target/s390x/cpu_models: Allow some additional feature bits for the "qemu" CPU
[qemu.git] / util / qemu-thread-win32.c
blob653f29f442bab3a744fdc7550a237a4351cda6db
1 /*
2 * Win32 implementation for mutex/cond/thread functions
4 * Copyright Red Hat, Inc. 2010
6 * Author:
7 * Paolo Bonzini <pbonzini@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
14 #ifndef _WIN32_WINNT
15 #define _WIN32_WINNT 0x0600
16 #endif
18 #include "qemu/osdep.h"
19 #include "qemu-common.h"
20 #include "qemu/thread.h"
21 #include "qemu/notify.h"
22 #include "trace.h"
23 #include <process.h>
25 static bool name_threads;
27 void qemu_thread_naming(bool enable)
29 /* But note we don't actually name them on Windows yet */
30 name_threads = enable;
32 fprintf(stderr, "qemu: thread naming not supported on this host\n");
35 static void error_exit(int err, const char *msg)
37 char *pstr;
39 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
40 NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
41 fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
42 LocalFree(pstr);
43 abort();
46 void qemu_mutex_init(QemuMutex *mutex)
48 InitializeSRWLock(&mutex->lock);
51 void qemu_mutex_destroy(QemuMutex *mutex)
53 InitializeSRWLock(&mutex->lock);
56 void qemu_mutex_lock(QemuMutex *mutex)
58 AcquireSRWLockExclusive(&mutex->lock);
59 trace_qemu_mutex_locked(mutex);
62 int qemu_mutex_trylock(QemuMutex *mutex)
64 int owned;
66 owned = TryAcquireSRWLockExclusive(&mutex->lock);
67 if (owned) {
68 trace_qemu_mutex_locked(mutex);
69 return 0;
71 return -EBUSY;
74 void qemu_mutex_unlock(QemuMutex *mutex)
76 trace_qemu_mutex_unlocked(mutex);
77 ReleaseSRWLockExclusive(&mutex->lock);
80 void qemu_rec_mutex_init(QemuRecMutex *mutex)
82 InitializeCriticalSection(&mutex->lock);
85 void qemu_rec_mutex_destroy(QemuRecMutex *mutex)
87 DeleteCriticalSection(&mutex->lock);
90 void qemu_rec_mutex_lock(QemuRecMutex *mutex)
92 EnterCriticalSection(&mutex->lock);
95 int qemu_rec_mutex_trylock(QemuRecMutex *mutex)
97 return !TryEnterCriticalSection(&mutex->lock);
100 void qemu_rec_mutex_unlock(QemuRecMutex *mutex)
102 LeaveCriticalSection(&mutex->lock);
105 void qemu_cond_init(QemuCond *cond)
107 memset(cond, 0, sizeof(*cond));
108 InitializeConditionVariable(&cond->var);
111 void qemu_cond_destroy(QemuCond *cond)
113 InitializeConditionVariable(&cond->var);
116 void qemu_cond_signal(QemuCond *cond)
118 WakeConditionVariable(&cond->var);
121 void qemu_cond_broadcast(QemuCond *cond)
123 WakeAllConditionVariable(&cond->var);
126 void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex)
128 trace_qemu_mutex_unlocked(mutex);
129 SleepConditionVariableSRW(&cond->var, &mutex->lock, INFINITE, 0);
130 trace_qemu_mutex_locked(mutex);
133 void qemu_sem_init(QemuSemaphore *sem, int init)
135 /* Manual reset. */
136 sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
139 void qemu_sem_destroy(QemuSemaphore *sem)
141 CloseHandle(sem->sema);
144 void qemu_sem_post(QemuSemaphore *sem)
146 ReleaseSemaphore(sem->sema, 1, NULL);
149 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
151 int rc = WaitForSingleObject(sem->sema, ms);
152 if (rc == WAIT_OBJECT_0) {
153 return 0;
155 if (rc != WAIT_TIMEOUT) {
156 error_exit(GetLastError(), __func__);
158 return -1;
161 void qemu_sem_wait(QemuSemaphore *sem)
163 if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
164 error_exit(GetLastError(), __func__);
168 /* Wrap a Win32 manual-reset event with a fast userspace path. The idea
169 * is to reset the Win32 event lazily, as part of a test-reset-test-wait
170 * sequence. Such a sequence is, indeed, how QemuEvents are used by
171 * RCU and other subsystems!
173 * Valid transitions:
174 * - free->set, when setting the event
175 * - busy->set, when setting the event, followed by SetEvent
176 * - set->free, when resetting the event
177 * - free->busy, when waiting
179 * set->busy does not happen (it can be observed from the outside but
180 * it really is set->free->busy).
182 * busy->free provably cannot happen; to enforce it, the set->free transition
183 * is done with an OR, which becomes a no-op if the event has concurrently
184 * transitioned to free or busy (and is faster than cmpxchg).
187 #define EV_SET 0
188 #define EV_FREE 1
189 #define EV_BUSY -1
191 void qemu_event_init(QemuEvent *ev, bool init)
193 /* Manual reset. */
194 ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
195 ev->value = (init ? EV_SET : EV_FREE);
198 void qemu_event_destroy(QemuEvent *ev)
200 CloseHandle(ev->event);
203 void qemu_event_set(QemuEvent *ev)
205 /* qemu_event_set has release semantics, but because it *loads*
206 * ev->value we need a full memory barrier here.
