>
23 #include <errno.h>
24 #include <unistd.h>
25 #include <machine/trap.h>
26 #include <sys/types.h>
27 #include <sys/mman.h>
29 #include "qemu.h"
30 #include "qemu-common.h"
31 /* For tb_lock */
32 #include "cpu.h"
33 #include "tcg.h"
34 #include "qemu/timer.h"
35 #include "qemu/envlist.h"
37 int singlestep;
38 unsigned long mmap_min_addr;
39 unsigned long guest_base;
40 int have_guest_base;
41 unsigned long reserved_va;
43 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
44 const char *qemu_uname_release;
45 extern char **environ;
46 enum BSDType bsd_type;
48 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
49 we allocate a bigger stack. Need a better solution, for example
50 by remapping the process stack directly at the right place */
51 unsigned long x86_stack_size = 512 * 1024;
53 void gemu_log(const char *fmt, ...)
55 va_list ap;
57 va_start(ap, fmt);
58 vfprintf(stderr, fmt, ap);
59 va_end(ap);
62 #if defined(TARGET_I386)
63 int cpu_get_pic_interrupt(CPUX86State *env)
65 return -1;
67 #endif
69 /* These are no-ops because we are not threadsafe. */
70 static inline void cpu_exec_start(CPUArchState *env)
74 static inline void cpu_exec_end(CPUArchState *env)
78 static inline void start_exclusive(void)
82 static inline void end_exclusive(void)
86 void fork_start(void)
90 void fork_end(int child)
92 if (child) {
93 gdbserver_fork(thread_cpu);
97 void cpu_list_lock(void)
101 void cpu_list_unlock(void)
105 #ifdef TARGET_I386
106 /***********************************************************/
107 /* CPUX86 core interface */
109 uint64_t cpu_get_tsc(CPUX86State *env)
111 return cpu_get_real_ticks();
114 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
115 int flags)
117 unsigned int e1, e2;
118 uint32_t *p;
119 e1 = (addr << 16) | (limit & 0xffff);
120 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
121 e2 |= flags;
122 p = ptr;
123 p[0] = tswap32(e1);
124 p[1] = tswap32(e2);
127 static uint64_t *idt_table;
128 #ifdef TARGET_X86_64
129 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
130 uint64_t addr, unsigned int sel)
132 uint32_t *p, e1, e2;
133 e1 = (addr & 0xffff) | (sel << 16);
134 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
135 p = ptr;
136 p[0] = tswap32(e1);
137 p[1] = tswap32(e2);
138 p[2] = tswap32(addr >> 32);
139 p[3] = 0;
141 /* only dpl matters as we do only user space emulation */
142 static void set_idt(int n, unsigned int dpl)
144 set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
146 #else
147 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
148 uint32_t addr, unsigned int sel)
150 uint32_t *p, e1, e2;
151 e1 = (addr & 0xffff) | (sel << 16);
152 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
153 p = ptr;
154 p[0] = tswap32(e1);
155 p[1] = tswap32(e2);
158 /* only dpl matters as we do only user space emulation */
159 static void set_idt(int n, unsigned int dpl)
161 set_gate(idt_table + n, 0, dpl, 0, 0);
163 #endif
165 void cpu_loop(CPUX86State *env)
167 X86CPU *cpu = x86_env_get_cpu(env);
168 CPUState *cs = CPU(cpu);
169 int trapnr;
170 abi_ulong pc;
171 //target_siginfo_t info;
173 for(;;) {
174 trapnr = cpu_x86_exec(cs);
175 switch(trapnr) {
176 case 0x80:
177 /* syscall from int $0x80 */
178 if (bsd_type == target_freebsd) {
179 abi_ulong params = (abi_ulong) env->regs[R_ESP] +
180 sizeof(int32_t);
181 int32_t syscall_nr = env->regs[R_EAX];
182 int32_t arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8;
184 if (syscall_nr == TARGET_FREEBSD_NR_syscall) {
185 get_user_s32(syscall_nr, params);
186 params += sizeof(int32_t);
