tests: acpi: add pvpanic-isa: testcase
[qemu.git] / target / i386 / helper.c
blobfa409e9c44a80d0b618aa050fa7a20c79eaef2eb
1 /*
2 * i386 helpers (without register variable usage)
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qapi/qapi-events-run-state.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "sysemu/runstate.h"
25 #include "kvm/kvm_i386.h"
26 #ifndef CONFIG_USER_ONLY
27 #include "sysemu/hw_accel.h"
28 #include "monitor/monitor.h"
29 #endif
30 #include "qemu/log.h"
32 void cpu_sync_bndcs_hflags(CPUX86State *env)
34 uint32_t hflags = env->hflags;
35 uint32_t hflags2 = env->hflags2;
36 uint32_t bndcsr;
38 if ((hflags & HF_CPL_MASK) == 3) {
39 bndcsr = env->bndcs_regs.cfgu;
40 } else {
41 bndcsr = env->msr_bndcfgs;
44 if ((env->cr[4] & CR4_OSXSAVE_MASK)
45 && (env->xcr0 & XSTATE_BNDCSR_MASK)
46 && (bndcsr & BNDCFG_ENABLE)) {
47 hflags |= HF_MPX_EN_MASK;
48 } else {
49 hflags &= ~HF_MPX_EN_MASK;
52 if (bndcsr & BNDCFG_BNDPRESERVE) {
53 hflags2 |= HF2_MPX_PR_MASK;
54 } else {
55 hflags2 &= ~HF2_MPX_PR_MASK;
58 env->hflags = hflags;
59 env->hflags2 = hflags2;
62 static void cpu_x86_version(CPUX86State *env, int *family, int *model)
64 int cpuver = env->cpuid_version;
66 if (family == NULL || model == NULL) {
67 return;
70 *family = (cpuver >> 8) & 0x0f;
71 *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f);
74 /* Broadcast MCA signal for processor version 06H_EH and above */
75 int cpu_x86_support_mca_broadcast(CPUX86State *env)
77 int family = 0;
78 int model = 0;
80 cpu_x86_version(env, &family, &model);
81 if ((family == 6 && model >= 14) || family > 6) {
82 return 1;
85 return 0;
88 /***********************************************************/
89 /* x86 mmu */
90 /* XXX: add PGE support */
92 void x86_cpu_set_a20(X86CPU *cpu, int a20_state)
94 CPUX86State *env = &cpu->env;
96 a20_state = (a20_state != 0);
97 if (a20_state != ((env->a20_mask >> 20) & 1)) {
98 CPUState *cs = CPU(cpu);
100 qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state);
101 /* if the cpu is currently executing code, we must unlink it and
102 all the potentially executing TB */
103 cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
105 /* when a20 is changed, all the MMU mappings are invalid, so
106 we must flush everything */
107 tlb_flush(cs);
108 env->a20_mask = ~(1 << 20) | (a20_state << 20);
112 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
114 X86CPU *cpu = env_archcpu(env);
115 int pe_state;
117 qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0);
118 if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
119 (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
120 tlb_flush(CPU(cpu));
123 #ifdef TARGET_X86_64
124 if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
125 (env->efer & MSR_EFER_LME)) {
126 /* enter in long mode */
127 /* XXX: generate an exception */
128 if (!(env->cr[4] & CR4_PAE_MASK))
129 return;
130 env->efer |= MSR_EFER_LMA;
131 env->hflags |= HF_LMA_MASK;
132 } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
133 (env->efer & MSR_EFER_LMA)) {
134 /* exit long mode */
135 env->efer &= ~MSR_EFER_LMA;
136 env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
137 env->eip &= 0xffffffff;
139 #endif
140 env->cr[0] = new_cr0 | CR0_ET_MASK;
142 /* update PE flag in hidden flags */
143 pe_state = (env->cr[0] & CR0_PE_MASK);
144 env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
145 /* ensure that ADDSEG is always set in real mode */
146 env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
