pc-dimm: pass PCDIMMDevice to pc_dimm_.*plug
[qemu.git] / hw / ppc / spapr.c
blobc078347b6699f2bc6a436d228e4a3023876369d7
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
47 #include "qom/cpu.h"
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/pci/msi.h"
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
64 #include "exec/address-spaces.h"
65 #include "exec/ram_addr.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
73 #include "hw/compat.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "hw/mem/memory-device.h"
78 #include <libfdt.h>
80 /* SLOF memory layout:
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
86 * and more
88 * We load our kernel at 4M, leaving space for SLOF initial image
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
98 #define MIN_RMA_SLOF 128UL
100 #define PHANDLE_XICP 0x00001111
102 /* These two functions implement the VCPU id numbering: one to compute them
103 * all and one to identify thread 0 of a VCORE. Any change to the first one
104 * is likely to have an impact on the second one, so let's keep them close.
106 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
108 assert(spapr->vsmt);
109 return
110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
113 PowerPCCPU *cpu)
115 assert(spapr->vsmt);
116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
121 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
122 * and newer QEMUs don't even have them. In both cases, we don't want
123 * to send anything on the wire.
125 return false;
128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
129 .name = "icp/server",
130 .version_id = 1,
131 .minimum_version_id = 1,
132 .needed = pre_2_10_vmstate_dummy_icp_needed,
133 .fields = (VMStateField[]) {
134 VMSTATE_UNUSED(4), /* uint32_t xirr */
135 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
136 VMSTATE_UNUSED(1), /* uint8_t mfrr */
137 VMSTATE_END_OF_LIST()
141 static void pre_2_10_vmstate_register_dummy_icp(int i)
143 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
144 (void *)(uintptr_t) i);
147 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
149 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
150 (void *)(uintptr_t) i);
153 static int xics_max_server_number(sPAPRMachineState *spapr)
155 assert(spapr->vsmt);
156 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
160 int smt_threads)
162 int i, ret = 0;
163 uint32_t servers_prop[smt_threads];
164 uint32_t gservers_prop[smt_threads * 2];
165 int index = spapr_get_vcpu_id(cpu);
167 if (cpu->compat_pvr) {
168 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
169 if (ret < 0) {
170 return ret;
174 /* Build interrupt servers and gservers properties */
175 for (i = 0; i < smt_threads; i++) {
176 servers_prop[i] = cpu_to_be32(index + i);
177 /* Hack, direct the group queues back to cpu 0 */
178 gservers_prop[i*2] = cpu_to_be32(index + i);
179 gservers_prop[i*2 + 1] = 0;
181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
182 servers_prop, sizeof(servers_prop));
183 if (ret < 0) {
184 return ret;
186 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
187 gservers_prop, sizeof(gservers_prop));
189 return ret;
192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
194 int index = spapr_get_vcpu_id(cpu);
195 uint32_t associativity[] = {cpu_to_be32(0x5),
196 cpu_to_be32(0x0),
197 cpu_to_be32(0x0),
198 cpu_to_be32(0x0),
199 cpu_to_be32(cpu->node_id),
200 cpu_to_be32(index)};
202 /* Advertise NUMA via ibm,associativity */
203 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
204 sizeof(associativity));
207 /* Populate the "ibm,pa-features" property */
208 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
209 PowerPCCPU *cpu,
210 void *fdt, int offset,
211 bool legacy_guest)
213 uint8_t pa_features_206[] = { 6, 0,
214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215 uint8_t pa_features_207[] = { 24, 0,
216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220 uint8_t pa_features_300[] = { 66, 0,
221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
224 /* 6: DS207 */
225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
226 /* 16: Vector */
227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236 /* 42: PM, 44: PC RA, 46: SC vec'd */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238 /* 48: SIMD, 50: QP BFP, 52: String */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240 /* 54: DecFP, 56: DecI, 58: SHA */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242 /* 60: NM atomic, 62: RNG */
243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
245 uint8_t *pa_features = NULL;
246 size_t pa_size;
248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
249 pa_features = pa_features_206;
250 pa_size = sizeof(pa_features_206);
252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
253 pa_features = pa_features_207;
254 pa_size = sizeof(pa_features_207);
256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
257 pa_features = pa_features_300;
258 pa_size = sizeof(pa_features_300);
260 if (!pa_features) {
261 return;
264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
266 * Note: we keep CI large pages off by default because a 64K capable
267 * guest provisioned with large pages might otherwise try to map a qemu
268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269 * even if that qemu runs on a 4k host.
270 * We dd this bit back here if we are confident this is not an issue
272 pa_features[3] |= 0x20;
274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
275 pa_features[24] |= 0x80; /* Transactional memory support */
277 if (legacy_guest && pa_size > 40) {
278 /* Workaround for broken kernels that attempt (guest) radix
279 * mode when they can't handle it, if they see the radix bit set
280 * in pa-features. So hide it from them. */
281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
287 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
289 int ret = 0, offset, cpus_offset;
290 CPUState *cs;
291 char cpu_model[32];
292 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
294 CPU_FOREACH(cs) {
295 PowerPCCPU *cpu = POWERPC_CPU(cs);
296 DeviceClass *dc = DEVICE_GET_CLASS(cs);
297 int index = spapr_get_vcpu_id(cpu);
298 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
300 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
301 continue;
304 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
306 cpus_offset = fdt_path_offset(fdt, "/cpus");
307 if (cpus_offset < 0) {
308 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
309 if (cpus_offset < 0) {
310 return cpus_offset;
313 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
314 if (offset < 0) {
315 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
316 if (offset < 0) {
317 return offset;
321 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
322 pft_size_prop, sizeof(pft_size_prop));
323 if (ret < 0) {
324 return ret;
327 if (nb_numa_nodes > 1) {
328 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
329 if (ret < 0) {
330 return ret;
334 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
335 if (ret < 0) {
336 return ret;
339 spapr_populate_pa_features(spapr, cpu, fdt, offset,
340 spapr->cas_legacy_guest_workaround);
342 return ret;
345 static hwaddr spapr_node0_size(MachineState *machine)
347 if (nb_numa_nodes) {
348 int i;
349 for (i = 0; i < nb_numa_nodes; ++i) {
350 if (numa_info[i].node_mem) {
351 return MIN(pow2floor(numa_info[i].node_mem),
352 machine->ram_size);
356 return machine->ram_size;
359 static void add_str(GString *s, const gchar *s1)
361 g_string_append_len(s, s1, strlen(s1) + 1);
364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
365 hwaddr size)
367 uint32_t associativity[] = {
368 cpu_to_be32(0x4), /* length */
369 cpu_to_be32(0x0), cpu_to_be32(0x0),
370 cpu_to_be32(0x0), cpu_to_be32(nodeid)
372 char mem_name[32];
373 uint64_t mem_reg_property[2];
374 int off;
376 mem_reg_property[0] = cpu_to_be64(start);
377 mem_reg_property[1] = cpu_to_be64(size);
379 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
380 off = fdt_add_subnode(fdt, 0, mem_name);
381 _FDT(off);
382 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
383 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
384 sizeof(mem_reg_property))));
385 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
386 sizeof(associativity))));
387 return off;
390 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
392 MachineState *machine = MACHINE(spapr);
393 hwaddr mem_start, node_size;
394 int i, nb_nodes = nb_numa_nodes;
395 NodeInfo *nodes = numa_info;
396 NodeInfo ramnode;
398 /* No NUMA nodes, assume there is just one node with whole RAM */
399 if (!nb_numa_nodes) {
400 nb_nodes = 1;
401 ramnode.node_mem = machine->ram_size;
402 nodes = &ramnode;
405 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
406 if (!nodes[i].node_mem) {
407 continue;
409 if (mem_start >= machine->ram_size) {
410 node_size = 0;
411 } else {
412 node_size = nodes[i].node_mem;
413 if (node_size > machine->ram_size - mem_start) {
414 node_size = machine->ram_size - mem_start;
417 if (!mem_start) {
418 /* spapr_machine_init() checks for rma_size <= node0_size
419 * already */
420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
421 mem_start += spapr->rma_size;
422 node_size -= spapr->rma_size;
424 for ( ; node_size; ) {
425 hwaddr sizetmp = pow2floor(node_size);
427 /* mem_start != 0 here */
428 if (ctzl(mem_start) < ctzl(sizetmp)) {
429 sizetmp = 1ULL << ctzl(mem_start);
432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
433 node_size -= sizetmp;
434 mem_start += sizetmp;
438 return 0;
441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
442 sPAPRMachineState *spapr)
444 PowerPCCPU *cpu = POWERPC_CPU(cs);
445 CPUPPCState *env = &cpu->env;
446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
447 int index = spapr_get_vcpu_id(cpu);
448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
449 0xffffffff, 0xffffffff};
450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
451 : SPAPR_TIMEBASE_FREQ;
452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
453 uint32_t page_sizes_prop[64];
454 size_t page_sizes_prop_size;
455 uint32_t vcpus_per_socket = smp_threads * smp_cores;
456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
457 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
458 sPAPRDRConnector *drc;
459 int drc_index;
460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
461 int i;
463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
464 if (drc) {
465 drc_index = spapr_drc_index(drc);
466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
474 env->dcache_line_size)));
475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
476 env->dcache_line_size)));
477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
478 env->icache_line_size)));
479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
480 env->icache_line_size)));
482 if (pcc->l1_dcache_size) {
483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
484 pcc->l1_dcache_size)));
485 } else {
486 warn_report("Unknown L1 dcache size for cpu");
488 if (pcc->l1_icache_size) {
489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
490 pcc->l1_icache_size)));
491 } else {
492 warn_report("Unknown L1 icache size for cpu");
495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
502 if (env->spr_cb[SPR_PURR].oea_read) {
503 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
506 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
507 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
508 segs, sizeof(segs))));
511 /* Advertise VSX (vector extensions) if available
512 * 1 == VMX / Altivec available
513 * 2 == VSX available
515 * Only CPUs for which we create core types in spapr_cpu_core.c
516 * are possible, and all of those have VMX */
517 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
518 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
519 } else {
520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
523 /* Advertise DFP (Decimal Floating Point) if available
524 * 0 / no property == no DFP
525 * 1 == DFP available */
526 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
527 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
530 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
531 sizeof(page_sizes_prop));
532 if (page_sizes_prop_size) {
533 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
534 page_sizes_prop, page_sizes_prop_size)));
537 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
539 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
540 cs->cpu_index / vcpus_per_socket)));
542 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
543 pft_size_prop, sizeof(pft_size_prop))));
545 if (nb_numa_nodes > 1) {
546 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
549 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
551 if (pcc->radix_page_info) {
552 for (i = 0; i < pcc->radix_page_info->count; i++) {
553 radix_AP_encodings[i] =
554 cpu_to_be32(pcc->radix_page_info->entries[i]);
556 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
557 radix_AP_encodings,
558 pcc->radix_page_info->count *
559 sizeof(radix_AP_encodings[0]))));
563 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
565 CPUState **rev;
566 CPUState *cs;
567 int n_cpus;
568 int cpus_offset;
569 char *nodename;
570 int i;
572 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
573 _FDT(cpus_offset);
574 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
575 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
578 * We walk the CPUs in reverse order to ensure that CPU DT nodes
579 * created by fdt_add_subnode() end up in the right order in FDT
580 * for the guest kernel the enumerate the CPUs correctly.
582 * The CPU list cannot be traversed in reverse order, so we need
583 * to do extra work.
