pci: Do not check if a bus exist in pci_parse_devaddr.
[qemu.git] / hw / mc146818rtc.c
blob2b59c36ee66149f238ea415059c44d7d619925a6
1 /*
2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "qemu-timer.h"
26 #include "sysemu.h"
27 #include "mc146818rtc.h"
29 #ifdef TARGET_I386
30 #include "apic.h"
31 #endif
33 //#define DEBUG_CMOS
34 //#define DEBUG_COALESCED
36 #ifdef DEBUG_CMOS
37 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
38 #else
39 # define CMOS_DPRINTF(format, ...) do { } while (0)
40 #endif
42 #ifdef DEBUG_COALESCED
43 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
44 #else
45 # define DPRINTF_C(format, ...) do { } while (0)
46 #endif
48 #define RTC_REINJECT_ON_ACK_COUNT 20
50 #define RTC_SECONDS 0
51 #define RTC_SECONDS_ALARM 1
52 #define RTC_MINUTES 2
53 #define RTC_MINUTES_ALARM 3
54 #define RTC_HOURS 4
55 #define RTC_HOURS_ALARM 5
56 #define RTC_ALARM_DONT_CARE 0xC0
58 #define RTC_DAY_OF_WEEK 6
59 #define RTC_DAY_OF_MONTH 7
60 #define RTC_MONTH 8
61 #define RTC_YEAR 9
63 #define RTC_REG_A 10
64 #define RTC_REG_B 11
65 #define RTC_REG_C 12
66 #define RTC_REG_D 13
68 #define REG_A_UIP 0x80
70 #define REG_B_SET 0x80
71 #define REG_B_PIE 0x40
72 #define REG_B_AIE 0x20
73 #define REG_B_UIE 0x10
74 #define REG_B_SQWE 0x08
75 #define REG_B_DM 0x04
76 #define REG_B_24H 0x02
78 #define REG_C_UF 0x10
79 #define REG_C_IRQF 0x80
80 #define REG_C_PF 0x40
81 #define REG_C_AF 0x20
83 typedef struct RTCState {
84 ISADevice dev;
85 MemoryRegion io;
86 uint8_t cmos_data[128];
87 uint8_t cmos_index;
88 struct tm current_tm;
89 int32_t base_year;
90 qemu_irq irq;
91 qemu_irq sqw_irq;
92 int it_shift;
93 /* periodic timer */
94 QEMUTimer *periodic_timer;
95 int64_t next_periodic_time;
96 /* second update */
97 int64_t next_second_time;
98 uint16_t irq_reinject_on_ack_count;
99 uint32_t irq_coalesced;
100 uint32_t period;
101 QEMUTimer *coalesced_timer;
102 QEMUTimer *second_timer;
103 QEMUTimer *second_timer2;
104 Notifier clock_reset_notifier;
105 LostTickPolicy lost_tick_policy;
106 Notifier suspend_notifier;
107 } RTCState;
109 static void rtc_set_time(RTCState *s);
110 static void rtc_copy_date(RTCState *s);
112 #ifdef TARGET_I386
113 static void rtc_coalesced_timer_update(RTCState *s)
115 if (s->irq_coalesced == 0) {
116 qemu_del_timer(s->coalesced_timer);
117 } else {
118 /* divide each RTC interval to 2 - 8 smaller intervals */
119 int c = MIN(s->irq_coalesced, 7) + 1;
120 int64_t next_clock = qemu_get_clock_ns(rtc_clock) +
121 muldiv64(s->period / c, get_ticks_per_sec(), 32768);
122 qemu_mod_timer(s->coalesced_timer, next_clock);
126 static void rtc_coalesced_timer(void *opaque)
128 RTCState *s = opaque;
130 if (s->irq_coalesced != 0) {
131 apic_reset_irq_delivered();
132 s->cmos_data[RTC_REG_C] |= 0xc0;
133 DPRINTF_C("cmos: injecting from timer\n");
134 qemu_irq_raise(s->irq);
135 if (apic_get_irq_delivered()) {
136 s->irq_coalesced--;
137 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
138 s->irq_coalesced);
142 rtc_coalesced_timer_update(s);
144 #endif
146 static void rtc_timer_update(RTCState *s, int64_t current_time)
148 int period_code, period;
149 int64_t cur_clock, next_irq_clock;
151 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
152 if (period_code != 0
153 && ((s->cmos_data[RTC_REG_B] & REG_B_PIE)
154 || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
155 if (period_code <= 2)
156 period_code += 7;
157 /* period in 32 Khz cycles */
158 period = 1 << (period_code - 1);
159 #ifdef TARGET_I386
160 if (period != s->period) {
161 s->irq_coalesced = (s->irq_coalesced * s->period) / period;
162 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
164 s->period = period;
165 #endif
166 /* compute 32 khz clock */
167 cur_clock = muldiv64(current_time, 32768, get_ticks_per_sec());
168 next_irq_clock = (cur_clock & ~(period - 1)) + period;
169 s->next_periodic_time =
170 muldiv64(next_irq_clock, get_ticks_per_sec(), 32768) + 1;
171 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
172 } else {
173 #ifdef TARGET_I386
