2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
7 * Michael R. Hines <mrhines@us.ibm.com>
8 * Jiuxing Liu <jl@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or
11 * later. See the COPYING file in the top-level directory.
14 #include "qemu-common.h"
15 #include "migration/migration.h"
16 #include "migration/qemu-file.h"
17 #include "exec/cpu-common.h"
18 #include "qemu/error-report.h"
19 #include "qemu/main-loop.h"
20 #include "qemu/sockets.h"
21 #include "qemu/bitmap.h"
22 #include "qemu/coroutine.h"
24 #include <sys/types.h>
25 #include <sys/socket.h>
27 #include <arpa/inet.h>
29 #include <rdma/rdma_cma.h>
33 * Print and error on both the Monitor and the Log file.
35 #define ERROR(errp, fmt, ...) \
37 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
38 if (errp && (*(errp) == NULL)) { \
39 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
43 #define RDMA_RESOLVE_TIMEOUT_MS 10000
45 /* Do not merge data if larger than this. */
46 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
47 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
49 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
52 * This is only for non-live state being migrated.
53 * Instead of RDMA_WRITE messages, we use RDMA_SEND
54 * messages for that state, which requires a different
55 * delivery design than main memory.
57 #define RDMA_SEND_INCREMENT 32768
60 * Maximum size infiniband SEND message
62 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
63 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
65 #define RDMA_CONTROL_VERSION_CURRENT 1
67 * Capabilities for negotiation.
69 #define RDMA_CAPABILITY_PIN_ALL 0x01
72 * Add the other flags above to this list of known capabilities
73 * as they are introduced.
75 static uint32_t known_capabilities
= RDMA_CAPABILITY_PIN_ALL
;
77 #define CHECK_ERROR_STATE() \
79 if (rdma->error_state) { \
80 if (!rdma->error_reported) { \
81 error_report("RDMA is in an error state waiting migration" \
83 rdma->error_reported = 1; \
85 return rdma->error_state; \
90 * A work request ID is 64-bits and we split up these bits
93 * bits 0-15 : type of control message, 2^16
94 * bits 16-29: ram block index, 2^14
95 * bits 30-63: ram block chunk number, 2^34
97 * The last two bit ranges are only used for RDMA writes,
98 * in order to track their completion and potentially
99 * also track unregistration status of the message.
101 #define RDMA_WRID_TYPE_SHIFT 0UL
102 #define RDMA_WRID_BLOCK_SHIFT 16UL
103 #define RDMA_WRID_CHUNK_SHIFT 30UL
105 #define RDMA_WRID_TYPE_MASK \
106 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
108 #define RDMA_WRID_BLOCK_MASK \
109 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
111 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
114 * RDMA migration protocol:
115 * 1. RDMA Writes (data messages, i.e. RAM)
116 * 2. IB Send/Recv (control channel messages)
120 RDMA_WRID_RDMA_WRITE
= 1,
121 RDMA_WRID_SEND_CONTROL
= 2000,
122 RDMA_WRID_RECV_CONTROL
= 4000,
125 static const char *wrid_desc
[] = {
126 [RDMA_WRID_NONE
] = "NONE",
127 [RDMA_WRID_RDMA_WRITE
] = "WRITE RDMA",
128 [RDMA_WRID_SEND_CONTROL
] = "CONTROL SEND",
129 [RDMA_WRID_RECV_CONTROL
] = "CONTROL RECV",
133 * Work request IDs for IB SEND messages only (not RDMA writes).
134 * This is used by the migration protocol to transmit
135 * control messages (such as device state and registration commands)
137 * We could use more WRs, but we have enough for now.
147 * SEND/RECV IB Control Messages.
150 RDMA_CONTROL_NONE
= 0,
152 RDMA_CONTROL_READY
, /* ready to receive */
153 RDMA_CONTROL_QEMU_FILE
, /* QEMUFile-transmitted bytes */
154 RDMA_CONTROL_RAM_BLOCKS_REQUEST
, /* RAMBlock synchronization */
155 RDMA_CONTROL_RAM_BLOCKS_RESULT
, /* RAMBlock synchronization */
156 RDMA_CONTROL_COMPRESS
, /* page contains repeat values */
157 RDMA_CONTROL_REGISTER_REQUEST
, /* dynamic page registration */
158 RDMA_CONTROL_REGISTER_RESULT
, /* key to use after registration */
159 RDMA_CONTROL_REGISTER_FINISHED
, /* current iteration finished */
160 RDMA_CONTROL_UNREGISTER_REQUEST
, /* dynamic UN-registration */
161 RDMA_CONTROL_UNREGISTER_FINISHED
, /* unpinning finished */
164 static const char *control_desc
[] = {
165 [RDMA_CONTROL_NONE
] = "NONE",
166 [RDMA_CONTROL_ERROR
] = "ERROR",
167 [RDMA_CONTROL_READY
] = "READY",
168 [RDMA_CONTROL_QEMU_FILE
] = "QEMU FILE",
169 [RDMA_CONTROL_RAM_BLOCKS_REQUEST
] = "RAM BLOCKS REQUEST",
170 [RDMA_CONTROL_RAM_BLOCKS_RESULT
] = "RAM BLOCKS RESULT",
171 [RDMA_CONTROL_COMPRESS
] = "COMPRESS",
172 [RDMA_CONTROL_REGISTER_REQUEST
] = "REGISTER REQUEST",
173 [RDMA_CONTROL_REGISTER_RESULT
] = "REGISTER RESULT",
174 [RDMA_CONTROL_REGISTER_FINISHED
] = "REGISTER FINISHED",
175 [RDMA_CONTROL_UNREGISTER_REQUEST
] = "UNREGISTER REQUEST",
176 [RDMA_CONTROL_UNREGISTER_FINISHED
] = "UNREGISTER FINISHED",
180 * Memory and MR structures used to represent an IB Send/Recv work request.
181 * This is *not* used for RDMA writes, only IB Send/Recv.
184 uint8_t control
[RDMA_CONTROL_MAX_BUFFER
]; /* actual buffer to register */
185 struct ibv_mr
*control_mr
; /* registration metadata */
186 size_t control_len
; /* length of the message */
187 uint8_t *control_curr
; /* start of unconsumed bytes */
188 } RDMAWorkRequestData
;
191 * Negotiate RDMA capabilities during connection-setup time.
198 static void caps_to_network(RDMACapabilities
*cap
)
200 cap
->version
= htonl(cap
->version
);
201 cap
->flags
= htonl(cap
->flags
);
204 static void network_to_caps(RDMACapabilities
*cap
)
206 cap
->version
= ntohl(cap
->version
);
207 cap
->flags
= ntohl(cap
->flags
);
211 * Representation of a RAMBlock from an RDMA perspective.
212 * This is not transmitted, only local.
213 * This and subsequent structures cannot be linked lists
214 * because we're using a single IB message to transmit
215 * the information. It's small anyway, so a list is overkill.
217 typedef struct RDMALocalBlock
{
219 uint8_t *local_host_addr
; /* local virtual address */
220 uint64_t remote_host_addr
; /* remote virtual address */
223 struct ibv_mr
**pmr
; /* MRs for chunk-level registration */
224 struct ibv_mr
*mr
; /* MR for non-chunk-level registration */
225 uint32_t *remote_keys
; /* rkeys for chunk-level registration */
226 uint32_t remote_rkey
; /* rkeys for non-chunk-level registration */
227 int index
; /* which block are we */
228 unsigned int src_index
; /* (Only used on dest) */
231 unsigned long *transit_bitmap
;
232 unsigned long *unregister_bitmap
;
236 * Also represents a RAMblock, but only on the dest.
237 * This gets transmitted by the dest during connection-time
238 * to the source VM and then is used to populate the
239 * corresponding RDMALocalBlock with
240 * the information needed to perform the actual RDMA.
242 typedef struct QEMU_PACKED RDMADestBlock
{
243 uint64_t remote_host_addr
;
246 uint32_t remote_rkey
;
250 static uint64_t htonll(uint64_t v
)
252 union { uint32_t lv
[2]; uint64_t llv
; } u
;
253 u
.lv
[0] = htonl(v
>> 32);
254 u
.lv
[1] = htonl(v
& 0xFFFFFFFFULL
);
258 static uint64_t ntohll(uint64_t v
) {
259 union { uint32_t lv
[2]; uint64_t llv
; } u
;
261 return ((uint64_t)ntohl(u
.lv
[0]) << 32) | (uint64_t) ntohl(u
.lv
[1]);
264 static void dest_block_to_network(RDMADestBlock
*db
)
266 db
->remote_host_addr
= htonll(db
->remote_host_addr
);
267 db
->offset
= htonll(db
->offset
);
268 db
->length
= htonll(db
->length
);
269 db
->remote_rkey
= htonl(db
->remote_rkey
);
272 static void network_to_dest_block(RDMADestBlock
*db
)
274 db
->remote_host_addr
= ntohll(db
->remote_host_addr
);
275 db
->offset
= ntohll(db
->offset
);
276 db
->length
= ntohll(db
->length
);
277 db
->remote_rkey
= ntohl(db
->remote_rkey
);
281 * Virtual address of the above structures used for transmitting
282 * the RAMBlock descriptions at connection-time.
283 * This structure is *not* transmitted.
285 typedef struct RDMALocalBlocks
{
287 bool init
; /* main memory init complete */
288 RDMALocalBlock
*block
;
292 * Main data structure for RDMA state.
293 * While there is only one copy of this structure being allocated right now,
294 * this is the place where one would start if you wanted to consider
295 * having more than one RDMA connection open at the same time.
297 typedef struct RDMAContext
{
301 RDMAWorkRequestData wr_data
[RDMA_WRID_MAX
];
304 * This is used by *_exchange_send() to figure out whether or not
305 * the initial "READY" message has already been received or not.
306 * This is because other functions may potentially poll() and detect
307 * the READY message before send() does, in which case we need to
308 * know if it completed.
310 int control_ready_expected
;
312 /* number of outstanding writes */
315 /* store info about current buffer so that we can
316 merge it with future sends */
317 uint64_t current_addr
;
318 uint64_t current_length
;
319 /* index of ram block the current buffer belongs to */
321 /* index of the chunk in the current ram block */
327 * infiniband-specific variables for opening the device
328 * and maintaining connection state and so forth.
330 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
331 * cm_id->verbs, cm_id->channel, and cm_id->qp.
333 struct rdma_cm_id
*cm_id
; /* connection manager ID */
334 struct rdma_cm_id
*listen_id
;
337 struct ibv_context
*verbs
;
338 struct rdma_event_channel
*channel
;
339 struct ibv_qp
*qp
; /* queue pair */
340 struct ibv_comp_channel
*comp_channel
; /* completion channel */
341 struct ibv_pd
*pd
; /* protection domain */
342 struct ibv_cq
*cq
; /* completion queue */
345 * If a previous write failed (perhaps because of a failed
346 * memory registration, then do not attempt any future work
347 * and remember the error state.
353 * Description of ram blocks used throughout the code.
355 RDMALocalBlocks local_ram_blocks
;
356 RDMADestBlock
*dest_blocks
;
358 /* Index of the next RAMBlock received during block registration */
359 unsigned int next_src_index
;
362 * Migration on *destination* started.
363 * Then use coroutine yield function.
364 * Source runs in a thread, so we don't care.
366 int migration_started_on_destination
;
368 int total_registrations
;
371 int unregister_current
, unregister_next
;
372 uint64_t unregistrations
[RDMA_SIGNALED_SEND_MAX
];
374 GHashTable
*blockmap
;
378 * Interface to the rest of the migration call stack.
380 typedef struct QEMUFileRDMA
{
387 * Main structure for IB Send/Recv control messages.
388 * This gets prepended at the beginning of every Send/Recv.
390 typedef struct QEMU_PACKED
{
391 uint32_t len
; /* Total length of data portion */
392 uint32_t type
; /* which control command to perform */
393 uint32_t repeat
; /* number of commands in data portion of same type */
397 static void control_to_network(RDMAControlHeader
*control
)
399 control
->type
= htonl(control
->type
);
400 control
->len
= htonl(control
->len
);
401 control
->repeat
= htonl(control
->repeat
);
404 static void network_to_control(RDMAControlHeader
*control
)
406 control
->type
= ntohl(control
->type
);
407 control
->len
= ntohl(control
->len
);
408 control
->repeat
= ntohl(control
->repeat
);
412 * Register a single Chunk.
413 * Information sent by the source VM to inform the dest
414 * to register an single chunk of memory before we can perform
415 * the actual RDMA operation.
