target-arm: fix support for VRECPE.
[qemu.git] / target-ppc / kvm.c
blobbd4012a4ec9afba680a27738a694aa1d6ad7870d
1 /*
2 * PowerPC implementation of KVM hooks
4 * Copyright IBM Corp. 2007
6 * Authors:
7 * Jerone Young <jyoung5@us.ibm.com>
8 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
9 * Hollis Blanchard <hollisb@us.ibm.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
20 #include <linux/kvm.h>
22 #include "qemu-common.h"
23 #include "qemu-timer.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "kvm_ppc.h"
27 #include "cpu.h"
28 #include "device_tree.h"
30 //#define DEBUG_KVM
32 #ifdef DEBUG_KVM
33 #define dprintf(fmt, ...) \
34 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
35 #else
36 #define dprintf(fmt, ...) \
37 do { } while (0)
38 #endif
40 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
41 KVM_CAP_LAST_INFO
44 static int cap_interrupt_unset = false;
45 static int cap_interrupt_level = false;
47 /* XXX We have a race condition where we actually have a level triggered
48 * interrupt, but the infrastructure can't expose that yet, so the guest
49 * takes but ignores it, goes to sleep and never gets notified that there's
50 * still an interrupt pending.
52 * As a quick workaround, let's just wake up again 20 ms after we injected
53 * an interrupt. That way we can assure that we're always reinjecting
54 * interrupts in case the guest swallowed them.
56 static QEMUTimer *idle_timer;
58 static void kvm_kick_env(void *env)
60 qemu_cpu_kick(env);
63 int kvm_arch_init(KVMState *s)
65 #ifdef KVM_CAP_PPC_UNSET_IRQ
66 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
67 #endif
68 #ifdef KVM_CAP_PPC_IRQ_LEVEL
69 cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
70 #endif
72 if (!cap_interrupt_level) {
73 fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
74 "VM to stall at times!\n");
77 return 0;
80 int kvm_arch_init_vcpu(CPUState *cenv)
82 int ret = 0;
83 struct kvm_sregs sregs;
85 sregs.pvr = cenv->spr[SPR_PVR];
86 ret = kvm_vcpu_ioctl(cenv, KVM_SET_SREGS, &sregs);
88 idle_timer = qemu_new_timer(vm_clock, kvm_kick_env, cenv);
90 return ret;
93 void kvm_arch_reset_vcpu(CPUState *env)
97 int kvm_arch_put_registers(CPUState *env, int level)
99 struct kvm_regs regs;
100 int ret;
101 int i;
103 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
104 if (ret < 0)
105 return ret;
107 regs.ctr = env->ctr;
108 regs.lr = env->lr;
109 regs.xer = env->xer;
110 regs.msr = env->msr;
111 regs.pc = env->nip;
113 regs.srr0 = env->spr[SPR_SRR0];
114 regs.srr1 = env->spr[SPR_SRR1];
116 regs.sprg0 = env->spr[SPR_SPRG0];
117 regs.sprg1 = env->spr[SPR_SPRG1];
118 regs.sprg2 = env->spr[SPR_SPRG2];
119 regs.sprg3 = env->spr[SPR_SPRG3];
120 regs.sprg4 = env->spr[SPR_SPRG4];
121 regs.sprg5 = env->spr[SPR_SPRG5];
122 regs.sprg6 = env->spr[SPR_SPRG6];
123 regs.sprg7 = env->spr[SPR_SPRG7];
125 for (i = 0;i < 32; i++)
126 regs.gpr[i] = env->gpr[i];
128 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
129 if (ret < 0)
130 return ret;
132 return ret;
135 int kvm_arch_get_registers(CPUState *env)
137 struct kvm_regs regs;
138 struct kvm_sregs sregs;
139 int i, ret;
141 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
142 if (ret < 0)
143 return ret;
145 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
146 if (ret < 0)
147 return ret;
149 env->ctr = regs.ctr;
150 env->lr = regs.lr;
151 env->xer = regs.xer;
152 env->msr = regs.msr;
153 env->nip = regs.pc;
155 env->spr[SPR_SRR0] = regs.srr0;
156 env->spr[SPR_SRR1] = regs.srr1;
158 env->spr[SPR_SPRG0] = regs.sprg0;
159 env->spr[SPR_SPRG1] = regs.sprg1;
160 env->spr[SPR_SPRG2] = regs.sprg2;
161 env->spr[SPR_SPRG3] = regs.sprg3;
162 env->spr[SPR_SPRG4] = regs.sprg4;
163 env->spr[SPR_SPRG5] = regs.sprg5;
164 env->spr[SPR_SPRG6] = regs.sprg6;
165 env->spr[SPR_SPRG7] = regs.sprg7;
167 for (i = 0;i < 32; i++)
168 env->gpr[i] = regs.gpr[i];
170 #ifdef KVM_CAP_PPC_SEGSTATE
171 if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_SEGSTATE)) {
172 env->sdr1 = sregs.u.s.sdr1;
174 /* Sync SLB */
175 #ifdef TARGET_PPC64
176 for (i = 0; i < 64; i++) {
177 ppc_store_slb(env, sregs.u.s.ppc64.slb[i].slbe,
178 sregs.u.s.ppc64.slb[i].slbv);
180 #endif
182 /* Sync SRs */
183 for (i = 0; i < 16; i++) {
184 env->sr[i] = sregs.u.s.ppc32.sr[i];
187 /* Sync BATs */
188 for (i = 0; i < 8; i++) {
189 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
190 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
191 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
192 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
195 #endif
197 return 0;
200 int kvmppc_set_interrupt(CPUState *env, int irq, int level)
202 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
204 if (irq != PPC_INTERRUPT_EXT) {
205 return 0;
208 if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
209 return 0;
212 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &virq);
214 return 0;
217 #if defined(TARGET_PPCEMB)
218 #define PPC_INPUT_INT PPC40x_INPUT_INT
219 #elif defined(TARGET_PPC64)
220 #define PPC_INPUT_INT PPC970_INPUT_INT
221 #else
222 #define PPC_INPUT_INT PPC6xx_INPUT_INT
223 #endif
225 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
227 int r;
228 unsigned irq;
230 /* PowerPC Qemu tracks the various core input pins (interrupt, critical
231 * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
232 if (!cap_interrupt_level &&
233 run->ready_for_interrupt_injection &&
234 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
235 (env->irq_input_state & (1<<PPC_INPUT_INT)))
237 /* For now KVM disregards the 'irq' argument. However, in the
238 * future KVM could cache it in-kernel to avoid a heavyweight exit
239 * when reading the UIC.