187 } else if (syscall_nr == TARGET_FREEBSD_NR___syscall) {
188 get_user_s32(syscall_nr, params);
189 params += sizeof(int64_t);
191 get_user_s32(arg1, params);
192 params += sizeof(int32_t);
193 get_user_s32(arg2, params);
194 params += sizeof(int32_t);
195 get_user_s32(arg3, params);
196 params += sizeof(int32_t);
197 get_user_s32(arg4, params);
198 params += sizeof(int32_t);
199 get_user_s32(arg5, params);
200 params += sizeof(int32_t);
201 get_user_s32(arg6, params);
202 params += sizeof(int32_t);
203 get_user_s32(arg7, params);
204 params += sizeof(int32_t);
205 get_user_s32(arg8, params);
206 env->regs[R_EAX] = do_freebsd_syscall(env,
207 syscall_nr,
208 arg1,
209 arg2,
210 arg3,
211 arg4,
212 arg5,
213 arg6,
214 arg7,
215 arg8);
216 } else { //if (bsd_type == target_openbsd)
217 env->regs[R_EAX] = do_openbsd_syscall(env,
218 env->regs[R_EAX],
219 env->regs[R_EBX],
220 env->regs[R_ECX],
221 env->regs[R_EDX],
222 env->regs[R_ESI],
223 env->regs[R_EDI],
224 env->regs[R_EBP]);
226 if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
227 env->regs[R_EAX] = -env->regs[R_EAX];
228 env->eflags |= CC_C;
229 } else {
230 env->eflags &= ~CC_C;
232 break;
233 #ifndef TARGET_ABI32
234 case EXCP_SYSCALL:
235 /* syscall from syscall instruction */
236 if (bsd_type == target_freebsd)
237 env->regs[R_EAX] = do_freebsd_syscall(env,
238 env->regs[R_EAX],
239 env->regs[R_EDI],
240 env->regs[R_ESI],
241 env->regs[R_EDX],
242 env->regs[R_ECX],
243 env->regs[8],
244 env->regs[9], 0, 0);
245 else { //if (bsd_type == target_openbsd)
246 env->regs[R_EAX] = do_openbsd_syscall(env,
247 env->regs[R_EAX],
248 env->regs[R_EDI],
249 env->regs[R_ESI],
250 env->regs[R_EDX],
251 env->regs[10],
252 env->regs[8],
253 env->regs[9]);
255 env->eip = env->exception_next_eip;
256 if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
257 env->regs[R_EAX] = -env->regs[R_EAX];
258 env->eflags |= CC_C;
259 } else {
260 env->eflags &= ~CC_C;
262 break;
263 #endif
264 #if 0
265 case EXCP0B_NOSEG:
266 case EXCP0C_STACK:
267 info.si_signo = SIGBUS;
268 info.si_errno = 0;
269 info.si_code = TARGET_SI_KERNEL;
270 info._sifields._sigfault._addr = 0;
271 queue_signal(env, info.si_signo, &info);
272 break;
273 case EXCP0D_GPF:
274 /* XXX: potential problem if ABI32 */
275 #ifndef TARGET_X86_64
276 if (env->eflags & VM_MASK) {
277 handle_vm86_fault(env);
278 } else
279 #endif
281 info.si_signo = SIGSEGV;
282 info.si_errno = 0;
283 info.si_code = TARGET_SI_KERNEL;
284 info._sifields._sigfault._addr = 0;
285 queue_signal(env, info.si_signo, &info);
287 break;
288 case EXCP0E_PAGE:
289 info.si_signo = SIGSEGV;
290 info.si_errno = 0;
291 if (!(env->error_code & 1))
292 info.si_code = TARGET_SEGV_MAPERR;
293 else
294 info.si_code = TARGET_SEGV_ACCERR;
295 info._sifields._sigfault._addr = env->cr[2];
296 queue_signal(env, info.si_signo, &info);
297 break;
298 case EXCP00_DIVZ:
299 #ifndef TARGET_X86_64
300 if (env->eflags & VM_MASK) {
301 handle_vm86_trap(env, trapnr);
302 } else
303 #endif
305 /* division by zero */
306 info.si_signo = SIGFPE;
307 info.si_errno = 0;
308 info.si_code = TARGET_FPE_INTDIV;
309 info._sifields._sigfault._addr = env->eip;
310 queue_signal(env, info.si_signo, &info);
312 break;
313 case EXCP01_DB:
314 case EXCP03_INT3:
315 #ifndef TARGET_X86_64
316 if (env->eflags & VM_MASK) {
317 handle_vm86_trap(env, trapnr);
318 } else
319 #endif
321 info.si_signo = SIGTRAP;
322 info.si_errno = 0;
323 if (trapnr == EXCP01_DB) {
324 info.si_code = TARGET_TRAP_BRKPT;
325 info._sifields._sigfault._addr = env->eip;