147 /* update FPU flags */
148 env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
149 ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
152 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
153 the PDPT */
154 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
156 env->cr[3] = new_cr3;
157 if (env->cr[0] & CR0_PG_MASK) {
158 qemu_log_mask(CPU_LOG_MMU,
159 "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
160 tlb_flush(env_cpu(env));
164 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
166 uint32_t hflags;
168 #if defined(DEBUG_MMU)
169 printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4);
170 #endif
171 if ((new_cr4 ^ env->cr[4]) &
172 (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK |
173 CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) {
174 tlb_flush(env_cpu(env));
177 /* Clear bits we're going to recompute. */
178 hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK | HF_UMIP_MASK);
180 /* SSE handling */
181 if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) {
182 new_cr4 &= ~CR4_OSFXSR_MASK;
184 if (new_cr4 & CR4_OSFXSR_MASK) {
185 hflags |= HF_OSFXSR_MASK;
188 if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) {
189 new_cr4 &= ~CR4_SMAP_MASK;
191 if (new_cr4 & CR4_SMAP_MASK) {
192 hflags |= HF_SMAP_MASK;
194 if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_UMIP)) {
195 new_cr4 &= ~CR4_UMIP_MASK;
197 if (new_cr4 & CR4_UMIP_MASK) {
198 hflags |= HF_UMIP_MASK;
201 if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) {
202 new_cr4 &= ~CR4_PKE_MASK;
204 if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKS)) {
205 new_cr4 &= ~CR4_PKS_MASK;
208 env->cr[4] = new_cr4;
209 env->hflags = hflags;
211 cpu_sync_bndcs_hflags(env);
214 #if !defined(CONFIG_USER_ONLY)
215 hwaddr x86_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
216 MemTxAttrs *attrs)
218 X86CPU *cpu = X86_CPU(cs);
219 CPUX86State *env = &cpu->env;
220 target_ulong pde_addr, pte_addr;
221 uint64_t pte;
222 int32_t a20_mask;
223 uint32_t page_offset;
224 int page_size;
226 *attrs = cpu_get_mem_attrs(env);
228 a20_mask = x86_get_a20_mask(env);
229 if (!(env->cr[0] & CR0_PG_MASK)) {
230 pte = addr & a20_mask;
231 page_size = 4096;
232 } else if (env->cr[4] & CR4_PAE_MASK) {
233 target_ulong pdpe_addr;
234 uint64_t pde, pdpe;
236 #ifdef TARGET_X86_64
237 if (env->hflags & HF_LMA_MASK) {
238 bool la57 = env->cr[4] & CR4_LA57_MASK;
239 uint64_t pml5e_addr, pml5e;
240 uint64_t pml4e_addr, pml4e;
241 int32_t sext;
243 /* test virtual address sign extension */
244 sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47;
245 if (sext != 0 && sext != -1) {
246 return -1;
249 if (la57) {
250 pml5e_addr = ((env->cr[3] & ~0xfff) +
251 (((addr >> 48) & 0x1ff) << 3)) & a20_mask;
252 pml5e = x86_ldq_phys(cs, pml5e_addr);
253 if (!(pml5e & PG_PRESENT_MASK)) {
254 return -1;
256 } else {
257 pml5e = env->cr[3];
260 pml4e_addr = ((pml5e & PG_ADDRESS_MASK) +
261 (((addr >> 39) & 0x1ff) << 3)) & a20_mask;
262 pml4e = x86_ldq_phys(cs, pml4e_addr);
263 if (!(pml4e & PG_PRESENT_MASK)) {
264 return -1;
266 pdpe_addr = ((pml4e & PG_ADDRESS_MASK) +
267 (((addr >> 30) & 0x1ff) << 3)) & a20_mask;
268 pdpe = x86_ldq_phys(cs, pdpe_addr);
269 if (!(pdpe & PG_PRESENT_MASK)) {
270 return -1;
272 if (pdpe & PG_PSE_MASK) {
273 page_size = 1024 * 1024 * 1024;
274 pte = pdpe;
275 goto out;
278 } else
279 #endif
281 pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
282 a20_mask;
283 pdpe = x86_ldq_phys(cs, pdpe_addr);
