target-sh4: optimize exceptions
[qemu.git] / target-sh4 / op_helper.c
blob9d7652f3c7570fb1a677a659230e0f687802f541
1 /*
2 * SH4 emulation
4 * Copyright (c) 2005 Samuel Tardieu
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include <assert.h>
20 #include <stdlib.h>
21 #include "exec.h"
22 #include "helper.h"
24 static void cpu_restore_state_from_retaddr(void *retaddr)
26 TranslationBlock *tb;
27 unsigned long pc;
29 if (retaddr) {
30 pc = (unsigned long) retaddr;
31 tb = tb_find_pc(pc);
32 if (tb) {
33 /* the PC is inside the translated code. It means that we have
34 a virtual CPU fault */
35 cpu_restore_state(tb, env, pc, NULL);
40 #ifndef CONFIG_USER_ONLY
42 #define MMUSUFFIX _mmu
44 #define SHIFT 0
45 #include "softmmu_template.h"
47 #define SHIFT 1
48 #include "softmmu_template.h"
50 #define SHIFT 2
51 #include "softmmu_template.h"
53 #define SHIFT 3
54 #include "softmmu_template.h"
56 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
58 CPUState *saved_env;
59 int ret;
61 /* XXX: hack to restore env in all cases, even if not called from
62 generated code */
63 saved_env = env;
64 env = cpu_single_env;
65 ret = cpu_sh4_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
66 if (ret) {
67 /* now we have a real cpu fault */
68 cpu_restore_state_from_retaddr(retaddr);
69 cpu_loop_exit();
71 env = saved_env;
74 #endif
76 void helper_ldtlb(void)
78 #ifdef CONFIG_USER_ONLY
79 /* XXXXX */
80 cpu_abort(env, "Unhandled ldtlb");
81 #else
82 cpu_load_tlb(env);
83 #endif
86 static inline void raise_exception(int index, void *retaddr)
88 env->exception_index = index;
89 cpu_restore_state_from_retaddr(retaddr);
90 cpu_loop_exit();
93 void helper_raise_illegal_instruction(void)
95 raise_exception(0x180, GETPC());
98 void helper_raise_slot_illegal_instruction(void)
100 raise_exception(0x1a0, GETPC());
103 void helper_raise_fpu_disable(void)
105 raise_exception(0x800, GETPC());
108 void helper_raise_slot_fpu_disable(void)
110 raise_exception(0x820, GETPC());
113 void helper_debug(void)
115 env->exception_index = EXCP_DEBUG;
116 cpu_loop_exit();
119 void helper_sleep(uint32_t next_pc)
121 env->halted = 1;
122 env->exception_index = EXCP_HLT;
123 env->pc = next_pc;
124 cpu_loop_exit();
127 void helper_trapa(uint32_t tra)
129 env->tra = tra << 2;
130 raise_exception(0x160, GETPC());
133 void helper_movcal(uint32_t address, uint32_t value)
135 if (cpu_sh4_is_cached (env, address))
137 memory_content *r = malloc (sizeof(memory_content));
138 r->address = address;
139 r->value = value;
140 r->next = NULL;
142 *(env->movcal_backup_tail) = r;
143 env->movcal_backup_tail = &(r->next);
147 void helper_discard_movcal_backup(void)
149 memory_content *current = env->movcal_backup;
151 while(current)
153 memory_content *next = current->next;
154 free (current);
155 env->movcal_backup = current = next;
156 if (current == NULL)
157 env->movcal_backup_tail = &(env->movcal_backup);
161 void helper_ocbi(uint32_t address)
163 memory_content **current = &(env->movcal_backup);
164 while (*current)
166 uint32_t a = (*current)->address;
167 if ((a & ~0x1F) == (address & ~0x1F))
169 memory_content *next = (*current)->next;
170 stl(a, (*current)->value);
172 if (next == NULL)
174 env->movcal_backup_tail = current;
177 free (*current);
178 *current = next;