326 } else {
327 info.si_code = TARGET_SI_KERNEL;
328 info._sifields._sigfault._addr = 0;
330 queue_signal(env, info.si_signo, &info);
332 break;
333 case EXCP04_INTO:
334 case EXCP05_BOUND:
335 #ifndef TARGET_X86_64
336 if (env->eflags & VM_MASK) {
337 handle_vm86_trap(env, trapnr);
338 } else
339 #endif
341 info.si_signo = SIGSEGV;
342 info.si_errno = 0;
343 info.si_code = TARGET_SI_KERNEL;
344 info._sifields._sigfault._addr = 0;
345 queue_signal(env, info.si_signo, &info);
347 break;
348 case EXCP06_ILLOP:
349 info.si_signo = SIGILL;
350 info.si_errno = 0;
351 info.si_code = TARGET_ILL_ILLOPN;
352 info._sifields._sigfault._addr = env->eip;
353 queue_signal(env, info.si_signo, &info);
354 break;
355 #endif
356 case EXCP_INTERRUPT:
357 /* just indicate that signals should be handled asap */
358 break;
359 #if 0
360 case EXCP_DEBUG:
362 int sig;
364 sig = gdb_handlesig (env, TARGET_SIGTRAP);
365 if (sig)
367 info.si_signo = sig;
368 info.si_errno = 0;
369 info.si_code = TARGET_TRAP_BRKPT;
370 queue_signal(env, info.si_signo, &info);
373 break;
374 #endif
375 default:
376 pc = env->segs[R_CS].base + env->eip;
377 fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
378 (long)pc, trapnr);
379 abort();
381 process_pending_signals(env);
384 #endif
386 #ifdef TARGET_SPARC
387 #define SPARC64_STACK_BIAS 2047
389 //#define DEBUG_WIN
390 /* WARNING: dealing with register windows _is_ complicated. More info
391 can be found at http://www.sics.se/~psm/sparcstack.html */
392 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
394 index = (index + cwp * 16) % (16 * env->nwindows);
395 /* wrap handling : if cwp is on the last window, then we use the
396 registers 'after' the end */
397 if (index < 8 && env->cwp == env->nwindows - 1)
398 index += 16 * env->nwindows;
399 return index;
402 /* save the register window 'cwp1' */
403 static inline void save_window_offset(CPUSPARCState *env, int cwp1)
405 unsigned int i;
406 abi_ulong sp_ptr;
408 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
409 #ifdef TARGET_SPARC64
410 if (sp_ptr & 3)
411 sp_ptr += SPARC64_STACK_BIAS;
412 #endif
413 #if defined(DEBUG_WIN)
414 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
415 sp_ptr, cwp1);
416 #endif
417 for(i = 0; i < 16; i++) {
418 /* FIXME - what to do if put_user() fails? */
419 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
420 sp_ptr += sizeof(abi_ulong);
424 static void save_window(CPUSPARCState *env)
426 #ifndef TARGET_SPARC64
427 unsigned int new_wim;
428 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
429 ((1LL << env->nwindows) - 1);
430 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
431 env->wim = new_wim;
432 #else
433 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
434 env->cansave++;
435 env->canrestore--;
436 #endif
439 static void restore_window(CPUSPARCState *env)
441 #ifndef TARGET_SPARC64
442 unsigned int new_wim;
443 #endif
444 unsigned int i, cwp1;
445 abi_ulong sp_ptr;
447 #ifndef TARGET_SPARC64
448 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
449 ((1LL << env->nwindows) - 1);
450 #endif
452 /* restore the invalid window */
453 cwp1 = cpu_cwp_inc(env, env->cwp + 1);
454 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
455 #ifdef TARGET_SPARC64
456 if (sp_ptr & 3)
457 sp_ptr += SPARC64_STACK_BIAS;
458 #endif
459 #if defined(DEBUG_WIN)
460 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
461 sp_ptr, cwp1);
462 #endif
463 for(i = 0; i < 16; i++) {
464 /* FIXME - what to do if get_user() fails? */
465 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