417 typedef struct QEMU_PACKED
{
419 uint64_t current_addr
; /* offset into the ram_addr_t space */
420 uint64_t chunk
; /* chunk to lookup if unregistering */
422 uint32_t current_index
; /* which ramblock the chunk belongs to */
424 uint64_t chunks
; /* how many sequential chunks to register */
427 static void register_to_network(RDMAContext
*rdma
, RDMARegister
*reg
)
429 RDMALocalBlock
*local_block
;
430 local_block
= &rdma
->local_ram_blocks
.block
[reg
->current_index
];
432 if (local_block
->is_ram_block
) {
434 * current_addr as passed in is an address in the local ram_addr_t
435 * space, we need to translate this for the destination
437 reg
->key
.current_addr
-= local_block
->offset
;
438 reg
->key
.current_addr
+= rdma
->dest_blocks
[reg
->current_index
].offset
;
440 reg
->key
.current_addr
= htonll(reg
->key
.current_addr
);
441 reg
->current_index
= htonl(reg
->current_index
);
442 reg
->chunks
= htonll(reg
->chunks
);
445 static void network_to_register(RDMARegister
*reg
)
447 reg
->key
.current_addr
= ntohll(reg
->key
.current_addr
);
448 reg
->current_index
= ntohl(reg
->current_index
);
449 reg
->chunks
= ntohll(reg
->chunks
);
452 typedef struct QEMU_PACKED
{
453 uint32_t value
; /* if zero, we will madvise() */
454 uint32_t block_idx
; /* which ram block index */
455 uint64_t offset
; /* Address in remote ram_addr_t space */
456 uint64_t length
; /* length of the chunk */
459 static void compress_to_network(RDMAContext
*rdma
, RDMACompress
*comp
)
461 comp
->value
= htonl(comp
->value
);
463 * comp->offset as passed in is an address in the local ram_addr_t
464 * space, we need to translate this for the destination
466 comp
->offset
-= rdma
->local_ram_blocks
.block
[comp
->block_idx
].offset
;
467 comp
->offset
+= rdma
->dest_blocks
[comp
->block_idx
].offset
;
468 comp
->block_idx
= htonl(comp
->block_idx
);
469 comp
->offset
= htonll(comp
->offset
);
470 comp
->length
= htonll(comp
->length
);
473 static void network_to_compress(RDMACompress
*comp
)
475 comp
->value
= ntohl(comp
->value
);
476 comp
->block_idx
= ntohl(comp
->block_idx
);
477 comp
->offset
= ntohll(comp
->offset
);
478 comp
->length
= ntohll(comp
->length
);
482 * The result of the dest's memory registration produces an "rkey"
483 * which the source VM must reference in order to perform
484 * the RDMA operation.
486 typedef struct QEMU_PACKED
{
490 } RDMARegisterResult
;
492 static void result_to_network(RDMARegisterResult
*result
)
494 result
->rkey
= htonl(result
->rkey
);
495 result
->host_addr
= htonll(result
->host_addr
);
498 static void network_to_result(RDMARegisterResult
*result
)
500 result
->rkey
= ntohl(result
->rkey
);
501 result
->host_addr
= ntohll(result
->host_addr
);
504 const char *print_wrid(int wrid
);
505 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
506 uint8_t *data
, RDMAControlHeader
*resp
,
508 int (*callback
)(RDMAContext
*rdma
));
510 static inline uint64_t ram_chunk_index(const uint8_t *start
,
513 return ((uintptr_t) host
- (uintptr_t) start
) >> RDMA_REG_CHUNK_SHIFT
;
516 static inline uint8_t *ram_chunk_start(const RDMALocalBlock
*rdma_ram_block
,
519 return (uint8_t *)(uintptr_t)(rdma_ram_block
->local_host_addr
+
520 (i
<< RDMA_REG_CHUNK_SHIFT
));
523 static inline uint8_t *ram_chunk_end(const RDMALocalBlock
*rdma_ram_block
,
526 uint8_t *result
= ram_chunk_start(rdma_ram_block
, i
) +
527 (1UL << RDMA_REG_CHUNK_SHIFT
);
529 if (result
> (rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
)) {
530 result
= rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
;
536 static int rdma_add_block(RDMAContext
*rdma
, const char *block_name
,
538 ram_addr_t block_offset
, uint64_t length
)
540 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
541 RDMALocalBlock
*block
;
542 RDMALocalBlock
*old
= local
->block
;
544 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
+ 1);
546 if (local
->nb_blocks
) {
549 if (rdma
->blockmap
) {
550 for (x
= 0; x
< local
->nb_blocks
; x
++) {
551 g_hash_table_remove(rdma
->blockmap
,
552 (void *)(uintptr_t)old
[x
].offset
);
553 g_hash_table_insert(rdma
->blockmap
,
554 (void *)(uintptr_t)old
[x
].offset
,
558 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * local
->nb_blocks
);
562 block
= &local
->block
[local
->nb_blocks
];
564 block
->block_name
= g_strdup(block_name
);
565 block
->local_host_addr
= host_addr
;
566 block
->offset
= block_offset
;
567 block
->length
= length
;
568 block
->index
= local
->nb_blocks
;
569 block
->src_index
= ~0U; /* Filled in by the receipt of the block list */
570 block
->nb_chunks
= ram_chunk_index(host_addr
, host_addr
+ length
) + 1UL;
571 block
->transit_bitmap
= bitmap_new(block
->nb_chunks
);
572 bitmap_clear(block
->transit_bitmap
, 0, block
->nb_chunks
);
573 block
->unregister_bitmap
= bitmap_new(block
->nb_chunks
);
574 bitmap_clear(block
->unregister_bitmap
, 0, block
->nb_chunks
);
575 block
->remote_keys
= g_new0(uint32_t, block
->nb_chunks
);
577 block
->is_ram_block
= local
->init
? false : true;
579 if (rdma
->blockmap
) {
580 g_hash_table_insert(rdma
->blockmap
, (void *)(uintptr_t)block_offset
, block
);
583 trace_rdma_add_block(block_name
, local
->nb_blocks
,
584 (uintptr_t) block
->local_host_addr
,
585 block
->offset
, block
->length
,
586 (uintptr_t) (block
->local_host_addr
+ block
->length
),
587 BITS_TO_LONGS(block
->nb_chunks
) *
588 sizeof(unsigned long) * 8,
597 * Memory regions need to be registered with the device and queue pairs setup
598 * in advanced before the migration starts. This tells us where the RAM blocks
599 * are so that we can register them individually.
601 static int qemu_rdma_init_one_block(const char *block_name
, void *host_addr
,
602 ram_addr_t block_offset
, ram_addr_t length
, void *opaque
)
604 return rdma_add_block(opaque
, block_name
, host_addr
, block_offset
, length
);
608 * Identify the RAMBlocks and their quantity. They will be references to
609 * identify chunk boundaries inside each RAMBlock and also be referenced
610 * during dynamic page registration.
612 static int qemu_rdma_init_ram_blocks(RDMAContext
*rdma
)
614 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
616 assert(rdma
->blockmap
== NULL
);
617 memset(local
, 0, sizeof *local
);
618 qemu_ram_foreach_block(qemu_rdma_init_one_block
, rdma
);
619 trace_qemu_rdma_init_ram_blocks(local
->nb_blocks
);
620 rdma
->dest_blocks
= g_new0(RDMADestBlock
,
621 rdma
->local_ram_blocks
.nb_blocks
);
627 * Note: If used outside of cleanup, the caller must ensure that the destination
628 * block structures are also updated
630 static int rdma_delete_block(RDMAContext
*rdma
, RDMALocalBlock
*block
)
632 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
633 RDMALocalBlock
*old
= local
->block
;
636 if (rdma
->blockmap
) {
637 g_hash_table_remove(rdma
->blockmap
, (void *)(uintptr_t)block
->offset
);
642 for (j
= 0; j
< block
->nb_chunks
; j
++) {
643 if (!block
->pmr
[j
]) {
646 ibv_dereg_mr(block
->pmr
[j
]);
647 rdma
->total_registrations
--;
654 ibv_dereg_mr(block
->mr
);
655 rdma
->total_registrations
--;
659 g_free(block
->transit_bitmap
);
660 block
->transit_bitmap
= NULL
;
662 g_free(block
->unregister_bitmap
);
663 block
->unregister_bitmap
= NULL
;
665 g_free(block
->remote_keys
);
666 block
->remote_keys
= NULL
;
668 g_free(block
->block_name
);
669 block
->block_name
= NULL
;
671 if (rdma
->blockmap
) {
672 for (x
= 0; x
< local
->nb_blocks
; x
++) {
673 g_hash_table_remove(rdma
->blockmap
,
674 (void *)(uintptr_t)old
[x
].offset
);
678 if (local
->nb_blocks
> 1) {
680 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
- 1);
683 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * block
->index
);
686 if (block
->index
< (local
->nb_blocks
- 1)) {
687 memcpy(local
->block
+ block
->index
, old
+ (block
->index
+ 1),
688 sizeof(RDMALocalBlock
) *
689 (local
->nb_blocks
- (block
->index
+ 1)));
692 assert(block
== local
->block
);
696 trace_rdma_delete_block(block
, (uintptr_t)block
->local_host_addr
,
697 block
->offset
, block
->length
,
698 (uintptr_t)(block
->local_host_addr
+ block
->length
),
699 BITS_TO_LONGS(block
->nb_chunks
) *
700 sizeof(unsigned long) * 8, block
->nb_chunks
);
706 if (local
->nb_blocks
&& rdma
->blockmap
) {
707 for (x
= 0; x
< local
->nb_blocks
; x
++) {
708 g_hash_table_insert(rdma
->blockmap
,
709 (void *)(uintptr_t)local
->block
[x
].offset
,
718 * Put in the log file which RDMA device was opened and the details
719 * associated with that device.
721 static void qemu_rdma_dump_id(const char *who
, struct ibv_context
*verbs
)
723 struct ibv_port_attr port
;
725 if (ibv_query_port(verbs
, 1, &port
)) {
726 error_report("Failed to query port information");
730 printf("%s RDMA Device opened: kernel name %s "
731 "uverbs device name %s, "
732 "infiniband_verbs class device path %s, "
733 "infiniband class device path %s, "
734 "transport: (%d) %s\n",
737 verbs
->device
->dev_name
,
738 verbs
->device
->dev_path
,
739 verbs
->device
->ibdev_path
,
741 (port
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) ? "Infiniband" :
742 ((port
.link_layer
== IBV_LINK_LAYER_ETHERNET
)
743 ? "Ethernet" : "Unknown"));
747 * Put in the log file the RDMA gid addressing information,
748 * useful for folks who have trouble understanding the
749 * RDMA device hierarchy in the kernel.
751 static void qemu_rdma_dump_gid(const char *who
, struct rdma_cm_id
*id
)
755 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.sgid
, sgid
, sizeof sgid
);
756 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.dgid
, dgid
, sizeof dgid
);
757 trace_qemu_rdma_dump_gid(who
, sgid
, dgid
);
761 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
762 * We will try the next addrinfo struct, and fail if there are
763 * no other valid addresses to bind against.
765 * If user is listening on '[::]', then we will not have a opened a device
766 * yet and have no way of verifying if the device is RoCE or not.
768 * In this case, the source VM will throw an error for ALL types of
769 * connections (both IPv4 and IPv6) if the destination machine does not have
770 * a regular infiniband network available for use.
772 * The only way to guarantee that an error is thrown for broken kernels is
773 * for the management software to choose a *specific* interface at bind time
774 * and validate what time of hardware it is.
776 * Unfortunately, this puts the user in a fix:
778 * If the source VM connects with an IPv4 address without knowing that the
779 * destination has bound to '[::]' the migration will unconditionally fail
780 * unless the management software is explicitly listening on the IPv4
781 * address while using a RoCE-based device.
783 * If the source VM connects with an IPv6 address, then we're OK because we can
784 * throw an error on the source (and similarly on the destination).
786 * But in mixed environments, this will be broken for a while until it is fixed
789 * We do provide a *tiny* bit of help in this function: We can list all of the
790 * devices in the system and check to see if all the devices are RoCE or
793 * If we detect that we have a *pure* RoCE environment, then we can safely
794 * thrown an error even if the management software has specified '[::]' as the
797 * However, if there is are multiple hetergeneous devices, then we cannot make
798 * this assumption and the user just has to be sure they know what they are
801 * Patches are being reviewed on linux-rdma.
803 static int qemu_rdma_broken_ipv6_kernel(Error
**errp
, struct ibv_context
*verbs
)
805 struct ibv_port_attr port_attr
;
807 /* This bug only exists in linux, to our knowledge. */
811 * Verbs are only NULL if management has bound to '[::]'.