179 break;
184 uint32_t helper_addc(uint32_t arg0, uint32_t arg1)
186 uint32_t tmp0, tmp1;
188 tmp1 = arg0 + arg1;
189 tmp0 = arg1;
190 arg1 = tmp1 + (env->sr & 1);
191 if (tmp0 > tmp1)
192 env->sr |= SR_T;
193 else
194 env->sr &= ~SR_T;
195 if (tmp1 > arg1)
196 env->sr |= SR_T;
197 return arg1;
200 uint32_t helper_addv(uint32_t arg0, uint32_t arg1)
202 uint32_t dest, src, ans;
204 if ((int32_t) arg1 >= 0)
205 dest = 0;
206 else
207 dest = 1;
208 if ((int32_t) arg0 >= 0)
209 src = 0;
210 else
211 src = 1;
212 src += dest;
213 arg1 += arg0;
214 if ((int32_t) arg1 >= 0)
215 ans = 0;
216 else
217 ans = 1;
218 ans += dest;
219 if (src == 0 || src == 2) {
220 if (ans == 1)
221 env->sr |= SR_T;
222 else
223 env->sr &= ~SR_T;
224 } else
225 env->sr &= ~SR_T;
226 return arg1;
229 #define T (env->sr & SR_T)
230 #define Q (env->sr & SR_Q ? 1 : 0)
231 #define M (env->sr & SR_M ? 1 : 0)
232 #define SETT env->sr |= SR_T
233 #define CLRT env->sr &= ~SR_T
234 #define SETQ env->sr |= SR_Q
235 #define CLRQ env->sr &= ~SR_Q
236 #define SETM env->sr |= SR_M
237 #define CLRM env->sr &= ~SR_M
239 uint32_t helper_div1(uint32_t arg0, uint32_t arg1)
241 uint32_t tmp0, tmp2;
242 uint8_t old_q, tmp1 = 0xff;
244 //printf("div1 arg0=0x%08x arg1=0x%08x M=%d Q=%d T=%d\n", arg0, arg1, M, Q, T);
245 old_q = Q;
246 if ((0x80000000 & arg1) != 0)
247 SETQ;
248 else
249 CLRQ;
250 tmp2 = arg0;
251 arg1 <<= 1;
252 arg1 |= T;
253 switch (old_q) {
254 case 0:
255 switch (M) {
256 case 0:
257 tmp0 = arg1;
258 arg1 -= tmp2;
259 tmp1 = arg1 > tmp0;
260 switch (Q) {
261 case 0:
262 if (tmp1)
263 SETQ;
264 else
265 CLRQ;
266 break;
267 case 1:
268 if (tmp1 == 0)
269 SETQ;
270 else
271 CLRQ;
272 break;
274 break;
275 case 1:
276 tmp0 = arg1;
277 arg1 += tmp2;
278 tmp1 = arg1 < tmp0;
279 switch (Q) {
280 case 0:
281 if (tmp1 == 0)
282 SETQ;
283 else
284 CLRQ;
285 break;
286 case 1:
287 if (tmp1)
288 SETQ;
289 else
290 CLRQ;
291 break;
293 break;
295 break;
296 case 1:
297 switch (M) {
298 case 0:
299 tmp0 = arg1;
300 arg1 += tmp2;
301 tmp1 = arg1 < tmp0;
302 switch (Q) {
303 case 0:
304 if (tmp1)
305 SETQ;
306 else
307 CLRQ;
308 break;
309 case 1:
310 if (tmp1 == 0)
311 SETQ;
312 else
313 CLRQ;
314 break;
316 break;
317 case 1:
318 tmp0 = arg1;
319 arg1 -= tmp2;
320 tmp1 = arg1 > tmp0;
321 switch (Q) {
322 case 0:
323 if (tmp1 == 0)
324 SETQ;
325 else
326 CLRQ;
327 break;
328 case 1:
329 if (tmp1)
330 SETQ;
331 else
332 CLRQ;
333 break;
335 break;
337 break;
339 if (Q == M)
340 SETT;
341 else
342 CLRT;
343 //printf("Output: arg1=0x%08x M=%d Q=%d T=%d\n", arg1, M, Q, T);
344 return arg1;
347 void helper_macl(uint32_t arg0, uint32_t arg1)
349 int64_t res;
351 res = ((uint64_t) env->mach << 32) | env->macl;
352 res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
353 env->mach = (res >> 32) & 0xffffffff;
354 env->macl = res & 0xffffffff;
355 if (env->sr & SR_S) {
356 if (res < 0)
357 env->mach |= 0xffff0000;
358 else
359 env->mach &= 0x00007fff;
363 void helper_macw(uint32_t arg0, uint32_t arg1)
365 int64_t res;
367 res = ((uint64_t) env->mach << 32) | env->macl;
368 res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
369 env->mach = (res >> 32) & 0xffffffff;
370 env->macl = res & 0xffffffff;
371 if (env->sr & SR_S) {
372 if (res < -0x80000000) {
373 env->mach = 1;