466 sp_ptr += sizeof(abi_ulong);
468 #ifdef TARGET_SPARC64
469 env->canrestore++;
470 if (env->cleanwin < env->nwindows - 1)
471 env->cleanwin++;
472 env->cansave--;
473 #else
474 env->wim = new_wim;
475 #endif
478 static void flush_windows(CPUSPARCState *env)
480 int offset, cwp1;
482 offset = 1;
483 for(;;) {
484 /* if restore would invoke restore_window(), then we can stop */
485 cwp1 = cpu_cwp_inc(env, env->cwp + offset);
486 #ifndef TARGET_SPARC64
487 if (env->wim & (1 << cwp1))
488 break;
489 #else
490 if (env->canrestore == 0)
491 break;
492 env->cansave++;
493 env->canrestore--;
494 #endif
495 save_window_offset(env, cwp1);
496 offset++;
498 cwp1 = cpu_cwp_inc(env, env->cwp + 1);
499 #ifndef TARGET_SPARC64
500 /* set wim so that restore will reload the registers */
501 env->wim = 1 << cwp1;
502 #endif
503 #if defined(DEBUG_WIN)
504 printf("flush_windows: nb=%d\n", offset - 1);
505 #endif
508 void cpu_loop(CPUSPARCState *env)
510 CPUState *cs = CPU(sparc_env_get_cpu(env));
511 int trapnr, ret, syscall_nr;
512 //target_siginfo_t info;
514 while (1) {
515 trapnr = cpu_sparc_exec(cs);
517 switch (trapnr) {
518 #ifndef TARGET_SPARC64
519 case 0x80:
520 #else
521 /* FreeBSD uses 0x141 for syscalls too */
522 case 0x141:
523 if (bsd_type != target_freebsd)
524 goto badtrap;
525 case 0x100:
526 #endif
527 syscall_nr = env->gregs[1];
528 if (bsd_type == target_freebsd)
529 ret = do_freebsd_syscall(env, syscall_nr,
530 env->regwptr[0], env->regwptr[1],
531 env->regwptr[2], env->regwptr[3],
532 env->regwptr[4], env->regwptr[5], 0, 0);
533 else if (bsd_type == target_netbsd)
534 ret = do_netbsd_syscall(env, syscall_nr,
535 env->regwptr[0], env->regwptr[1],
536 env->regwptr[2], env->regwptr[3],
537 env->regwptr[4], env->regwptr[5]);
538 else { //if (bsd_type == target_openbsd)
539 #if defined(TARGET_SPARC64)
540 syscall_nr &= ~(TARGET_OPENBSD_SYSCALL_G7RFLAG |
541 TARGET_OPENBSD_SYSCALL_G2RFLAG);
542 #endif
543 ret = do_openbsd_syscall(env, syscall_nr,
544 env->regwptr[0], env->regwptr[1],
545 env->regwptr[2], env->regwptr[3],
546 env->regwptr[4], env->regwptr[5]);
548 if ((unsigned int)ret >= (unsigned int)(-515)) {
549 ret = -ret;
550 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
551 env->xcc |= PSR_CARRY;
552 #else
553 env->psr |= PSR_CARRY;
554 #endif
555 } else {
556 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
557 env->xcc &= ~PSR_CARRY;
558 #else
559 env->psr &= ~PSR_CARRY;
560 #endif
562 env->regwptr[0] = ret;
563 /* next instruction */
564 #if defined(TARGET_SPARC64)
565 if (bsd_type == target_openbsd &&
566 env->gregs[1] & TARGET_OPENBSD_SYSCALL_G2RFLAG) {
567 env->pc = env->gregs[2];
568 env->npc = env->pc + 4;
569 } else if (bsd_type == target_openbsd &&
570 env->gregs[1] & TARGET_OPENBSD_SYSCALL_G7RFLAG) {
571 env->pc = env->gregs[7];
572 env->npc = env->pc + 4;
573 } else {
574 env->pc = env->npc;
575 env->npc = env->npc + 4;
577 #else
578 env->pc = env->npc;
579 env->npc = env->npc + 4;
580 #endif
581 break;
582 case 0x83: /* flush windows */
583 #ifdef TARGET_ABI32
584 case 0x103:
585 #endif
586 flush_windows(env);
587 /* next instruction */
588 env->pc = env->npc;
589 env->npc = env->npc + 4;
590 break;
591 #ifndef TARGET_SPARC64
592 case TT_WIN_OVF: /* window overflow */
593 save_window(env);
594 break;
595 case TT_WIN_UNF: /* window underflow */
596 restore_window(env);
597 break;
598 case TT_TFAULT:
599 case TT_DFAULT:
600 #if 0
602 info.si_signo = SIGSEGV;
603 info.si_errno = 0;
604 /* XXX: check env->error_code */
605 info.si_code = TARGET_SEGV_MAPERR;
