4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #define dprintf(fmt, ...) \
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr
;
45 ram_addr_t memory_size
;
46 ram_addr_t phys_offset
;
51 typedef struct kvm_dirty_log KVMDirtyLog
;
62 int broken_set_mem_region
;
65 #ifdef KVM_CAP_SET_GUEST_DEBUG
66 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
68 int irqchip_in_kernel
;
72 static KVMState
*kvm_state
;
74 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
78 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
79 /* KVM private memory slots */
82 if (s
->slots
[i
].memory_size
== 0)
86 fprintf(stderr
, "%s: no free slot available\n", __func__
);
90 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
91 target_phys_addr_t start_addr
,
92 target_phys_addr_t end_addr
)
96 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
97 KVMSlot
*mem
= &s
->slots
[i
];
99 if (start_addr
== mem
->start_addr
&&
100 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
109 * Find overlapping slot with lowest start address
111 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
112 target_phys_addr_t start_addr
,
113 target_phys_addr_t end_addr
)
115 KVMSlot
*found
= NULL
;
118 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
119 KVMSlot
*mem
= &s
->slots
[i
];
121 if (mem
->memory_size
== 0 ||
122 (found
&& found
->start_addr
< mem
->start_addr
)) {
126 if (end_addr
> mem
->start_addr
&&
127 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
135 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
137 struct kvm_userspace_memory_region mem
;
139 mem
.slot
= slot
->slot
;
140 mem
.guest_phys_addr
= slot
->start_addr
;
141 mem
.memory_size
= slot
->memory_size
;
142 mem
.userspace_addr
= (unsigned long)qemu_get_ram_ptr(slot
->phys_offset
);
143 mem
.flags
= slot
->flags
;
144 if (s
->migration_log
) {
145 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
147 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
150 static void kvm_reset_vcpu(void *opaque
)
152 CPUState
*env
= opaque
;
154 kvm_arch_reset_vcpu(env
);
155 if (kvm_arch_put_registers(env
)) {
156 fprintf(stderr
, "Fatal: kvm vcpu reset failed\n");
161 int kvm_irqchip_in_kernel(void)
163 return kvm_state
->irqchip_in_kernel
;
166 int kvm_pit_in_kernel(void)
168 return kvm_state
->pit_in_kernel
;
172 int kvm_init_vcpu(CPUState
*env
)
174 KVMState
*s
= kvm_state
;
178 dprintf("kvm_init_vcpu\n");
180 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
182 dprintf("kvm_create_vcpu failed\n");
189 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
191 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
195 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
197 if (env
->kvm_run
== MAP_FAILED
) {
199 dprintf("mmap'ing vcpu state failed\n");
203 ret
= kvm_arch_init_vcpu(env
);
205 qemu_register_reset(kvm_reset_vcpu
, env
);
206 kvm_arch_reset_vcpu(env
);
207 ret
= kvm_arch_put_registers(env
);
214 * dirty pages logging control
216 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
217 ram_addr_t size
, int flags
, int mask
)
219 KVMState
*s
= kvm_state
;
220 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
224 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
225 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
226 (target_phys_addr_t
)(phys_addr
+ size
- 1));
230 old_flags
= mem
->flags
;
232 flags
= (mem
->flags
& ~mask
) | flags
;
235 /* If nothing changed effectively, no need to issue ioctl */
236 if (s
->migration_log
) {
237 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
239 if (flags
== old_flags
) {
243 return kvm_set_user_memory_region(s
, mem
);
246 int kvm_log_start(target_phys_addr_t phys_addr
, ram_addr_t size
)
248 return kvm_dirty_pages_log_change(phys_addr
, size
,
249 KVM_MEM_LOG_DIRTY_PAGES
,
250 KVM_MEM_LOG_DIRTY_PAGES
);
253 int kvm_log_stop(target_phys_addr_t phys_addr
, ram_addr_t size
)
255 return kvm_dirty_pages_log_change(phys_addr
, size
,
257 KVM_MEM_LOG_DIRTY_PAGES
);
260 int kvm_set_migration_log(int enable
)
262 KVMState
*s
= kvm_state
;
266 s
->migration_log
= enable
;
268 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
271 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
274 err
= kvm_set_user_memory_region(s
, mem
);
282 static int test_le_bit(unsigned long nr
, unsigned char *addr
)
284 return (addr
[nr
>> 3] >> (nr
& 7)) & 1;
288 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
289 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
290 * This means all bits are set to dirty.
292 * @start_add: start of logged region.
293 * @end_addr: end of logged region.
