coroutine-lock: make CoMutex thread-safe
[qemu.git] / target / xtensa / op_helper.c
blobaf2723445d4bc317a755b1b333f28535e2502fa7
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "qemu/osdep.h"
29 #include "cpu.h"
30 #include "exec/helper-proto.h"
31 #include "qemu/host-utils.h"
32 #include "exec/exec-all.h"
33 #include "exec/cpu_ldst.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/timer.h"
37 void xtensa_cpu_do_unaligned_access(CPUState *cs,
38 vaddr addr, MMUAccessType access_type,
39 int mmu_idx, uintptr_t retaddr)
41 XtensaCPU *cpu = XTENSA_CPU(cs);
42 CPUXtensaState *env = &cpu->env;
44 if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
45 !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
46 cpu_restore_state(CPU(cpu), retaddr);
47 HELPER(exception_cause_vaddr)(env,
48 env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
52 void tlb_fill(CPUState *cs, target_ulong vaddr, MMUAccessType access_type,
53 int mmu_idx, uintptr_t retaddr)
55 XtensaCPU *cpu = XTENSA_CPU(cs);
56 CPUXtensaState *env = &cpu->env;
57 uint32_t paddr;
58 uint32_t page_size;
59 unsigned access;
60 int ret = xtensa_get_physical_addr(env, true, vaddr, access_type, mmu_idx,
61 &paddr, &page_size, &access);
63 qemu_log_mask(CPU_LOG_MMU, "%s(%08x, %d, %d) -> %08x, ret = %d\n",
64 __func__, vaddr, access_type, mmu_idx, paddr, ret);
66 if (ret == 0) {
67 tlb_set_page(cs,
68 vaddr & TARGET_PAGE_MASK,
69 paddr & TARGET_PAGE_MASK,
70 access, mmu_idx, page_size);
71 } else {
72 cpu_restore_state(cs, retaddr);
73 HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
77 void xtensa_cpu_do_unassigned_access(CPUState *cs, hwaddr addr,
78 bool is_write, bool is_exec, int opaque,
79 unsigned size)
81 XtensaCPU *cpu = XTENSA_CPU(cs);
82 CPUXtensaState *env = &cpu->env;
84 HELPER(exception_cause_vaddr)(env, env->pc,
85 is_exec ?
86 INSTR_PIF_ADDR_ERROR_CAUSE :
87 LOAD_STORE_PIF_ADDR_ERROR_CAUSE,
88 is_exec ? addr : cs->mem_io_vaddr);
91 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
93 uint32_t paddr;
94 uint32_t page_size;
95 unsigned access;
96 int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
97 &paddr, &page_size, &access);
98 if (ret == 0) {
99 tb_invalidate_phys_addr(&address_space_memory, paddr);
103 void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
105 CPUState *cs = CPU(xtensa_env_get_cpu(env));
107 cs->exception_index = excp;
108 if (excp == EXCP_YIELD) {
109 env->yield_needed = 0;
111 if (excp == EXCP_DEBUG) {
112 env->exception_taken = 0;
114 cpu_loop_exit(cs);
117 void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
119 uint32_t vector;
121 env->pc = pc;
122 if (env->sregs[PS] & PS_EXCM) {
123 if (env->config->ndepc) {
124 env->sregs[DEPC] = pc;
125 } else {
126 env->sregs[EPC1] = pc;
128 vector = EXC_DOUBLE;
129 } else {
130 env->sregs[EPC1] = pc;
131 vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
134 env->sregs[EXCCAUSE] = cause;
135 env->sregs[PS] |= PS_EXCM;
137 HELPER(exception)(env, vector);
140 void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
141 uint32_t pc, uint32_t cause, uint32_t vaddr)
143 env->sregs[EXCVADDR] = vaddr;
144 HELPER(exception_cause)(env, pc, cause);
147 void debug_exception_env(CPUXtensaState *env, uint32_t cause)
149 if (xtensa_get_cintlevel(env) < env->config->debug_level) {
150 HELPER(debug_exception)(env, env->pc, cause);
154 void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
156 unsigned level = env->config->debug_level;
158 env->pc = pc;
159 env->sregs[DEBUGCAUSE] = cause;
160 env->sregs[EPC1 + level - 1] = pc;
161 env->sregs[EPS2 + level - 2] = env->sregs[PS];
162 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
163 (level << PS_INTLEVEL_SHIFT);
164 HELPER(exception)(env, EXC_DEBUG);
167 static void copy_window_from_phys(CPUXtensaState *env,
168 uint32_t window, uint32_t phys, uint32_t n)
170 assert(phys < env->config->nareg);
171 if (phys + n <= env->config->nareg) {
172 memcpy(env->regs + window, env->phys_regs + phys,