606 info._sifields._sigfault._addr = env->mmuregs[4];
607 queue_signal(env, info.si_signo, &info);
609 #endif
610 break;
611 #else
612 case TT_SPILL: /* window overflow */
613 save_window(env);
614 break;
615 case TT_FILL: /* window underflow */
616 restore_window(env);
617 break;
618 case TT_TFAULT:
619 case TT_DFAULT:
620 #if 0
622 info.si_signo = SIGSEGV;
623 info.si_errno = 0;
624 /* XXX: check env->error_code */
625 info.si_code = TARGET_SEGV_MAPERR;
626 if (trapnr == TT_DFAULT)
627 info._sifields._sigfault._addr = env->dmmuregs[4];
628 else
629 info._sifields._sigfault._addr = env->tsptr->tpc;
630 //queue_signal(env, info.si_signo, &info);
632 #endif
633 break;
634 #endif
635 case EXCP_INTERRUPT:
636 /* just indicate that signals should be handled asap */
637 break;
638 case EXCP_DEBUG:
640 int sig;
642 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
643 #if 0
644 if (sig)
646 info.si_signo = sig;
647 info.si_errno = 0;
648 info.si_code = TARGET_TRAP_BRKPT;
649 //queue_signal(env, info.si_signo, &info);
651 #endif
653 break;
654 default:
655 #ifdef TARGET_SPARC64
656 badtrap:
657 #endif
658 printf ("Unhandled trap: 0x%x\n", trapnr);
659 cpu_dump_state(cs, stderr, fprintf, 0);
660 exit (1);
662 process_pending_signals (env);
666 #endif
668 static void usage(void)
670 printf("qemu-" TARGET_NAME " version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
671 "usage: qemu-" TARGET_NAME " [options] program [arguments...]\n"
672 "BSD CPU emulator (compiled for %s emulation)\n"
673 "\n"
674 "Standard options:\n"
675 "-h print this help\n"
676 "-g port wait gdb connection to port\n"
677 "-L path set the elf interpreter prefix (default=%s)\n"
678 "-s size set the stack size in bytes (default=%ld)\n"
679 "-cpu model select CPU (-cpu help for list)\n"
680 "-drop-ld-preload drop LD_PRELOAD for target process\n"
681 "-E var=value sets/modifies targets environment variable(s)\n"
682 "-U var unsets targets environment variable(s)\n"
683 "-B address set guest_base address to address\n"
684 "-bsd type select emulated BSD type FreeBSD/NetBSD/OpenBSD (default)\n"
685 "\n"
686 "Debug options:\n"
687 "-d item1[,...] enable logging of specified items\n"
688 " (use '-d help' for a list of log items)\n"
689 "-D logfile write logs to 'logfile' (default stderr)\n"
690 "-p pagesize set the host page size to 'pagesize'\n"
691 "-singlestep always run in singlestep mode\n"
692 "-strace log system calls\n"
693 "\n"
694 "Environment variables:\n"
695 "QEMU_STRACE Print system calls and arguments similar to the\n"
696 " 'strace' program. Enable by setting to any value.\n"
697 "You can use -E and -U options to set/unset environment variables\n"
698 "for target process. It is possible to provide several variables\n"
699 "by repeating the option. For example:\n"
700 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
701 "Note that if you provide several changes to single variable\n"
702 "last change will stay in effect.\n"
704 TARGET_NAME,
705 interp_prefix,
706 x86_stack_size);
707 exit(1);
710 THREAD CPUState *thread_cpu;
712 /* Assumes contents are already zeroed. */
713 void init_task_state(TaskState *ts)
715 int i;
717 ts->used = 1;
718 ts->first_free = ts->sigqueue_table;
719 for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) {
720 ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1];
722 ts->sigqueue_table[i].next = NULL;
725 int main(int argc, char **argv)
727 const char *filename;
728 const char *cpu_model;
729 const char *log_file = NULL;
730 const char *log_mask = NULL;