284 if (!(pdpe & PG_PRESENT_MASK))
285 return -1;
288 pde_addr = ((pdpe & PG_ADDRESS_MASK) +
289 (((addr >> 21) & 0x1ff) << 3)) & a20_mask;
290 pde = x86_ldq_phys(cs, pde_addr);
291 if (!(pde & PG_PRESENT_MASK)) {
292 return -1;
294 if (pde & PG_PSE_MASK) {
295 /* 2 MB page */
296 page_size = 2048 * 1024;
297 pte = pde;
298 } else {
299 /* 4 KB page */
300 pte_addr = ((pde & PG_ADDRESS_MASK) +
301 (((addr >> 12) & 0x1ff) << 3)) & a20_mask;
302 page_size = 4096;
303 pte = x86_ldq_phys(cs, pte_addr);
305 if (!(pte & PG_PRESENT_MASK)) {
306 return -1;
308 } else {
309 uint32_t pde;
311 /* page directory entry */
312 pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask;
313 pde = x86_ldl_phys(cs, pde_addr);
314 if (!(pde & PG_PRESENT_MASK))
315 return -1;
316 if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
317 pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
318 page_size = 4096 * 1024;
319 } else {
320 /* page directory entry */
321 pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask;
322 pte = x86_ldl_phys(cs, pte_addr);
323 if (!(pte & PG_PRESENT_MASK)) {
324 return -1;
326 page_size = 4096;
328 pte = pte & a20_mask;
331 #ifdef TARGET_X86_64
332 out:
333 #endif
334 pte &= PG_ADDRESS_MASK & ~(page_size - 1);
335 page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
336 return pte | page_offset;
339 typedef struct MCEInjectionParams {
340 Monitor *mon;
341 int bank;
342 uint64_t status;
343 uint64_t mcg_status;
344 uint64_t addr;
345 uint64_t misc;
346 int flags;
347 } MCEInjectionParams;
349 static void emit_guest_memory_failure(MemoryFailureAction action, bool ar,
350 bool recursive)
352 MemoryFailureFlags mff = {.action_required = ar, .recursive = recursive};
354 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_GUEST, action,
355 &mff);
358 static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data)
360 MCEInjectionParams *params = data.host_ptr;
361 X86CPU *cpu = X86_CPU(cs);
362 CPUX86State *cenv = &cpu->env;
363 uint64_t *banks = cenv->mce_banks + 4 * params->bank;
364 g_autofree char *msg = NULL;
365 bool need_reset = false;
366 bool recursive;
367 bool ar = !!(params->status & MCI_STATUS_AR);
369 cpu_synchronize_state(cs);
370 recursive = !!(cenv->mcg_status & MCG_STATUS_MCIP);
373 * If there is an MCE exception being processed, ignore this SRAO MCE
374 * unless unconditional injection was requested.
376 if (!(params->flags & MCE_INJECT_UNCOND_AO) && !ar && recursive) {
377 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, ar, recursive);
378 return;
381 if (params->status & MCI_STATUS_UC) {
383 * if MSR_MCG_CTL is not all 1s, the uncorrected error
384 * reporting is disabled
386 if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) {
387 monitor_printf(params->mon,
388 "CPU %d: Uncorrected error reporting disabled\n",
389 cs->cpu_index);
390 return;
394 * if MSR_MCi_CTL is not all 1s, the uncorrected error
395 * reporting is disabled for the bank
397 if (banks[0] != ~(uint64_t)0) {
398 monitor_printf(params->mon,
399 "CPU %d: Uncorrected error reporting disabled for"
400 " bank %d\n",
401 cs->cpu_index, params->bank);
402 return;
405 if (!(cenv->cr[4] & CR4_MCE_MASK)) {
406 need_reset = true;
407 msg = g_strdup_printf("CPU %d: MCE capability is not enabled, "
408 "raising triple fault", cs->cpu_index);
409 } else if (recursive) {
410 need_reset = true;
411 msg = g_strdup_printf("CPU %d: Previous MCE still in progress, "
412 "raising triple fault", cs->cpu_index);