174 s->irq_coalesced = 0;
175 #endif
176 qemu_del_timer(s->periodic_timer);
180 static void rtc_periodic_timer(void *opaque)
182 RTCState *s = opaque;
184 rtc_timer_update(s, s->next_periodic_time);
185 s->cmos_data[RTC_REG_C] |= REG_C_PF;
186 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
187 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
188 #ifdef TARGET_I386
189 if (s->lost_tick_policy == LOST_TICK_SLEW) {
190 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
191 s->irq_reinject_on_ack_count = 0;
192 apic_reset_irq_delivered();
193 qemu_irq_raise(s->irq);
194 if (!apic_get_irq_delivered()) {
195 s->irq_coalesced++;
196 rtc_coalesced_timer_update(s);
197 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
198 s->irq_coalesced);
200 } else
201 #endif
202 qemu_irq_raise(s->irq);
204 if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
205 /* Not square wave at all but we don't want 2048Hz interrupts!
206 Must be seen as a pulse. */
207 qemu_irq_raise(s->sqw_irq);
211 static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
213 RTCState *s = opaque;
215 if ((addr & 1) == 0) {
216 s->cmos_index = data & 0x7f;
217 } else {
218 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
219 s->cmos_index, data);
220 switch(s->cmos_index) {
221 case RTC_SECONDS_ALARM:
222 case RTC_MINUTES_ALARM:
223 case RTC_HOURS_ALARM:
224 s->cmos_data[s->cmos_index] = data;
225 break;
226 case RTC_SECONDS:
227 case RTC_MINUTES:
228 case RTC_HOURS:
229 case RTC_DAY_OF_WEEK:
230 case RTC_DAY_OF_MONTH:
231 case RTC_MONTH:
232 case RTC_YEAR:
233 s->cmos_data[s->cmos_index] = data;
234 /* if in set mode, do not update the time */
235 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
236 rtc_set_time(s);
238 break;
239 case RTC_REG_A:
240 /* UIP bit is read only */
241 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
242 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
243 rtc_timer_update(s, qemu_get_clock_ns(rtc_clock));
244 break;
245 case RTC_REG_B:
246 if (data & REG_B_SET) {
247 /* set mode: reset UIP mode */
248 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
249 data &= ~REG_B_UIE;
250 } else {
251 /* if disabling set mode, update the time */
252 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
253 rtc_set_time(s);
256 if (((s->cmos_data[RTC_REG_B] ^ data) & (REG_B_DM | REG_B_24H)) &&
257 !(data & REG_B_SET)) {
258 /* If the time format has changed and not in set mode,
259 update the registers immediately. */
260 s->cmos_data[RTC_REG_B] = data;
261 rtc_copy_date(s);
262 } else {
263 s->cmos_data[RTC_REG_B] = data;
265 rtc_timer_update(s, qemu_get_clock_ns(rtc_clock));
266 break;
267 case RTC_REG_C:
268 case RTC_REG_D:
269 /* cannot write to them */
270 break;
271 default:
272 s->cmos_data[s->cmos_index] = data;
273 break;
278 static inline int rtc_to_bcd(RTCState *s, int a)
280 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
281 return a;
282 } else {
283 return ((a / 10) << 4) | (a % 10);
287 static inline int rtc_from_bcd(RTCState *s, int a)
289 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
290 return a;
291 } else {
292 return ((a >> 4) * 10) + (a & 0x0f);
296 static void rtc_set_time(RTCState *s)
298 struct tm *tm = &s->current_tm;
300 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
301 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
302 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
303 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
304 tm->tm_hour %= 12;
305 if (s->cmos_data[RTC_HOURS] & 0x80) {
306 tm->tm_hour += 12;
309 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
310 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
311 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
312 tm->tm_year = rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
314 rtc_change_mon_event(tm);
317 static void rtc_copy_date(RTCState *s)
319 const struct tm *tm = &s->current_tm;
320 int year;
322 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
323 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