731 struct target_pt_regs regs1, *regs = &regs1;
732 struct image_info info1, *info = &info1;
733 TaskState ts1, *ts = &ts1;
734 CPUArchState *env;
735 CPUState *cpu;
736 int optind;
737 const char *r;
738 int gdbstub_port = 0;
739 char **target_environ, **wrk;
740 envlist_t *envlist = NULL;
741 bsd_type = target_openbsd;
743 if (argc <= 1)
744 usage();
746 module_call_init(MODULE_INIT_QOM);
748 if ((envlist = envlist_create()) == NULL) {
749 (void) fprintf(stderr, "Unable to allocate envlist\n");
750 exit(1);
753 /* add current environment into the list */
754 for (wrk = environ; *wrk != NULL; wrk++) {
755 (void) envlist_setenv(envlist, *wrk);
758 cpu_model = NULL;
759 #if defined(cpudef_setup)
760 cpudef_setup(); /* parse cpu definitions in target config file (TBD) */
761 #endif
763 optind = 1;
764 for(;;) {
765 if (optind >= argc)
766 break;
767 r = argv[optind];
768 if (r[0] != '-')
769 break;
770 optind++;
771 r++;
772 if (!strcmp(r, "-")) {
773 break;
774 } else if (!strcmp(r, "d")) {
775 if (optind >= argc) {
776 break;
778 log_mask = argv[optind++];
779 } else if (!strcmp(r, "D")) {
780 if (optind >= argc) {
781 break;
783 log_file = argv[optind++];
784 } else if (!strcmp(r, "E")) {
785 r = argv[optind++];
786 if (envlist_setenv(envlist, r) != 0)
787 usage();
788 } else if (!strcmp(r, "ignore-environment")) {
789 envlist_free(envlist);
790 if ((envlist = envlist_create()) == NULL) {
791 (void) fprintf(stderr, "Unable to allocate envlist\n");
792 exit(1);
794 } else if (!strcmp(r, "U")) {
795 r = argv[optind++];
796 if (envlist_unsetenv(envlist, r) != 0)
797 usage();
798 } else if (!strcmp(r, "s")) {
799 r = argv[optind++];
800 x86_stack_size = strtol(r, (char **)&r, 0);
801 if (x86_stack_size <= 0)
802 usage();
803 if (*r == 'M')
804 x86_stack_size *= 1024 * 1024;
805 else if (*r == 'k' || *r == 'K')
806 x86_stack_size *= 1024;
807 } else if (!strcmp(r, "L")) {
808 interp_prefix = argv[optind++];
809 } else if (!strcmp(r, "p")) {
810 qemu_host_page_size = atoi(argv[optind++]);
811 if (qemu_host_page_size == 0 ||
812 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
813 fprintf(stderr, "page size must be a power of two\n");
814 exit(1);
816 } else if (!strcmp(r, "g")) {
817 gdbstub_port = atoi(argv[optind++]);
818 } else if (!strcmp(r, "r")) {
819 qemu_uname_release = argv[optind++];
820 } else if (!strcmp(r, "cpu")) {
821 cpu_model = argv[optind++];
822 if (is_help_option(cpu_model)) {
823 /* XXX: implement xxx_cpu_list for targets that still miss it */
824 #if defined(cpu_list)
825 cpu_list(stdout, &fprintf);
826 #endif
827 exit(1);
829 } else if (!strcmp(r, "B")) {
830 guest_base = strtol(argv[optind++], NULL, 0);
831 have_guest_base = 1;
832 } else if (!strcmp(r, "drop-ld-preload")) {
833 (void) envlist_unsetenv(envlist, "LD_PRELOAD");
834 } else if (!strcmp(r, "bsd")) {
835 if (!strcasecmp(argv[optind], "freebsd")) {
836 bsd_type = target_freebsd;
837 } else if (!strcasecmp(argv[optind], "netbsd")) {
838 bsd_type = target_netbsd;
839 } else if (!strcasecmp(argv[optind], "openbsd")) {
840 bsd_type = target_openbsd;
841 } else {
842 usage();
844 optind++;
845 } else if (!strcmp(r, "singlestep")) {
846 singlestep = 1;
847 } else if (!strcmp(r, "strace")) {
848 do_strace = 1;
849 } else
851 usage();
855 /* init debug */
856 qemu_set_log_filename(log_file);
857 if (log_mask) {
858 int mask;
860 mask = qemu_str_to_log_mask(log_mask);
861 if (!mask) {
862 qemu_print_log_usage(stdout);
863 exit(1);
865 qemu_set_log(mask);
868 if (optind >= argc) {
869 usage();