813 * Let's iterate through all the devices and see if there any pure IB
814 * devices (non-ethernet).
816 * If not, then we can safely proceed with the migration.
817 * Otherwise, there are no guarantees until the bug is fixed in linux.
821 struct ibv_device
** dev_list
= ibv_get_device_list(&num_devices
);
822 bool roce_found
= false;
823 bool ib_found
= false;
825 for (x
= 0; x
< num_devices
; x
++) {
826 verbs
= ibv_open_device(dev_list
[x
]);
828 if (errno
== EPERM
) {
835 if (ibv_query_port(verbs
, 1, &port_attr
)) {
836 ibv_close_device(verbs
);
837 ERROR(errp
, "Could not query initial IB port");
841 if (port_attr
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) {
843 } else if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
847 ibv_close_device(verbs
);
853 fprintf(stderr
, "WARN: migrations may fail:"
854 " IPv6 over RoCE / iWARP in linux"
855 " is broken. But since you appear to have a"
856 " mixed RoCE / IB environment, be sure to only"
857 " migrate over the IB fabric until the kernel "
858 " fixes the bug.\n");
860 ERROR(errp
, "You only have RoCE / iWARP devices in your systems"
861 " and your management software has specified '[::]'"
862 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
871 * If we have a verbs context, that means that some other than '[::]' was
872 * used by the management software for binding. In which case we can
873 * actually warn the user about a potentially broken kernel.
876 /* IB ports start with 1, not 0 */
877 if (ibv_query_port(verbs
, 1, &port_attr
)) {
878 ERROR(errp
, "Could not query initial IB port");
882 if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
883 ERROR(errp
, "Linux kernel's RoCE / iWARP does not support IPv6 "
884 "(but patches on linux-rdma in progress)");
894 * Figure out which RDMA device corresponds to the requested IP hostname
895 * Also create the initial connection manager identifiers for opening
898 static int qemu_rdma_resolve_host(RDMAContext
*rdma
, Error
**errp
)
901 struct rdma_addrinfo
*res
;
903 struct rdma_cm_event
*cm_event
;
904 char ip
[40] = "unknown";
905 struct rdma_addrinfo
*e
;
907 if (rdma
->host
== NULL
|| !strcmp(rdma
->host
, "")) {
908 ERROR(errp
, "RDMA hostname has not been set");
912 /* create CM channel */
913 rdma
->channel
= rdma_create_event_channel();
914 if (!rdma
->channel
) {
915 ERROR(errp
, "could not create CM channel");
920 ret
= rdma_create_id(rdma
->channel
, &rdma
->cm_id
, NULL
, RDMA_PS_TCP
);
922 ERROR(errp
, "could not create channel id");
923 goto err_resolve_create_id
;
926 snprintf(port_str
, 16, "%d", rdma
->port
);
929 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
931 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
932 goto err_resolve_get_addr
;
935 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
936 inet_ntop(e
->ai_family
,
937 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
938 trace_qemu_rdma_resolve_host_trying(rdma
->host
, ip
);
940 ret
= rdma_resolve_addr(rdma
->cm_id
, NULL
, e
->ai_dst_addr
,
941 RDMA_RESOLVE_TIMEOUT_MS
);
943 if (e
->ai_family
== AF_INET6
) {
944 ret
= qemu_rdma_broken_ipv6_kernel(errp
, rdma
->cm_id
->verbs
);
953 ERROR(errp
, "could not resolve address %s", rdma
->host
);
954 goto err_resolve_get_addr
;
957 qemu_rdma_dump_gid("source_resolve_addr", rdma
->cm_id
);
959 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
961 ERROR(errp
, "could not perform event_addr_resolved");
962 goto err_resolve_get_addr
;
965 if (cm_event
->event
!= RDMA_CM_EVENT_ADDR_RESOLVED
) {
966 ERROR(errp
, "result not equal to event_addr_resolved %s",
967 rdma_event_str(cm_event
->event
));
968 perror("rdma_resolve_addr");
969 rdma_ack_cm_event(cm_event
);
971 goto err_resolve_get_addr
;
973 rdma_ack_cm_event(cm_event
);
976 ret
= rdma_resolve_route(rdma
->cm_id
, RDMA_RESOLVE_TIMEOUT_MS
);
978 ERROR(errp
, "could not resolve rdma route");
979 goto err_resolve_get_addr
;
982 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
984 ERROR(errp
, "could not perform event_route_resolved");
985 goto err_resolve_get_addr
;
987 if (cm_event
->event
!= RDMA_CM_EVENT_ROUTE_RESOLVED
) {
988 ERROR(errp
, "result not equal to event_route_resolved: %s",
989 rdma_event_str(cm_event
->event
));
990 rdma_ack_cm_event(cm_event
);
992 goto err_resolve_get_addr
;
994 rdma_ack_cm_event(cm_event
);
995 rdma
->verbs
= rdma
->cm_id
->verbs
;
996 qemu_rdma_dump_id("source_resolve_host", rdma
->cm_id
->verbs
);
997 qemu_rdma_dump_gid("source_resolve_host", rdma
->cm_id
);
1000 err_resolve_get_addr
:
1001 rdma_destroy_id(rdma
->cm_id
);
1003 err_resolve_create_id
:
1004 rdma_destroy_event_channel(rdma
->channel
);
1005 rdma
->channel
= NULL
;
1010 * Create protection domain and completion queues
1012 static int qemu_rdma_alloc_pd_cq(RDMAContext
*rdma
)
1015 rdma
->pd
= ibv_alloc_pd(rdma
->verbs
);
1017 error_report("failed to allocate protection domain");
1021 /* create completion channel */
1022 rdma
->comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1023 if (!rdma
->comp_channel
) {
1024 error_report("failed to allocate completion channel");
1025 goto err_alloc_pd_cq
;
1029 * Completion queue can be filled by both read and write work requests,
1030 * so must reflect the sum of both possible queue sizes.
1032 rdma
->cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1033 NULL
, rdma
->comp_channel
, 0);
1035 error_report("failed to allocate completion queue");
1036 goto err_alloc_pd_cq
;
1043 ibv_dealloc_pd(rdma
->pd
);
1045 if (rdma
->comp_channel
) {
1046 ibv_destroy_comp_channel(rdma
->comp_channel
);
1049 rdma
->comp_channel
= NULL
;
1055 * Create queue pairs.
1057 static int qemu_rdma_alloc_qp(RDMAContext
*rdma
)
1059 struct ibv_qp_init_attr attr
= { 0 };
1062 attr
.cap
.max_send_wr
= RDMA_SIGNALED_SEND_MAX
;
1063 attr
.cap
.max_recv_wr
= 3;
1064 attr
.cap
.max_send_sge
= 1;
1065 attr
.cap
.max_recv_sge
= 1;
1066 attr
.send_cq
= rdma
->cq
;
1067 attr
.recv_cq
= rdma
->cq
;
1068 attr
.qp_type
= IBV_QPT_RC
;
1070 ret
= rdma_create_qp(rdma
->cm_id
, rdma
->pd
, &attr
);
1075 rdma
->qp
= rdma
->cm_id
->qp
;
1079 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext
*rdma
)
1082 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
1084 for (i
= 0; i
< local
->nb_blocks
; i
++) {
1085 local
->block
[i
].mr
=
1086 ibv_reg_mr(rdma
->pd
,
1087 local
->block
[i
].local_host_addr
,
1088 local
->block
[i
].length
,
1089 IBV_ACCESS_LOCAL_WRITE
|
1090 IBV_ACCESS_REMOTE_WRITE
1092 if (!local
->block
[i
].mr
) {
1093 perror("Failed to register local dest ram block!\n");
1096 rdma
->total_registrations
++;
1099 if (i
>= local
->nb_blocks
) {
1103 for (i
--; i
>= 0; i
--) {
1104 ibv_dereg_mr(local
->block
[i
].mr
);
1105 rdma
->total_registrations
--;
1113 * Find the ram block that corresponds to the page requested to be
1114 * transmitted by QEMU.
1116 * Once the block is found, also identify which 'chunk' within that
1117 * block that the page belongs to.
1119 * This search cannot fail or the migration will fail.
1121 static int qemu_rdma_search_ram_block(RDMAContext
*rdma
,
1122 uintptr_t block_offset
,
1125 uint64_t *block_index
,
1126 uint64_t *chunk_index
)
1128 uint64_t current_addr
= block_offset
+ offset
;
1129 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
1130 (void *) block_offset
);
1132 assert(current_addr
>= block
->offset
);
1133 assert((current_addr
+ length
) <= (block
->offset
+ block
->length
));
1135 *block_index
= block
->index
;
1136 *chunk_index
= ram_chunk_index(block
->local_host_addr
,
1137 block
->local_host_addr
+ (current_addr
- block
->offset
));
1143 * Register a chunk with IB. If the chunk was already registered
1144 * previously, then skip.
1146 * Also return the keys associated with the registration needed
1147 * to perform the actual RDMA operation.
1149 static int qemu_rdma_register_and_get_keys(RDMAContext
*rdma
,
1150 RDMALocalBlock
*block
, uintptr_t host_addr
,
1151 uint32_t *lkey
, uint32_t *rkey
, int chunk
,
1152 uint8_t *chunk_start
, uint8_t *chunk_end
)
1156 *lkey
= block
->mr
->lkey
;
1159 *rkey
= block
->mr
->rkey
;
1164 /* allocate memory to store chunk MRs */
1166 block
->pmr
= g_new0(struct ibv_mr
*, block
->nb_chunks
);
1170 * If 'rkey', then we're the destination, so grant access to the source.
1172 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1174 if (!block
->pmr
[chunk
]) {
1175 uint64_t len
= chunk_end
- chunk_start
;
1177 trace_qemu_rdma_register_and_get_keys(len
, chunk_start
);
1179 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
,
1181 (rkey
? (IBV_ACCESS_LOCAL_WRITE
|
1182 IBV_ACCESS_REMOTE_WRITE
) : 0));
1184 if (!block
->pmr
[chunk
]) {
1185 perror("Failed to register chunk!");
1186 fprintf(stderr
, "Chunk details: block: %d chunk index %d"
1187 " start %" PRIuPTR
" end %" PRIuPTR
1189 " local %" PRIuPTR
" registrations: %d\n",
1190 block
->index
, chunk
, (uintptr_t)chunk_start
,
1191 (uintptr_t)chunk_end
, host_addr
,
1192 (uintptr_t)block
->local_host_addr
,
1193 rdma
->total_registrations
);
1196 rdma
->total_registrations
++;
1200 *lkey
= block
->pmr
[chunk
]->lkey
;
1203 *rkey
= block
->pmr
[chunk
]->rkey
;
1209 * Register (at connection time) the memory used for control
1212 static int qemu_rdma_reg_control(RDMAContext
*rdma
, int idx
)
1214 rdma
->wr_data
[idx
].control_mr
= ibv_reg_mr(rdma
->pd
,
1215 rdma
->wr_data
[idx
].control
, RDMA_CONTROL_MAX_BUFFER
,
1216 IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
);
1217 if (rdma
->wr_data
[idx
].control_mr
) {
1218 rdma
->total_registrations
++;
1221 error_report("qemu_rdma_reg_control failed");
1225 const char *print_wrid(int wrid
)
1227 if (wrid
>= RDMA_WRID_RECV_CONTROL
) {
1228 return wrid_desc
[RDMA_WRID_RECV_CONTROL
];
1230 return wrid_desc
[wrid
];
1234 * RDMA requires memory registration (mlock/pinning), but this is not good for
1237 * In preparation for the future where LRU information or workload-specific
1238 * writable writable working set memory access behavior is available to QEMU
1239 * it would be nice to have in place the ability to UN-register/UN-pin
1240 * particular memory regions from the RDMA hardware when it is determine that
1241 * those regions of memory will likely not be accessed again in the near future.
1243 * While we do not yet have such information right now, the following
1244 * compile-time option allows us to perform a non-optimized version of this
1247 * By uncommenting this option, you will cause *all* RDMA transfers to be
1248 * unregistered immediately after the transfer completes on both sides of the
1249 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1251 * This will have a terrible impact on migration performance, so until future
1252 * workload information or LRU information is available, do not attempt to use
1253 * this feature except for basic testing.
1255 //#define RDMA_UNREGISTRATION_EXAMPLE
1258 * Perform a non-optimized memory unregistration after every transfer
1259 * for demonstration purposes, only if pin-all is not requested.
1261 * Potential optimizations:
1262 * 1. Start a new thread to run this function continuously
1264 - and for receipt of unregister messages
1266 * 3. Use workload hints.