173 n * sizeof(uint32_t));
174 } else {
175 uint32_t n1 = env->config->nareg - phys;
176 memcpy(env->regs + window, env->phys_regs + phys,
177 n1 * sizeof(uint32_t));
178 memcpy(env->regs + window + n1, env->phys_regs,
179 (n - n1) * sizeof(uint32_t));
183 static void copy_phys_from_window(CPUXtensaState *env,
184 uint32_t phys, uint32_t window, uint32_t n)
186 assert(phys < env->config->nareg);
187 if (phys + n <= env->config->nareg) {
188 memcpy(env->phys_regs + phys, env->regs + window,
189 n * sizeof(uint32_t));
190 } else {
191 uint32_t n1 = env->config->nareg - phys;
192 memcpy(env->phys_regs + phys, env->regs + window,
193 n1 * sizeof(uint32_t));
194 memcpy(env->phys_regs, env->regs + window + n1,
195 (n - n1) * sizeof(uint32_t));
200 static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
202 return a & (env->config->nareg / 4 - 1);
205 static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
207 return 1 << windowbase_bound(a, env);
210 void xtensa_sync_window_from_phys(CPUXtensaState *env)
212 copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
215 void xtensa_sync_phys_from_window(CPUXtensaState *env)
217 copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
220 static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
222 xtensa_sync_phys_from_window(env);
223 env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
224 xtensa_sync_window_from_phys(env);
227 static void rotate_window(CPUXtensaState *env, uint32_t delta)
229 rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
232 void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
234 rotate_window_abs(env, v);
237 void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
239 int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
240 if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
241 qemu_log_mask(LOG_GUEST_ERROR, "Illegal entry instruction(pc = %08x), PS = %08x\n",
242 pc, env->sregs[PS]);
243 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
244 } else {
245 uint32_t windowstart = xtensa_replicate_windowstart(env) >>
246 (env->sregs[WINDOW_BASE] + 1);
248 if (windowstart & ((1 << callinc) - 1)) {
249 HELPER(window_check)(env, pc, callinc);
251 env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
252 rotate_window(env, callinc);
253 env->sregs[WINDOW_START] |=
254 windowstart_bit(env->sregs[WINDOW_BASE], env);
258 void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
260 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
261 uint32_t windowstart = xtensa_replicate_windowstart(env) >>
262 (env->sregs[WINDOW_BASE] + 1);
263 uint32_t n = ctz32(windowstart) + 1;
265 assert(n <= w);
267 rotate_window(env, n);
268 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
269 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
270 env->sregs[EPC1] = env->pc = pc;
272 switch (ctz32(windowstart >> n)) {
273 case 0:
274 HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
275 break;
276 case 1:
277 HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
278 break;
279 default:
280 HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
281 break;
285 uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
287 int n = (env->regs[0] >> 30) & 0x3;
288 int m = 0;
289 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
290 uint32_t windowstart = env->sregs[WINDOW_START];
291 uint32_t ret_pc = 0;
293 if (windowstart & windowstart_bit(windowbase - 1, env)) {
294 m = 1;
295 } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
296 m = 2;
297 } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
298 m = 3;
301 if (n == 0 || (m != 0 && m != n) ||
302 ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
303 qemu_log_mask(LOG_GUEST_ERROR, "Illegal retw instruction(pc = %08x), "
304 "PS = %08x, m = %d, n = %d\n",
305 pc, env->sregs[PS], m, n);
306 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
307 } else {
308 int owb = windowbase;
310 ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
312 rotate_window(env, -n);