871 filename = argv[optind];
873 /* Zero out regs */
874 memset(regs, 0, sizeof(struct target_pt_regs));
876 /* Zero out image_info */
877 memset(info, 0, sizeof(struct image_info));
879 /* Scan interp_prefix dir for replacement files. */
880 init_paths(interp_prefix);
882 if (cpu_model == NULL) {
883 #if defined(TARGET_I386)
884 #ifdef TARGET_X86_64
885 cpu_model = "qemu64";
886 #else
887 cpu_model = "qemu32";
888 #endif
889 #elif defined(TARGET_SPARC)
890 #ifdef TARGET_SPARC64
891 cpu_model = "TI UltraSparc II";
892 #else
893 cpu_model = "Fujitsu MB86904";
894 #endif
895 #else
896 cpu_model = "any";
897 #endif
899 tcg_exec_init(0);
900 /* NOTE: we need to init the CPU at this stage to get
901 qemu_host_page_size */
902 cpu = cpu_init(cpu_model);
903 if (!cpu) {
904 fprintf(stderr, "Unable to find CPU definition\n");
905 exit(1);
907 env = cpu->env_ptr;
908 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
909 cpu_reset(cpu);
910 #endif
911 thread_cpu = cpu;
913 if (getenv("QEMU_STRACE")) {
914 do_strace = 1;
917 target_environ = envlist_to_environ(envlist, NULL);
918 envlist_free(envlist);
921 * Now that page sizes are configured in cpu_init() we can do
922 * proper page alignment for guest_base.
924 guest_base = HOST_PAGE_ALIGN(guest_base);
927 * Read in mmap_min_addr kernel parameter. This value is used
928 * When loading the ELF image to determine whether guest_base
929 * is needed.
931 * When user has explicitly set the quest base, we skip this
932 * test.
934 if (!have_guest_base) {
935 FILE *fp;
937 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
938 unsigned long tmp;
939 if (fscanf(fp, "%lu", &tmp) == 1) {
940 mmap_min_addr = tmp;
941 qemu_log("host mmap_min_addr=0x%lx\n", mmap_min_addr);
943 fclose(fp);
947 if (loader_exec(filename, argv+optind, target_environ, regs, info) != 0) {
948 printf("Error loading %s\n", filename);
949 _exit(1);
952 for (wrk = target_environ; *wrk; wrk++) {
953 free(*wrk);
956 free(target_environ);
958 if (qemu_log_enabled()) {
959 qemu_log("guest_base 0x%lx\n", guest_base);
960 log_page_dump();
962 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
963 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code);
964 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n",
965 info->start_code);
966 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n",
967 info->start_data);
968 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data);
969 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n",
970 info->start_stack);
971 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk);
972 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry);
975 target_set_brk(info->brk);
976 syscall_init();
977 signal_init();
979 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay
980 generating the prologue until now so that the prologue can take
981 the real value of GUEST_BASE into account. */
982 tcg_prologue_init(&tcg_ctx);
984 /* build Task State */
985 memset(ts, 0, sizeof(TaskState));
986 init_task_state(ts);
987 ts->info = info;
988 cpu->opaque = ts;
990 #if defined(TARGET_I386)
991 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
992 env->hflags |= HF_PE_MASK | HF_CPL_MASK;
993 if (env->features[FEAT_1_EDX] & CPUID_SSE) {
994 env->cr[4] |= CR4_OSFXSR_MASK;
995 env->hflags |= HF_OSFXSR_MASK;
997 #ifndef TARGET_ABI32
998 /* enable 64 bit mode if possible */
999 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
1000 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
1001 exit(1);
1003 env->cr[4] |= CR4_PAE_MASK;