374 env->macl = 0x80000000;
375 } else if (res > 0x000000007fffffff) {
376 env->mach = 1;
377 env->macl = 0x7fffffff;
382 uint32_t helper_negc(uint32_t arg)
384 uint32_t temp;
386 temp = -arg;
387 arg = temp - (env->sr & SR_T);
388 if (0 < temp)
389 env->sr |= SR_T;
390 else
391 env->sr &= ~SR_T;
392 if (temp < arg)
393 env->sr |= SR_T;
394 return arg;
397 uint32_t helper_subc(uint32_t arg0, uint32_t arg1)
399 uint32_t tmp0, tmp1;
401 tmp1 = arg1 - arg0;
402 tmp0 = arg1;
403 arg1 = tmp1 - (env->sr & SR_T);
404 if (tmp0 < tmp1)
405 env->sr |= SR_T;
406 else
407 env->sr &= ~SR_T;
408 if (tmp1 < arg1)
409 env->sr |= SR_T;
410 return arg1;
413 uint32_t helper_subv(uint32_t arg0, uint32_t arg1)
415 int32_t dest, src, ans;
417 if ((int32_t) arg1 >= 0)
418 dest = 0;
419 else
420 dest = 1;
421 if ((int32_t) arg0 >= 0)
422 src = 0;
423 else
424 src = 1;
425 src += dest;
426 arg1 -= arg0;
427 if ((int32_t) arg1 >= 0)
428 ans = 0;
429 else
430 ans = 1;
431 ans += dest;
432 if (src == 1) {
433 if (ans == 1)
434 env->sr |= SR_T;
435 else
436 env->sr &= ~SR_T;
437 } else
438 env->sr &= ~SR_T;
439 return arg1;
442 static inline void set_t(void)
444 env->sr |= SR_T;
447 static inline void clr_t(void)
449 env->sr &= ~SR_T;
452 void helper_ld_fpscr(uint32_t val)
454 env->fpscr = val & FPSCR_MASK;
455 if ((val & FPSCR_RM_MASK) == FPSCR_RM_ZERO) {
456 set_float_rounding_mode(float_round_to_zero, &env->fp_status);
457 } else {
458 set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
460 set_flush_to_zero((val & FPSCR_DN) != 0, &env->fp_status);
463 static void update_fpscr(void *retaddr)
465 int xcpt, cause, enable;
467 xcpt = get_float_exception_flags(&env->fp_status);
469 /* Clear the flag entries */
470 env->fpscr &= ~FPSCR_FLAG_MASK;
472 if (unlikely(xcpt)) {
473 if (xcpt & float_flag_invalid) {
474 env->fpscr |= FPSCR_FLAG_V;
476 if (xcpt & float_flag_divbyzero) {
477 env->fpscr |= FPSCR_FLAG_Z;
479 if (xcpt & float_flag_overflow) {
480 env->fpscr |= FPSCR_FLAG_O;
482 if (xcpt & float_flag_underflow) {
483 env->fpscr |= FPSCR_FLAG_U;
485 if (xcpt & float_flag_inexact) {
486 env->fpscr |= FPSCR_FLAG_I;
489 /* Accumulate in cause entries */
490 env->fpscr |= (env->fpscr & FPSCR_FLAG_MASK)
491 << (FPSCR_CAUSE_SHIFT - FPSCR_FLAG_SHIFT);
493 /* Generate an exception if enabled */
494 cause = (env->fpscr & FPSCR_CAUSE_MASK) >> FPSCR_CAUSE_SHIFT;
495 enable = (env->fpscr & FPSCR_ENABLE_MASK) >> FPSCR_ENABLE_SHIFT;
496 if (cause & enable) {
497 cpu_restore_state_from_retaddr(retaddr);
498 env->exception_index = 0x120;
499 cpu_loop_exit();
504 uint32_t helper_fabs_FT(uint32_t t0)
506 CPU_FloatU f;
507 f.l = t0;
508 f.f = float32_abs(f.f);
509 return f.l;
512 uint64_t helper_fabs_DT(uint64_t t0)
514 CPU_DoubleU d;
515 d.ll = t0;
516 d.d = float64_abs(d.d);
517 return d.ll;
520 uint32_t helper_fadd_FT(uint32_t t0, uint32_t t1)
522 CPU_FloatU f0, f1;
523 f0.l = t0;
524 f1.l = t1;
525 set_float_exception_flags(0, &env->fp_status);
526 f0.f = float32_add(f0.f, f1.f, &env->fp_status);
527 update_fpscr(GETPC());
528 return f0.l;
531 uint64_t helper_fadd_DT(uint64_t t0, uint64_t t1)
533 CPU_DoubleU d0, d1;
534 d0.ll = t0;
535 d1.ll = t1;
536 set_float_exception_flags(0, &env->fp_status);
537 d0.d = float64_add(d0.d, d1.d, &env->fp_status);