585 n_cpus = 0;
586 rev = NULL;
587 CPU_FOREACH(cs) {
588 rev = g_renew(CPUState *, rev, n_cpus + 1);
589 rev[n_cpus++] = cs;
592 for (i = n_cpus - 1; i >= 0; i--) {
593 CPUState *cs = rev[i];
594 PowerPCCPU *cpu = POWERPC_CPU(cs);
595 int index = spapr_get_vcpu_id(cpu);
596 DeviceClass *dc = DEVICE_GET_CLASS(cs);
597 int offset;
599 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
600 continue;
603 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
604 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
605 g_free(nodename);
606 _FDT(offset);
607 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
610 g_free(rev);
613 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
615 MemoryDeviceInfoList *info;
617 for (info = list; info; info = info->next) {
618 MemoryDeviceInfo *value = info->value;
620 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
621 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
623 if (addr >= pcdimm_info->addr &&
624 addr < (pcdimm_info->addr + pcdimm_info->size)) {
625 return pcdimm_info->node;
630 return -1;
633 struct sPAPRDrconfCellV2 {
634 uint32_t seq_lmbs;
635 uint64_t base_addr;
636 uint32_t drc_index;
637 uint32_t aa_index;
638 uint32_t flags;
639 } QEMU_PACKED;
641 typedef struct DrconfCellQueue {
642 struct sPAPRDrconfCellV2 cell;
643 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
644 } DrconfCellQueue;
646 static DrconfCellQueue *
647 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
648 uint32_t drc_index, uint32_t aa_index,
649 uint32_t flags)
651 DrconfCellQueue *elem;
653 elem = g_malloc0(sizeof(*elem));
654 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
655 elem->cell.base_addr = cpu_to_be64(base_addr);
656 elem->cell.drc_index = cpu_to_be32(drc_index);
657 elem->cell.aa_index = cpu_to_be32(aa_index);
658 elem->cell.flags = cpu_to_be32(flags);
660 return elem;
663 /* ibm,dynamic-memory-v2 */
664 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
665 int offset, MemoryDeviceInfoList *dimms)
667 MachineState *machine = MACHINE(spapr);
668 uint8_t *int_buf, *cur_index, buf_len;
669 int ret;
670 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
671 uint64_t addr, cur_addr, size;
672 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
673 uint64_t mem_end = machine->device_memory->base +
674 memory_region_size(&machine->device_memory->mr);
675 uint32_t node, nr_entries = 0;
676 sPAPRDRConnector *drc;
677 DrconfCellQueue *elem, *next;
678 MemoryDeviceInfoList *info;
679 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
680 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
682 /* Entry to cover RAM and the gap area */
683 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
684 SPAPR_LMB_FLAGS_RESERVED |
685 SPAPR_LMB_FLAGS_DRC_INVALID);
686 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
687 nr_entries++;
689 cur_addr = machine->device_memory->base;
690 for (info = dimms; info; info = info->next) {
691 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
693 addr = di->addr;
694 size = di->size;
695 node = di->node;
697 /* Entry for hot-pluggable area */
698 if (cur_addr < addr) {
699 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
700 g_assert(drc);
701 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
702 cur_addr, spapr_drc_index(drc), -1, 0);
703 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
704 nr_entries++;
707 /* Entry for DIMM */
708 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
709 g_assert(drc);
710 elem = spapr_get_drconf_cell(size / lmb_size, addr,
711 spapr_drc_index(drc), node,
712 SPAPR_LMB_FLAGS_ASSIGNED);
713 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
714 nr_entries++;
715 cur_addr = addr + size;
718 /* Entry for remaining hotpluggable area */
719 if (cur_addr < mem_end) {
720 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
721 g_assert(drc);
722 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
723 cur_addr, spapr_drc_index(drc), -1, 0);
724 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
725 nr_entries++;
728 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
729 int_buf = cur_index = g_malloc0(buf_len);
730 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
731 cur_index += sizeof(nr_entries);
733 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
734 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
735 cur_index += sizeof(elem->cell);
736 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
737 g_free(elem);
740 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
741 g_free(int_buf);
742 if (ret < 0) {
743 return -1;
745 return 0;
748 /* ibm,dynamic-memory */
749 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
750 int offset, MemoryDeviceInfoList *dimms)
752 MachineState *machine = MACHINE(spapr);
753 int i, ret;
754 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
755 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
756 uint32_t nr_lmbs = (machine->device_memory->base +
757 memory_region_size(&machine->device_memory->mr)) /
758 lmb_size;
759 uint32_t *int_buf, *cur_index, buf_len;
762 * Allocate enough buffer size to fit in ibm,dynamic-memory
764 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
765 cur_index = int_buf = g_malloc0(buf_len);
766 int_buf[0] = cpu_to_be32(nr_lmbs);
767 cur_index++;
768 for (i = 0; i < nr_lmbs; i++) {
769 uint64_t addr = i * lmb_size;
770 uint32_t *dynamic_memory = cur_index;
772 if (i >= device_lmb_start) {
773 sPAPRDRConnector *drc;
775 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
776 g_assert(drc);
778 dynamic_memory[0] = cpu_to_be32(addr >> 32);
779 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
780 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
781 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
782 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
783 if (memory_region_present(get_system_memory(), addr)) {
784 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
785 } else {
786 dynamic_memory[5] = cpu_to_be32(0);
788 } else {
790 * LMB information for RMA, boot time RAM and gap b/n RAM and
791 * device memory region -- all these are marked as reserved
792 * and as having no valid DRC.
794 dynamic_memory[0] = cpu_to_be32(addr >> 32);
795 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
796 dynamic_memory[2] = cpu_to_be32(0);
797 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
798 dynamic_memory[4] = cpu_to_be32(-1);
799 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
800 SPAPR_LMB_FLAGS_DRC_INVALID);
803 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
805 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
806 g_free(int_buf);
807 if (ret < 0) {
808 return -1;
810 return 0;
814 * Adds ibm,dynamic-reconfiguration-memory node.
815 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
816 * of this device tree node.
818 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
820 MachineState *machine = MACHINE(spapr);
821 int ret, i, offset;
822 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
823 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
824 uint32_t *int_buf, *cur_index, buf_len;
825 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
826 MemoryDeviceInfoList *dimms = NULL;
829 * Don't create the node if there is no device memory
831 if (machine->ram_size == machine->maxram_size) {
832 return 0;
835 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
837 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
838 sizeof(prop_lmb_size));
839 if (ret < 0) {
840 return ret;
843 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
844 if (ret < 0) {
845 return ret;
848 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
849 if (ret < 0) {
850 return ret;
853 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
854 dimms = qmp_memory_device_list();
855 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
856 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
857 } else {
858 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
860 qapi_free_MemoryDeviceInfoList(dimms);
862 if (ret < 0) {
863 return ret;
866 /* ibm,associativity-lookup-arrays */
867 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
868 cur_index = int_buf = g_malloc0(buf_len);
870 cur_index = int_buf;
871 int_buf[0] = cpu_to_be32(nr_nodes);
872 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
873 cur_index += 2;
874 for (i = 0; i < nr_nodes; i++) {
875 uint32_t associativity[] = {
876 cpu_to_be32(0x0),
877 cpu_to_be32(0x0),
878 cpu_to_be32(0x0),
879 cpu_to_be32(i)
881 memcpy(cur_index, associativity, sizeof(associativity));
882 cur_index += 4;
884 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
885 (cur_index - int_buf) * sizeof(uint32_t));
886 g_free(int_buf);
888 return ret;
891 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
892 sPAPROptionVector *ov5_updates)
894 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
895 int ret = 0, offset;
897 /* Generate ibm,dynamic-reconfiguration-memory node if required */
898 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
899 g_assert(smc->dr_lmb_enabled);
900 ret = spapr_populate_drconf_memory(spapr, fdt);
901 if (ret) {
902 goto out;
906 offset = fdt_path_offset(fdt, "/chosen");
907 if (offset < 0) {
908 offset = fdt_add_subnode(fdt, 0, "chosen");
909 if (offset < 0) {
910 return offset;
913 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
914 "ibm,architecture-vec-5");
916 out:
917 return ret;
920 static bool spapr_hotplugged_dev_before_cas(void)
922 Object *drc_container, *obj;
923 ObjectProperty *prop;
924 ObjectPropertyIterator iter;
926 drc_container = container_get(object_get_root(), "/dr-connector");
927 object_property_iter_init(&iter, drc_container);
928 while ((prop = object_property_iter_next(&iter))) {
929 if (!strstart(prop->type, "link<", NULL)) {
930 continue;
932 obj = object_property_get_link(drc_container, prop->name, NULL);
933 if (spapr_drc_needed(obj)) {
934 return true;
937 return false;
940 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
941 target_ulong addr, target_ulong size,
942 sPAPROptionVector *ov5_updates)
944 void *fdt, *fdt_skel;
945 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
947 if (spapr_hotplugged_dev_before_cas()) {
948 return 1;
951 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
952 error_report("SLOF provided an unexpected CAS buffer size "
953 TARGET_FMT_lu " (min: %zu, max: %u)",
954 size, sizeof(hdr), FW_MAX_SIZE);
955 exit(EXIT_FAILURE);
958 size -= sizeof(hdr);
960 /* Create skeleton */
961 fdt_skel = g_malloc0(size);
962 _FDT((fdt_create(fdt_skel, size)));
963 _FDT((fdt_finish_reservemap(fdt_skel)));
964 _FDT((fdt_begin_node(fdt_skel, "")));
965 _FDT((fdt_end_node(fdt_skel)));
966 _FDT((fdt_finish(fdt_skel)));
967 fdt = g_malloc0(size);
968 _FDT((fdt_open_into(fdt_skel, fdt, size)));
969 g_free(fdt_skel);
971 /* Fixup cpu nodes */
972 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
974 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
975 return -1;
978 /* Pack resulting tree */
979 _FDT((fdt_pack(fdt)));
981 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
982 trace_spapr_cas_failed(size);
983 return -1;
986 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
987 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
988 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
989 g_free(fdt);
991 return 0;
994 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
996 int rtas;
997 GString *hypertas = g_string_sized_new(256);
998 GString *qemu_hypertas = g_string_sized_new(256);
999 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1000 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1001 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1002 uint32_t lrdr_capacity[] = {
1003 cpu_to_be32(max_device_addr >> 32),
1004 cpu_to_be32(max_device_addr & 0xffffffff),
1005 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1006 cpu_to_be32(max_cpus / smp_threads),
1008 uint32_t maxdomains[] = {
1009 cpu_to_be32(4),
1010 cpu_to_be32(0),
1011 cpu_to_be32(0),
1012 cpu_to_be32(0),
1013 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes - 1 : 0),
1016 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1018 /* hypertas */
1019 add_str(hypertas, "hcall-pft");
1020 add_str(hypertas, "hcall-term");
1021 add_str(hypertas, "hcall-dabr");
1022 add_str(hypertas, "hcall-interrupt");
1023 add_str(hypertas, "hcall-tce");
1024 add_str(hypertas, "hcall-vio");
1025 add_str(hypertas, "hcall-splpar");
1026 add_str(hypertas, "hcall-bulk");
1027 add_str(hypertas, "hcall-set-mode");
1028 add_str(hypertas, "hcall-sprg0");
1029 add_str(hypertas, "hcall-copy");
1030 add_str(hypertas, "hcall-debug");
1031 add_str(qemu_hypertas, "hcall-memop1");
1033 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1034 add_str(hypertas, "hcall-multi-tce");
1037 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1038 add_str(hypertas, "hcall-hpt-resize");
1041 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1042 hypertas->str, hypertas->len));
1043 g_string_free(hypertas, TRUE);
1044 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1045 qemu_hypertas->str, qemu_hypertas->len));
1046 g_string_free(qemu_hypertas, TRUE);
1048 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1049 refpoints, sizeof(refpoints)));
1051 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1052 maxdomains, sizeof(maxdomains)));
1054 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1055 RTAS_ERROR_LOG_MAX));
1056 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1057 RTAS_EVENT_SCAN_RATE));
1059 g_assert(msi_nonbroken);
1060 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1063 * According to PAPR, rtas ibm,os-term does not guarantee a return
1064 * back to the guest cpu.
1066 * While an additional ibm,extended-os-term property indicates
1067 * that rtas call return will always occur. Set this property.
1069 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1071 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1072 lrdr_capacity, sizeof(lrdr_capacity)));
1074 spapr_dt_rtas_tokens(fdt, rtas);
1077 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
1078 * that the guest may request and thus the valid values for bytes 24..26 of
1079 * option vector 5: */
1080 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
1082 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1084 char val[2 * 4] = {
1085 23, 0x00, /* Xive mode, filled in below. */
1086 24, 0x00, /* Hash/Radix, filled in below. */
1087 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1088 26, 0x40, /* Radix options: GTSE == yes. */
1091 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1092 first_ppc_cpu->compat_pvr)) {
1093 /* If we're in a pre POWER9 compat mode then the guest should do hash */
1094 val[3] = 0x00; /* Hash */
1095 } else if (kvm_enabled()) {
1096 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1097 val[3] = 0x80; /* OV5_MMU_BOTH */
1098 } else if (kvmppc_has_cap_mmu_radix()) {
1099 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1100 } else {
1101 val[3] = 0x00; /* Hash */
1103 } else {
1104 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1105 val[3] = 0xC0;
1107 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1108 val, sizeof(val)));
1111 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1113 MachineState *machine = MACHINE(spapr);
1114 int chosen;
1115 const char *boot_device = machine->boot_order;
1116 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1117 size_t cb = 0;
1118 char *bootlist = get_boot_devices_list(&cb);
1120 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1122 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1123 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1124 spapr->initrd_base));
1125 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1126 spapr->initrd_base + spapr->initrd_size));
1128 if (spapr->kernel_size) {
1129 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1130 cpu_to_be64(spapr->kernel_size) };
1132 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1133 &kprop, sizeof(kprop)));
1134 if (spapr->kernel_le) {
1135 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1138 if (boot_menu) {
1139 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1141 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1142 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1143 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1145 if (cb && bootlist) {
1146 int i;
1148 for (i = 0; i < cb; i++) {
1149 if (bootlist[i] == '\n') {
1150 bootlist[i] = ' ';
1153 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1156 if (boot_device && strlen(boot_device)) {
1157 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1160 if (!spapr->has_graphics && stdout_path) {
1162 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1163 * kernel. New platforms should only use the "stdout-path" property. Set
1164 * the new property and continue using older property to remain
1165 * compatible with the existing firmware.