295 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
296 target_phys_addr_t end_addr
)
298 KVMState
*s
= kvm_state
;
299 unsigned long size
, allocated_size
= 0;
300 target_phys_addr_t phys_addr
;
306 d
.dirty_bitmap
= NULL
;
307 while (start_addr
< end_addr
) {
308 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
313 size
= ((mem
->memory_size
>> TARGET_PAGE_BITS
) + 7) / 8;
314 if (!d
.dirty_bitmap
) {
315 d
.dirty_bitmap
= qemu_malloc(size
);
316 } else if (size
> allocated_size
) {
317 d
.dirty_bitmap
= qemu_realloc(d
.dirty_bitmap
, size
);
319 allocated_size
= size
;
320 memset(d
.dirty_bitmap
, 0, allocated_size
);
324 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
325 dprintf("ioctl failed %d\n", errno
);
330 for (phys_addr
= mem
->start_addr
, addr
= mem
->phys_offset
;
331 phys_addr
< mem
->start_addr
+ mem
->memory_size
;
332 phys_addr
+= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
333 unsigned char *bitmap
= (unsigned char *)d
.dirty_bitmap
;
334 unsigned nr
= (phys_addr
- mem
->start_addr
) >> TARGET_PAGE_BITS
;
336 if (test_le_bit(nr
, bitmap
)) {
337 cpu_physical_memory_set_dirty(addr
);
340 start_addr
= phys_addr
;
342 qemu_free(d
.dirty_bitmap
);
347 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
350 #ifdef KVM_CAP_COALESCED_MMIO
351 KVMState
*s
= kvm_state
;
353 if (s
->coalesced_mmio
) {
354 struct kvm_coalesced_mmio_zone zone
;
359 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
366 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
369 #ifdef KVM_CAP_COALESCED_MMIO
370 KVMState
*s
= kvm_state
;
372 if (s
->coalesced_mmio
) {
373 struct kvm_coalesced_mmio_zone zone
;
378 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
385 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
389 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
397 int kvm_init(int smp_cpus
)
399 static const char upgrade_note
[] =
400 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
401 "(see http://sourceforge.net/projects/kvm).\n";
407 fprintf(stderr
, "No SMP KVM support, use '-smp 1'\n");
411 s
= qemu_mallocz(sizeof(KVMState
));
413 #ifdef KVM_CAP_SET_GUEST_DEBUG
414 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
416 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++)
417 s
->slots
[i
].slot
= i
;
420 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
422 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
427 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
428 if (ret
< KVM_API_VERSION
) {
431 fprintf(stderr
, "kvm version too old\n");
435 if (ret
> KVM_API_VERSION
) {
437 fprintf(stderr
, "kvm version not supported\n");
441 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
445 /* initially, KVM allocated its own memory and we had to jump through
446 * hooks to make phys_ram_base point to this. Modern versions of KVM
447 * just use a user allocated buffer so we can use regular pages
448 * unmodified. Make sure we have a sufficiently modern version of KVM.
450 if (!kvm_check_extension(s
, KVM_CAP_USER_MEMORY
)) {
452 fprintf(stderr
, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
457 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
458 * destroyed properly. Since we rely on this capability, refuse to work
459 * with any kernel without this capability. */
460 if (!kvm_check_extension(s
, KVM_CAP_DESTROY_MEMORY_REGION_WORKS
)) {
464 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
469 #ifdef KVM_CAP_COALESCED_MMIO
470 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
472 s
->coalesced_mmio
= 0;
475 s
->broken_set_mem_region
= 1;
476 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
477 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
479 s
->broken_set_mem_region
= 0;
484 #ifdef KVM_CAP_VCPU_EVENTS
485 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
488 ret
= kvm_arch_init(s
, smp_cpus
);
508 static int kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
514 for (i
= 0; i
< count
; i
++) {
515 if (direction
== KVM_EXIT_IO_IN