1268 static int qemu_rdma_unregister_waiting(RDMAContext
*rdma
)
1270 while (rdma
->unregistrations
[rdma
->unregister_current
]) {
1272 uint64_t wr_id
= rdma
->unregistrations
[rdma
->unregister_current
];
1274 (wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1276 (wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1277 RDMALocalBlock
*block
=
1278 &(rdma
->local_ram_blocks
.block
[index
]);
1279 RDMARegister reg
= { .current_index
= index
};
1280 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
1282 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1283 .type
= RDMA_CONTROL_UNREGISTER_REQUEST
,
1287 trace_qemu_rdma_unregister_waiting_proc(chunk
,
1288 rdma
->unregister_current
);
1290 rdma
->unregistrations
[rdma
->unregister_current
] = 0;
1291 rdma
->unregister_current
++;
1293 if (rdma
->unregister_current
== RDMA_SIGNALED_SEND_MAX
) {
1294 rdma
->unregister_current
= 0;
1299 * Unregistration is speculative (because migration is single-threaded
1300 * and we cannot break the protocol's inifinband message ordering).
1301 * Thus, if the memory is currently being used for transmission,
1302 * then abort the attempt to unregister and try again
1303 * later the next time a completion is received for this memory.
1305 clear_bit(chunk
, block
->unregister_bitmap
);
1307 if (test_bit(chunk
, block
->transit_bitmap
)) {
1308 trace_qemu_rdma_unregister_waiting_inflight(chunk
);
1312 trace_qemu_rdma_unregister_waiting_send(chunk
);
1314 ret
= ibv_dereg_mr(block
->pmr
[chunk
]);
1315 block
->pmr
[chunk
] = NULL
;
1316 block
->remote_keys
[chunk
] = 0;
1319 perror("unregistration chunk failed");
1322 rdma
->total_registrations
--;
1324 reg
.key
.chunk
= chunk
;
1325 register_to_network(rdma
, ®
);
1326 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1332 trace_qemu_rdma_unregister_waiting_complete(chunk
);
1338 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id
, uint64_t index
,
1341 uint64_t result
= wr_id
& RDMA_WRID_TYPE_MASK
;
1343 result
|= (index
<< RDMA_WRID_BLOCK_SHIFT
);
1344 result
|= (chunk
<< RDMA_WRID_CHUNK_SHIFT
);
1350 * Set bit for unregistration in the next iteration.
1351 * We cannot transmit right here, but will unpin later.
1353 static void qemu_rdma_signal_unregister(RDMAContext
*rdma
, uint64_t index
,
1354 uint64_t chunk
, uint64_t wr_id
)
1356 if (rdma
->unregistrations
[rdma
->unregister_next
] != 0) {
1357 error_report("rdma migration: queue is full");
1359 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1361 if (!test_and_set_bit(chunk
, block
->unregister_bitmap
)) {
1362 trace_qemu_rdma_signal_unregister_append(chunk
,
1363 rdma
->unregister_next
);
1365 rdma
->unregistrations
[rdma
->unregister_next
++] =
1366 qemu_rdma_make_wrid(wr_id
, index
, chunk
);
1368 if (rdma
->unregister_next
== RDMA_SIGNALED_SEND_MAX
) {
1369 rdma
->unregister_next
= 0;
1372 trace_qemu_rdma_signal_unregister_already(chunk
);
1378 * Consult the connection manager to see a work request
1379 * (of any kind) has completed.
1380 * Return the work request ID that completed.
1382 static uint64_t qemu_rdma_poll(RDMAContext
*rdma
, uint64_t *wr_id_out
,
1389 ret
= ibv_poll_cq(rdma
->cq
, 1, &wc
);
1392 *wr_id_out
= RDMA_WRID_NONE
;
1397 error_report("ibv_poll_cq return %d", ret
);
1401 wr_id
= wc
.wr_id
& RDMA_WRID_TYPE_MASK
;
1403 if (wc
.status
!= IBV_WC_SUCCESS
) {
1404 fprintf(stderr
, "ibv_poll_cq wc.status=%d %s!\n",
1405 wc
.status
, ibv_wc_status_str(wc
.status
));
1406 fprintf(stderr
, "ibv_poll_cq wrid=%s!\n", wrid_desc
[wr_id
]);
1411 if (rdma
->control_ready_expected
&&
1412 (wr_id
>= RDMA_WRID_RECV_CONTROL
)) {
1413 trace_qemu_rdma_poll_recv(wrid_desc
[RDMA_WRID_RECV_CONTROL
],
1414 wr_id
- RDMA_WRID_RECV_CONTROL
, wr_id
, rdma
->nb_sent
);
1415 rdma
->control_ready_expected
= 0;
1418 if (wr_id
== RDMA_WRID_RDMA_WRITE
) {
1420 (wc
.wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1422 (wc
.wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1423 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1425 trace_qemu_rdma_poll_write(print_wrid(wr_id
), wr_id
, rdma
->nb_sent
,
1426 index
, chunk
, block
->local_host_addr
,
1427 (void *)(uintptr_t)block
->remote_host_addr
);
1429 clear_bit(chunk
, block
->transit_bitmap
);
1431 if (rdma
->nb_sent
> 0) {
1435 if (!rdma
->pin_all
) {
1437 * FYI: If one wanted to signal a specific chunk to be unregistered
1438 * using LRU or workload-specific information, this is the function
1439 * you would call to do so. That chunk would then get asynchronously
1440 * unregistered later.
1442 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1443 qemu_rdma_signal_unregister(rdma
, index
, chunk
, wc
.wr_id
);
1447 trace_qemu_rdma_poll_other(print_wrid(wr_id
), wr_id
, rdma
->nb_sent
);
1450 *wr_id_out
= wc
.wr_id
;
1452 *byte_len
= wc
.byte_len
;
1459 * Block until the next work request has completed.
1461 * First poll to see if a work request has already completed,
1464 * If we encounter completed work requests for IDs other than
1465 * the one we're interested in, then that's generally an error.
1467 * The only exception is actual RDMA Write completions. These
1468 * completions only need to be recorded, but do not actually
1469 * need further processing.
1471 static int qemu_rdma_block_for_wrid(RDMAContext
*rdma
, int wrid_requested
,
1474 int num_cq_events
= 0, ret
= 0;
1477 uint64_t wr_id
= RDMA_WRID_NONE
, wr_id_in
;
1479 if (ibv_req_notify_cq(rdma
->cq
, 0)) {
1483 while (wr_id
!= wrid_requested
) {
1484 ret
= qemu_rdma_poll(rdma
, &wr_id_in
, byte_len
);
1489 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1491 if (wr_id
== RDMA_WRID_NONE
) {
1494 if (wr_id
!= wrid_requested
) {
1495 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested
),
1496 wrid_requested
, print_wrid(wr_id
), wr_id
);
1500 if (wr_id
== wrid_requested
) {
1506 * Coroutine doesn't start until process_incoming_migration()
1507 * so don't yield unless we know we're running inside of a coroutine.
1509 if (rdma
->migration_started_on_destination
) {
1510 yield_until_fd_readable(rdma
->comp_channel
->fd
);
1513 if (ibv_get_cq_event(rdma
->comp_channel
, &cq
, &cq_ctx
)) {
1514 perror("ibv_get_cq_event");
1515 goto err_block_for_wrid
;
1520 if (ibv_req_notify_cq(cq
, 0)) {
1521 goto err_block_for_wrid
;
1524 while (wr_id
!= wrid_requested
) {
1525 ret
= qemu_rdma_poll(rdma
, &wr_id_in
, byte_len
);
1527 goto err_block_for_wrid
;
1530 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1532 if (wr_id
== RDMA_WRID_NONE
) {
1535 if (wr_id
!= wrid_requested
) {
1536 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested
),
1537 wrid_requested
, print_wrid(wr_id
), wr_id
);
1541 if (wr_id
== wrid_requested
) {
1542 goto success_block_for_wrid
;
1546 success_block_for_wrid
:
1547 if (num_cq_events
) {
1548 ibv_ack_cq_events(cq
, num_cq_events
);
1553 if (num_cq_events
) {
1554 ibv_ack_cq_events(cq
, num_cq_events
);
1560 * Post a SEND message work request for the control channel
1561 * containing some data and block until the post completes.
1563 static int qemu_rdma_post_send_control(RDMAContext
*rdma
, uint8_t *buf
,
1564 RDMAControlHeader
*head
)
1567 RDMAWorkRequestData
*wr
= &rdma
->wr_data
[RDMA_WRID_CONTROL
];
1568 struct ibv_send_wr
*bad_wr
;
1569 struct ibv_sge sge
= {
1570 .addr
= (uintptr_t)(wr
->control
),
1571 .length
= head
->len
+ sizeof(RDMAControlHeader
),
1572 .lkey
= wr
->control_mr
->lkey
,
1574 struct ibv_send_wr send_wr
= {
1575 .wr_id
= RDMA_WRID_SEND_CONTROL
,
1576 .opcode
= IBV_WR_SEND
,
1577 .send_flags
= IBV_SEND_SIGNALED
,
1582 trace_qemu_rdma_post_send_control(control_desc
[head
->type
]);
1585 * We don't actually need to do a memcpy() in here if we used
1586 * the "sge" properly, but since we're only sending control messages
1587 * (not RAM in a performance-critical path), then its OK for now.
1589 * The copy makes the RDMAControlHeader simpler to manipulate
1590 * for the time being.
1592 assert(head
->len
<= RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
));
1593 memcpy(wr
->control
, head
, sizeof(RDMAControlHeader
));
1594 control_to_network((void *) wr
->control
);
1597 memcpy(wr
->control
+ sizeof(RDMAControlHeader
), buf
, head
->len
);
1601 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
1604 error_report("Failed to use post IB SEND for control");
1608 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_SEND_CONTROL
, NULL
);
1610 error_report("rdma migration: send polling control error");
1617 * Post a RECV work request in anticipation of some future receipt
1618 * of data on the control channel.
1620 static int qemu_rdma_post_recv_control(RDMAContext
*rdma
, int idx
)
1622 struct ibv_recv_wr
*bad_wr
;
1623 struct ibv_sge sge
= {
1624 .addr
= (uintptr_t)(rdma
->wr_data
[idx
].control
),
1625 .length
= RDMA_CONTROL_MAX_BUFFER
,
1626 .lkey
= rdma
->wr_data
[idx
].control_mr
->lkey
,
1629 struct ibv_recv_wr recv_wr
= {
1630 .wr_id
= RDMA_WRID_RECV_CONTROL
+ idx
,
1636 if (ibv_post_recv(rdma
->qp
, &recv_wr
, &bad_wr
)) {
1644 * Block and wait for a RECV control channel message to arrive.
1646 static int qemu_rdma_exchange_get_response(RDMAContext
*rdma
,
1647 RDMAControlHeader
*head
, int expecting
, int idx
)
1650 int ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RECV_CONTROL
+ idx
,
1654 error_report("rdma migration: recv polling control error!");
1658 network_to_control((void *) rdma
->wr_data
[idx
].control
);
1659 memcpy(head
, rdma
->wr_data
[idx
].control
, sizeof(RDMAControlHeader
));
1661 trace_qemu_rdma_exchange_get_response_start(control_desc
[expecting
]);
1663 if (expecting
== RDMA_CONTROL_NONE
) {
1664 trace_qemu_rdma_exchange_get_response_none(control_desc
[head
->type
],
1666 } else if (head
->type
!= expecting
|| head
->type
== RDMA_CONTROL_ERROR
) {
1667 error_report("Was expecting a %s (%d) control message"
1668 ", but got: %s (%d), length: %d",
1669 control_desc
[expecting
], expecting
,
1670 control_desc
[head
->type
], head
->type
, head
->len
);
1673 if (head
->len
> RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
)) {
1674 error_report("too long length: %d", head
->len
);
1677 if (sizeof(*head
) + head
->len
!= byte_len
) {
1678 error_report("Malformed length: %d byte_len %d", head
->len
, byte_len
);
1686 * When a RECV work request has completed, the work request's
1687 * buffer is pointed at the header.
1689 * This will advance the pointer to the data portion
1690 * of the control message of the work request's buffer that
1691 * was populated after the work request finished.
1693 static void qemu_rdma_move_header(RDMAContext
*rdma
, int idx
,
1694 RDMAControlHeader
*head
)
1696 rdma
->wr_data
[idx
].control_len
= head
->len
;
1697 rdma
->wr_data
[idx
].control_curr
=
1698 rdma
->wr_data
[idx
].control
+ sizeof(RDMAControlHeader
);
1702 * This is an 'atomic' high-level operation to deliver a single, unified
1703 * control-channel message.