1167 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1168 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1171 spapr_dt_ov5_platform_support(fdt, chosen);
1173 g_free(stdout_path);
1174 g_free(bootlist);
1177 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1179 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1180 * KVM to work under pHyp with some guest co-operation */
1181 int hypervisor;
1182 uint8_t hypercall[16];
1184 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1185 /* indicate KVM hypercall interface */
1186 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1187 if (kvmppc_has_cap_fixup_hcalls()) {
1189 * Older KVM versions with older guest kernels were broken
1190 * with the magic page, don't allow the guest to map it.
1192 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1193 sizeof(hypercall))) {
1194 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1195 hypercall, sizeof(hypercall)));
1200 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1201 hwaddr rtas_addr,
1202 hwaddr rtas_size)
1204 MachineState *machine = MACHINE(spapr);
1205 MachineClass *mc = MACHINE_GET_CLASS(machine);
1206 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1207 int ret;
1208 void *fdt;
1209 sPAPRPHBState *phb;
1210 char *buf;
1212 fdt = g_malloc0(FDT_MAX_SIZE);
1213 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1215 /* Root node */
1216 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1217 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1218 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1221 * Add info to guest to indentify which host is it being run on
1222 * and what is the uuid of the guest
1224 if (kvmppc_get_host_model(&buf)) {
1225 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1226 g_free(buf);
1228 if (kvmppc_get_host_serial(&buf)) {
1229 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1230 g_free(buf);
1233 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1235 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1236 if (qemu_uuid_set) {
1237 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1239 g_free(buf);
1241 if (qemu_get_vm_name()) {
1242 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1243 qemu_get_vm_name()));
1246 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1247 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1249 /* /interrupt controller */
1250 spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP);
1252 ret = spapr_populate_memory(spapr, fdt);
1253 if (ret < 0) {
1254 error_report("couldn't setup memory nodes in fdt");
1255 exit(1);
1258 /* /vdevice */
1259 spapr_dt_vdevice(spapr->vio_bus, fdt);
1261 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1262 ret = spapr_rng_populate_dt(fdt);
1263 if (ret < 0) {
1264 error_report("could not set up rng device in the fdt");
1265 exit(1);
1269 QLIST_FOREACH(phb, &spapr->phbs, list) {
1270 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt, smc->irq->nr_msis);
1271 if (ret < 0) {
1272 error_report("couldn't setup PCI devices in fdt");
1273 exit(1);
1277 /* cpus */
1278 spapr_populate_cpus_dt_node(fdt, spapr);
1280 if (smc->dr_lmb_enabled) {
1281 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1284 if (mc->has_hotpluggable_cpus) {
1285 int offset = fdt_path_offset(fdt, "/cpus");
1286 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1287 SPAPR_DR_CONNECTOR_TYPE_CPU);
1288 if (ret < 0) {
1289 error_report("Couldn't set up CPU DR device tree properties");
1290 exit(1);
1294 /* /event-sources */
1295 spapr_dt_events(spapr, fdt);
1297 /* /rtas */
1298 spapr_dt_rtas(spapr, fdt);
1300 /* /chosen */
1301 spapr_dt_chosen(spapr, fdt);
1303 /* /hypervisor */
1304 if (kvm_enabled()) {
1305 spapr_dt_hypervisor(spapr, fdt);
1308 /* Build memory reserve map */
1309 if (spapr->kernel_size) {
1310 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1312 if (spapr->initrd_size) {
1313 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1316 /* ibm,client-architecture-support updates */
1317 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1318 if (ret < 0) {
1319 error_report("couldn't setup CAS properties fdt");
1320 exit(1);
1323 return fdt;
1326 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1328 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1331 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1332 PowerPCCPU *cpu)
1334 CPUPPCState *env = &cpu->env;
1336 /* The TCG path should also be holding the BQL at this point */
1337 g_assert(qemu_mutex_iothread_locked());
1339 if (msr_pr) {
1340 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1341 env->gpr[3] = H_PRIVILEGE;
1342 } else {
1343 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1347 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1349 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1351 return spapr->patb_entry;
1354 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1355 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1356 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1357 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1358 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1361 * Get the fd to access the kernel htab, re-opening it if necessary
1363 static int get_htab_fd(sPAPRMachineState *spapr)
1365 Error *local_err = NULL;
1367 if (spapr->htab_fd >= 0) {
1368 return spapr->htab_fd;
1371 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1372 if (spapr->htab_fd < 0) {
1373 error_report_err(local_err);
1376 return spapr->htab_fd;
1379 void close_htab_fd(sPAPRMachineState *spapr)
1381 if (spapr->htab_fd >= 0) {
1382 close(spapr->htab_fd);
1384 spapr->htab_fd = -1;
1387 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1389 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1391 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1394 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1396 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1398 assert(kvm_enabled());
1400 if (!spapr->htab) {
1401 return 0;
1404 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1407 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1408 hwaddr ptex, int n)
1410 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1411 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1413 if (!spapr->htab) {
1415 * HTAB is controlled by KVM. Fetch into temporary buffer
1417 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1418 kvmppc_read_hptes(hptes, ptex, n);
1419 return hptes;
1423 * HTAB is controlled by QEMU. Just point to the internally
1424 * accessible PTEG.
1426 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1429 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1430 const ppc_hash_pte64_t *hptes,
1431 hwaddr ptex, int n)
1433 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1435 if (!spapr->htab) {
1436 g_free((void *)hptes);
1439 /* Nothing to do for qemu managed HPT */
1442 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1443 uint64_t pte0, uint64_t pte1)
1445 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1446 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1448 if (!spapr->htab) {
1449 kvmppc_write_hpte(ptex, pte0, pte1);
1450 } else {
1451 stq_p(spapr->htab + offset, pte0);
1452 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1456 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1458 int shift;
1460 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1461 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1462 * that's much more than is needed for Linux guests */
1463 shift = ctz64(pow2ceil(ramsize)) - 7;
1464 shift = MAX(shift, 18); /* Minimum architected size */
1465 shift = MIN(shift, 46); /* Maximum architected size */
1466 return shift;
1469 void spapr_free_hpt(sPAPRMachineState *spapr)
1471 g_free(spapr->htab);
1472 spapr->htab = NULL;
1473 spapr->htab_shift = 0;
1474 close_htab_fd(spapr);
1477 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1478 Error **errp)
1480 long rc;
1482 /* Clean up any HPT info from a previous boot */
1483 spapr_free_hpt(spapr);
1485 rc = kvmppc_reset_htab(shift);
1486 if (rc < 0) {
1487 /* kernel-side HPT needed, but couldn't allocate one */
1488 error_setg_errno(errp, errno,
1489 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1490 shift);
1491 /* This is almost certainly fatal, but if the caller really
1492 * wants to carry on with shift == 0, it's welcome to try */
1493 } else if (rc > 0) {
1494 /* kernel-side HPT allocated */
1495 if (rc != shift) {
1496 error_setg(errp,
1497 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1498 shift, rc);
1501 spapr->htab_shift = shift;
1502 spapr->htab = NULL;
1503 } else {
1504 /* kernel-side HPT not needed, allocate in userspace instead */
1505 size_t size = 1ULL << shift;
1506 int i;
1508 spapr->htab = qemu_memalign(size, size);
1509 if (!spapr->htab) {
1510 error_setg_errno(errp, errno,
1511 "Could not allocate HPT of order %d", shift);
1512 return;
1515 memset(spapr->htab, 0, size);
1516 spapr->htab_shift = shift;
1518 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1519 DIRTY_HPTE(HPTE(spapr->htab, i));
1522 /* We're setting up a hash table, so that means we're not radix */
1523 spapr->patb_entry = 0;
1526 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1528 int hpt_shift;
1530 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1531 || (spapr->cas_reboot
1532 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1533 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1534 } else {
1535 uint64_t current_ram_size;
1537 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1538 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1540 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1542 if (spapr->vrma_adjust) {
1543 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1544 spapr->htab_shift);
1548 static int spapr_reset_drcs(Object *child, void *opaque)
1550 sPAPRDRConnector *drc =
1551 (sPAPRDRConnector *) object_dynamic_cast(child,
1552 TYPE_SPAPR_DR_CONNECTOR);
1554 if (drc) {
1555 spapr_drc_reset(drc);
1558 return 0;
1561 static void spapr_machine_reset(void)
1563 MachineState *machine = MACHINE(qdev_get_machine());
1564 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1565 PowerPCCPU *first_ppc_cpu;
1566 uint32_t rtas_limit;
1567 hwaddr rtas_addr, fdt_addr;
1568 void *fdt;
1569 int rc;
1571 spapr_caps_apply(spapr);
1573 first_ppc_cpu = POWERPC_CPU(first_cpu);
1574 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1575 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1576 spapr->max_compat_pvr)) {
1577 /* If using KVM with radix mode available, VCPUs can be started
1578 * without a HPT because KVM will start them in radix mode.
1579 * Set the GR bit in PATB so that we know there is no HPT. */
1580 spapr->patb_entry = PATBE1_GR;
1581 } else {
1582 spapr_setup_hpt_and_vrma(spapr);
1585 /* if this reset wasn't generated by CAS, we should reset our
1586 * negotiated options and start from scratch */
1587 if (!spapr->cas_reboot) {
1588 spapr_ovec_cleanup(spapr->ov5_cas);
1589 spapr->ov5_cas = spapr_ovec_new();
1591 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1594 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1595 spapr_irq_msi_reset(spapr);
1598 qemu_devices_reset();
1600 /* DRC reset may cause a device to be unplugged. This will cause troubles
1601 * if this device is used by another device (eg, a running vhost backend
1602 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1603 * situations, we reset DRCs after all devices have been reset.
1605 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1607 spapr_clear_pending_events(spapr);
1610 * We place the device tree and RTAS just below either the top of the RMA,
1611 * or just below 2GB, whichever is lowere, so that it can be
1612 * processed with 32-bit real mode code if necessary
1614 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1615 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1616 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1618 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1620 spapr_load_rtas(spapr, fdt, rtas_addr);
1622 rc = fdt_pack(fdt);
1624 /* Should only fail if we've built a corrupted tree */
1625 assert(rc == 0);
1627 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1628 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1629 fdt_totalsize(fdt), FDT_MAX_SIZE);
1630 exit(1);
1633 /* Load the fdt */
1634 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1635 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1636 g_free(fdt);
1638 /* Set up the entry state */
1639 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1640 first_ppc_cpu->env.gpr[5] = 0;
1642 spapr->cas_reboot = false;
1645 static void spapr_create_nvram(sPAPRMachineState *spapr)
1647 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1648 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1650 if (dinfo) {
1651 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1652 &error_fatal);
1655 qdev_init_nofail(dev);
1657 spapr->nvram = (struct sPAPRNVRAM *)dev;
1660 static void spapr_rtc_create(sPAPRMachineState *spapr)
1662 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1663 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1664 &error_fatal);
1665 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1666 &error_fatal);
1667 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1668 "date", &error_fatal);
1671 /* Returns whether we want to use VGA or not */
1672 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1674 switch (vga_interface_type) {
1675 case VGA_NONE:
1676 return false;
1677 case VGA_DEVICE:
1678 return true;
1679 case VGA_STD:
1680 case VGA_VIRTIO:
1681 return pci_vga_init(pci_bus) != NULL;
1682 default:
1683 error_setg(errp,
1684 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1685 return false;
1689 static int spapr_pre_load(void *opaque)
1691 int rc;
1693 rc = spapr_caps_pre_load(opaque);
1694 if (rc) {
1695 return rc;
1698 return 0;
1701 static int spapr_post_load(void *opaque, int version_id)
1703 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1704 int err = 0;
1706 err = spapr_caps_post_migration(spapr);
1707 if (err) {
1708 return err;
1711 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1712 CPUState *cs;
1713 CPU_FOREACH(cs) {
1714 PowerPCCPU *cpu = POWERPC_CPU(cs);
1715 icp_resend(ICP(cpu->intc));
1719 /* In earlier versions, there was no separate qdev for the PAPR
1720 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1721 * So when migrating from those versions, poke the incoming offset
1722 * value into the RTC device */
1723 if (version_id < 3) {
1724 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1727 if (kvm_enabled() && spapr->patb_entry) {
1728 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1729 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1730 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1732 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1733 if (err) {
1734 error_report("Process table config unsupported by the host");
1735 return -EINVAL;
1739 return err;
1742 static int spapr_pre_save(void *opaque)
1744 int rc;
1746 rc = spapr_caps_pre_save(opaque);
1747 if (rc) {
1748 return rc;
1751 return 0;
1754 static bool version_before_3(void *opaque, int version_id)
1756 return version_id < 3;
1759 static bool spapr_pending_events_needed(void *opaque)
1761 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1762 return !QTAILQ_EMPTY(&spapr->pending_events);
1765 static const VMStateDescription vmstate_spapr_event_entry = {
1766 .name = "spapr_event_log_entry",
1767 .version_id = 1,
1768 .minimum_version_id = 1,
1769 .fields = (VMStateField[]) {
1770 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1771 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1772 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1773 NULL, extended_length),
1774 VMSTATE_END_OF_LIST()
1778 static const VMStateDescription vmstate_spapr_pending_events = {
1779 .name = "spapr_pending_events",
1780 .version_id = 1,
1781 .minimum_version_id = 1,
1782 .needed = spapr_pending_events_needed,
1783 .fields = (VMStateField[]) {
1784 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1785 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1786 VMSTATE_END_OF_LIST()
1790 static bool spapr_ov5_cas_needed(void *opaque)
1792 sPAPRMachineState *spapr = opaque;
1793 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1794 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1795 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1796 bool cas_needed;
1798 /* Prior to the introduction of sPAPROptionVector, we had two option
1799 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1800 * Both of these options encode machine topology into the device-tree
1801 * in such a way that the now-booted OS should still be able to interact
1802 * appropriately with QEMU regardless of what options were actually
1803 * negotiatied on the source side.