415 if (need_reset) {
416 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_RESET, ar,
417 recursive);
418 monitor_printf(params->mon, "%s", msg);
419 qemu_log_mask(CPU_LOG_RESET, "%s\n", msg);
420 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
421 return;
424 if (banks[1] & MCI_STATUS_VAL) {
425 params->status |= MCI_STATUS_OVER;
427 banks[2] = params->addr;
428 banks[3] = params->misc;
429 cenv->mcg_status = params->mcg_status;
430 banks[1] = params->status;
431 cpu_interrupt(cs, CPU_INTERRUPT_MCE);
432 } else if (!(banks[1] & MCI_STATUS_VAL)
433 || !(banks[1] & MCI_STATUS_UC)) {
434 if (banks[1] & MCI_STATUS_VAL) {
435 params->status |= MCI_STATUS_OVER;
437 banks[2] = params->addr;
438 banks[3] = params->misc;
439 banks[1] = params->status;
440 } else {
441 banks[1] |= MCI_STATUS_OVER;
444 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_INJECT, ar, recursive);
447 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
448 uint64_t status, uint64_t mcg_status, uint64_t addr,
449 uint64_t misc, int flags)
451 CPUState *cs = CPU(cpu);
452 CPUX86State *cenv = &cpu->env;
453 MCEInjectionParams params = {
454 .mon = mon,
455 .bank = bank,
456 .status = status,
457 .mcg_status = mcg_status,
458 .addr = addr,
459 .misc = misc,
460 .flags = flags,
462 unsigned bank_num = cenv->mcg_cap & 0xff;
464 if (!cenv->mcg_cap) {
465 monitor_printf(mon, "MCE injection not supported\n");
466 return;
468 if (bank >= bank_num) {
469 monitor_printf(mon, "Invalid MCE bank number\n");
470 return;
472 if (!(status & MCI_STATUS_VAL)) {
473 monitor_printf(mon, "Invalid MCE status code\n");
474 return;
476 if ((flags & MCE_INJECT_BROADCAST)
477 && !cpu_x86_support_mca_broadcast(cenv)) {
478 monitor_printf(mon, "Guest CPU does not support MCA broadcast\n");
479 return;
482 run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
483 if (flags & MCE_INJECT_BROADCAST) {
484 CPUState *other_cs;
486 params.bank = 1;
487 params.status = MCI_STATUS_VAL | MCI_STATUS_UC;
488 params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
489 params.addr = 0;
490 params.misc = 0;
491 CPU_FOREACH(other_cs) {
492 if (other_cs == cs) {
493 continue;
495 run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
500 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access)
502 X86CPU *cpu = env_archcpu(env);
503 CPUState *cs = env_cpu(env);
505 if (kvm_enabled() || whpx_enabled() || nvmm_enabled()) {
506 env->tpr_access_type = access;
508 cpu_interrupt(cs, CPU_INTERRUPT_TPR);
509 } else if (tcg_enabled()) {
510 cpu_restore_state(cs, cs->mem_io_pc, false);
512 apic_handle_tpr_access_report(cpu->apic_state, env->eip, access);
515 #endif /* !CONFIG_USER_ONLY */
517 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector,
518 target_ulong *base, unsigned int *limit,
519 unsigned int *flags)
521 CPUState *cs = env_cpu(env);
522 SegmentCache *dt;
523 target_ulong ptr;
524 uint32_t e1, e2;
525 int index;
527 if (selector & 0x4)
528 dt = &env->ldt;
529 else
530 dt = &env->gdt;
531 index = selector & ~7;
532 ptr = dt->base + index;
533 if ((index + 7) > dt->limit
534 || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0
535 || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0)
536 return 0;
538 *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
539 *limit = (e1 & 0xffff) | (e2 & 0x000f0000);
540 if (e2 & DESC_G_MASK)
541 *limit = (*limit << 12) | 0xfff;
542 *flags = e2;
544 return 1;
547 #if !defined(CONFIG_USER_ONLY)
548 void do_cpu_init(X86CPU *cpu)