538 update_fpscr(GETPC());
539 return d0.ll;
542 void helper_fcmp_eq_FT(uint32_t t0, uint32_t t1)
544 CPU_FloatU f0, f1;
545 int relation;
546 f0.l = t0;
547 f1.l = t1;
549 set_float_exception_flags(0, &env->fp_status);
550 relation = float32_compare(f0.f, f1.f, &env->fp_status);
551 if (unlikely(relation == float_relation_unordered)) {
552 update_fpscr(GETPC());
553 } else if (relation == float_relation_equal) {
554 set_t();
555 } else {
556 clr_t();
560 void helper_fcmp_eq_DT(uint64_t t0, uint64_t t1)
562 CPU_DoubleU d0, d1;
563 int relation;
564 d0.ll = t0;
565 d1.ll = t1;
567 set_float_exception_flags(0, &env->fp_status);
568 relation = float64_compare(d0.d, d1.d, &env->fp_status);
569 if (unlikely(relation == float_relation_unordered)) {
570 update_fpscr(GETPC());
571 } else if (relation == float_relation_equal) {
572 set_t();
573 } else {
574 clr_t();
578 void helper_fcmp_gt_FT(uint32_t t0, uint32_t t1)
580 CPU_FloatU f0, f1;
581 int relation;
582 f0.l = t0;
583 f1.l = t1;
585 set_float_exception_flags(0, &env->fp_status);
586 relation = float32_compare(f0.f, f1.f, &env->fp_status);
587 if (unlikely(relation == float_relation_unordered)) {
588 update_fpscr(GETPC());
589 } else if (relation == float_relation_greater) {
590 set_t();
591 } else {
592 clr_t();
596 void helper_fcmp_gt_DT(uint64_t t0, uint64_t t1)
598 CPU_DoubleU d0, d1;
599 int relation;
600 d0.ll = t0;
601 d1.ll = t1;
603 set_float_exception_flags(0, &env->fp_status);
604 relation = float64_compare(d0.d, d1.d, &env->fp_status);
605 if (unlikely(relation == float_relation_unordered)) {
606 update_fpscr(GETPC());
607 } else if (relation == float_relation_greater) {
608 set_t();
609 } else {
610 clr_t();
614 uint64_t helper_fcnvsd_FT_DT(uint32_t t0)
616 CPU_DoubleU d;
617 CPU_FloatU f;
618 f.l = t0;
619 set_float_exception_flags(0, &env->fp_status);
620 d.d = float32_to_float64(f.f, &env->fp_status);
621 update_fpscr(GETPC());
622 return d.ll;
625 uint32_t helper_fcnvds_DT_FT(uint64_t t0)
627 CPU_DoubleU d;
628 CPU_FloatU f;
629 d.ll = t0;
630 set_float_exception_flags(0, &env->fp_status);
631 f.f = float64_to_float32(d.d, &env->fp_status);
632 update_fpscr(GETPC());
633 return f.l;
636 uint32_t helper_fdiv_FT(uint32_t t0, uint32_t t1)
638 CPU_FloatU f0, f1;
639 f0.l = t0;
640 f1.l = t1;
641 set_float_exception_flags(0, &env->fp_status);
642 f0.f = float32_div(f0.f, f1.f, &env->fp_status);
643 update_fpscr(GETPC());
644 return f0.l;
647 uint64_t helper_fdiv_DT(uint64_t t0, uint64_t t1)
649 CPU_DoubleU d0, d1;
650 d0.ll = t0;
651 d1.ll = t1;
652 set_float_exception_flags(0, &env->fp_status);
653 d0.d = float64_div(d0.d, d1.d, &env->fp_status);
654 update_fpscr(GETPC());
655 return d0.ll;
658 uint32_t helper_float_FT(uint32_t t0)
660 CPU_FloatU f;
662 set_float_exception_flags(0, &env->fp_status);
663 f.f = int32_to_float32(t0, &env->fp_status);
664 update_fpscr(GETPC());
666 return f.l;
669 uint64_t helper_float_DT(uint32_t t0)
671 CPU_DoubleU d;
672 set_float_exception_flags(0, &env->fp_status);
673 d.d = int32_to_float64(t0, &env->fp_status);
674 update_fpscr(GETPC());
675 return d.ll;
678 uint32_t helper_fmac_FT(uint32_t t0, uint32_t t1, uint32_t t2)
680 CPU_FloatU f0, f1, f2;
681 f0.l = t0;
682 f1.l = t1;
683 f2.l = t2;
684 set_float_exception_flags(0, &env->fp_status);