1805 * As such, we can avoid migrating the CAS-negotiated options if these
1806 * are the only options available on the current machine/platform.
1807 * Since these are the only options available for pseries-2.7 and
1808 * earlier, this allows us to maintain old->new/new->old migration
1809 * compatibility.
1811 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1812 * via default pseries-2.8 machines and explicit command-line parameters.
1813 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1814 * of the actual CAS-negotiated values to continue working properly. For
1815 * example, availability of memory unplug depends on knowing whether
1816 * OV5_HP_EVT was negotiated via CAS.
1818 * Thus, for any cases where the set of available CAS-negotiatable
1819 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1820 * include the CAS-negotiated options in the migration stream, unless
1821 * if they affect boot time behaviour only.
1823 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1824 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1825 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1827 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1828 * the mask itself since in the future it's possible "legacy" bits may be
1829 * removed via machine options, which could generate a false positive
1830 * that breaks migration.
1832 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1833 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1835 spapr_ovec_cleanup(ov5_mask);
1836 spapr_ovec_cleanup(ov5_legacy);
1837 spapr_ovec_cleanup(ov5_removed);
1839 return cas_needed;
1842 static const VMStateDescription vmstate_spapr_ov5_cas = {
1843 .name = "spapr_option_vector_ov5_cas",
1844 .version_id = 1,
1845 .minimum_version_id = 1,
1846 .needed = spapr_ov5_cas_needed,
1847 .fields = (VMStateField[]) {
1848 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1849 vmstate_spapr_ovec, sPAPROptionVector),
1850 VMSTATE_END_OF_LIST()
1854 static bool spapr_patb_entry_needed(void *opaque)
1856 sPAPRMachineState *spapr = opaque;
1858 return !!spapr->patb_entry;
1861 static const VMStateDescription vmstate_spapr_patb_entry = {
1862 .name = "spapr_patb_entry",
1863 .version_id = 1,
1864 .minimum_version_id = 1,
1865 .needed = spapr_patb_entry_needed,
1866 .fields = (VMStateField[]) {
1867 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1868 VMSTATE_END_OF_LIST()
1872 static bool spapr_irq_map_needed(void *opaque)
1874 sPAPRMachineState *spapr = opaque;
1876 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1879 static const VMStateDescription vmstate_spapr_irq_map = {
1880 .name = "spapr_irq_map",
1881 .version_id = 1,
1882 .minimum_version_id = 1,
1883 .needed = spapr_irq_map_needed,
1884 .fields = (VMStateField[]) {
1885 VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr),
1886 VMSTATE_END_OF_LIST()
1890 static const VMStateDescription vmstate_spapr = {
1891 .name = "spapr",
1892 .version_id = 3,
1893 .minimum_version_id = 1,
1894 .pre_load = spapr_pre_load,
1895 .post_load = spapr_post_load,
1896 .pre_save = spapr_pre_save,
1897 .fields = (VMStateField[]) {
1898 /* used to be @next_irq */
1899 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1901 /* RTC offset */
1902 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1904 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1905 VMSTATE_END_OF_LIST()
1907 .subsections = (const VMStateDescription*[]) {
1908 &vmstate_spapr_ov5_cas,
1909 &vmstate_spapr_patb_entry,
1910 &vmstate_spapr_pending_events,
1911 &vmstate_spapr_cap_htm,
1912 &vmstate_spapr_cap_vsx,
1913 &vmstate_spapr_cap_dfp,
1914 &vmstate_spapr_cap_cfpc,
1915 &vmstate_spapr_cap_sbbc,
1916 &vmstate_spapr_cap_ibs,
1917 &vmstate_spapr_irq_map,
1918 NULL
1922 static int htab_save_setup(QEMUFile *f, void *opaque)
1924 sPAPRMachineState *spapr = opaque;
1926 /* "Iteration" header */
1927 if (!spapr->htab_shift) {
1928 qemu_put_be32(f, -1);
1929 } else {
1930 qemu_put_be32(f, spapr->htab_shift);
1933 if (spapr->htab) {
1934 spapr->htab_save_index = 0;
1935 spapr->htab_first_pass = true;
1936 } else {
1937 if (spapr->htab_shift) {
1938 assert(kvm_enabled());
1943 return 0;
1946 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1947 int chunkstart, int n_valid, int n_invalid)
1949 qemu_put_be32(f, chunkstart);
1950 qemu_put_be16(f, n_valid);
1951 qemu_put_be16(f, n_invalid);
1952 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1953 HASH_PTE_SIZE_64 * n_valid);
1956 static void htab_save_end_marker(QEMUFile *f)
1958 qemu_put_be32(f, 0);
1959 qemu_put_be16(f, 0);
1960 qemu_put_be16(f, 0);
1963 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1964 int64_t max_ns)
1966 bool has_timeout = max_ns != -1;
1967 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1968 int index = spapr->htab_save_index;
1969 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1971 assert(spapr->htab_first_pass);
1973 do {
1974 int chunkstart;
1976 /* Consume invalid HPTEs */
1977 while ((index < htabslots)
1978 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1979 CLEAN_HPTE(HPTE(spapr->htab, index));
1980 index++;
1983 /* Consume valid HPTEs */
1984 chunkstart = index;
1985 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1986 && HPTE_VALID(HPTE(spapr->htab, index))) {
1987 CLEAN_HPTE(HPTE(spapr->htab, index));
1988 index++;
1991 if (index > chunkstart) {
1992 int n_valid = index - chunkstart;
1994 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
1996 if (has_timeout &&
1997 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1998 break;
2001 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2003 if (index >= htabslots) {
2004 assert(index == htabslots);
2005 index = 0;
2006 spapr->htab_first_pass = false;
2008 spapr->htab_save_index = index;
2011 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2012 int64_t max_ns)
2014 bool final = max_ns < 0;
2015 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2016 int examined = 0, sent = 0;
2017 int index = spapr->htab_save_index;
2018 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2020 assert(!spapr->htab_first_pass);
2022 do {
2023 int chunkstart, invalidstart;
2025 /* Consume non-dirty HPTEs */
2026 while ((index < htabslots)
2027 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2028 index++;
2029 examined++;
2032 chunkstart = index;
2033 /* Consume valid dirty HPTEs */
2034 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2035 && HPTE_DIRTY(HPTE(spapr->htab, index))
2036 && HPTE_VALID(HPTE(spapr->htab, index))) {
2037 CLEAN_HPTE(HPTE(spapr->htab, index));
2038 index++;
2039 examined++;
2042 invalidstart = index;
2043 /* Consume invalid dirty HPTEs */
2044 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2045 && HPTE_DIRTY(HPTE(spapr->htab, index))
2046 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2047 CLEAN_HPTE(HPTE(spapr->htab, index));
2048 index++;
2049 examined++;
2052 if (index > chunkstart) {
2053 int n_valid = invalidstart - chunkstart;
2054 int n_invalid = index - invalidstart;
2056 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2057 sent += index - chunkstart;
2059 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2060 break;
2064 if (examined >= htabslots) {
2065 break;
2068 if (index >= htabslots) {
2069 assert(index == htabslots);
2070 index = 0;
2072 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2074 if (index >= htabslots) {
2075 assert(index == htabslots);
2076 index = 0;
2079 spapr->htab_save_index = index;
2081 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2084 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2085 #define MAX_KVM_BUF_SIZE 2048
2087 static int htab_save_iterate(QEMUFile *f, void *opaque)
2089 sPAPRMachineState *spapr = opaque;
2090 int fd;
2091 int rc = 0;
2093 /* Iteration header */
2094 if (!spapr->htab_shift) {
2095 qemu_put_be32(f, -1);
2096 return 1;
2097 } else {
2098 qemu_put_be32(f, 0);
2101 if (!spapr->htab) {
2102 assert(kvm_enabled());
2104 fd = get_htab_fd(spapr);
2105 if (fd < 0) {
2106 return fd;
2109 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2110 if (rc < 0) {
2111 return rc;
2113 } else if (spapr->htab_first_pass) {
2114 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2115 } else {
2116 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2119 htab_save_end_marker(f);
2121 return rc;
2124 static int htab_save_complete(QEMUFile *f, void *opaque)
2126 sPAPRMachineState *spapr = opaque;
2127 int fd;
2129 /* Iteration header */
2130 if (!spapr->htab_shift) {
2131 qemu_put_be32(f, -1);
2132 return 0;
2133 } else {
2134 qemu_put_be32(f, 0);
2137 if (!spapr->htab) {
2138 int rc;
2140 assert(kvm_enabled());
2142 fd = get_htab_fd(spapr);
2143 if (fd < 0) {
2144 return fd;
2147 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2148 if (rc < 0) {
2149 return rc;
2151 } else {
2152 if (spapr->htab_first_pass) {
2153 htab_save_first_pass(f, spapr, -1);
2155 htab_save_later_pass(f, spapr, -1);
2158 /* End marker */
2159 htab_save_end_marker(f);
2161 return 0;
2164 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2166 sPAPRMachineState *spapr = opaque;
2167 uint32_t section_hdr;
2168 int fd = -1;
2169 Error *local_err = NULL;
2171 if (version_id < 1 || version_id > 1) {
2172 error_report("htab_load() bad version");
2173 return -EINVAL;
2176 section_hdr = qemu_get_be32(f);
2178 if (section_hdr == -1) {
2179 spapr_free_hpt(spapr);
2180 return 0;
2183 if (section_hdr) {
2184 /* First section gives the htab size */
2185 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2186 if (local_err) {
2187 error_report_err(local_err);
2188 return -EINVAL;
2190 return 0;
2193 if (!spapr->htab) {
2194 assert(kvm_enabled());
2196 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2197 if (fd < 0) {
2198 error_report_err(local_err);
2199 return fd;
2203 while (true) {
2204 uint32_t index;
2205 uint16_t n_valid, n_invalid;
2207 index = qemu_get_be32(f);
2208 n_valid = qemu_get_be16(f);
2209 n_invalid = qemu_get_be16(f);
2211 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2212 /* End of Stream */
2213 break;
2216 if ((index + n_valid + n_invalid) >
2217 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2218 /* Bad index in stream */
2219 error_report(
2220 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2221 index, n_valid, n_invalid, spapr->htab_shift);
2222 return -EINVAL;
2225 if (spapr->htab) {
2226 if (n_valid) {
2227 qemu_get_buffer(f, HPTE(spapr->htab, index),
2228 HASH_PTE_SIZE_64 * n_valid);
2230 if (n_invalid) {
2231 memset(HPTE(spapr->htab, index + n_valid), 0,
2232 HASH_PTE_SIZE_64 * n_invalid);
2234 } else {
2235 int rc;
2237 assert(fd >= 0);
2239 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2240 if (rc < 0) {
2241 return rc;
2246 if (!spapr->htab) {
2247 assert(fd >= 0);
2248 close(fd);
2251 return 0;
2254 static void htab_save_cleanup(void *opaque)
2256 sPAPRMachineState *spapr = opaque;
2258 close_htab_fd(spapr);
2261 static SaveVMHandlers savevm_htab_handlers = {
2262 .save_setup = htab_save_setup,
2263 .save_live_iterate = htab_save_iterate,
2264 .save_live_complete_precopy = htab_save_complete,
2265 .save_cleanup = htab_save_cleanup,
2266 .load_state = htab_load,
2269 static void spapr_boot_set(void *opaque, const char *boot_device,
2270 Error **errp)
2272 MachineState *machine = MACHINE(opaque);
2273 machine->boot_order = g_strdup(boot_device);
2276 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2278 MachineState *machine = MACHINE(spapr);
2279 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2280 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2281 int i;
2283 for (i = 0; i < nr_lmbs; i++) {
2284 uint64_t addr;
2286 addr = i * lmb_size + machine->device_memory->base;
2287 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2288 addr / lmb_size);
2293 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2294 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2295 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2297 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2299 int i;
2301 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2302 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2303 " is not aligned to %" PRIu64 " MiB",
2304 machine->ram_size,
2305 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2306 return;
2309 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2310 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2311 " is not aligned to %" PRIu64 " MiB",
2312 machine->ram_size,
2313 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2314 return;
2317 for (i = 0; i < nb_numa_nodes; i++) {
2318 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2319 error_setg(errp,
2320 "Node %d memory size 0x%" PRIx64
2321 " is not aligned to %" PRIu64 " MiB",
2322 i, numa_info[i].node_mem,
2323 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2324 return;
2329 /* find cpu slot in machine->possible_cpus by core_id */
2330 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2332 int index = id / smp_threads;
2334 if (index >= ms->possible_cpus->len) {
2335 return NULL;
2337 if (idx) {
2338 *idx = index;
2340 return &ms->possible_cpus->cpus[index];
2343 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2345 Error *local_err = NULL;
2346 bool vsmt_user = !!spapr->vsmt;
2347 int kvm_smt = kvmppc_smt_threads();
2348 int ret;
2350 if (!kvm_enabled() && (smp_threads > 1)) {
2351 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2352 "on a pseries machine");
2353 goto out;
2355 if (!is_power_of_2(smp_threads)) {
2356 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2357 "machine because it must be a power of 2", smp_threads);
2358 goto out;
2361 /* Detemine the VSMT mode to use: */
2362 if (vsmt_user) {
2363 if (spapr->vsmt < smp_threads) {
2364 error_setg(&local_err, "Cannot support VSMT mode %d"
2365 " because it must be >= threads/core (%d)",
2366 spapr->vsmt, smp_threads);
2367 goto out;
2369 /* In this case, spapr->vsmt has been set by the command line */
2370 } else {
2372 * Default VSMT value is tricky, because we need it to be as
2373 * consistent as possible (for migration), but this requires
2374 * changing it for at least some existing cases. We pick 8 as
2375 * the value that we'd get with KVM on POWER8, the
2376 * overwhelmingly common case in production systems.