550 CPUState *cs = CPU(cpu);
551 CPUX86State *env = &cpu->env;
552 CPUX86State *save = g_new(CPUX86State, 1);
553 int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI;
555 *save = *env;
557 cpu_reset(cs);
558 cs->interrupt_request = sipi;
559 memcpy(&env->start_init_save, &save->start_init_save,
560 offsetof(CPUX86State, end_init_save) -
561 offsetof(CPUX86State, start_init_save));
562 g_free(save);
564 if (kvm_enabled()) {
565 kvm_arch_do_init_vcpu(cpu);
567 apic_init_reset(cpu->apic_state);
570 void do_cpu_sipi(X86CPU *cpu)
572 apic_sipi(cpu->apic_state);
574 #else
575 void do_cpu_init(X86CPU *cpu)
578 void do_cpu_sipi(X86CPU *cpu)
581 #endif
583 #ifndef CONFIG_USER_ONLY
585 void cpu_load_efer(CPUX86State *env, uint64_t val)
587 env->efer = val;
588 env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
589 if (env->efer & MSR_EFER_LMA) {
590 env->hflags |= HF_LMA_MASK;
592 if (env->efer & MSR_EFER_SVME) {
593 env->hflags |= HF_SVME_MASK;
597 uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr)
599 X86CPU *cpu = X86_CPU(cs);
600 CPUX86State *env = &cpu->env;
601 MemTxAttrs attrs = cpu_get_mem_attrs(env);
602 AddressSpace *as = cpu_addressspace(cs, attrs);
604 return address_space_ldub(as, addr, attrs, NULL);
607 uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr)
609 X86CPU *cpu = X86_CPU(cs);
610 CPUX86State *env = &cpu->env;
611 MemTxAttrs attrs = cpu_get_mem_attrs(env);
612 AddressSpace *as = cpu_addressspace(cs, attrs);
614 return address_space_lduw(as, addr, attrs, NULL);
617 uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr)
619 X86CPU *cpu = X86_CPU(cs);
620 CPUX86State *env = &cpu->env;
621 MemTxAttrs attrs = cpu_get_mem_attrs(env);
622 AddressSpace *as = cpu_addressspace(cs, attrs);
624 return address_space_ldl(as, addr, attrs, NULL);
627 uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr)
629 X86CPU *cpu = X86_CPU(cs);
630 CPUX86State *env = &cpu->env;
631 MemTxAttrs attrs = cpu_get_mem_attrs(env);
632 AddressSpace *as = cpu_addressspace(cs, attrs);
634 return address_space_ldq(as, addr, attrs, NULL);
637 void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val)
639 X86CPU *cpu = X86_CPU(cs);
640 CPUX86State *env = &cpu->env;
641 MemTxAttrs attrs = cpu_get_mem_attrs(env);
642 AddressSpace *as = cpu_addressspace(cs, attrs);
644 address_space_stb(as, addr, val, attrs, NULL);
647 void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val)
649 X86CPU *cpu = X86_CPU(cs);
650 CPUX86State *env = &cpu->env;
651 MemTxAttrs attrs = cpu_get_mem_attrs(env);
652 AddressSpace *as = cpu_addressspace(cs, attrs);
654 address_space_stl_notdirty(as, addr, val, attrs, NULL);
657 void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val)
659 X86CPU *cpu = X86_CPU(cs);
660 CPUX86State *env = &cpu->env;
661 MemTxAttrs attrs = cpu_get_mem_attrs(env);
662 AddressSpace *as = cpu_addressspace(cs, attrs);
664 address_space_stw(as, addr, val, attrs, NULL);
667 void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val)
669 X86CPU *cpu = X86_CPU(cs);
670 CPUX86State *env = &cpu->env;
671 MemTxAttrs attrs = cpu_get_mem_attrs(env);
672 AddressSpace *as = cpu_addressspace(cs, attrs);
674 address_space_stl(as, addr, val, attrs, NULL);
677 void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val)
679 X86CPU *cpu = X86_CPU(cs);
680 CPUX86State *env = &cpu->env;
681 MemTxAttrs attrs = cpu_get_mem_attrs(env);
682 AddressSpace *as = cpu_addressspace(cs, attrs);
684 address_space_stq(as, addr, val, attrs, NULL);
686 #endif