) {
518 stb_p(ptr
, cpu_inb(port
));
521 stw_p(ptr
, cpu_inw(port
));
524 stl_p(ptr
, cpu_inl(port
));
530 cpu_outb(port
, ldub_p(ptr
));
533 cpu_outw(port
, lduw_p(ptr
));
536 cpu_outl(port
, ldl_p(ptr
));
547 static void kvm_run_coalesced_mmio(CPUState
*env
, struct kvm_run
*run
)
549 #ifdef KVM_CAP_COALESCED_MMIO
550 KVMState
*s
= kvm_state
;
551 if (s
->coalesced_mmio
) {
552 struct kvm_coalesced_mmio_ring
*ring
;
554 ring
= (void *)run
+ (s
->coalesced_mmio
* TARGET_PAGE_SIZE
);
555 while (ring
->first
!= ring
->last
) {
556 struct kvm_coalesced_mmio
*ent
;
558 ent
= &ring
->coalesced_mmio
[ring
->first
];
560 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
561 /* FIXME smp_wmb() */
562 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
568 void kvm_cpu_synchronize_state(CPUState
*env
)
570 if (!env
->kvm_state
->regs_modified
) {
571 kvm_arch_get_registers(env
);
572 env
->kvm_state
->regs_modified
= 1;
576 int kvm_cpu_exec(CPUState
*env
)
578 struct kvm_run
*run
= env
->kvm_run
;
581 dprintf("kvm_cpu_exec()\n");
584 if (env
->exit_request
) {
585 dprintf("interrupt exit requested\n");
590 if (env
->kvm_state
->regs_modified
) {
591 kvm_arch_put_registers(env
);
592 env
->kvm_state
->regs_modified
= 0;
595 kvm_arch_pre_run(env
, run
);
596 qemu_mutex_unlock_iothread();
597 ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
598 qemu_mutex_lock_iothread();
599 kvm_arch_post_run(env
, run
);
601 if (ret
== -EINTR
|| ret
== -EAGAIN
) {
602 dprintf("io window exit\n");
608 dprintf("kvm run failed %s\n", strerror(-ret
));
612 kvm_run_coalesced_mmio(env
, run
);
614 ret
= 0; /* exit loop */
615 switch (run
->exit_reason
) {
617 dprintf("handle_io\n");
618 ret
= kvm_handle_io(run
->io
.port
,
619 (uint8_t *)run
+ run
->io
.data_offset
,
625 dprintf("handle_mmio\n");
626 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
632 case KVM_EXIT_IRQ_WINDOW_OPEN
:
633 dprintf("irq_window_open\n");
635 case KVM_EXIT_SHUTDOWN
:
636 dprintf("shutdown\n");
637 qemu_system_reset_request();
640 case KVM_EXIT_UNKNOWN
:
641 dprintf("kvm_exit_unknown\n");
643 case KVM_EXIT_FAIL_ENTRY
:
644 dprintf("kvm_exit_fail_entry\n");
646 case KVM_EXIT_EXCEPTION
:
647 dprintf("kvm_exit_exception\n");
650 dprintf("kvm_exit_debug\n");
651 #ifdef KVM_CAP_SET_GUEST_DEBUG
652 if (kvm_arch_debug(&run
->debug
.arch
)) {
653 gdb_set_stop_cpu(env
);
655 env
->exception_index
= EXCP_DEBUG
;
658 /* re-enter, this exception was guest-internal */
660 #endif /* KVM_CAP_SET_GUEST_DEBUG */
663 dprintf("kvm_arch_handle_exit\n");
664 ret
= kvm_arch_handle_exit(env
, run
);
669 if (env
->exit_request
) {
670 env
->exit_request
= 0;
671 env
->exception_index
= EXCP_INTERRUPT
;
677 void kvm_set_phys_mem(target_phys_addr_t start_addr
,
679 ram_addr_t phys_offset
)
681 KVMState
*s
= kvm_state
;
682 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
686 if (start_addr
& ~TARGET_PAGE_MASK
) {
687 if (flags
>= IO_MEM_UNASSIGNED
) {
688 if (!kvm_lookup_overlapping_slot(s
, start_addr
,
689 start_addr
+ size
)) {
692 fprintf(stderr
, "Unaligned split of a KVM memory slot\n");
694 fprintf(stderr
, "Only page-aligned memory slots supported\n");
699 /* KVM does not support read-only slots */
700 phys_offset
&= ~IO_MEM_ROM
;
703 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
708 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
709 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
710 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
711 /* The new slot fits into the existing one and comes with
712 * identical parameters - nothing to be done. */
718 /* unregister the overlapping slot */
719 mem
->memory_size
= 0;
720 err
= kvm_set_user_memory_region(s
, mem
);
722 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
723 __func__
, strerror(-err
));
727 /* Workaround for older KVM versions: we can't join slots, even not by
728 * unregistering the previous ones and then registering the larger
729 * slot. We have to maintain the existing fragmentation. Sigh.