685 f0.f = float32_mul(f0.f, f1.f, &env->fp_status);
686 f0.f = float32_add(f0.f, f2.f, &env->fp_status);
687 update_fpscr(GETPC());
689 return f0.l;
692 uint32_t helper_fmul_FT(uint32_t t0, uint32_t t1)
694 CPU_FloatU f0, f1;
695 f0.l = t0;
696 f1.l = t1;
697 set_float_exception_flags(0, &env->fp_status);
698 f0.f = float32_mul(f0.f, f1.f, &env->fp_status);
699 update_fpscr(GETPC());
700 return f0.l;
703 uint64_t helper_fmul_DT(uint64_t t0, uint64_t t1)
705 CPU_DoubleU d0, d1;
706 d0.ll = t0;
707 d1.ll = t1;
708 set_float_exception_flags(0, &env->fp_status);
709 d0.d = float64_mul(d0.d, d1.d, &env->fp_status);
710 update_fpscr(GETPC());
712 return d0.ll;
715 uint32_t helper_fneg_T(uint32_t t0)
717 CPU_FloatU f;
718 f.l = t0;
719 f.f = float32_chs(f.f);
720 return f.l;
723 uint32_t helper_fsqrt_FT(uint32_t t0)
725 CPU_FloatU f;
726 f.l = t0;
727 set_float_exception_flags(0, &env->fp_status);
728 f.f = float32_sqrt(f.f, &env->fp_status);
729 update_fpscr(GETPC());
730 return f.l;
733 uint64_t helper_fsqrt_DT(uint64_t t0)
735 CPU_DoubleU d;
736 d.ll = t0;
737 set_float_exception_flags(0, &env->fp_status);
738 d.d = float64_sqrt(d.d, &env->fp_status);
739 update_fpscr(GETPC());
740 return d.ll;
743 uint32_t helper_fsub_FT(uint32_t t0, uint32_t t1)
745 CPU_FloatU f0, f1;
746 f0.l = t0;
747 f1.l = t1;
748 set_float_exception_flags(0, &env->fp_status);
749 f0.f = float32_sub(f0.f, f1.f, &env->fp_status);
750 update_fpscr(GETPC());
751 return f0.l;
754 uint64_t helper_fsub_DT(uint64_t t0, uint64_t t1)
756 CPU_DoubleU d0, d1;
758 d0.ll = t0;
759 d1.ll = t1;
760 set_float_exception_flags(0, &env->fp_status);
761 d0.d = float64_sub(d0.d, d1.d, &env->fp_status);
762 update_fpscr(GETPC());
763 return d0.ll;
766 uint32_t helper_ftrc_FT(uint32_t t0)
768 CPU_FloatU f;
769 uint32_t ret;
770 f.l = t0;
771 set_float_exception_flags(0, &env->fp_status);
772 ret = float32_to_int32_round_to_zero(f.f, &env->fp_status);
773 update_fpscr(GETPC());
774 return ret;
777 uint32_t helper_ftrc_DT(uint64_t t0)
779 CPU_DoubleU d;
780 uint32_t ret;
781 d.ll = t0;
782 set_float_exception_flags(0, &env->fp_status);
783 ret = float64_to_int32_round_to_zero(d.d, &env->fp_status);
784 update_fpscr(GETPC());
785 return ret;
788 void helper_fipr(uint32_t m, uint32_t n)
790 int bank, i;
791 float32 r, p;
793 bank = (env->sr & FPSCR_FR) ? 16 : 0;
794 r = float32_zero;
795 set_float_exception_flags(0, &env->fp_status);
797 for (i = 0 ; i < 4 ; i++) {
798 p = float32_mul(env->fregs[bank + m + i],
799 env->fregs[bank + n + i],
800 &env->fp_status);
801 r = float32_add(r, p, &env->fp_status);
803 update_fpscr(GETPC());
805 env->fregs[bank + n + 3] = r;
808 void helper_ftrv(uint32_t n)
810 int bank_matrix, bank_vector;
811 int i, j;
812 float32 r[4];
813 float32 p;
815 bank_matrix = (env->sr & FPSCR_FR) ? 0 : 16;
816 bank_vector = (env->sr & FPSCR_FR) ? 16 : 0;
817 set_float_exception_flags(0, &env->fp_status);
818 for (i = 0 ; i < 4 ; i++) {
819 r[i] = float32_zero;
820 for (j = 0 ; j < 4 ; j++) {
821 p = float32_mul(env->fregs[bank_matrix + 4 * j + i],
822 env->fregs[bank_vector + j],
823 &env->fp_status);
824 r[i] = float32_add(r[i], p, &env->fp_status);
827 update_fpscr(GETPC());
829 for (i = 0 ; i < 4 ; i++) {
830 env->fregs[bank_vector + i] = r[i];