1004 env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
1005 env->hflags |= HF_LMA_MASK;
1006 #endif
1008 /* flags setup : we activate the IRQs by default as in user mode */
1009 env->eflags |= IF_MASK;
1011 /* linux register setup */
1012 #ifndef TARGET_ABI32
1013 env->regs[R_EAX] = regs->rax;
1014 env->regs[R_EBX] = regs->rbx;
1015 env->regs[R_ECX] = regs->rcx;
1016 env->regs[R_EDX] = regs->rdx;
1017 env->regs[R_ESI] = regs->rsi;
1018 env->regs[R_EDI] = regs->rdi;
1019 env->regs[R_EBP] = regs->rbp;
1020 env->regs[R_ESP] = regs->rsp;
1021 env->eip = regs->rip;
1022 #else
1023 env->regs[R_EAX] = regs->eax;
1024 env->regs[R_EBX] = regs->ebx;
1025 env->regs[R_ECX] = regs->ecx;
1026 env->regs[R_EDX] = regs->edx;
1027 env->regs[R_ESI] = regs->esi;
1028 env->regs[R_EDI] = regs->edi;
1029 env->regs[R_EBP] = regs->ebp;
1030 env->regs[R_ESP] = regs->esp;
1031 env->eip = regs->eip;
1032 #endif
1034 /* linux interrupt setup */
1035 #ifndef TARGET_ABI32
1036 env->idt.limit = 511;
1037 #else
1038 env->idt.limit = 255;
1039 #endif
1040 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
1041 PROT_READ|PROT_WRITE,
1042 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1043 idt_table = g2h(env->idt.base);
1044 set_idt(0, 0);
1045 set_idt(1, 0);
1046 set_idt(2, 0);
1047 set_idt(3, 3);
1048 set_idt(4, 3);
1049 set_idt(5, 0);
1050 set_idt(6, 0);
1051 set_idt(7, 0);
1052 set_idt(8, 0);
1053 set_idt(9, 0);
1054 set_idt(10, 0);
1055 set_idt(11, 0);
1056 set_idt(12, 0);
1057 set_idt(13, 0);
1058 set_idt(14, 0);
1059 set_idt(15, 0);
1060 set_idt(16, 0);
1061 set_idt(17, 0);
1062 set_idt(18, 0);
1063 set_idt(19, 0);
1064 set_idt(0x80, 3);
1066 /* linux segment setup */
1068 uint64_t *gdt_table;
1069 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
1070 PROT_READ|PROT_WRITE,
1071 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1072 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
1073 gdt_table = g2h(env->gdt.base);
1074 #ifdef TARGET_ABI32
1075 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
1076 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1077 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
1078 #else
1079 /* 64 bit code segment */
1080 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
1081 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1082 DESC_L_MASK |
1083 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
1084 #endif
1085 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
1086 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1087 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
1090 cpu_x86_load_seg(env, R_CS, __USER_CS);
1091 cpu_x86_load_seg(env, R_SS, __USER_DS);
1092 #ifdef TARGET_ABI32
1093 cpu_x86_load_seg(env, R_DS, __USER_DS);
1094 cpu_x86_load_seg(env, R_ES, __USER_DS);
1095 cpu_x86_load_seg(env, R_FS, __USER_DS);
1096 cpu_x86_load_seg(env, R_GS, __USER_DS);
1097 /* This hack makes Wine work... */
1098 env->segs[R_FS].selector = 0;
1099 #else
1100 cpu_x86_load_seg(env, R_DS, 0);
1101 cpu_x86_load_seg(env, R_ES, 0);
1102 cpu_x86_load_seg(env, R_FS, 0);
1103 cpu_x86_load_seg(env, R_GS, 0);
1104 #endif
1105 #elif defined(TARGET_SPARC)
1107 int i;
1108 env->pc = regs->pc;
1109 env->npc = regs->npc;
1110 env->y = regs->y;
1111 for(i = 0; i < 8; i++)
1112 env->gregs[i] = regs->u_regs[i];
1113 for(i = 0; i < 8; i++)
1114 env->regwptr[i] = regs->u_regs[i + 8];
1116 #else
1117 #error unsupported target CPU
1118 #endif
1120 if (gdbstub_port) {
1121 gdbserver_start (gdbstub_port);
1122 gdb_handlesig(cpu, 0);
1124 cpu_loop(env);
1125 /* never exits */
1126 return 0;