2378 spapr->vsmt = MAX(8, smp_threads);
2381 /* KVM: If necessary, set the SMT mode: */
2382 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2383 ret = kvmppc_set_smt_threads(spapr->vsmt);
2384 if (ret) {
2385 /* Looks like KVM isn't able to change VSMT mode */
2386 error_setg(&local_err,
2387 "Failed to set KVM's VSMT mode to %d (errno %d)",
2388 spapr->vsmt, ret);
2389 /* We can live with that if the default one is big enough
2390 * for the number of threads, and a submultiple of the one
2391 * we want. In this case we'll waste some vcpu ids, but
2392 * behaviour will be correct */
2393 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2394 warn_report_err(local_err);
2395 local_err = NULL;
2396 goto out;
2397 } else {
2398 if (!vsmt_user) {
2399 error_append_hint(&local_err,
2400 "On PPC, a VM with %d threads/core"
2401 " on a host with %d threads/core"
2402 " requires the use of VSMT mode %d.\n",
2403 smp_threads, kvm_smt, spapr->vsmt);
2405 kvmppc_hint_smt_possible(&local_err);
2406 goto out;
2410 /* else TCG: nothing to do currently */
2411 out:
2412 error_propagate(errp, local_err);
2415 static void spapr_init_cpus(sPAPRMachineState *spapr)
2417 MachineState *machine = MACHINE(spapr);
2418 MachineClass *mc = MACHINE_GET_CLASS(machine);
2419 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2420 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2421 const CPUArchIdList *possible_cpus;
2422 int boot_cores_nr = smp_cpus / smp_threads;
2423 int i;
2425 possible_cpus = mc->possible_cpu_arch_ids(machine);
2426 if (mc->has_hotpluggable_cpus) {
2427 if (smp_cpus % smp_threads) {
2428 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2429 smp_cpus, smp_threads);
2430 exit(1);
2432 if (max_cpus % smp_threads) {
2433 error_report("max_cpus (%u) must be multiple of threads (%u)",
2434 max_cpus, smp_threads);
2435 exit(1);
2437 } else {
2438 if (max_cpus != smp_cpus) {
2439 error_report("This machine version does not support CPU hotplug");
2440 exit(1);
2442 boot_cores_nr = possible_cpus->len;
2445 /* VSMT must be set in order to be able to compute VCPU ids, ie to
2446 * call xics_max_server_number() or spapr_vcpu_id().
2448 spapr_set_vsmt_mode(spapr, &error_fatal);
2450 if (smc->pre_2_10_has_unused_icps) {
2451 int i;
2453 for (i = 0; i < xics_max_server_number(spapr); i++) {
2454 /* Dummy entries get deregistered when real ICPState objects
2455 * are registered during CPU core hotplug.
2457 pre_2_10_vmstate_register_dummy_icp(i);
2461 for (i = 0; i < possible_cpus->len; i++) {
2462 int core_id = i * smp_threads;
2464 if (mc->has_hotpluggable_cpus) {
2465 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2466 spapr_vcpu_id(spapr, core_id));
2469 if (i < boot_cores_nr) {
2470 Object *core = object_new(type);
2471 int nr_threads = smp_threads;
2473 /* Handle the partially filled core for older machine types */
2474 if ((i + 1) * smp_threads >= smp_cpus) {
2475 nr_threads = smp_cpus - i * smp_threads;
2478 object_property_set_int(core, nr_threads, "nr-threads",
2479 &error_fatal);
2480 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2481 &error_fatal);
2482 object_property_set_bool(core, true, "realized", &error_fatal);
2484 object_unref(core);
2489 /* pSeries LPAR / sPAPR hardware init */
2490 static void spapr_machine_init(MachineState *machine)
2492 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2493 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2494 const char *kernel_filename = machine->kernel_filename;
2495 const char *initrd_filename = machine->initrd_filename;
2496 PCIHostState *phb;
2497 int i;
2498 MemoryRegion *sysmem = get_system_memory();
2499 MemoryRegion *ram = g_new(MemoryRegion, 1);
2500 hwaddr node0_size = spapr_node0_size(machine);
2501 long load_limit, fw_size;
2502 char *filename;
2503 Error *resize_hpt_err = NULL;
2505 msi_nonbroken = true;
2507 QLIST_INIT(&spapr->phbs);
2508 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2510 /* Determine capabilities to run with */
2511 spapr_caps_init(spapr);
2513 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2514 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2516 * If the user explicitly requested a mode we should either
2517 * supply it, or fail completely (which we do below). But if
2518 * it's not set explicitly, we reset our mode to something
2519 * that works
2521 if (resize_hpt_err) {
2522 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2523 error_free(resize_hpt_err);
2524 resize_hpt_err = NULL;
2525 } else {
2526 spapr->resize_hpt = smc->resize_hpt_default;
2530 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2532 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2534 * User requested HPT resize, but this host can't supply it. Bail out
2536 error_report_err(resize_hpt_err);
2537 exit(1);
2540 spapr->rma_size = node0_size;
2542 /* With KVM, we don't actually know whether KVM supports an
2543 * unbounded RMA (PR KVM) or is limited by the hash table size
2544 * (HV KVM using VRMA), so we always assume the latter
2546 * In that case, we also limit the initial allocations for RTAS
2547 * etc... to 256M since we have no way to know what the VRMA size
2548 * is going to be as it depends on the size of the hash table
2549 * which isn't determined yet.
2551 if (kvm_enabled()) {
2552 spapr->vrma_adjust = 1;
2553 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2556 /* Actually we don't support unbounded RMA anymore since we added
2557 * proper emulation of HV mode. The max we can get is 16G which
2558 * also happens to be what we configure for PAPR mode so make sure
2559 * we don't do anything bigger than that
2561 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2563 if (spapr->rma_size > node0_size) {
2564 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2565 spapr->rma_size);
2566 exit(1);
2569 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2570 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2572 /* Set up Interrupt Controller before we create the VCPUs */
2573 smc->irq->init(spapr, &error_fatal);
2575 /* Set up containers for ibm,client-architecture-support negotiated options
2577 spapr->ov5 = spapr_ovec_new();
2578 spapr->ov5_cas = spapr_ovec_new();
2580 if (smc->dr_lmb_enabled) {
2581 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2582 spapr_validate_node_memory(machine, &error_fatal);
2585 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2587 /* advertise support for dedicated HP event source to guests */
2588 if (spapr->use_hotplug_event_source) {
2589 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2592 /* advertise support for HPT resizing */
2593 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2594 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2597 /* advertise support for ibm,dyamic-memory-v2 */
2598 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2600 /* init CPUs */
2601 spapr_init_cpus(spapr);
2603 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2604 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2605 spapr->max_compat_pvr)) {
2606 /* KVM and TCG always allow GTSE with radix... */
2607 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2609 /* ... but not with hash (currently). */
2611 if (kvm_enabled()) {
2612 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2613 kvmppc_enable_logical_ci_hcalls();
2614 kvmppc_enable_set_mode_hcall();
2616 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2617 kvmppc_enable_clear_ref_mod_hcalls();
2620 /* allocate RAM */
2621 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2622 machine->ram_size);
2623 memory_region_add_subregion(sysmem, 0, ram);
2625 /* always allocate the device memory information */
2626 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2628 /* initialize hotplug memory address space */
2629 if (machine->ram_size < machine->maxram_size) {
2630 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2632 * Limit the number of hotpluggable memory slots to half the number
2633 * slots that KVM supports, leaving the other half for PCI and other
2634 * devices. However ensure that number of slots doesn't drop below 32.