1705 * Additionally, if the user is expecting some kind of reply to this message,
1706 * they can request a 'resp' response message be filled in by posting an
1707 * additional work request on behalf of the user and waiting for an additional
1710 * The extra (optional) response is used during registration to us from having
1711 * to perform an *additional* exchange of message just to provide a response by
1712 * instead piggy-backing on the acknowledgement.
1714 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1715 uint8_t *data
, RDMAControlHeader
*resp
,
1717 int (*callback
)(RDMAContext
*rdma
))
1722 * Wait until the dest is ready before attempting to deliver the message
1723 * by waiting for a READY message.
1725 if (rdma
->control_ready_expected
) {
1726 RDMAControlHeader resp
;
1727 ret
= qemu_rdma_exchange_get_response(rdma
,
1728 &resp
, RDMA_CONTROL_READY
, RDMA_WRID_READY
);
1735 * If the user is expecting a response, post a WR in anticipation of it.
1738 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_DATA
);
1740 error_report("rdma migration: error posting"
1741 " extra control recv for anticipated result!");
1747 * Post a WR to replace the one we just consumed for the READY message.
1749 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1751 error_report("rdma migration: error posting first control recv!");
1756 * Deliver the control message that was requested.
1758 ret
= qemu_rdma_post_send_control(rdma
, data
, head
);
1761 error_report("Failed to send control buffer!");
1766 * If we're expecting a response, block and wait for it.
1770 trace_qemu_rdma_exchange_send_issue_callback();
1771 ret
= callback(rdma
);
1777 trace_qemu_rdma_exchange_send_waiting(control_desc
[resp
->type
]);
1778 ret
= qemu_rdma_exchange_get_response(rdma
, resp
,
1779 resp
->type
, RDMA_WRID_DATA
);
1785 qemu_rdma_move_header(rdma
, RDMA_WRID_DATA
, resp
);
1787 *resp_idx
= RDMA_WRID_DATA
;
1789 trace_qemu_rdma_exchange_send_received(control_desc
[resp
->type
]);
1792 rdma
->control_ready_expected
= 1;
1798 * This is an 'atomic' high-level operation to receive a single, unified
1799 * control-channel message.
1801 static int qemu_rdma_exchange_recv(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1804 RDMAControlHeader ready
= {
1806 .type
= RDMA_CONTROL_READY
,
1812 * Inform the source that we're ready to receive a message.
1814 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &ready
);
1817 error_report("Failed to send control buffer!");
1822 * Block and wait for the message.
1824 ret
= qemu_rdma_exchange_get_response(rdma
, head
,
1825 expecting
, RDMA_WRID_READY
);
1831 qemu_rdma_move_header(rdma
, RDMA_WRID_READY
, head
);
1834 * Post a new RECV work request to replace the one we just consumed.
1836 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1838 error_report("rdma migration: error posting second control recv!");
1846 * Write an actual chunk of memory using RDMA.
1848 * If we're using dynamic registration on the dest-side, we have to
1849 * send a registration command first.
1851 static int qemu_rdma_write_one(QEMUFile
*f
, RDMAContext
*rdma
,
1852 int current_index
, uint64_t current_addr
,
1856 struct ibv_send_wr send_wr
= { 0 };
1857 struct ibv_send_wr
*bad_wr
;
1858 int reg_result_idx
, ret
, count
= 0;
1859 uint64_t chunk
, chunks
;
1860 uint8_t *chunk_start
, *chunk_end
;
1861 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[current_index
]);
1863 RDMARegisterResult
*reg_result
;
1864 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_REGISTER_RESULT
};
1865 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1866 .type
= RDMA_CONTROL_REGISTER_REQUEST
,
1871 sge
.addr
= (uintptr_t)(block
->local_host_addr
+
1872 (current_addr
- block
->offset
));
1873 sge
.length
= length
;
1875 chunk
= ram_chunk_index(block
->local_host_addr
,
1876 (uint8_t *)(uintptr_t)sge
.addr
);
1877 chunk_start
= ram_chunk_start(block
, chunk
);
1879 if (block
->is_ram_block
) {
1880 chunks
= length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
1882 if (chunks
&& ((length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
1886 chunks
= block
->length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
1888 if (chunks
&& ((block
->length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
1893 trace_qemu_rdma_write_one_top(chunks
+ 1,
1895 (1UL << RDMA_REG_CHUNK_SHIFT
) / 1024 / 1024);
1897 chunk_end
= ram_chunk_end(block
, chunk
+ chunks
);
1899 if (!rdma
->pin_all
) {
1900 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1901 qemu_rdma_unregister_waiting(rdma
);
1905 while (test_bit(chunk
, block
->transit_bitmap
)) {
1907 trace_qemu_rdma_write_one_block(count
++, current_index
, chunk
,
1908 sge
.addr
, length
, rdma
->nb_sent
, block
->nb_chunks
);
1910 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
1913 error_report("Failed to Wait for previous write to complete "
1914 "block %d chunk %" PRIu64
1915 " current %" PRIu64
" len %" PRIu64
" %d",
1916 current_index
, chunk
, sge
.addr
, length
, rdma
->nb_sent
);
1921 if (!rdma
->pin_all
|| !block
->is_ram_block
) {
1922 if (!block
->remote_keys
[chunk
]) {
1924 * This chunk has not yet been registered, so first check to see
1925 * if the entire chunk is zero. If so, tell the other size to
1926 * memset() + madvise() the entire chunk without RDMA.
1929 if (can_use_buffer_find_nonzero_offset((void *)(uintptr_t)sge
.addr
,
1931 && buffer_find_nonzero_offset((void *)(uintptr_t)sge
.addr
,
1932 length
) == length
) {
1933 RDMACompress comp
= {
1934 .offset
= current_addr
,
1936 .block_idx
= current_index
,
1940 head
.len
= sizeof(comp
);
1941 head
.type
= RDMA_CONTROL_COMPRESS
;
1943 trace_qemu_rdma_write_one_zero(chunk
, sge
.length
,
1944 current_index
, current_addr
);
1946 compress_to_network(rdma
, &comp
);
1947 ret
= qemu_rdma_exchange_send(rdma
, &head
,
1948 (uint8_t *) &comp
, NULL
, NULL
, NULL
);
1954 acct_update_position(f
, sge
.length
, true);
1960 * Otherwise, tell other side to register.
1962 reg
.current_index
= current_index
;
1963 if (block
->is_ram_block
) {
1964 reg
.key
.current_addr
= current_addr
;
1966 reg
.key
.chunk
= chunk
;
1968 reg
.chunks
= chunks
;
1970 trace_qemu_rdma_write_one_sendreg(chunk
, sge
.length
, current_index
,
1973 register_to_network(rdma
, ®
);
1974 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1975 &resp
, ®_result_idx
, NULL
);
1980 /* try to overlap this single registration with the one we sent. */
1981 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
1982 &sge
.lkey
, NULL
, chunk
,
1983 chunk_start
, chunk_end
)) {
1984 error_report("cannot get lkey");
1988 reg_result
= (RDMARegisterResult
*)
1989 rdma
->wr_data
[reg_result_idx
].control_curr
;
1991 network_to_result(reg_result
);
1993 trace_qemu_rdma_write_one_recvregres(block
->remote_keys
[chunk
],
1994 reg_result
->rkey
, chunk
);
1996 block
->remote_keys
[chunk
] = reg_result
->rkey
;
1997 block
->remote_host_addr
= reg_result
->host_addr
;
1999 /* already registered before */
2000 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2001 &sge
.lkey
, NULL
, chunk
,
2002 chunk_start
, chunk_end
)) {
2003 error_report("cannot get lkey!");
2008 send_wr
.wr
.rdma
.rkey
= block
->remote_keys
[chunk
];
2010 send_wr
.wr
.rdma
.rkey
= block
->remote_rkey
;
2012 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2013 &sge
.lkey
, NULL
, chunk
,
2014 chunk_start
, chunk_end
)) {
2015 error_report("cannot get lkey!");
2021 * Encode the ram block index and chunk within this wrid.
2022 * We will use this information at the time of completion
2023 * to figure out which bitmap to check against and then which
2024 * chunk in the bitmap to look for.
2026 send_wr
.wr_id
= qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE
,
2027 current_index
, chunk
);
2029 send_wr
.opcode
= IBV_WR_RDMA_WRITE
;
2030 send_wr
.send_flags
= IBV_SEND_SIGNALED
;
2031 send_wr
.sg_list
= &sge
;
2032 send_wr
.num_sge
= 1;
2033 send_wr
.wr
.rdma
.remote_addr
= block
->remote_host_addr
+
2034 (current_addr
- block
->offset
);
2036 trace_qemu_rdma_write_one_post(chunk
, sge
.addr
, send_wr
.wr
.rdma
.remote_addr
,
2040 * ibv_post_send() does not return negative error numbers,
2041 * per the specification they are positive - no idea why.
2043 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
2045 if (ret
== ENOMEM
) {
2046 trace_qemu_rdma_write_one_queue_full();
2047 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2049 error_report("rdma migration: failed to make "
2050 "room in full send queue! %d", ret
);
2056 } else if (ret
> 0) {
2057 perror("rdma migration: post rdma write failed");
2061 set_bit(chunk
, block
->transit_bitmap
);
2062 acct_update_position(f
, sge
.length
, false);
2063 rdma
->total_writes
++;
2069 * Push out any unwritten RDMA operations.
2071 * We support sending out multiple chunks at the same time.
2072 * Not all of them need to get signaled in the completion queue.
2074 static int qemu_rdma_write_flush(QEMUFile
*f
, RDMAContext
*rdma
)
2078 if (!rdma
->current_length
) {
2082 ret
= qemu_rdma_write_one(f
, rdma
,
2083 rdma
->current_index
, rdma
->current_addr
, rdma
->current_length
);
2091 trace_qemu_rdma_write_flush(rdma
->nb_sent
);
2094 rdma
->current_length
= 0;
2095 rdma
->current_addr
= 0;
2100 static inline int qemu_rdma_buffer_mergable(RDMAContext
*rdma
,
2101 uint64_t offset
, uint64_t len
)
2103 RDMALocalBlock
*block
;
2107 if (rdma
->current_index
< 0) {
2111 if (rdma
->current_chunk
< 0) {
2115 block
= &(rdma
->local_ram_blocks
.block
[rdma
->current_index
]);
2116 host_addr
= block
->local_host_addr
+ (offset
- block
->offset
);
2117 chunk_end
= ram_chunk_end(block
, rdma
->current_chunk
);
2119 if (rdma
->current_length
== 0) {
2124 * Only merge into chunk sequentially.
2126 if (offset
!= (rdma
->current_addr
+ rdma
->current_length
)) {
2130 if (offset
< block
->offset
) {
2134 if ((offset
+ len
) > (block
->offset
+ block
->length
)) {
2138 if ((host_addr
+ len
) > chunk_end
) {
2146 * We're not actually writing here, but doing three things:
2148 * 1. Identify the chunk the buffer belongs to.
2149 * 2. If the chunk is full or the buffer doesn't belong to the current
2150 * chunk, then start a new chunk and flush() the old chunk.
2151 * 3. To keep the hardware busy, we also group chunks into batches
2152 * and only require that a batch gets acknowledged in the completion
2153 * qeueue instead of each individual chunk.