241 irq = KVM_INTERRUPT_SET;
243 dprintf("injected interrupt %d\n", irq);
244 r = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &irq);
245 if (r < 0)
246 printf("cpu %d fail inject %x\n", env->cpu_index, irq);
248 /* Always wake up soon in case the interrupt was level based */
249 qemu_mod_timer(idle_timer, qemu_get_clock(vm_clock) +
250 (get_ticks_per_sec() / 50));
253 /* We don't know if there are more interrupts pending after this. However,
254 * the guest will return to userspace in the course of handling this one
255 * anyways, so we will get a chance to deliver the rest. */
256 return 0;
259 void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
263 void kvm_arch_process_irqchip_events(CPUState *env)
267 static int kvmppc_handle_halt(CPUState *env)
269 if (!(env->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
270 env->halted = 1;
271 env->exception_index = EXCP_HLT;
274 return 1;
277 /* map dcr access to existing qemu dcr emulation */
278 static int kvmppc_handle_dcr_read(CPUState *env, uint32_t dcrn, uint32_t *data)
280 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
281 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
283 return 1;
286 static int kvmppc_handle_dcr_write(CPUState *env, uint32_t dcrn, uint32_t data)
288 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
289 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
291 return 1;
294 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
296 int ret = 0;
298 switch (run->exit_reason) {
299 case KVM_EXIT_DCR:
300 if (run->dcr.is_write) {
301 dprintf("handle dcr write\n");
302 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
303 } else {
304 dprintf("handle dcr read\n");
305 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
307 break;
308 case KVM_EXIT_HLT:
309 dprintf("handle halt\n");
310 ret = kvmppc_handle_halt(env);
311 break;
312 default:
313 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
314 ret = -1;
315 break;
318 return ret;
321 static int read_cpuinfo(const char *field, char *value, int len)
323 FILE *f;
324 int ret = -1;
325 int field_len = strlen(field);
326 char line[512];
328 f = fopen("/proc/cpuinfo", "r");
329 if (!f) {
330 return -1;
333 do {
334 if(!fgets(line, sizeof(line), f)) {
335 break;
337 if (!strncmp(line, field, field_len)) {
338 strncpy(value, line, len);
339 ret = 0;
340 break;
342 } while(*line);
344 fclose(f);
346 return ret;
349 uint32_t kvmppc_get_tbfreq(void)
351 char line[512];
352 char *ns;
353 uint32_t retval = get_ticks_per_sec();
355 if (read_cpuinfo("timebase", line, sizeof(line))) {
356 return retval;
359 if (!(ns = strchr(line, ':'))) {
360 return retval;
363 ns++;
365 retval = atoi(ns);
366 return retval;
369 int kvmppc_get_hypercall(CPUState *env, uint8_t *buf, int buf_len)
371 uint32_t *hc = (uint32_t*)buf;
373 #ifdef KVM_CAP_PPC_GET_PVINFO
374 struct kvm_ppc_pvinfo pvinfo;
376 if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
377 !kvm_vm_ioctl(env->kvm_state, KVM_PPC_GET_PVINFO, &pvinfo)) {
378 memcpy(buf, pvinfo.hcall, buf_len);
380 return 0;
382 #endif
385 * Fallback to always fail hypercalls:
387 * li r3, -1
388 * nop
389 * nop
390 * nop
393 hc[0] = 0x3860ffff;
394 hc[1] = 0x60000000;
395 hc[2] = 0x60000000;
396 hc[3] = 0x60000000;
398 return 0;
401 bool kvm_arch_stop_on_emulation_error(CPUState *env)
403 return true;
406 int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
408 return 1;
411 int kvm_arch_on_sigbus(int code, void *addr)
413 return 1;