208 smp_mb();
209 if (atomic_read(&ev->value) != EV_SET) {
210 if (atomic_xchg(&ev->value, EV_SET) == EV_BUSY) {
211 /* There were waiters, wake them up. */
212 SetEvent(ev->event);
217 void qemu_event_reset(QemuEvent *ev)
219 unsigned value;
221 value = atomic_read(&ev->value);
222 smp_mb_acquire();
223 if (value == EV_SET) {
224 /* If there was a concurrent reset (or even reset+wait),
225 * do nothing. Otherwise change EV_SET->EV_FREE.
227 atomic_or(&ev->value, EV_FREE);
231 void qemu_event_wait(QemuEvent *ev)
233 unsigned value;
235 value = atomic_read(&ev->value);
236 smp_mb_acquire();
237 if (value != EV_SET) {
238 if (value == EV_FREE) {
239 /* qemu_event_set is not yet going to call SetEvent, but we are
240 * going to do another check for EV_SET below when setting EV_BUSY.
241 * At that point it is safe to call WaitForSingleObject.
243 ResetEvent(ev->event);
245 /* Tell qemu_event_set that there are waiters. No need to retry
246 * because there cannot be a concurent busy->free transition.
247 * After the CAS, the event will be either set or busy.
249 if (atomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
250 value = EV_SET;
251 } else {
252 value = EV_BUSY;
255 if (value == EV_BUSY) {
256 WaitForSingleObject(ev->event, INFINITE);
261 struct QemuThreadData {
262 /* Passed to win32_start_routine. */
263 void *(*start_routine)(void *);
264 void *arg;
265 short mode;
266 NotifierList exit;
268 /* Only used for joinable threads. */
269 bool exited;
270 void *ret;
271 CRITICAL_SECTION cs;
274 static bool atexit_registered;
275 static NotifierList main_thread_exit;
277 static __thread QemuThreadData *qemu_thread_data;
279 static void run_main_thread_exit(void)
281 notifier_list_notify(&main_thread_exit, NULL);
284 void qemu_thread_atexit_add(Notifier *notifier)
286 if (!qemu_thread_data) {
287 if (!atexit_registered) {
288 atexit_registered = true;
289 atexit(run_main_thread_exit);
291 notifier_list_add(&main_thread_exit, notifier);
292 } else {
293 notifier_list_add(&qemu_thread_data->exit, notifier);
297 void qemu_thread_atexit_remove(Notifier *notifier)
299 notifier_remove(notifier);
302 static unsigned __stdcall win32_start_routine(void *arg)
304 QemuThreadData *data = (QemuThreadData *) arg;
305 void *(*start_routine)(void *) = data->start_routine;
306 void *thread_arg = data->arg;
308 qemu_thread_data = data;
309 qemu_thread_exit(start_routine(thread_arg));
310 abort();
313 void qemu_thread_exit(void *arg)
315 QemuThreadData *data = qemu_thread_data;
317 notifier_list_notify(&data->exit, NULL);
318 if (data->mode == QEMU_THREAD_JOINABLE) {
319 data->ret = arg;
320 EnterCriticalSection(&data->cs);
321 data->exited = true;
322 LeaveCriticalSection(&data->cs);
323 } else {
324 g_free(data);
326 _endthreadex(0);
329 void *qemu_thread_join(QemuThread *thread)
331 QemuThreadData *data;
332 void *ret;
333 HANDLE handle;
335 data = thread->data;
336 if (data->mode == QEMU_THREAD_DETACHED) {
337 return NULL;
341 * Because multiple copies of the QemuThread can exist via
342 * qemu_thread_get_self, we need to store a value that cannot
343 * leak there. The simplest, non racy way is to store the TID,
344 * discard the handle that _beginthreadex gives back, and
345 * get another copy of the handle here.
347 handle = qemu_thread_get_handle(thread);
348 if (handle) {
349 WaitForSingleObject(handle, INFINITE);
350 CloseHandle(handle);
352 ret = data->ret;
353 DeleteCriticalSection(&data->cs);
354 g_free(data);
355 return ret;
358 void qemu_thread_create(QemuThread *thread, const char *name,
359 void *(*start_routine)(void *),
360 void *arg, int mode)
362 HANDLE hThread;
363 struct QemuThreadData *data;
365 data = g_malloc(sizeof *data);
366 data->start_routine = start_routine;
367 data->arg = arg;
368 data->mode = mode;
369 data->exited = false;
370 notifier_list_init(&data->exit);
372 if (data->mode != QEMU_THREAD_DETACHED) {
373 InitializeCriticalSection(&data->cs);
376 hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
377 data, 0, &thread->tid);
378 if (!hThread) {
379 error_exit(GetLastError(), __func__);
381 CloseHandle(hThread);
382 thread->data = data;
385 void qemu_thread_get_self(QemuThread *thread)
387 thread->data = qemu_thread_data;
388 thread->tid = GetCurrentThreadId();
391 HANDLE qemu_thread_get_handle(QemuThread *thread)
393 QemuThreadData *data;
394 HANDLE handle;
396 data = thread->data;
397 if (data->mode == QEMU_THREAD_DETACHED) {
398 return NULL;
401 EnterCriticalSection(&data->cs);
402 if (!data->exited) {
403 handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME |
404 THREAD_SET_CONTEXT, FALSE, thread->tid);
405 } else {
406 handle = NULL;
408 LeaveCriticalSection(&data->cs);
409 return handle;
412 bool qemu_thread_is_self(QemuThread *thread)
414 return GetCurrentThreadId() == thread->tid;