2155 static int qemu_rdma_write(QEMUFile
*f
, RDMAContext
*rdma
,
2156 uint64_t block_offset
, uint64_t offset
,
2159 uint64_t current_addr
= block_offset
+ offset
;
2160 uint64_t index
= rdma
->current_index
;
2161 uint64_t chunk
= rdma
->current_chunk
;
2164 /* If we cannot merge it, we flush the current buffer first. */
2165 if (!qemu_rdma_buffer_mergable(rdma
, current_addr
, len
)) {
2166 ret
= qemu_rdma_write_flush(f
, rdma
);
2170 rdma
->current_length
= 0;
2171 rdma
->current_addr
= current_addr
;
2173 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
2174 offset
, len
, &index
, &chunk
);
2176 error_report("ram block search failed");
2179 rdma
->current_index
= index
;
2180 rdma
->current_chunk
= chunk
;
2184 rdma
->current_length
+= len
;
2186 /* flush it if buffer is too large */
2187 if (rdma
->current_length
>= RDMA_MERGE_MAX
) {
2188 return qemu_rdma_write_flush(f
, rdma
);
2194 static void qemu_rdma_cleanup(RDMAContext
*rdma
)
2196 struct rdma_cm_event
*cm_event
;
2199 if (rdma
->cm_id
&& rdma
->connected
) {
2200 if (rdma
->error_state
) {
2201 RDMAControlHeader head
= { .len
= 0,
2202 .type
= RDMA_CONTROL_ERROR
,
2205 error_report("Early error. Sending error.");
2206 qemu_rdma_post_send_control(rdma
, NULL
, &head
);
2209 ret
= rdma_disconnect(rdma
->cm_id
);
2211 trace_qemu_rdma_cleanup_waiting_for_disconnect();
2212 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2214 rdma_ack_cm_event(cm_event
);
2217 trace_qemu_rdma_cleanup_disconnect();
2218 rdma
->connected
= false;
2221 g_free(rdma
->dest_blocks
);
2222 rdma
->dest_blocks
= NULL
;
2224 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2225 if (rdma
->wr_data
[idx
].control_mr
) {
2226 rdma
->total_registrations
--;
2227 ibv_dereg_mr(rdma
->wr_data
[idx
].control_mr
);
2229 rdma
->wr_data
[idx
].control_mr
= NULL
;
2232 if (rdma
->local_ram_blocks
.block
) {
2233 while (rdma
->local_ram_blocks
.nb_blocks
) {
2234 rdma_delete_block(rdma
, &rdma
->local_ram_blocks
.block
[0]);
2239 rdma_destroy_qp(rdma
->cm_id
);
2243 ibv_destroy_cq(rdma
->cq
);
2246 if (rdma
->comp_channel
) {
2247 ibv_destroy_comp_channel(rdma
->comp_channel
);
2248 rdma
->comp_channel
= NULL
;
2251 ibv_dealloc_pd(rdma
->pd
);
2255 rdma_destroy_id(rdma
->cm_id
);
2258 if (rdma
->listen_id
) {
2259 rdma_destroy_id(rdma
->listen_id
);
2260 rdma
->listen_id
= NULL
;
2262 if (rdma
->channel
) {
2263 rdma_destroy_event_channel(rdma
->channel
);
2264 rdma
->channel
= NULL
;
2271 static int qemu_rdma_source_init(RDMAContext
*rdma
, Error
**errp
, bool pin_all
)
2274 Error
*local_err
= NULL
, **temp
= &local_err
;
2277 * Will be validated against destination's actual capabilities
2278 * after the connect() completes.
2280 rdma
->pin_all
= pin_all
;
2282 ret
= qemu_rdma_resolve_host(rdma
, temp
);
2284 goto err_rdma_source_init
;
2287 ret
= qemu_rdma_alloc_pd_cq(rdma
);
2289 ERROR(temp
, "rdma migration: error allocating pd and cq! Your mlock()"
2290 " limits may be too low. Please check $ ulimit -a # and "
2291 "search for 'ulimit -l' in the output");
2292 goto err_rdma_source_init
;
2295 ret
= qemu_rdma_alloc_qp(rdma
);
2297 ERROR(temp
, "rdma migration: error allocating qp!");
2298 goto err_rdma_source_init
;
2301 ret
= qemu_rdma_init_ram_blocks(rdma
);
2303 ERROR(temp
, "rdma migration: error initializing ram blocks!");
2304 goto err_rdma_source_init
;
2307 /* Build the hash that maps from offset to RAMBlock */
2308 rdma
->blockmap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
2309 for (idx
= 0; idx
< rdma
->local_ram_blocks
.nb_blocks
; idx
++) {
2310 g_hash_table_insert(rdma
->blockmap
,
2311 (void *)(uintptr_t)rdma
->local_ram_blocks
.block
[idx
].offset
,
2312 &rdma
->local_ram_blocks
.block
[idx
]);
2315 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2316 ret
= qemu_rdma_reg_control(rdma
, idx
);
2318 ERROR(temp
, "rdma migration: error registering %d control!",
2320 goto err_rdma_source_init
;
2326 err_rdma_source_init
:
2327 error_propagate(errp
, local_err
);
2328 qemu_rdma_cleanup(rdma
);
2332 static int qemu_rdma_connect(RDMAContext
*rdma
, Error
**errp
)
2334 RDMACapabilities cap
= {
2335 .version
= RDMA_CONTROL_VERSION_CURRENT
,
2338 struct rdma_conn_param conn_param
= { .initiator_depth
= 2,
2340 .private_data
= &cap
,
2341 .private_data_len
= sizeof(cap
),
2343 struct rdma_cm_event
*cm_event
;
2347 * Only negotiate the capability with destination if the user
2348 * on the source first requested the capability.
2350 if (rdma
->pin_all
) {
2351 trace_qemu_rdma_connect_pin_all_requested();
2352 cap
.flags
|= RDMA_CAPABILITY_PIN_ALL
;
2355 caps_to_network(&cap
);
2357 ret
= rdma_connect(rdma
->cm_id
, &conn_param
);
2359 perror("rdma_connect");
2360 ERROR(errp
, "connecting to destination!");
2361 goto err_rdma_source_connect
;
2364 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2366 perror("rdma_get_cm_event after rdma_connect");
2367 ERROR(errp
, "connecting to destination!");
2368 rdma_ack_cm_event(cm_event
);
2369 goto err_rdma_source_connect
;
2372 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2373 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2374 ERROR(errp
, "connecting to destination!");
2375 rdma_ack_cm_event(cm_event
);
2376 goto err_rdma_source_connect
;
2378 rdma
->connected
= true;
2380 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2381 network_to_caps(&cap
);
2384 * Verify that the *requested* capabilities are supported by the destination
2385 * and disable them otherwise.
2387 if (rdma
->pin_all
&& !(cap
.flags
& RDMA_CAPABILITY_PIN_ALL
)) {
2388 ERROR(errp
, "Server cannot support pinning all memory. "
2389 "Will register memory dynamically.");
2390 rdma
->pin_all
= false;
2393 trace_qemu_rdma_connect_pin_all_outcome(rdma
->pin_all
);
2395 rdma_ack_cm_event(cm_event
);
2397 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
2399 ERROR(errp
, "posting second control recv!");
2400 goto err_rdma_source_connect
;
2403 rdma
->control_ready_expected
= 1;
2407 err_rdma_source_connect
:
2408 qemu_rdma_cleanup(rdma
);
2412 static int qemu_rdma_dest_init(RDMAContext
*rdma
, Error
**errp
)
2415 struct rdma_cm_id
*listen_id
;
2416 char ip
[40] = "unknown";
2417 struct rdma_addrinfo
*res
, *e
;
2420 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2421 rdma
->wr_data
[idx
].control_len
= 0;
2422 rdma
->wr_data
[idx
].control_curr
= NULL
;
2425 if (!rdma
->host
|| !rdma
->host
[0]) {
2426 ERROR(errp
, "RDMA host is not set!");
2427 rdma
->error_state
= -EINVAL
;
2430 /* create CM channel */
2431 rdma
->channel
= rdma_create_event_channel();
2432 if (!rdma
->channel
) {
2433 ERROR(errp
, "could not create rdma event channel");
2434 rdma
->error_state
= -EINVAL
;
2439 ret
= rdma_create_id(rdma
->channel
, &listen_id
, NULL
, RDMA_PS_TCP
);
2441 ERROR(errp
, "could not create cm_id!");
2442 goto err_dest_init_create_listen_id
;
2445 snprintf(port_str
, 16, "%d", rdma
->port
);
2446 port_str
[15] = '\0';
2448 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
2450 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
2451 goto err_dest_init_bind_addr
;
2454 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
2455 inet_ntop(e
->ai_family
,
2456 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
2457 trace_qemu_rdma_dest_init_trying(rdma
->host
, ip
);
2458 ret
= rdma_bind_addr(listen_id
, e
->ai_dst_addr
);
2462 if (e
->ai_family
== AF_INET6
) {
2463 ret
= qemu_rdma_broken_ipv6_kernel(errp
, listen_id
->verbs
);
2472 ERROR(errp
, "Error: could not rdma_bind_addr!");
2473 goto err_dest_init_bind_addr
;
2476 rdma
->listen_id
= listen_id
;
2477 qemu_rdma_dump_gid("dest_init", listen_id
);
2480 err_dest_init_bind_addr
:
2481 rdma_destroy_id(listen_id
);
2482 err_dest_init_create_listen_id
:
2483 rdma_destroy_event_channel(rdma
->channel
);
2484 rdma
->channel
= NULL
;
2485 rdma
->error_state
= ret
;
2490 static void *qemu_rdma_data_init(const char *host_port
, Error
**errp
)
2492 RDMAContext
*rdma
= NULL
;
2493 InetSocketAddress
*addr
;
2496 rdma
= g_new0(RDMAContext
, 1);
2497 rdma
->current_index
= -1;
2498 rdma
->current_chunk
= -1;
2500 addr
= inet_parse(host_port
, NULL
);
2502 rdma
->port
= atoi(addr
->port
);
2503 rdma
->host
= g_strdup(addr
->host
);
2505 ERROR(errp
, "bad RDMA migration address '%s'", host_port
);
2510 qapi_free_InetSocketAddress(addr
);
2517 * QEMUFile interface to the control channel.
2518 * SEND messages for control only.
2519 * VM's ram is handled with regular RDMA messages.
2521 static ssize_t
qemu_rdma_put_buffer(void *opaque
, const uint8_t *buf
,
2522 int64_t pos
, size_t size
)
2524 QEMUFileRDMA
*r
= opaque
;
2525 QEMUFile
*f
= r
->file
;
2526 RDMAContext
*rdma
= r
->rdma
;
2527 size_t remaining
= size
;
2528 uint8_t * data
= (void *) buf
;
2531 CHECK_ERROR_STATE();
2534 * Push out any writes that
2535 * we're queued up for VM's ram.
2537 ret
= qemu_rdma_write_flush(f
, rdma
);
2539 rdma
->error_state
= ret
;
2544 RDMAControlHeader head
;
2546 r
->len
= MIN(remaining
, RDMA_SEND_INCREMENT
);
2547 remaining
-= r
->len
;
2549 /* Guaranteed to fit due to RDMA_SEND_INCREMENT MIN above */
2550 head
.len
= (uint32_t)r
->len
;
2551 head
.type
= RDMA_CONTROL_QEMU_FILE
;
2553 ret
= qemu_rdma_exchange_send(rdma
, &head
, data
, NULL
, NULL
, NULL
);
2556 rdma
->error_state
= ret
;
2566 static size_t qemu_rdma_fill(RDMAContext
*rdma
, uint8_t *buf
,
2567 size_t size
, int idx
)
2571 if (rdma
->wr_data
[idx
].control_len
) {
2572 trace_qemu_rdma_fill(rdma
->wr_data
[idx
].control_len
, size
);
2574 len
= MIN(size
, rdma
->wr_data
[idx
].control_len
);
2575 memcpy(buf
, rdma
->wr_data
[idx
].control_curr
, len
);
2576 rdma
->wr_data
[idx
].control_curr
+= len
;
2577 rdma
->wr_data
[idx
].control_len
-= len
;
2584 * QEMUFile interface to the control channel.
2585 * RDMA links don't use bytestreams, so we have to
2586 * return bytes to QEMUFile opportunistically.
2588 static ssize_t
qemu_rdma_get_buffer(void *opaque
, uint8_t *buf
,
2589 int64_t pos
, size_t size
)
2591 QEMUFileRDMA
*r
= opaque
;
2592 RDMAContext
*rdma
= r
->rdma
;
2593 RDMAControlHeader head
;
2596 CHECK_ERROR_STATE();
2599 * First, we hold on to the last SEND message we
2600 * were given and dish out the bytes until we run
2603 r
->len
= qemu_rdma_fill(r
->rdma
, buf
, size
, 0);
2609 * Once we run out, we block and wait for another
2610 * SEND message to arrive.
2612 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_QEMU_FILE
);
2615 rdma
->error_state
= ret
;
2620 * SEND was received with new bytes, now try again.
2622 return qemu_rdma_fill(r
->rdma
, buf
, size
, 0);
2626 * Block until all the outstanding chunks have been delivered by the hardware.
2628 static int qemu_rdma_drain_cq(QEMUFile
*f
, RDMAContext
*rdma
)
2632 if (qemu_rdma_write_flush(f
, rdma
) < 0) {
2636 while (rdma
->nb_sent
) {
2637 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2639 error_report("rdma migration: complete polling error!");
2644 qemu_rdma_unregister_waiting(rdma
);
2649 static int qemu_rdma_close(void *opaque
)
2651 trace_qemu_rdma_close();
2652 QEMUFileRDMA
*r
= opaque
;
2654 qemu_rdma_cleanup(r
->rdma
);
2664 * This means that 'block_offset' is a full virtual address that does not
2665 * belong to a RAMBlock of the virtual machine and instead
2666 * represents a private malloc'd memory area that the caller wishes to
2670 * Offset is an offset to be added to block_offset and used
2671 * to also lookup the corresponding RAMBlock.