313 if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
314 env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
315 } else {
316 /* window underflow */
317 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
318 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
319 env->sregs[EPC1] = env->pc = pc;
321 if (n == 1) {
322 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
323 } else if (n == 2) {
324 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
325 } else if (n == 3) {
326 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
330 return ret_pc;
333 void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
335 rotate_window(env, imm4);
338 void HELPER(restore_owb)(CPUXtensaState *env)
340 rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
343 void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
345 if ((env->sregs[WINDOW_START] &
346 (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
347 windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
348 windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
349 HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
353 void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
355 if (env->sregs[LBEG] != v) {
356 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
357 env->sregs[LBEG] = v;
361 void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
363 if (env->sregs[LEND] != v) {
364 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
365 env->sregs[LEND] = v;
366 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
370 void HELPER(dump_state)(CPUXtensaState *env)
372 XtensaCPU *cpu = xtensa_env_get_cpu(env);
374 cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
377 void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
379 CPUState *cpu;
381 env->pc = pc;
382 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
383 (intlevel << PS_INTLEVEL_SHIFT);
384 check_interrupts(env);
385 if (env->pending_irq_level) {
386 cpu_loop_exit(CPU(xtensa_env_get_cpu(env)));
387 return;
390 cpu = CPU(xtensa_env_get_cpu(env));
391 cpu->halted = 1;
392 HELPER(exception)(env, EXCP_HLT);
395 void HELPER(update_ccount)(CPUXtensaState *env)
397 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
399 env->ccount_time = now;
400 env->sregs[CCOUNT] = env->ccount_base +
401 (uint32_t)((now - env->time_base) *
402 env->config->clock_freq_khz / 1000000);
405 void HELPER(wsr_ccount)(CPUXtensaState *env, uint32_t v)
407 int i;
409 HELPER(update_ccount)(env);
410 env->ccount_base += v - env->sregs[CCOUNT];
411 for (i = 0; i < env->config->nccompare; ++i) {
412 HELPER(update_ccompare)(env, i);
416 void HELPER(update_ccompare)(CPUXtensaState *env, uint32_t i)
418 uint64_t dcc;
420 HELPER(update_ccount)(env);
421 dcc = (uint64_t)(env->sregs[CCOMPARE + i] - env->sregs[CCOUNT] - 1) + 1;
422 timer_mod(env->ccompare[i].timer,
423 env->ccount_time + (dcc * 1000000) / env->config->clock_freq_khz);
424 env->yield_needed = 1;
427 void HELPER(check_interrupts)(CPUXtensaState *env)
429 check_interrupts(env);
432 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
434 get_page_addr_code(env, vaddr);
438 * Check vaddr accessibility/cache attributes and raise an exception if
439 * specified by the ATOMCTL SR.
441 * Note: local memory exclusion is not implemented
443 void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
445 uint32_t paddr, page_size, access;
446 uint32_t atomctl = env->sregs[ATOMCTL];
447 int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
448 xtensa_get_cring(env), &paddr, &page_size, &access);
451 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
452 * see opcode description in the ISA
454 if (rc == 0 &&
455 (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
456 rc = STORE_PROHIBITED_CAUSE;
459 if (rc) {
460 HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
464 * When data cache is not configured use ATOMCTL bypass field.
465 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
466 * under the Conditional Store Option.