324 if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
325 /* 24 hour format */
326 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
327 } else {
328 /* 12 hour format */
329 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
330 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
331 if (tm->tm_hour >= 12)
332 s->cmos_data[RTC_HOURS] |= 0x80;
334 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
335 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
336 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
337 year = (tm->tm_year - s->base_year) % 100;
338 if (year < 0)
339 year += 100;
340 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year);
343 /* month is between 0 and 11. */
344 static int get_days_in_month(int month, int year)
346 static const int days_tab[12] = {
347 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
349 int d;
350 if ((unsigned )month >= 12)
351 return 31;
352 d = days_tab[month];
353 if (month == 1) {
354 if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
355 d++;
357 return d;
360 /* update 'tm' to the next second */
361 static void rtc_next_second(struct tm *tm)
363 int days_in_month;
365 tm->tm_sec++;
366 if ((unsigned)tm->tm_sec >= 60) {
367 tm->tm_sec = 0;
368 tm->tm_min++;
369 if ((unsigned)tm->tm_min >= 60) {
370 tm->tm_min = 0;
371 tm->tm_hour++;
372 if ((unsigned)tm->tm_hour >= 24) {
373 tm->tm_hour = 0;
374 /* next day */
375 tm->tm_wday++;
376 if ((unsigned)tm->tm_wday >= 7)
377 tm->tm_wday = 0;
378 days_in_month = get_days_in_month(tm->tm_mon,
379 tm->tm_year + 1900);
380 tm->tm_mday++;
381 if (tm->tm_mday < 1) {
382 tm->tm_mday = 1;
383 } else if (tm->tm_mday > days_in_month) {
384 tm->tm_mday = 1;
385 tm->tm_mon++;
386 if (tm->tm_mon >= 12) {
387 tm->tm_mon = 0;
388 tm->tm_year++;
397 static void rtc_update_second(void *opaque)
399 RTCState *s = opaque;
400 int64_t delay;
402 /* if the oscillator is not in normal operation, we do not update */
403 if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
404 s->next_second_time += get_ticks_per_sec();
405 qemu_mod_timer(s->second_timer, s->next_second_time);
406 } else {
407 rtc_next_second(&s->current_tm);
409 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
410 /* update in progress bit */
411 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
413 /* should be 244 us = 8 / 32768 seconds, but currently the
414 timers do not have the necessary resolution. */
415 delay = (get_ticks_per_sec() * 1) / 100;
416 if (delay < 1)
417 delay = 1;
418 qemu_mod_timer(s->second_timer2,
419 s->next_second_time + delay);
423 static void rtc_update_second2(void *opaque)
425 RTCState *s = opaque;
427 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
428 rtc_copy_date(s);
431 /* check alarm */
432 if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
433 rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]) == s->current_tm.tm_sec) &&
434 ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
435 rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]) == s->current_tm.tm_min) &&
436 ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
437 rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]) == s->current_tm.tm_hour)) {
439 s->cmos_data[RTC_REG_C] |= REG_C_AF;
440 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
441 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC);
442 qemu_irq_raise(s->irq);
443 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
447 /* update ended interrupt */
448 s->cmos_data[RTC_REG_C] |= REG_C_UF;
449 if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
450 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
451 qemu_irq_raise(s->irq);
454 /* clear update in progress bit */
455 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
457 s->next_second_time += get_ticks_per_sec();
458 qemu_mod_timer(s->second_timer, s->next_second_time);
461 static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
463 RTCState *s = opaque;
464 int ret;
465 if ((addr & 1) == 0) {
466 return 0xff;
467 } else {