2636 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2637 SPAPR_MAX_RAM_SLOTS;
2639 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2640 max_memslots = SPAPR_MAX_RAM_SLOTS;
2642 if (machine->ram_slots > max_memslots) {
2643 error_report("Specified number of memory slots %"
2644 PRIu64" exceeds max supported %d",
2645 machine->ram_slots, max_memslots);
2646 exit(1);
2649 machine->device_memory->base = ROUND_UP(machine->ram_size,
2650 SPAPR_DEVICE_MEM_ALIGN);
2651 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2652 "device-memory", device_mem_size);
2653 memory_region_add_subregion(sysmem, machine->device_memory->base,
2654 &machine->device_memory->mr);
2657 if (smc->dr_lmb_enabled) {
2658 spapr_create_lmb_dr_connectors(spapr);
2661 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2662 if (!filename) {
2663 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2664 exit(1);
2666 spapr->rtas_size = get_image_size(filename);
2667 if (spapr->rtas_size < 0) {
2668 error_report("Could not get size of LPAR rtas '%s'", filename);
2669 exit(1);
2671 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2672 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2673 error_report("Could not load LPAR rtas '%s'", filename);
2674 exit(1);
2676 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2677 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2678 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2679 exit(1);
2681 g_free(filename);
2683 /* Set up RTAS event infrastructure */
2684 spapr_events_init(spapr);
2686 /* Set up the RTC RTAS interfaces */
2687 spapr_rtc_create(spapr);
2689 /* Set up VIO bus */
2690 spapr->vio_bus = spapr_vio_bus_init();
2692 for (i = 0; i < serial_max_hds(); i++) {
2693 if (serial_hd(i)) {
2694 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2698 /* We always have at least the nvram device on VIO */
2699 spapr_create_nvram(spapr);
2701 /* Set up PCI */
2702 spapr_pci_rtas_init();
2704 phb = spapr_create_phb(spapr, 0);
2706 for (i = 0; i < nb_nics; i++) {
2707 NICInfo *nd = &nd_table[i];
2709 if (!nd->model) {
2710 nd->model = g_strdup("spapr-vlan");
2713 if (g_str_equal(nd->model, "spapr-vlan") ||
2714 g_str_equal(nd->model, "ibmveth")) {
2715 spapr_vlan_create(spapr->vio_bus, nd);
2716 } else {
2717 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2721 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2722 spapr_vscsi_create(spapr->vio_bus);
2725 /* Graphics */
2726 if (spapr_vga_init(phb->bus, &error_fatal)) {
2727 spapr->has_graphics = true;
2728 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2731 if (machine->usb) {
2732 if (smc->use_ohci_by_default) {
2733 pci_create_simple(phb->bus, -1, "pci-ohci");
2734 } else {
2735 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2738 if (spapr->has_graphics) {
2739 USBBus *usb_bus = usb_bus_find(-1);
2741 usb_create_simple(usb_bus, "usb-kbd");
2742 usb_create_simple(usb_bus, "usb-mouse");
2746 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2747 error_report(
2748 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2749 MIN_RMA_SLOF);
2750 exit(1);
2753 if (kernel_filename) {
2754 uint64_t lowaddr = 0;
2756 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2757 NULL, NULL, &lowaddr, NULL, 1,
2758 PPC_ELF_MACHINE, 0, 0);
2759 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2760 spapr->kernel_size = load_elf(kernel_filename,
2761 translate_kernel_address, NULL, NULL,
2762 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2763 0, 0);
2764 spapr->kernel_le = spapr->kernel_size > 0;
2766 if (spapr->kernel_size < 0) {
2767 error_report("error loading %s: %s", kernel_filename,
2768 load_elf_strerror(spapr->kernel_size));
2769 exit(1);
2772 /* load initrd */
2773 if (initrd_filename) {
2774 /* Try to locate the initrd in the gap between the kernel
2775 * and the firmware. Add a bit of space just in case
2777 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2778 + 0x1ffff) & ~0xffff;
2779 spapr->initrd_size = load_image_targphys(initrd_filename,
2780 spapr->initrd_base,
2781 load_limit
2782 - spapr->initrd_base);
2783 if (spapr->initrd_size < 0) {
2784 error_report("could not load initial ram disk '%s'",
2785 initrd_filename);
2786 exit(1);
2791 if (bios_name == NULL) {
2792 bios_name = FW_FILE_NAME;
2794 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2795 if (!filename) {
2796 error_report("Could not find LPAR firmware '%s'", bios_name);
2797 exit(1);
2799 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2800 if (fw_size <= 0) {
2801 error_report("Could not load LPAR firmware '%s'", filename);
2802 exit(1);
2804 g_free(filename);
2806 /* FIXME: Should register things through the MachineState's qdev
2807 * interface, this is a legacy from the sPAPREnvironment structure
2808 * which predated MachineState but had a similar function */
2809 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2810 register_savevm_live(NULL, "spapr/htab", -1, 1,
2811 &savevm_htab_handlers, spapr);
2813 qemu_register_boot_set(spapr_boot_set, spapr);
2815 if (kvm_enabled()) {
2816 /* to stop and start vmclock */
2817 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2818 &spapr->tb);
2820 kvmppc_spapr_enable_inkernel_multitce();
2824 static int spapr_kvm_type(const char *vm_type)
2826 if (!vm_type) {
2827 return 0;
2830 if (!strcmp(vm_type, "HV")) {
2831 return 1;
2834 if (!strcmp(vm_type, "PR")) {
2835 return 2;
2838 error_report("Unknown kvm-type specified '%s'", vm_type);
2839 exit(1);
2843 * Implementation of an interface to adjust firmware path
2844 * for the bootindex property handling.
2846 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2847 DeviceState *dev)
2849 #define CAST(type, obj, name) \
2850 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2851 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2852 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2853 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2855 if (d) {
2856 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2857 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2858 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2860 if (spapr) {
2862 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2863 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2864 * in the top 16 bits of the 64-bit LUN
2866 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2867 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2868 (uint64_t)id << 48);
2869 } else if (virtio) {
2871 * We use SRP luns of the form 01000000 | (target << 8) | lun
2872 * in the top 32 bits of the 64-bit LUN
2873 * Note: the quote above is from SLOF and it is wrong,
2874 * the actual binding is:
2875 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2877 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2878 if (d->lun >= 256) {
2879 /* Use the LUN "flat space addressing method" */
2880 id |= 0x4000;
2882 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2883 (uint64_t)id << 32);
2884 } else if (usb) {
2886 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2887 * in the top 32 bits of the 64-bit LUN
2889 unsigned usb_port = atoi(usb->port->path);
2890 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2891 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2892 (uint64_t)id << 32);
2897 * SLOF probes the USB devices, and if it recognizes that the device is a
2898 * storage device, it changes its name to "storage" instead of "usb-host",
2899 * and additionally adds a child node for the SCSI LUN, so the correct
2900 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2902 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2903 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2904 if (usb_host_dev_is_scsi_storage(usbdev)) {
2905 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2909 if (phb) {
2910 /* Replace "pci" with "pci@800000020000000" */
2911 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2914 if (vsc) {
2915 /* Same logic as virtio above */
2916 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2917 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2920 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2921 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2922 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2923 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2926 return NULL;
2929 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2931 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2933 return g_strdup(spapr->kvm_type);
2936 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2938 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2940 g_free(spapr->kvm_type);
2941 spapr->kvm_type = g_strdup(value);
2944 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2946 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2948 return spapr->use_hotplug_event_source;
2951 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2952 Error **errp)
2954 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2956 spapr->use_hotplug_event_source = value;
2959 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
2961 return true;
2964 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2966 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2968 switch (spapr->resize_hpt) {
2969 case SPAPR_RESIZE_HPT_DEFAULT:
2970 return g_strdup("default");
2971 case SPAPR_RESIZE_HPT_DISABLED:
2972 return g_strdup("disabled");
2973 case SPAPR_RESIZE_HPT_ENABLED:
2974 return g_strdup("enabled");
2975 case SPAPR_RESIZE_HPT_REQUIRED:
2976 return g_strdup("required");
2978 g_assert_not_reached();
2981 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2983 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2985 if (strcmp(value, "default") == 0) {
2986 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2987 } else if (strcmp(value, "disabled") == 0) {
2988 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2989 } else if (strcmp(value, "enabled") == 0) {
2990 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2991 } else if (strcmp(value, "required") == 0) {
2992 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2993 } else {
2994 error_setg(errp, "Bad value for \"resize-hpt\" property");
2998 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
2999 void *opaque, Error **errp)
3001 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3004 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3005 void *opaque, Error **errp)
3007 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3010 static void spapr_instance_init(Object *obj)
3012 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3014 spapr->htab_fd = -1;
3015 spapr->use_hotplug_event_source = true;
3016 object_property_add_str(obj, "kvm-type",
3017 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3018 object_property_set_description(obj, "kvm-type",
3019 "Specifies the KVM virtualization mode (HV, PR)",
3020 NULL);
3021 object_property_add_bool(obj, "modern-hotplug-events",
3022 spapr_get_modern_hotplug_events,
3023 spapr_set_modern_hotplug_events,
3024 NULL);
3025 object_property_set_description(obj, "modern-hotplug-events",
3026 "Use dedicated hotplug event mechanism in"
3027 " place of standard EPOW events when possible"
3028 " (required for memory hot-unplug support)",
3029 NULL);
3030 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3031 "Maximum permitted CPU compatibility mode",
3032 &error_fatal);
3034 object_property_add_str(obj, "resize-hpt",
3035 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3036 object_property_set_description(obj, "resize-hpt",
3037 "Resizing of the Hash Page Table (enabled, disabled, required)",
3038 NULL);
3039 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3040 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3041 object_property_set_description(obj, "vsmt",
3042 "Virtual SMT: KVM behaves as if this were"
3043 " the host's SMT mode", &error_abort);
3044 object_property_add_bool(obj, "vfio-no-msix-emulation",
3045 spapr_get_msix_emulation, NULL, NULL);
3048 static void spapr_machine_finalizefn(Object *obj)
3050 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3052 g_free(spapr->kvm_type);
3055 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3057 cpu_synchronize_state(cs);
3058 ppc_cpu_do_system_reset(cs);
3061 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3063 CPUState *cs;
3065 CPU_FOREACH(cs) {
3066 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3070 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3071 uint32_t node, bool dedicated_hp_event_source,
3072 Error **errp)
3074 sPAPRDRConnector *drc;
3075 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3076 int i, fdt_offset, fdt_size;
3077 void *fdt;
3078 uint64_t addr = addr_start;
3079 bool hotplugged = spapr_drc_hotplugged(dev);
3080 Error *local_err = NULL;
3082 for (i = 0; i < nr_lmbs; i++) {
3083 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3084 addr / SPAPR_MEMORY_BLOCK_SIZE);
3085 g_assert(drc);
3087 fdt = create_device_tree(&fdt_size);
3088 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3089 SPAPR_MEMORY_BLOCK_SIZE);
3091 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3092 if (local_err) {
3093 while (addr > addr_start) {
3094 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3095 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3096 addr / SPAPR_MEMORY_BLOCK_SIZE);
3097 spapr_drc_detach(drc);
3099 g_free(fdt);
3100 error_propagate(errp, local_err);
3101 return;
3103 if (!hotplugged) {
3104 spapr_drc_reset(drc);
3106 addr += SPAPR_MEMORY_BLOCK_SIZE;
3108 /* send hotplug notification to the
3109 * guest only in case of hotplugged memory
3111 if (hotplugged) {
3112 if (dedicated_hp_event_source) {
3113 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3114 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3115 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3116 nr_lmbs,
3117 spapr_drc_index(drc));
3118 } else {
3119 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3120 nr_lmbs);
3125 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3126 Error **errp)
3128 Error *local_err = NULL;
3129 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3130 PCDIMMDevice *dimm = PC_DIMM(dev);
3131 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3132 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3133 uint64_t size, addr;
3134 uint32_t node;
3136 size = memory_region_size(mr);
3138 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3139 if (local_err) {
3140 goto out;
3143 addr = object_property_get_uint(OBJECT(dimm),
3144 PC_DIMM_ADDR_PROP, &local_err);
3145 if (local_err) {
3146 goto out_unplug;
3149 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
3150 &error_abort);
3151 spapr_add_lmbs(dev, addr, size, node,
3152 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3153 &local_err);
3154 if (local_err) {
3155 goto out_unplug;
3158 return;
3160 out_unplug:
3161 pc_dimm_unplug(dimm, MACHINE(ms));
3162 out:
3163 error_propagate(errp, local_err);
3166 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3167 Error **errp)
3169 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3170 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3171 PCDIMMDevice *dimm = PC_DIMM(dev);
3172 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3173 Error *local_err = NULL;
3174 MemoryRegion *mr;
3175 uint64_t size;
3176 Object *memdev;
3177 hwaddr pagesize;
3179 if (!smc->dr_lmb_enabled) {
3180 error_setg(errp, "Memory hotplug not supported for this machine");
3181 return;
3184 mr = ddc->get_memory_region(dimm, errp);
3185 if (!mr) {
3186 return;
3188 size = memory_region_size(mr);
3190 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3191 error_setg(errp, "Hotplugged memory size must be a multiple of "
3192 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3193 return;
3196 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3197 &error_abort);
3198 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3199 spapr_check_pagesize(spapr, pagesize, &local_err);
3200 if (local_err) {
3201 error_propagate(errp, local_err);
3202 return;
3205 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3208 struct sPAPRDIMMState {
3209 PCDIMMDevice *dimm;
3210 uint32_t nr_lmbs;
3211 QTAILQ_ENTRY(sPAPRDIMMState) next;
3214 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3215 PCDIMMDevice *dimm)
3217 sPAPRDIMMState *dimm_state = NULL;
3219 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3220 if (dimm_state->dimm == dimm) {
3221 break;
3224 return dimm_state;
3227 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3228 uint32_t nr_lmbs,
3229 PCDIMMDevice *dimm)
3231 sPAPRDIMMState *ds = NULL;
3234 * If this request is for a DIMM whose removal had failed earlier
3235 * (due to guest's refusal to remove the LMBs), we would have this
3236 * dimm already in the pending_dimm_unplugs list. In that
3237 * case don't add again.
3239 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3240 if (!ds) {
3241 ds = g_malloc0(sizeof(sPAPRDIMMState));
3242 ds->nr_lmbs = nr_lmbs;
3243 ds->dimm = dimm;
3244 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3246 return ds;
3249 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3250 sPAPRDIMMState *dimm_state)
3252 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3253 g_free(dimm_state);
3256 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3257 PCDIMMDevice *dimm)
3259 sPAPRDRConnector *drc;
3260 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3261 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3262 uint64_t size = memory_region_size(mr);
3263 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3264 uint32_t avail_lmbs = 0;
3265 uint64_t addr_start, addr;
3266 int i;
3268 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3269 &error_abort);
3271 addr = addr_start;
3272 for (i = 0; i < nr_lmbs; i++) {
3273 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3274 addr / SPAPR_MEMORY_BLOCK_SIZE);
3275 g_assert(drc);
3276 if (drc->dev) {
3277 avail_lmbs++;
3279 addr += SPAPR_MEMORY_BLOCK_SIZE;
3282 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3285 /* Callback to be called during DRC release. */
3286 void spapr_lmb_release(DeviceState *dev)
3288 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3289 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3290 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3292 /* This information will get lost if a migration occurs
3293 * during the unplug process. In this case recover it. */
3294 if (ds == NULL) {
3295 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3296 g_assert(ds);
3297 /* The DRC being examined by the caller at least must be counted */
3298 g_assert(ds->nr_lmbs);
3301 if (--ds->nr_lmbs) {
3302 return;
3306 * Now that all the LMBs have been removed by the guest, call the
3307 * unplug handler chain. This can never fail.