468 if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
469 access = PAGE_CACHE_BYPASS;
472 switch (access & PAGE_CACHE_MASK) {
473 case PAGE_CACHE_WB:
474 atomctl >>= 2;
475 /* fall through */
476 case PAGE_CACHE_WT:
477 atomctl >>= 2;
478 /* fall through */
479 case PAGE_CACHE_BYPASS:
480 if ((atomctl & 0x3) == 0) {
481 HELPER(exception_cause_vaddr)(env, pc,
482 LOAD_STORE_ERROR_CAUSE, vaddr);
484 break;
486 case PAGE_CACHE_ISOLATE:
487 HELPER(exception_cause_vaddr)(env, pc,
488 LOAD_STORE_ERROR_CAUSE, vaddr);
489 break;
491 default:
492 break;
496 void HELPER(wsr_memctl)(CPUXtensaState *env, uint32_t v)
498 if (xtensa_option_enabled(env->config, XTENSA_OPTION_ICACHE)) {
499 if (extract32(v, MEMCTL_IUSEWAYS_SHIFT, MEMCTL_IUSEWAYS_LEN) >
500 env->config->icache_ways) {
501 deposit32(v, MEMCTL_IUSEWAYS_SHIFT, MEMCTL_IUSEWAYS_LEN,
502 env->config->icache_ways);
505 if (xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
506 if (extract32(v, MEMCTL_DUSEWAYS_SHIFT, MEMCTL_DUSEWAYS_LEN) >
507 env->config->dcache_ways) {
508 deposit32(v, MEMCTL_DUSEWAYS_SHIFT, MEMCTL_DUSEWAYS_LEN,
509 env->config->dcache_ways);
511 if (extract32(v, MEMCTL_DALLOCWAYS_SHIFT, MEMCTL_DALLOCWAYS_LEN) >
512 env->config->dcache_ways) {
513 deposit32(v, MEMCTL_DALLOCWAYS_SHIFT, MEMCTL_DALLOCWAYS_LEN,
514 env->config->dcache_ways);
517 env->sregs[MEMCTL] = v & env->config->memctl_mask;
520 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
522 XtensaCPU *cpu = xtensa_env_get_cpu(env);
524 v = (v & 0xffffff00) | 0x1;
525 if (v != env->sregs[RASID]) {
526 env->sregs[RASID] = v;
527 tlb_flush(CPU(cpu));
531 static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
533 uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
535 switch (way) {
536 case 4:
537 return (tlbcfg >> 16) & 0x3;
539 case 5:
540 return (tlbcfg >> 20) & 0x1;
542 case 6:
543 return (tlbcfg >> 24) & 0x1;
545 default:
546 return 0;
551 * Get bit mask for the virtual address bits translated by the TLB way
553 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
555 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
556 bool varway56 = dtlb ?
557 env->config->dtlb.varway56 :
558 env->config->itlb.varway56;
560 switch (way) {
561 case 4:
562 return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
564 case 5:
565 if (varway56) {
566 return 0xf8000000 << get_page_size(env, dtlb, way);
567 } else {
568 return 0xf8000000;
571 case 6:
572 if (varway56) {
573 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
574 } else {
575 return 0xf0000000;
578 default:
579 return 0xfffff000;
581 } else {
582 return REGION_PAGE_MASK;
587 * Get bit mask for the 'VPN without index' field.
588 * See ISA, 4.6.5.6, data format for RxTLB0
590 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
592 if (way < 4) {
593 bool is32 = (dtlb ?
594 env->config->dtlb.nrefillentries :
595 env->config->itlb.nrefillentries) == 32;
596 return is32 ? 0xffff8000 : 0xffffc000;
597 } else if (way == 4) {
598 return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
599 } else if (way <= 6) {
600 uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
601 bool varway56 = dtlb ?
602 env->config->dtlb.varway56 :
603 env->config->itlb.varway56;
605 if (varway56) {
606 return mask << (way == 5 ? 2 : 3);
607 } else {
608 return mask << 1;
610 } else {
611 return 0xfffff000;
616 * Split virtual address into VPN (with index) and entry index
617 * for the given TLB way
619 void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
620 uint32_t *vpn, uint32_t wi, uint32_t *ei)
622 bool varway56 = dtlb ?
623 env->config->dtlb.varway56 :
624 env->config->itlb.varway56;
626 if (!dtlb) {
627 wi &= 7;
630 if (wi < 4) {
631 bool is32 = (dtlb ?