468 switch(s->cmos_index) {
469 case RTC_SECONDS:
470 case RTC_MINUTES:
471 case RTC_HOURS:
472 case RTC_DAY_OF_WEEK:
473 case RTC_DAY_OF_MONTH:
474 case RTC_MONTH:
475 case RTC_YEAR:
476 ret = s->cmos_data[s->cmos_index];
477 break;
478 case RTC_REG_A:
479 ret = s->cmos_data[s->cmos_index];
480 break;
481 case RTC_REG_C:
482 ret = s->cmos_data[s->cmos_index];
483 qemu_irq_lower(s->irq);
484 s->cmos_data[RTC_REG_C] = 0x00;
485 #ifdef TARGET_I386
486 if(s->irq_coalesced &&
487 (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
488 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
489 s->irq_reinject_on_ack_count++;
490 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
491 apic_reset_irq_delivered();
492 DPRINTF_C("cmos: injecting on ack\n");
493 qemu_irq_raise(s->irq);
494 if (apic_get_irq_delivered()) {
495 s->irq_coalesced--;
496 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
497 s->irq_coalesced);
500 #endif
501 break;
502 default:
503 ret = s->cmos_data[s->cmos_index];
504 break;
506 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
507 s->cmos_index, ret);
508 return ret;
512 void rtc_set_memory(ISADevice *dev, int addr, int val)
514 RTCState *s = DO_UPCAST(RTCState, dev, dev);
515 if (addr >= 0 && addr <= 127)
516 s->cmos_data[addr] = val;
519 void rtc_set_date(ISADevice *dev, const struct tm *tm)
521 RTCState *s = DO_UPCAST(RTCState, dev, dev);
522 s->current_tm = *tm;
523 rtc_copy_date(s);
526 /* PC cmos mappings */
527 #define REG_IBM_CENTURY_BYTE 0x32
528 #define REG_IBM_PS2_CENTURY_BYTE 0x37
530 static void rtc_set_date_from_host(ISADevice *dev)
532 RTCState *s = DO_UPCAST(RTCState, dev, dev);
533 struct tm tm;
534 int val;
536 /* set the CMOS date */
537 qemu_get_timedate(&tm, 0);
538 rtc_set_date(dev, &tm);
540 val = rtc_to_bcd(s, (tm.tm_year / 100) + 19);
541 rtc_set_memory(dev, REG_IBM_CENTURY_BYTE, val);
542 rtc_set_memory(dev, REG_IBM_PS2_CENTURY_BYTE, val);
545 static int rtc_post_load(void *opaque, int version_id)
547 #ifdef TARGET_I386
548 RTCState *s = opaque;
550 if (version_id >= 2) {
551 if (s->lost_tick_policy == LOST_TICK_SLEW) {
552 rtc_coalesced_timer_update(s);
555 #endif
556 return 0;
559 static const VMStateDescription vmstate_rtc = {
560 .name = "mc146818rtc",
561 .version_id = 2,
562 .minimum_version_id = 1,
563 .minimum_version_id_old = 1,
564 .post_load = rtc_post_load,
565 .fields = (VMStateField []) {
566 VMSTATE_BUFFER(cmos_data, RTCState),
567 VMSTATE_UINT8(cmos_index, RTCState),
568 VMSTATE_INT32(current_tm.tm_sec, RTCState),
569 VMSTATE_INT32(current_tm.tm_min, RTCState),
570 VMSTATE_INT32(current_tm.tm_hour, RTCState),
571 VMSTATE_INT32(current_tm.tm_wday, RTCState),
572 VMSTATE_INT32(current_tm.tm_mday, RTCState),
573 VMSTATE_INT32(current_tm.tm_mon, RTCState),
574 VMSTATE_INT32(current_tm.tm_year, RTCState),
575 VMSTATE_TIMER(periodic_timer, RTCState),
576 VMSTATE_INT64(next_periodic_time, RTCState),
577 VMSTATE_INT64(next_second_time, RTCState),
578 VMSTATE_TIMER(second_timer, RTCState),
579 VMSTATE_TIMER(second_timer2, RTCState),
580 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
581 VMSTATE_UINT32_V(period, RTCState, 2),
582 VMSTATE_END_OF_LIST()
586 static void rtc_notify_clock_reset(Notifier *notifier, void *data)
588 RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
589 int64_t now = *(int64_t *)data;
591 rtc_set_date_from_host(&s->dev);
592 s->next_second_time = now + (get_ticks_per_sec() * 99) / 100;
593 qemu_mod_timer(s->second_timer2, s->next_second_time);
594 rtc_timer_update(s, now);
595 #ifdef TARGET_I386
596 if (s->lost_tick_policy == LOST_TICK_SLEW) {
597 rtc_coalesced_timer_update(s);
599 #endif
602 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
603 BIOS will read it and start S3 resume at POST Entry */
604 static void rtc_notify_suspend(Notifier *notifier, void *data)
606 RTCState *s = container_of(notifier, RTCState, suspend_notifier);
607 rtc_set_memory(&s->dev, 0xF, 0xFE);
610 static void rtc_reset(void *opaque)
612 RTCState *s = opaque;