2674 * Initiate an transfer this size.
2677 * A 'hint' or 'advice' that means that we wish to speculatively
2678 * and asynchronously unregister this memory. In this case, there is no
2679 * guarantee that the unregister will actually happen, for example,
2680 * if the memory is being actively transmitted. Additionally, the memory
2681 * may be re-registered at any future time if a write within the same
2682 * chunk was requested again, even if you attempted to unregister it
2685 * @size < 0 : TODO, not yet supported
2686 * Unregister the memory NOW. This means that the caller does not
2687 * expect there to be any future RDMA transfers and we just want to clean
2688 * things up. This is used in case the upper layer owns the memory and
2689 * cannot wait for qemu_fclose() to occur.
2691 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2692 * sent. Usually, this will not be more than a few bytes of
2693 * the protocol because most transfers are sent asynchronously.
2695 static size_t qemu_rdma_save_page(QEMUFile
*f
, void *opaque
,
2696 ram_addr_t block_offset
, ram_addr_t offset
,
2697 size_t size
, uint64_t *bytes_sent
)
2699 QEMUFileRDMA
*rfile
= opaque
;
2700 RDMAContext
*rdma
= rfile
->rdma
;
2703 CHECK_ERROR_STATE();
2709 * Add this page to the current 'chunk'. If the chunk
2710 * is full, or the page doen't belong to the current chunk,
2711 * an actual RDMA write will occur and a new chunk will be formed.
2713 ret
= qemu_rdma_write(f
, rdma
, block_offset
, offset
, size
);
2715 error_report("rdma migration: write error! %d", ret
);
2720 * We always return 1 bytes because the RDMA
2721 * protocol is completely asynchronous. We do not yet know
2722 * whether an identified chunk is zero or not because we're
2723 * waiting for other pages to potentially be merged with
2724 * the current chunk. So, we have to call qemu_update_position()
2725 * later on when the actual write occurs.
2731 uint64_t index
, chunk
;
2733 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2735 ret = qemu_rdma_drain_cq(f, rdma);
2737 fprintf(stderr, "rdma: failed to synchronously drain"
2738 " completion queue before unregistration.\n");
2744 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
2745 offset
, size
, &index
, &chunk
);
2748 error_report("ram block search failed");
2752 qemu_rdma_signal_unregister(rdma
, index
, chunk
, 0);
2755 * TODO: Synchronous, guaranteed unregistration (should not occur during
2756 * fast-path). Otherwise, unregisters will process on the next call to
2757 * qemu_rdma_drain_cq()
2759 qemu_rdma_unregister_waiting(rdma);
2765 * Drain the Completion Queue if possible, but do not block,
2768 * If nothing to poll, the end of the iteration will do this
2769 * again to make sure we don't overflow the request queue.
2772 uint64_t wr_id
, wr_id_in
;
2773 int ret
= qemu_rdma_poll(rdma
, &wr_id_in
, NULL
);
2775 error_report("rdma migration: polling error! %d", ret
);
2779 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
2781 if (wr_id
== RDMA_WRID_NONE
) {
2786 return RAM_SAVE_CONTROL_DELAYED
;
2788 rdma
->error_state
= ret
;
2792 static int qemu_rdma_accept(RDMAContext
*rdma
)
2794 RDMACapabilities cap
;
2795 struct rdma_conn_param conn_param
= {
2796 .responder_resources
= 2,
2797 .private_data
= &cap
,
2798 .private_data_len
= sizeof(cap
),
2800 struct rdma_cm_event
*cm_event
;
2801 struct ibv_context
*verbs
;
2805 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2807 goto err_rdma_dest_wait
;
2810 if (cm_event
->event
!= RDMA_CM_EVENT_CONNECT_REQUEST
) {
2811 rdma_ack_cm_event(cm_event
);
2812 goto err_rdma_dest_wait
;
2815 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2817 network_to_caps(&cap
);
2819 if (cap
.version
< 1 || cap
.version
> RDMA_CONTROL_VERSION_CURRENT
) {
2820 error_report("Unknown source RDMA version: %d, bailing...",
2822 rdma_ack_cm_event(cm_event
);
2823 goto err_rdma_dest_wait
;
2827 * Respond with only the capabilities this version of QEMU knows about.
2829 cap
.flags
&= known_capabilities
;
2832 * Enable the ones that we do know about.
2833 * Add other checks here as new ones are introduced.
2835 if (cap
.flags
& RDMA_CAPABILITY_PIN_ALL
) {
2836 rdma
->pin_all
= true;
2839 rdma
->cm_id
= cm_event
->id
;
2840 verbs
= cm_event
->id
->verbs
;
2842 rdma_ack_cm_event(cm_event
);
2844 trace_qemu_rdma_accept_pin_state(rdma
->pin_all
);
2846 caps_to_network(&cap
);
2848 trace_qemu_rdma_accept_pin_verbsc(verbs
);
2851 rdma
->verbs
= verbs
;
2852 } else if (rdma
->verbs
!= verbs
) {
2853 error_report("ibv context not matching %p, %p!", rdma
->verbs
,
2855 goto err_rdma_dest_wait
;
2858 qemu_rdma_dump_id("dest_init", verbs
);
2860 ret
= qemu_rdma_alloc_pd_cq(rdma
);
2862 error_report("rdma migration: error allocating pd and cq!");
2863 goto err_rdma_dest_wait
;
2866 ret
= qemu_rdma_alloc_qp(rdma
);
2868 error_report("rdma migration: error allocating qp!");
2869 goto err_rdma_dest_wait
;
2872 ret
= qemu_rdma_init_ram_blocks(rdma
);
2874 error_report("rdma migration: error initializing ram blocks!");
2875 goto err_rdma_dest_wait
;
2878 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2879 ret
= qemu_rdma_reg_control(rdma
, idx
);
2881 error_report("rdma: error registering %d control", idx
);
2882 goto err_rdma_dest_wait
;
2886 qemu_set_fd_handler(rdma
->channel
->fd
, NULL
, NULL
, NULL
);
2888 ret
= rdma_accept(rdma
->cm_id
, &conn_param
);
2890 error_report("rdma_accept returns %d", ret
);
2891 goto err_rdma_dest_wait
;
2894 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2896 error_report("rdma_accept get_cm_event failed %d", ret
);
2897 goto err_rdma_dest_wait
;
2900 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2901 error_report("rdma_accept not event established");
2902 rdma_ack_cm_event(cm_event
);
2903 goto err_rdma_dest_wait
;
2906 rdma_ack_cm_event(cm_event
);
2907 rdma
->connected
= true;
2909 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
2911 error_report("rdma migration: error posting second control recv");
2912 goto err_rdma_dest_wait
;
2915 qemu_rdma_dump_gid("dest_connect", rdma
->cm_id
);
2920 rdma
->error_state
= ret
;
2921 qemu_rdma_cleanup(rdma
);
2925 static int dest_ram_sort_func(const void *a
, const void *b
)
2927 unsigned int a_index
= ((const RDMALocalBlock
*)a
)->src_index
;
2928 unsigned int b_index
= ((const RDMALocalBlock
*)b
)->src_index
;
2930 return (a_index
< b_index
) ? -1 : (a_index
!= b_index
);
2934 * During each iteration of the migration, we listen for instructions
2935 * by the source VM to perform dynamic page registrations before they
2936 * can perform RDMA operations.
2938 * We respond with the 'rkey'.
2940 * Keep doing this until the source tells us to stop.
2942 static int qemu_rdma_registration_handle(QEMUFile
*f
, void *opaque
)
2944 RDMAControlHeader reg_resp
= { .len
= sizeof(RDMARegisterResult
),
2945 .type
= RDMA_CONTROL_REGISTER_RESULT
,
2948 RDMAControlHeader unreg_resp
= { .len
= 0,
2949 .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
2952 RDMAControlHeader blocks
= { .type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
,
2954 QEMUFileRDMA
*rfile
= opaque
;
2955 RDMAContext
*rdma
= rfile
->rdma
;
2956 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
2957 RDMAControlHeader head
;
2958 RDMARegister
*reg
, *registers
;
2960 RDMARegisterResult
*reg_result
;
2961 static RDMARegisterResult results
[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
];
2962 RDMALocalBlock
*block
;
2969 CHECK_ERROR_STATE();
2972 trace_qemu_rdma_registration_handle_wait();
2974 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_NONE
);
2980 if (head
.repeat
> RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
) {
2981 error_report("rdma: Too many requests in this message (%d)."
2982 "Bailing.", head
.repeat
);
2987 switch (head
.type
) {
2988 case RDMA_CONTROL_COMPRESS
:
2989 comp
= (RDMACompress
*) rdma
->wr_data
[idx
].control_curr
;
2990 network_to_compress(comp
);
2992 trace_qemu_rdma_registration_handle_compress(comp
->length
,
2995 if (comp
->block_idx
>= rdma
->local_ram_blocks
.nb_blocks
) {
2996 error_report("rdma: 'compress' bad block index %u (vs %d)",
2997 (unsigned int)comp
->block_idx
,
2998 rdma
->local_ram_blocks
.nb_blocks
);
3002 block
= &(rdma
->local_ram_blocks
.block
[comp
->block_idx
]);
3004 host_addr
= block
->local_host_addr
+
3005 (comp
->offset
- block
->offset
);
3007 ram_handle_compressed(host_addr
, comp
->value
, comp
->length
);
3010 case RDMA_CONTROL_REGISTER_FINISHED
:
3011 trace_qemu_rdma_registration_handle_finished();
3014 case RDMA_CONTROL_RAM_BLOCKS_REQUEST
:
3015 trace_qemu_rdma_registration_handle_ram_blocks();
3017 /* Sort our local RAM Block list so it's the same as the source,
3018 * we can do this since we've filled in a src_index in the list
3019 * as we received the RAMBlock list earlier.
3021 qsort(rdma
->local_ram_blocks
.block
,
3022 rdma
->local_ram_blocks
.nb_blocks
,
3023 sizeof(RDMALocalBlock
), dest_ram_sort_func
);
3024 if (rdma
->pin_all
) {
3025 ret
= qemu_rdma_reg_whole_ram_blocks(rdma
);
3027 error_report("rdma migration: error dest "
3028 "registering ram blocks");
3034 * Dest uses this to prepare to transmit the RAMBlock descriptions
3035 * to the source VM after connection setup.
3036 * Both sides use the "remote" structure to communicate and update
3037 * their "local" descriptions with what was sent.