632 env->config->dtlb.nrefillentries :
633 env->config->itlb.nrefillentries) == 32;
634 *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
635 } else {
636 switch (wi) {
637 case 4:
639 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
640 *ei = (v >> eibase) & 0x3;
642 break;
644 case 5:
645 if (varway56) {
646 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
647 *ei = (v >> eibase) & 0x3;
648 } else {
649 *ei = (v >> 27) & 0x1;
651 break;
653 case 6:
654 if (varway56) {
655 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
656 *ei = (v >> eibase) & 0x7;
657 } else {
658 *ei = (v >> 28) & 0x1;
660 break;
662 default:
663 *ei = 0;
664 break;
667 *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
671 * Split TLB address into TLB way, entry index and VPN (with index).
672 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
674 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
675 uint32_t *vpn, uint32_t *wi, uint32_t *ei)
677 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
678 *wi = v & (dtlb ? 0xf : 0x7);
679 split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
680 } else {
681 *vpn = v & REGION_PAGE_MASK;
682 *wi = 0;
683 *ei = (v >> 29) & 0x7;
687 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
688 uint32_t v, bool dtlb, uint32_t *pwi)
690 uint32_t vpn;
691 uint32_t wi;
692 uint32_t ei;
694 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
695 if (pwi) {
696 *pwi = wi;
698 return xtensa_tlb_get_entry(env, dtlb, wi, ei);
701 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
703 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
704 uint32_t wi;
705 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
706 return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
707 } else {
708 return v & REGION_PAGE_MASK;
712 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
714 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
715 return entry->paddr | entry->attr;
718 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
720 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
721 uint32_t wi;
722 xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
723 if (entry->variable && entry->asid) {
724 tlb_flush_page(CPU(xtensa_env_get_cpu(env)), entry->vaddr);
725 entry->asid = 0;
730 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
732 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
733 uint32_t wi;
734 uint32_t ei;
735 uint8_t ring;
736 int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
738 switch (res) {
739 case 0:
740 if (ring >= xtensa_get_ring(env)) {
741 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
743 break;
745 case INST_TLB_MULTI_HIT_CAUSE:
746 case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
747 HELPER(exception_cause_vaddr)(env, env->pc, res, v);
748 break;
750 return 0;
751 } else {
752 return (v & REGION_PAGE_MASK) | 0x1;
756 void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
757 xtensa_tlb_entry *entry, bool dtlb,
758 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
760 entry->vaddr = vpn;
761 entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
762 entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
763 entry->attr = pte & 0xf;
766 void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
767 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
769 XtensaCPU *cpu = xtensa_env_get_cpu(env);
770 CPUState *cs = CPU(cpu);
771 xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
773 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
774 if (entry->variable) {
775 if (entry->asid) {
776 tlb_flush_page(cs, entry->vaddr);
778 xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
779 tlb_flush_page(cs, entry->vaddr);
780 } else {
781 qemu_log_mask(LOG_GUEST_ERROR, "%s %d, %d, %d trying to set immutable entry\n",
782 __func__, dtlb, wi, ei);
784 } else {
785 tlb_flush_page(cs, entry->vaddr);
786 if (xtensa_option_enabled(env->config,
787 XTENSA_OPTION_REGION_TRANSLATION)) {
788 entry->paddr = pte & REGION_PAGE_MASK;
790 entry->attr = pte & 0xf;
794 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
796 uint32_t vpn;
797 uint32_t wi;
798 uint32_t ei;
799 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
800 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
804 void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
806 uint32_t change = v ^ env->sregs[IBREAKENABLE];
807 unsigned i;
809 for (i = 0; i < env->config->nibreak; ++i) {
810 if (change & (1 << i)) {
811 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
814 env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
817 void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
819 if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
820 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
821 tb_invalidate_virtual_addr(env, v);
823 env->sregs[IBREAKA + i] = v;
826 static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
827 uint32_t dbreakc)
829 CPUState *cs = CPU(xtensa_env_get_cpu(env));