614 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
615 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
617 qemu_irq_lower(s->irq);
619 #ifdef TARGET_I386
620 if (s->lost_tick_policy == LOST_TICK_SLEW) {
621 s->irq_coalesced = 0;
623 #endif
626 static const MemoryRegionPortio cmos_portio[] = {
627 {0, 2, 1, .read = cmos_ioport_read, .write = cmos_ioport_write },
628 PORTIO_END_OF_LIST(),
631 static const MemoryRegionOps cmos_ops = {
632 .old_portio = cmos_portio
635 // FIXME add int32 visitor
636 static void visit_type_int32(Visitor *v, int *value, const char *name, Error **errp)
638 int64_t val = *value;
639 visit_type_int(v, &val, name, errp);
642 static void rtc_get_date(Object *obj, Visitor *v, void *opaque,
643 const char *name, Error **errp)
645 ISADevice *isa = ISA_DEVICE(obj);
646 RTCState *s = DO_UPCAST(RTCState, dev, isa);
648 visit_start_struct(v, NULL, "struct tm", name, 0, errp);
649 visit_type_int32(v, &s->current_tm.tm_year, "tm_year", errp);
650 visit_type_int32(v, &s->current_tm.tm_mon, "tm_mon", errp);
651 visit_type_int32(v, &s->current_tm.tm_mday, "tm_mday", errp);
652 visit_type_int32(v, &s->current_tm.tm_hour, "tm_hour", errp);
653 visit_type_int32(v, &s->current_tm.tm_min, "tm_min", errp);
654 visit_type_int32(v, &s->current_tm.tm_sec, "tm_sec", errp);
655 visit_end_struct(v, errp);
658 static int rtc_initfn(ISADevice *dev)
660 RTCState *s = DO_UPCAST(RTCState, dev, dev);
661 int base = 0x70;
663 s->cmos_data[RTC_REG_A] = 0x26;
664 s->cmos_data[RTC_REG_B] = 0x02;
665 s->cmos_data[RTC_REG_C] = 0x00;
666 s->cmos_data[RTC_REG_D] = 0x80;
668 rtc_set_date_from_host(dev);
670 #ifdef TARGET_I386
671 switch (s->lost_tick_policy) {
672 case LOST_TICK_SLEW:
673 s->coalesced_timer =
674 qemu_new_timer_ns(rtc_clock, rtc_coalesced_timer, s);
675 break;
676 case LOST_TICK_DISCARD:
677 break;
678 default:
679 return -EINVAL;
681 #endif
683 s->periodic_timer = qemu_new_timer_ns(rtc_clock, rtc_periodic_timer, s);
684 s->second_timer = qemu_new_timer_ns(rtc_clock, rtc_update_second, s);
685 s->second_timer2 = qemu_new_timer_ns(rtc_clock, rtc_update_second2, s);
687 s->clock_reset_notifier.notify = rtc_notify_clock_reset;
688 qemu_register_clock_reset_notifier(rtc_clock, &s->clock_reset_notifier);
690 s->suspend_notifier.notify = rtc_notify_suspend;
691 qemu_register_suspend_notifier(&s->suspend_notifier);
693 s->next_second_time =
694 qemu_get_clock_ns(rtc_clock) + (get_ticks_per_sec() * 99) / 100;
695 qemu_mod_timer(s->second_timer2, s->next_second_time);
697 memory_region_init_io(&s->io, &cmos_ops, s, "rtc", 2);
698 isa_register_ioport(dev, &s->io, base);
700 qdev_set_legacy_instance_id(&dev->qdev, base, 2);
701 qemu_register_reset(rtc_reset, s);
703 object_property_add(OBJECT(s), "date", "struct tm",
704 rtc_get_date, NULL, NULL, s, NULL);
706 return 0;
709 ISADevice *rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
711 ISADevice *dev;
712 RTCState *s;
714 dev = isa_create(bus, "mc146818rtc");
715 s = DO_UPCAST(RTCState, dev, dev);
716 qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
717 qdev_init_nofail(&dev->qdev);
718 if (intercept_irq) {
719 s->irq = intercept_irq;
720 } else {
721 isa_init_irq(dev, &s->irq, RTC_ISA_IRQ);
723 return dev;
726 static Property mc146818rtc_properties[] = {
727 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
728 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
729 lost_tick_policy, LOST_TICK_DISCARD),
730 DEFINE_PROP_END_OF_LIST(),
733 static void rtc_class_initfn(ObjectClass *klass, void *data)
735 DeviceClass *dc = DEVICE_CLASS(klass);
736 ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
737 ic->init = rtc_initfn;
738 dc->no_user = 1;
739 dc->vmsd = &vmstate_rtc;
740 dc->props = mc146818rtc_properties;
743 static TypeInfo mc146818rtc_info = {
744 .name = "mc146818rtc",
745 .parent = TYPE_ISA_DEVICE,
746 .instance_size = sizeof(RTCState),
747 .class_init = rtc_class_initfn,
750 static void mc146818rtc_register_types(void)
752 type_register_static(&mc146818rtc_info);
755 type_init(mc146818rtc_register_types)