3309 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3312 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3314 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3315 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3317 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3318 object_unparent(OBJECT(dev));
3319 spapr_pending_dimm_unplugs_remove(spapr, ds);
3322 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3323 DeviceState *dev, Error **errp)
3325 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3326 Error *local_err = NULL;
3327 PCDIMMDevice *dimm = PC_DIMM(dev);
3328 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3329 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3330 uint32_t nr_lmbs;
3331 uint64_t size, addr_start, addr;
3332 int i;
3333 sPAPRDRConnector *drc;
3335 size = memory_region_size(mr);
3336 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3338 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3339 &local_err);
3340 if (local_err) {
3341 goto out;
3345 * An existing pending dimm state for this DIMM means that there is an
3346 * unplug operation in progress, waiting for the spapr_lmb_release
3347 * callback to complete the job (BQL can't cover that far). In this case,
3348 * bail out to avoid detaching DRCs that were already released.
3350 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3351 error_setg(&local_err,
3352 "Memory unplug already in progress for device %s",
3353 dev->id);
3354 goto out;
3357 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3359 addr = addr_start;
3360 for (i = 0; i < nr_lmbs; i++) {
3361 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3362 addr / SPAPR_MEMORY_BLOCK_SIZE);
3363 g_assert(drc);
3365 spapr_drc_detach(drc);
3366 addr += SPAPR_MEMORY_BLOCK_SIZE;
3369 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3370 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3371 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3372 nr_lmbs, spapr_drc_index(drc));
3373 out:
3374 error_propagate(errp, local_err);
3377 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3378 sPAPRMachineState *spapr)
3380 PowerPCCPU *cpu = POWERPC_CPU(cs);
3381 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3382 int id = spapr_get_vcpu_id(cpu);
3383 void *fdt;
3384 int offset, fdt_size;
3385 char *nodename;
3387 fdt = create_device_tree(&fdt_size);
3388 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3389 offset = fdt_add_subnode(fdt, 0, nodename);
3391 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3392 g_free(nodename);
3394 *fdt_offset = offset;
3395 return fdt;
3398 /* Callback to be called during DRC release. */
3399 void spapr_core_release(DeviceState *dev)
3401 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3403 /* Call the unplug handler chain. This can never fail. */
3404 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3407 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3409 MachineState *ms = MACHINE(hotplug_dev);
3410 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3411 CPUCore *cc = CPU_CORE(dev);
3412 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3414 if (smc->pre_2_10_has_unused_icps) {
3415 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3416 int i;
3418 for (i = 0; i < cc->nr_threads; i++) {
3419 CPUState *cs = CPU(sc->threads[i]);
3421 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3425 assert(core_slot);
3426 core_slot->cpu = NULL;
3427 object_unparent(OBJECT(dev));
3430 static
3431 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3432 Error **errp)
3434 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3435 int index;
3436 sPAPRDRConnector *drc;
3437 CPUCore *cc = CPU_CORE(dev);
3439 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3440 error_setg(errp, "Unable to find CPU core with core-id: %d",
3441 cc->core_id);
3442 return;
3444 if (index == 0) {
3445 error_setg(errp, "Boot CPU core may not be unplugged");
3446 return;
3449 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3450 spapr_vcpu_id(spapr, cc->core_id));
3451 g_assert(drc);
3453 spapr_drc_detach(drc);
3455 spapr_hotplug_req_remove_by_index(drc);
3458 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3459 Error **errp)
3461 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3462 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3463 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3464 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3465 CPUCore *cc = CPU_CORE(dev);
3466 CPUState *cs = CPU(core->threads[0]);
3467 sPAPRDRConnector *drc;
3468 Error *local_err = NULL;
3469 CPUArchId *core_slot;
3470 int index;
3471 bool hotplugged = spapr_drc_hotplugged(dev);
3473 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3474 if (!core_slot) {
3475 error_setg(errp, "Unable to find CPU core with core-id: %d",
3476 cc->core_id);
3477 return;
3479 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3480 spapr_vcpu_id(spapr, cc->core_id));
3482 g_assert(drc || !mc->has_hotpluggable_cpus);
3484 if (drc) {
3485 void *fdt;
3486 int fdt_offset;
3488 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3490 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3491 if (local_err) {
3492 g_free(fdt);
3493 error_propagate(errp, local_err);
3494 return;
3497 if (hotplugged) {
3499 * Send hotplug notification interrupt to the guest only
3500 * in case of hotplugged CPUs.
3502 spapr_hotplug_req_add_by_index(drc);
3503 } else {
3504 spapr_drc_reset(drc);
3508 core_slot->cpu = OBJECT(dev);
3510 if (smc->pre_2_10_has_unused_icps) {
3511 int i;
3513 for (i = 0; i < cc->nr_threads; i++) {
3514 cs = CPU(core->threads[i]);
3515 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3520 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3521 Error **errp)
3523 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3524 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3525 Error *local_err = NULL;
3526 CPUCore *cc = CPU_CORE(dev);
3527 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3528 const char *type = object_get_typename(OBJECT(dev));
3529 CPUArchId *core_slot;
3530 int index;
3532 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3533 error_setg(&local_err, "CPU hotplug not supported for this machine");
3534 goto out;
3537 if (strcmp(base_core_type, type)) {
3538 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3539 goto out;
3542 if (cc->core_id % smp_threads) {
3543 error_setg(&local_err, "invalid core id %d", cc->core_id);
3544 goto out;
3548 * In general we should have homogeneous threads-per-core, but old
3549 * (pre hotplug support) machine types allow the last core to have
3550 * reduced threads as a compatibility hack for when we allowed
3551 * total vcpus not a multiple of threads-per-core.
3553 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3554 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3555 cc->nr_threads, smp_threads);
3556 goto out;
3559 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3560 if (!core_slot) {
3561 error_setg(&local_err, "core id %d out of range", cc->core_id);
3562 goto out;
3565 if (core_slot->cpu) {
3566 error_setg(&local_err, "core %d already populated", cc->core_id);
3567 goto out;
3570 numa_cpu_pre_plug(core_slot, dev, &local_err);
3572 out:
3573 error_propagate(errp, local_err);
3576 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3577 DeviceState *dev, Error **errp)
3579 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3580 spapr_memory_plug(hotplug_dev, dev, errp);
3581 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3582 spapr_core_plug(hotplug_dev, dev, errp);
3586 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3587 DeviceState *dev, Error **errp)
3589 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3590 spapr_memory_unplug(hotplug_dev, dev);
3591 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3592 spapr_core_unplug(hotplug_dev, dev);
3596 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3597 DeviceState *dev, Error **errp)
3599 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3600 MachineClass *mc = MACHINE_GET_CLASS(sms);
3602 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3603 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3604 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3605 } else {
3606 /* NOTE: this means there is a window after guest reset, prior to
3607 * CAS negotiation, where unplug requests will fail due to the
3608 * capability not being detected yet. This is a bit different than
3609 * the case with PCI unplug, where the events will be queued and
3610 * eventually handled by the guest after boot
3612 error_setg(errp, "Memory hot unplug not supported for this guest");
3614 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3615 if (!mc->has_hotpluggable_cpus) {
3616 error_setg(errp, "CPU hot unplug not supported on this machine");
3617 return;
3619 spapr_core_unplug_request(hotplug_dev, dev, errp);
3623 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3624 DeviceState *dev, Error **errp)
3626 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3627 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3628 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3629 spapr_core_pre_plug(hotplug_dev, dev, errp);
3633 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3634 DeviceState *dev)
3636 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3637 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3638 return HOTPLUG_HANDLER(machine);
3640 return NULL;
3643 static CpuInstanceProperties
3644 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3646 CPUArchId *core_slot;
3647 MachineClass *mc = MACHINE_GET_CLASS(machine);
3649 /* make sure possible_cpu are intialized */
3650 mc->possible_cpu_arch_ids(machine);
3651 /* get CPU core slot containing thread that matches cpu_index */
3652 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3653 assert(core_slot);
3654 return core_slot->props;
3657 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3659 return idx / smp_cores % nb_numa_nodes;
3662 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3664 int i;
3665 const char *core_type;
3666 int spapr_max_cores = max_cpus / smp_threads;
3667 MachineClass *mc = MACHINE_GET_CLASS(machine);
3669 if (!mc->has_hotpluggable_cpus) {
3670 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3672 if (machine->possible_cpus) {
3673 assert(machine->possible_cpus->len == spapr_max_cores);
3674 return machine->possible_cpus;
3677 core_type = spapr_get_cpu_core_type(machine->cpu_type);
3678 if (!core_type) {
3679 error_report("Unable to find sPAPR CPU Core definition");
3680 exit(1);
3683 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3684 sizeof(CPUArchId) * spapr_max_cores);
3685 machine->possible_cpus->len = spapr_max_cores;
3686 for (i = 0; i < machine->possible_cpus->len; i++) {
3687 int core_id = i * smp_threads;
3689 machine->possible_cpus->cpus[i].type = core_type;
3690 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3691 machine->possible_cpus->cpus[i].arch_id = core_id;
3692 machine->possible_cpus->cpus[i].props.has_core_id = true;
3693 machine->possible_cpus->cpus[i].props.core_id = core_id;
3695 return machine->possible_cpus;
3698 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3699 uint64_t *buid, hwaddr *pio,
3700 hwaddr *mmio32, hwaddr *mmio64,
3701 unsigned n_dma, uint32_t *liobns, Error **errp)
3704 * New-style PHB window placement.
3706 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3707 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3708 * windows.
3710 * Some guest kernels can't work with MMIO windows above 1<<46
3711 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3713 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3714 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3715 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3716 * 1TiB 64-bit MMIO windows for each PHB.