830 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
831 uint32_t mask = dbreakc | ~DBREAKC_MASK;
833 if (env->cpu_watchpoint[i]) {
834 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
836 if (dbreakc & DBREAKC_SB) {
837 flags |= BP_MEM_WRITE;
839 if (dbreakc & DBREAKC_LB) {
840 flags |= BP_MEM_READ;
842 /* contiguous mask after inversion is one less than some power of 2 */
843 if ((~mask + 1) & ~mask) {
844 qemu_log_mask(LOG_GUEST_ERROR, "DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
845 /* cut mask after the first zero bit */
846 mask = 0xffffffff << (32 - clo32(mask));
848 if (cpu_watchpoint_insert(cs, dbreaka & mask, ~mask + 1,
849 flags, &env->cpu_watchpoint[i])) {
850 env->cpu_watchpoint[i] = NULL;
851 qemu_log_mask(LOG_GUEST_ERROR, "Failed to set data breakpoint at 0x%08x/%d\n",
852 dbreaka & mask, ~mask + 1);
856 void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
858 uint32_t dbreakc = env->sregs[DBREAKC + i];
860 if ((dbreakc & DBREAKC_SB_LB) &&
861 env->sregs[DBREAKA + i] != v) {
862 set_dbreak(env, i, v, dbreakc);
864 env->sregs[DBREAKA + i] = v;
867 void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
869 if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
870 if (v & DBREAKC_SB_LB) {
871 set_dbreak(env, i, env->sregs[DBREAKA + i], v);
872 } else {
873 if (env->cpu_watchpoint[i]) {
874 CPUState *cs = CPU(xtensa_env_get_cpu(env));
876 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
877 env->cpu_watchpoint[i] = NULL;
881 env->sregs[DBREAKC + i] = v;
884 void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
886 static const int rounding_mode[] = {
887 float_round_nearest_even,
888 float_round_to_zero,
889 float_round_up,
890 float_round_down,
893 env->uregs[FCR] = v & 0xfffff07f;
894 set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
897 float32 HELPER(abs_s)(float32 v)
899 return float32_abs(v);
902 float32 HELPER(neg_s)(float32 v)
904 return float32_chs(v);
907 float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
909 return float32_add(a, b, &env->fp_status);
912 float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
914 return float32_sub(a, b, &env->fp_status);
917 float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
919 return float32_mul(a, b, &env->fp_status);
922 float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
924 return float32_muladd(b, c, a, 0,
925 &env->fp_status);
928 float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
930 return float32_muladd(b, c, a, float_muladd_negate_product,
931 &env->fp_status);
934 uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
936 float_status fp_status = {0};
938 set_float_rounding_mode(rounding_mode, &fp_status);
939 return float32_to_int32(
940 float32_scalbn(v, scale, &fp_status), &fp_status);
943 uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
945 float_status fp_status = {0};
946 float32 res;
948 set_float_rounding_mode(rounding_mode, &fp_status);
950 res = float32_scalbn(v, scale, &fp_status);
952 if (float32_is_neg(v) && !float32_is_any_nan(v)) {
953 return float32_to_int32(res, &fp_status);
954 } else {
955 return float32_to_uint32(res, &fp_status);
959 float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
961 return float32_scalbn(int32_to_float32(v, &env->fp_status),
962 (int32_t)scale, &env->fp_status);
965 float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
967 return float32_scalbn(uint32_to_float32(v, &env->fp_status),
968 (int32_t)scale, &env->fp_status);
971 static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
973 if (v) {
974 env->sregs[BR] |= br;
975 } else {
976 env->sregs[BR] &= ~br;
980 void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
982 set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
985 void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
987 set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
990 void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
992 int v = float32_compare_quiet(a, b, &env->fp_status);
993 set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
996 void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
998 set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
1001 void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1003 int v = float32_compare_quiet(a, b, &env->fp_status);
1004 set_br(env, v == float_relation_less || v == float_relation_unordered, br);
1007 void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1009 set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
1012 void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1014 int v = float32_compare_quiet(a, b, &env->fp_status);
1015 set_br(env, v != float_relation_greater, br);
1018 uint32_t HELPER(rer)(CPUXtensaState *env, uint32_t addr)
1020 return address_space_ldl(env->address_space_er, addr,
1021 (MemTxAttrs){0}, NULL);
1024 void HELPER(wer)(CPUXtensaState *env, uint32_t data, uint32_t addr)
1026 address_space_stl(env->address_space_er, addr, data,
1027 (MemTxAttrs){0}, NULL);