3039 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3040 rdma
->dest_blocks
[i
].remote_host_addr
=
3041 (uintptr_t)(local
->block
[i
].local_host_addr
);
3043 if (rdma
->pin_all
) {
3044 rdma
->dest_blocks
[i
].remote_rkey
= local
->block
[i
].mr
->rkey
;
3047 rdma
->dest_blocks
[i
].offset
= local
->block
[i
].offset
;
3048 rdma
->dest_blocks
[i
].length
= local
->block
[i
].length
;
3050 dest_block_to_network(&rdma
->dest_blocks
[i
]);
3051 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3052 local
->block
[i
].block_name
,
3053 local
->block
[i
].offset
,
3054 local
->block
[i
].length
,
3055 local
->block
[i
].local_host_addr
,
3056 local
->block
[i
].src_index
);
3059 blocks
.len
= rdma
->local_ram_blocks
.nb_blocks
3060 * sizeof(RDMADestBlock
);
3063 ret
= qemu_rdma_post_send_control(rdma
,
3064 (uint8_t *) rdma
->dest_blocks
, &blocks
);
3067 error_report("rdma migration: error sending remote info");
3072 case RDMA_CONTROL_REGISTER_REQUEST
:
3073 trace_qemu_rdma_registration_handle_register(head
.repeat
);
3075 reg_resp
.repeat
= head
.repeat
;
3076 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3078 for (count
= 0; count
< head
.repeat
; count
++) {
3080 uint8_t *chunk_start
, *chunk_end
;
3082 reg
= ®isters
[count
];
3083 network_to_register(reg
);
3085 reg_result
= &results
[count
];
3087 trace_qemu_rdma_registration_handle_register_loop(count
,
3088 reg
->current_index
, reg
->key
.current_addr
, reg
->chunks
);
3090 if (reg
->current_index
>= rdma
->local_ram_blocks
.nb_blocks
) {
3091 error_report("rdma: 'register' bad block index %u (vs %d)",
3092 (unsigned int)reg
->current_index
,
3093 rdma
->local_ram_blocks
.nb_blocks
);
3097 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3098 if (block
->is_ram_block
) {
3099 if (block
->offset
> reg
->key
.current_addr
) {
3100 error_report("rdma: bad register address for block %s"
3101 " offset: %" PRIx64
" current_addr: %" PRIx64
,
3102 block
->block_name
, block
->offset
,
3103 reg
->key
.current_addr
);
3107 host_addr
= (block
->local_host_addr
+
3108 (reg
->key
.current_addr
- block
->offset
));
3109 chunk
= ram_chunk_index(block
->local_host_addr
,
3110 (uint8_t *) host_addr
);
3112 chunk
= reg
->key
.chunk
;
3113 host_addr
= block
->local_host_addr
+
3114 (reg
->key
.chunk
* (1UL << RDMA_REG_CHUNK_SHIFT
));
3115 /* Check for particularly bad chunk value */
3116 if (host_addr
< (void *)block
->local_host_addr
) {
3117 error_report("rdma: bad chunk for block %s"
3119 block
->block_name
, reg
->key
.chunk
);
3124 chunk_start
= ram_chunk_start(block
, chunk
);
3125 chunk_end
= ram_chunk_end(block
, chunk
+ reg
->chunks
);
3126 if (qemu_rdma_register_and_get_keys(rdma
, block
,
3127 (uintptr_t)host_addr
, NULL
, ®_result
->rkey
,
3128 chunk
, chunk_start
, chunk_end
)) {
3129 error_report("cannot get rkey");
3134 reg_result
->host_addr
= (uintptr_t)block
->local_host_addr
;
3136 trace_qemu_rdma_registration_handle_register_rkey(
3139 result_to_network(reg_result
);
3142 ret
= qemu_rdma_post_send_control(rdma
,
3143 (uint8_t *) results
, ®_resp
);
3146 error_report("Failed to send control buffer");
3150 case RDMA_CONTROL_UNREGISTER_REQUEST
:
3151 trace_qemu_rdma_registration_handle_unregister(head
.repeat
);
3152 unreg_resp
.repeat
= head
.repeat
;
3153 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3155 for (count
= 0; count
< head
.repeat
; count
++) {
3156 reg
= ®isters
[count
];
3157 network_to_register(reg
);
3159 trace_qemu_rdma_registration_handle_unregister_loop(count
,
3160 reg
->current_index
, reg
->key
.chunk
);
3162 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3164 ret
= ibv_dereg_mr(block
->pmr
[reg
->key
.chunk
]);
3165 block
->pmr
[reg
->key
.chunk
] = NULL
;
3168 perror("rdma unregistration chunk failed");
3173 rdma
->total_registrations
--;
3175 trace_qemu_rdma_registration_handle_unregister_success(
3179 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &unreg_resp
);
3182 error_report("Failed to send control buffer");
3186 case RDMA_CONTROL_REGISTER_RESULT
:
3187 error_report("Invalid RESULT message at dest.");
3191 error_report("Unknown control message %s", control_desc
[head
.type
]);
3198 rdma
->error_state
= ret
;
3204 * Called via a ram_control_load_hook during the initial RAM load section which
3205 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3207 * We've already built our local RAMBlock list, but not yet sent the list to
3210 static int rdma_block_notification_handle(QEMUFileRDMA
*rfile
, const char *name
)
3212 RDMAContext
*rdma
= rfile
->rdma
;
3216 /* Find the matching RAMBlock in our local list */
3217 for (curr
= 0; curr
< rdma
->local_ram_blocks
.nb_blocks
; curr
++) {
3218 if (!strcmp(rdma
->local_ram_blocks
.block
[curr
].block_name
, name
)) {
3225 error_report("RAMBlock '%s' not found on destination", name
);
3229 rdma
->local_ram_blocks
.block
[curr
].src_index
= rdma
->next_src_index
;
3230 trace_rdma_block_notification_handle(name
, rdma
->next_src_index
);
3231 rdma
->next_src_index
++;
3236 static int rdma_load_hook(QEMUFile
*f
, void *opaque
, uint64_t flags
, void *data
)
3239 case RAM_CONTROL_BLOCK_REG
:
3240 return rdma_block_notification_handle(opaque
, data
);
3242 case RAM_CONTROL_HOOK
:
3243 return qemu_rdma_registration_handle(f
, opaque
);
3246 /* Shouldn't be called with any other values */
3251 static int qemu_rdma_registration_start(QEMUFile
*f
, void *opaque
,
3252 uint64_t flags
, void *data
)
3254 QEMUFileRDMA
*rfile
= opaque
;
3255 RDMAContext
*rdma
= rfile
->rdma
;
3257 CHECK_ERROR_STATE();
3259 trace_qemu_rdma_registration_start(flags
);
3260 qemu_put_be64(f
, RAM_SAVE_FLAG_HOOK
);
3267 * Inform dest that dynamic registrations are done for now.
3268 * First, flush writes, if any.
3270 static int qemu_rdma_registration_stop(QEMUFile
*f
, void *opaque
,
3271 uint64_t flags
, void *data
)
3273 Error
*local_err
= NULL
, **errp
= &local_err
;
3274 QEMUFileRDMA
*rfile
= opaque
;
3275 RDMAContext
*rdma
= rfile
->rdma
;
3276 RDMAControlHeader head
= { .len
= 0, .repeat
= 1 };
3279 CHECK_ERROR_STATE();
3282 ret
= qemu_rdma_drain_cq(f
, rdma
);
3288 if (flags
== RAM_CONTROL_SETUP
) {
3289 RDMAControlHeader resp
= {.type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
};
3290 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
3291 int reg_result_idx
, i
, nb_dest_blocks
;
3293 head
.type
= RDMA_CONTROL_RAM_BLOCKS_REQUEST
;
3294 trace_qemu_rdma_registration_stop_ram();
3297 * Make sure that we parallelize the pinning on both sides.
3298 * For very large guests, doing this serially takes a really
3299 * long time, so we have to 'interleave' the pinning locally
3300 * with the control messages by performing the pinning on this
3301 * side before we receive the control response from the other
3302 * side that the pinning has completed.
3304 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, &resp
,
3305 ®_result_idx
, rdma
->pin_all
?
3306 qemu_rdma_reg_whole_ram_blocks
: NULL
);
3308 ERROR(errp
, "receiving remote info!");
3312 nb_dest_blocks
= resp
.len
/ sizeof(RDMADestBlock
);
3315 * The protocol uses two different sets of rkeys (mutually exclusive):
3316 * 1. One key to represent the virtual address of the entire ram block.
3317 * (dynamic chunk registration disabled - pin everything with one rkey.)
3318 * 2. One to represent individual chunks within a ram block.
3319 * (dynamic chunk registration enabled - pin individual chunks.)
3321 * Once the capability is successfully negotiated, the destination transmits
3322 * the keys to use (or sends them later) including the virtual addresses
3323 * and then propagates the remote ram block descriptions to his local copy.
3326 if (local
->nb_blocks
!= nb_dest_blocks
) {
3327 ERROR(errp
, "ram blocks mismatch (Number of blocks %d vs %d) "
3328 "Your QEMU command line parameters are probably "
3329 "not identical on both the source and destination.",
3330 local
->nb_blocks
, nb_dest_blocks
);
3331 rdma
->error_state
= -EINVAL
;
3335 qemu_rdma_move_header(rdma
, reg_result_idx
, &resp
);
3336 memcpy(rdma
->dest_blocks
,
3337 rdma
->wr_data
[reg_result_idx
].control_curr
, resp
.len
);
3338 for (i
= 0; i
< nb_dest_blocks
; i
++) {
3339 network_to_dest_block(&rdma
->dest_blocks
[i
]);
3341 /* We require that the blocks are in the same order */
3342 if (rdma
->dest_blocks
[i
].length
!= local
->block
[i
].length
) {
3343 ERROR(errp
, "Block %s/%d has a different length %" PRIu64
3344 "vs %" PRIu64
, local
->block
[i
].block_name
, i
,
3345 local
->block
[i
].length
,
3346 rdma
->dest_blocks
[i
].length
);
3347 rdma
->error_state
= -EINVAL
;
3350 local
->block
[i
].remote_host_addr
=
3351 rdma
->dest_blocks
[i
].remote_host_addr
;
3352 local
->block
[i
].remote_rkey
= rdma
->dest_blocks
[i
].remote_rkey
;
3356 trace_qemu_rdma_registration_stop(flags
);
3358 head
.type
= RDMA_CONTROL_REGISTER_FINISHED
;
3359 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, NULL
, NULL
, NULL
);
3367 rdma
->error_state
= ret
;
3371 static int qemu_rdma_get_fd(void *opaque
)
3373 QEMUFileRDMA
*rfile
= opaque
;
3374 RDMAContext
*rdma
= rfile
->rdma
;
3376 return rdma
->comp_channel
->fd
;
3379 static const QEMUFileOps rdma_read_ops
= {
3380 .get_buffer
= qemu_rdma_get_buffer
,
3381 .get_fd
= qemu_rdma_get_fd
,
3382 .close
= qemu_rdma_close
,
3383 .hook_ram_load
= rdma_load_hook
,
3386 static const QEMUFileOps rdma_write_ops
= {
3387 .put_buffer
= qemu_rdma_put_buffer
,
3388 .close
= qemu_rdma_close
,
3389 .before_ram_iterate
= qemu_rdma_registration_start
,
3390 .after_ram_iterate
= qemu_rdma_registration_stop
,
3391 .save_page
= qemu_rdma_save_page
,
3394 static void *qemu_fopen_rdma(RDMAContext
*rdma
, const char *mode
)
3398 if (qemu_file_mode_is_not_valid(mode
)) {
3402 r
= g_new0(QEMUFileRDMA
, 1);
3405 if (mode
[0] == 'w') {
3406 r
->file
= qemu_fopen_ops(r
, &rdma_write_ops
);
3408 r
->file
= qemu_fopen_ops(r
, &rdma_read_ops
);
3414 static void rdma_accept_incoming_migration(void *opaque
)
3416 RDMAContext
*rdma
= opaque
;
3419 Error
*local_err
= NULL
, **errp
= &local_err
;
3421 trace_qemu_rdma_accept_incoming_migration();
3422 ret
= qemu_rdma_accept(rdma
);
3425 ERROR(errp
, "RDMA Migration initialization failed!");
3429 trace_qemu_rdma_accept_incoming_migration_accepted();
3431 f
= qemu_fopen_rdma(rdma
, "rb");
3433 ERROR(errp
, "could not qemu_fopen_rdma!");
3434 qemu_rdma_cleanup(rdma
);
3438 rdma
->migration_started_on_destination
= 1;
3439 process_incoming_migration(f
);
3442 void rdma_start_incoming_migration(const char *host_port
, Error
**errp
)
3446 Error
*local_err
= NULL
;
3448 trace_rdma_start_incoming_migration();
3449 rdma
= qemu_rdma_data_init(host_port
, &local_err
);
3455 ret
= qemu_rdma_dest_init(rdma
, &local_err
);
3461 trace_rdma_start_incoming_migration_after_dest_init();
3463 ret
= rdma_listen(rdma
->listen_id
, 5);
3466 ERROR(errp
, "listening on socket!");
3470 trace_rdma_start_incoming_migration_after_rdma_listen();
3472 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
3473 NULL
, (void *)(intptr_t)rdma
);
3476 error_propagate(errp
, local_err
);
3480 void rdma_start_outgoing_migration(void *opaque
,
3481 const char *host_port
, Error
**errp
)
3483 MigrationState
*s
= opaque
;
3484 Error
*local_err
= NULL
, **temp
= &local_err
;
3485 RDMAContext
*rdma
= qemu_rdma_data_init(host_port
, &local_err
);
3489 ERROR(temp
, "Failed to initialize RDMA data structures! %d", ret
);
3493 ret
= qemu_rdma_source_init(rdma
, &local_err
,
3494 s
->enabled_capabilities
[MIGRATION_CAPABILITY_RDMA_PIN_ALL
]);
3500 trace_rdma_start_outgoing_migration_after_rdma_source_init();
3501 ret
= qemu_rdma_connect(rdma
, &local_err
);
3507 trace_rdma_start_outgoing_migration_after_rdma_connect();
3509 s
->file
= qemu_fopen_rdma(rdma
, "wb");
3510 migrate_fd_connect(s
);
3513 error_propagate(errp
, local_err
);
3515 migrate_fd_error(s
);