731 * This workaround assumes that the new slot starts at the same
732 * address as the first existing one. If not or if some overlapping
733 * slot comes around later, we will fail (not seen in practice so far)
734 * - and actually require a recent KVM version. */
735 if (s
->broken_set_mem_region
&&
736 old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
737 flags
< IO_MEM_UNASSIGNED
) {
738 mem
= kvm_alloc_slot(s
);
739 mem
->memory_size
= old
.memory_size
;
740 mem
->start_addr
= old
.start_addr
;
741 mem
->phys_offset
= old
.phys_offset
;
744 err
= kvm_set_user_memory_region(s
, mem
);
746 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
751 start_addr
+= old
.memory_size
;
752 phys_offset
+= old
.memory_size
;
753 size
-= old
.memory_size
;
757 /* register prefix slot */
758 if (old
.start_addr
< start_addr
) {
759 mem
= kvm_alloc_slot(s
);
760 mem
->memory_size
= start_addr
- old
.start_addr
;
761 mem
->start_addr
= old
.start_addr
;
762 mem
->phys_offset
= old
.phys_offset
;
765 err
= kvm_set_user_memory_region(s
, mem
);
767 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
768 __func__
, strerror(-err
));
773 /* register suffix slot */
774 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
775 ram_addr_t size_delta
;
777 mem
= kvm_alloc_slot(s
);
778 mem
->start_addr
= start_addr
+ size
;
779 size_delta
= mem
->start_addr
- old
.start_addr
;
780 mem
->memory_size
= old
.memory_size
- size_delta
;
781 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
784 err
= kvm_set_user_memory_region(s
, mem
);
786 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
787 __func__
, strerror(-err
));
793 /* in case the KVM bug workaround already "consumed" the new slot */
797 /* KVM does not need to know about this memory */
798 if (flags
>= IO_MEM_UNASSIGNED
)
801 mem
= kvm_alloc_slot(s
);
802 mem
->memory_size
= size
;
803 mem
->start_addr
= start_addr
;
804 mem
->phys_offset
= phys_offset
;
807 err
= kvm_set_user_memory_region(s
, mem
);
809 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
815 int kvm_ioctl(KVMState
*s
, int type
, ...)
822 arg
= va_arg(ap
, void *);
825 ret
= ioctl(s
->fd
, type
, arg
);
832 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
839 arg
= va_arg(ap
, void *);
842 ret
= ioctl(s
->vmfd
, type
, arg
);
849 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
856 arg
= va_arg(ap
, void *);
859 ret
= ioctl(env
->kvm_fd
, type
, arg
);
866 int kvm_has_sync_mmu(void)
868 #ifdef KVM_CAP_SYNC_MMU
869 KVMState
*s
= kvm_state
;
871 return kvm_check_extension(s
, KVM_CAP_SYNC_MMU
);
877 int kvm_has_vcpu_events(void)
879 return kvm_state
->vcpu_events
;
882 void kvm_setup_guest_memory(void *start
, size_t size
)
884 if (!kvm_has_sync_mmu()) {
886 int ret
= madvise(start
, size
, MADV_DONTFORK
);
894 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
900 #ifdef KVM_CAP_SET_GUEST_DEBUG
901 static void on_vcpu(CPUState
*env
, void (*func
)(void *data
), void *data
)
903 #ifdef CONFIG_IOTHREAD
904 if (env
== cpu_single_env
) {
914 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
917 struct kvm_sw_breakpoint
*bp
;
919 QTAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
926 int kvm_sw_breakpoints_active(CPUState
*env
)
928 return !QTAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
931 struct kvm_set_guest_debug_data
{
932 struct kvm_guest_debug dbg
;
937 static void kvm_invoke_set_guest_debug(void *data
)
939 struct kvm_set_guest_debug_data
*dbg_data
= data
;
940 CPUState
*env
= dbg_data
->env
;
942 if (env
->kvm_state
->regs_modified
) {
943 kvm_arch_put_registers(env
);
944 env
->kvm_state
->regs_modified
= 0;
946 dbg_data
->err
= kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
949 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
951 struct kvm_set_guest_debug_data data
;
953 data
.dbg
.control
= 0;
954 if (env
->singlestep_enabled
)
955 data
.dbg
.control
= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
957 kvm_arch_update_guest_debug(env
, &data
.dbg
);
958 data
.dbg
.control
|= reinject_trap
;
961 on_vcpu(env
, kvm_invoke_set_guest_debug
, &data
);
965 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
966 target_ulong len
, int type
)
968 struct kvm_sw_breakpoint
*bp
;
972 if (type
== GDB_BREAKPOINT_SW
) {
973 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
979 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
985 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
991 QTAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
994 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
999 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1000 err
= kvm_update_guest_debug(env
, 0);
1007 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1008 target_ulong len
, int type
)
1010 struct kvm_sw_breakpoint
*bp
;
1014 if (type
== GDB_BREAKPOINT_SW
) {
1015 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1019 if (bp
->use_count
> 1) {
1024 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1028 QTAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1031 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1036 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1037 err
= kvm_update_guest_debug(env
, 0);
1044 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1046 struct kvm_sw_breakpoint
*bp
, *next
;
1047 KVMState
*s
= current_env
->kvm_state
;
1050 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1051 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1052 /* Try harder to find a CPU that currently sees the breakpoint. */
1053 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1054 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
1059 kvm_arch_remove_all_hw_breakpoints();
1061 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1062 kvm_update_guest_debug(env
, 0);
1065 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1067 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1072 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1073 target_ulong len
, int type
)
1078 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1079 target_ulong len
, int type
)
1084 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1087 #endif /* !KVM_CAP_SET_GUEST_DEBUG */