3718 const uint64_t base_buid = 0x800000020000000ULL;
3719 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3720 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3721 int i;
3723 /* Sanity check natural alignments */
3724 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3725 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3726 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3727 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3728 /* Sanity check bounds */
3729 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3730 SPAPR_PCI_MEM32_WIN_SIZE);
3731 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3732 SPAPR_PCI_MEM64_WIN_SIZE);
3734 if (index >= SPAPR_MAX_PHBS) {
3735 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3736 SPAPR_MAX_PHBS - 1);
3737 return;
3740 *buid = base_buid + index;
3741 for (i = 0; i < n_dma; ++i) {
3742 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3745 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3746 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3747 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3750 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3752 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3754 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3757 static void spapr_ics_resend(XICSFabric *dev)
3759 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3761 ics_resend(spapr->ics);
3764 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3766 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3768 return cpu ? ICP(cpu->intc) : NULL;
3771 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3772 Monitor *mon)
3774 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3775 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3777 smc->irq->print_info(spapr, mon);
3780 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3782 return cpu->vcpu_id;
3785 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3787 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3788 int vcpu_id;
3790 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3792 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3793 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3794 error_append_hint(errp, "Adjust the number of cpus to %d "
3795 "or try to raise the number of threads per core\n",
3796 vcpu_id * smp_threads / spapr->vsmt);
3797 return;
3800 cpu->vcpu_id = vcpu_id;
3803 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3805 CPUState *cs;
3807 CPU_FOREACH(cs) {
3808 PowerPCCPU *cpu = POWERPC_CPU(cs);
3810 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3811 return cpu;
3815 return NULL;
3818 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3820 MachineClass *mc = MACHINE_CLASS(oc);
3821 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3822 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3823 NMIClass *nc = NMI_CLASS(oc);
3824 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3825 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3826 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3827 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3829 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3830 mc->ignore_boot_device_suffixes = true;
3833 * We set up the default / latest behaviour here. The class_init
3834 * functions for the specific versioned machine types can override
3835 * these details for backwards compatibility
3837 mc->init = spapr_machine_init;
3838 mc->reset = spapr_machine_reset;
3839 mc->block_default_type = IF_SCSI;
3840 mc->max_cpus = 1024;
3841 mc->no_parallel = 1;
3842 mc->default_boot_order = "";
3843 mc->default_ram_size = 512 * MiB;
3844 mc->default_display = "std";
3845 mc->kvm_type = spapr_kvm_type;
3846 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3847 mc->pci_allow_0_address = true;
3848 assert(!mc->get_hotplug_handler);
3849 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3850 hc->pre_plug = spapr_machine_device_pre_plug;
3851 hc->plug = spapr_machine_device_plug;
3852 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3853 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3854 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3855 hc->unplug_request = spapr_machine_device_unplug_request;
3856 hc->unplug = spapr_machine_device_unplug;
3858 smc->dr_lmb_enabled = true;
3859 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3860 mc->has_hotpluggable_cpus = true;
3861 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3862 fwc->get_dev_path = spapr_get_fw_dev_path;
3863 nc->nmi_monitor_handler = spapr_nmi;
3864 smc->phb_placement = spapr_phb_placement;
3865 vhc->hypercall = emulate_spapr_hypercall;
3866 vhc->hpt_mask = spapr_hpt_mask;
3867 vhc->map_hptes = spapr_map_hptes;
3868 vhc->unmap_hptes = spapr_unmap_hptes;
3869 vhc->store_hpte = spapr_store_hpte;
3870 vhc->get_patbe = spapr_get_patbe;
3871 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3872 xic->ics_get = spapr_ics_get;
3873 xic->ics_resend = spapr_ics_resend;
3874 xic->icp_get = spapr_icp_get;
3875 ispc->print_info = spapr_pic_print_info;
3876 /* Force NUMA node memory size to be a multiple of
3877 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3878 * in which LMBs are represented and hot-added
3880 mc->numa_mem_align_shift = 28;
3882 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
3883 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
3884 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
3885 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
3886 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
3887 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
3888 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
3889 spapr_caps_add_properties(smc, &error_abort);
3890 smc->irq = &spapr_irq_xics;
3893 static const TypeInfo spapr_machine_info = {
3894 .name = TYPE_SPAPR_MACHINE,
3895 .parent = TYPE_MACHINE,
3896 .abstract = true,
3897 .instance_size = sizeof(sPAPRMachineState),
3898 .instance_init = spapr_instance_init,
3899 .instance_finalize = spapr_machine_finalizefn,
3900 .class_size = sizeof(sPAPRMachineClass),
3901 .class_init = spapr_machine_class_init,
3902 .interfaces = (InterfaceInfo[]) {
3903 { TYPE_FW_PATH_PROVIDER },
3904 { TYPE_NMI },
3905 { TYPE_HOTPLUG_HANDLER },
3906 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3907 { TYPE_XICS_FABRIC },
3908 { TYPE_INTERRUPT_STATS_PROVIDER },
3913 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3914 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3915 void *data) \
3917 MachineClass *mc = MACHINE_CLASS(oc); \
3918 spapr_machine_##suffix##_class_options(mc); \
3919 if (latest) { \
3920 mc->alias = "pseries"; \
3921 mc->is_default = 1; \
3924 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3926 MachineState *machine = MACHINE(obj); \
3927 spapr_machine_##suffix##_instance_options(machine); \
3929 static const TypeInfo spapr_machine_##suffix##_info = { \
3930 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3931 .parent = TYPE_SPAPR_MACHINE, \
3932 .class_init = spapr_machine_##suffix##_class_init, \
3933 .instance_init = spapr_machine_##suffix##_instance_init, \
3934 }; \
3935 static void spapr_machine_register_##suffix(void) \
3937 type_register(&spapr_machine_##suffix##_info); \
3939 type_init(spapr_machine_register_##suffix)
3942 * pseries-3.1
3944 static void spapr_machine_3_1_instance_options(MachineState *machine)
3948 static void spapr_machine_3_1_class_options(MachineClass *mc)
3950 /* Defaults for the latest behaviour inherited from the base class */
3953 DEFINE_SPAPR_MACHINE(3_1, "3.1", true);
3956 * pseries-3.0
3958 #define SPAPR_COMPAT_3_0 \
3959 HW_COMPAT_3_0
3961 static void spapr_machine_3_0_instance_options(MachineState *machine)
3963 spapr_machine_3_1_instance_options(machine);
3966 static void spapr_machine_3_0_class_options(MachineClass *mc)
3968 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3970 spapr_machine_3_1_class_options(mc);
3971 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_3_0);
3973 smc->legacy_irq_allocation = true;
3974 smc->irq = &spapr_irq_xics_legacy;
3977 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
3980 * pseries-2.12
3982 #define SPAPR_COMPAT_2_12 \
3983 HW_COMPAT_2_12 \
3985 .driver = TYPE_POWERPC_CPU, \
3986 .property = "pre-3.0-migration", \
3987 .value = "on", \
3988 }, \
3990 .driver = TYPE_SPAPR_CPU_CORE, \
3991 .property = "pre-3.0-migration", \
3992 .value = "on", \
3995 static void spapr_machine_2_12_instance_options(MachineState *machine)
3997 spapr_machine_3_0_instance_options(machine);
4000 static void spapr_machine_2_12_class_options(MachineClass *mc)
4002 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4004 spapr_machine_3_0_class_options(mc);
4005 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_12);
4007 /* We depend on kvm_enabled() to choose a default value for the
4008 * hpt-max-page-size capability. Of course we can't do it here
4009 * because this is too early and the HW accelerator isn't initialzed
4010 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4012 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4015 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4017 static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine)
4019 spapr_machine_2_12_instance_options(machine);
4022 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4024 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4026 spapr_machine_2_12_class_options(mc);
4027 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4028 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4029 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4032 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4035 * pseries-2.11
4037 #define SPAPR_COMPAT_2_11 \
4038 HW_COMPAT_2_11
4040 static void spapr_machine_2_11_instance_options(MachineState *machine)
4042 spapr_machine_2_12_instance_options(machine);
4045 static void spapr_machine_2_11_class_options(MachineClass *mc)
4047 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4049 spapr_machine_2_12_class_options(mc);
4050 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4051 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
4054 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4057 * pseries-2.10
4059 #define SPAPR_COMPAT_2_10 \
4060 HW_COMPAT_2_10
4062 static void spapr_machine_2_10_instance_options(MachineState *machine)
4064 spapr_machine_2_11_instance_options(machine);
4067 static void spapr_machine_2_10_class_options(MachineClass *mc)
4069 spapr_machine_2_11_class_options(mc);
4070 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
4073 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4076 * pseries-2.9
4078 #define SPAPR_COMPAT_2_9 \
4079 HW_COMPAT_2_9 \
4081 .driver = TYPE_POWERPC_CPU, \
4082 .property = "pre-2.10-migration", \
4083 .value = "on", \
4084 }, \
4086 static void spapr_machine_2_9_instance_options(MachineState *machine)
4088 spapr_machine_2_10_instance_options(machine);
4091 static void spapr_machine_2_9_class_options(MachineClass *mc)
4093 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4095 spapr_machine_2_10_class_options(mc);
4096 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4097 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4098 smc->pre_2_10_has_unused_icps = true;
4099 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4102 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4105 * pseries-2.8
4107 #define SPAPR_COMPAT_2_8 \
4108 HW_COMPAT_2_8 \
4110 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4111 .property = "pcie-extended-configuration-space", \
4112 .value = "off", \
4115 static void spapr_machine_2_8_instance_options(MachineState *machine)
4117 spapr_machine_2_9_instance_options(machine);
4120 static void spapr_machine_2_8_class_options(MachineClass *mc)
4122 spapr_machine_2_9_class_options(mc);
4123 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4124 mc->numa_mem_align_shift = 23;
4127 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4130 * pseries-2.7
4132 #define SPAPR_COMPAT_2_7 \
4133 HW_COMPAT_2_7 \
4135 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4136 .property = "mem_win_size", \
4137 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4138 }, \
4140 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4141 .property = "mem64_win_size", \
4142 .value = "0", \
4143 }, \
4145 .driver = TYPE_POWERPC_CPU, \
4146 .property = "pre-2.8-migration", \
4147 .value = "on", \
4148 }, \
4150 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4151 .property = "pre-2.8-migration", \
4152 .value = "on", \
4155 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4156 uint64_t *buid, hwaddr *pio,
4157 hwaddr *mmio32, hwaddr *mmio64,
4158 unsigned n_dma, uint32_t *liobns, Error **errp)
4160 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4161 const uint64_t base_buid = 0x800000020000000ULL;
4162 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4163 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4164 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4165 const uint32_t max_index = 255;
4166 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4168 uint64_t ram_top = MACHINE(spapr)->ram_size;
4169 hwaddr phb0_base, phb_base;
4170 int i;
4172 /* Do we have device memory? */
4173 if (MACHINE(spapr)->maxram_size > ram_top) {
4174 /* Can't just use maxram_size, because there may be an
4175 * alignment gap between normal and device memory regions
4177 ram_top = MACHINE(spapr)->device_memory->base +
4178 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4181 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4183 if (index > max_index) {
4184 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4185 max_index);
4186 return;
4189 *buid = base_buid + index;
4190 for (i = 0; i < n_dma; ++i) {
4191 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4194 phb_base = phb0_base + index * phb_spacing;
4195 *pio = phb_base + pio_offset;
4196 *mmio32 = phb_base + mmio_offset;
4198 * We don't set the 64-bit MMIO window, relying on the PHB's
4199 * fallback behaviour of automatically splitting a large "32-bit"
4200 * window into contiguous 32-bit and 64-bit windows
4204 static void spapr_machine_2_7_instance_options(MachineState *machine)
4206 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4208 spapr_machine_2_8_instance_options(machine);
4209 spapr->use_hotplug_event_source = false;
4212 static void spapr_machine_2_7_class_options(MachineClass *mc)
4214 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4216 spapr_machine_2_8_class_options(mc);
4217 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4218 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4219 smc->phb_placement = phb_placement_2_7;
4222 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4225 * pseries-2.6
4227 #define SPAPR_COMPAT_2_6 \
4228 HW_COMPAT_2_6 \
4230 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4231 .property = "ddw",\
4232 .value = stringify(off),\
4235 static void spapr_machine_2_6_instance_options(MachineState *machine)
4237 spapr_machine_2_7_instance_options(machine);
4240 static void spapr_machine_2_6_class_options(MachineClass *mc)
4242 spapr_machine_2_7_class_options(mc);
4243 mc->has_hotpluggable_cpus = false;
4244 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4247 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4250 * pseries-2.5
4252 #define SPAPR_COMPAT_2_5 \
4253 HW_COMPAT_2_5 \
4255 .driver = "spapr-vlan", \
4256 .property = "use-rx-buffer-pools", \
4257 .value = "off", \
4260 static void spapr_machine_2_5_instance_options(MachineState *machine)
4262 spapr_machine_2_6_instance_options(machine);
4265 static void spapr_machine_2_5_class_options(MachineClass *mc)
4267 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4269 spapr_machine_2_6_class_options(mc);
4270 smc->use_ohci_by_default = true;
4271 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4274 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4277 * pseries-2.4
4279 #define SPAPR_COMPAT_2_4 \
4280 HW_COMPAT_2_4
4282 static void spapr_machine_2_4_instance_options(MachineState *machine)
4284 spapr_machine_2_5_instance_options(machine);
4287 static void spapr_machine_2_4_class_options(MachineClass *mc)
4289 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4291 spapr_machine_2_5_class_options(mc);
4292 smc->dr_lmb_enabled = false;
4293 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4296 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4299 * pseries-2.3
4301 #define SPAPR_COMPAT_2_3 \
4302 HW_COMPAT_2_3 \
4304 .driver = "spapr-pci-host-bridge",\
4305 .property = "dynamic-reconfiguration",\
4306 .value = "off",\
4309 static void spapr_machine_2_3_instance_options(MachineState *machine)
4311 spapr_machine_2_4_instance_options(machine);
4314 static void spapr_machine_2_3_class_options(MachineClass *mc)
4316 spapr_machine_2_4_class_options(mc);
4317 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4319 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4322 * pseries-2.2
4325 #define SPAPR_COMPAT_2_2 \
4326 HW_COMPAT_2_2 \
4328 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4329 .property = "mem_win_size",\
4330 .value = "0x20000000",\
4333 static void spapr_machine_2_2_instance_options(MachineState *machine)
4335 spapr_machine_2_3_instance_options(machine);
4336 machine->suppress_vmdesc = true;
4339 static void spapr_machine_2_2_class_options(MachineClass *mc)
4341 spapr_machine_2_3_class_options(mc);
4342 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4344 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4347 * pseries-2.1
4349 #define SPAPR_COMPAT_2_1 \
4350 HW_COMPAT_2_1
4352 static void spapr_machine_2_1_instance_options(MachineState *machine)
4354 spapr_machine_2_2_instance_options(machine);
4357 static void spapr_machine_2_1_class_options(MachineClass *mc)
4359 spapr_machine_2_2_class_options(mc);
4360 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4362 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4364 static void spapr_machine_register_types(void)
4366 type_register_static(&spapr_machine_info);
4369 type_init(spapr_machine_register_types)