virtio: sync the dataplane vring state to the virtqueue before virtio_save
[qemu.git] / block / qed.c
blob954ed007c0b170dd4a0d486e38e5a214825a1554
1 /*
2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu/timer.h"
16 #include "trace.h"
17 #include "qed.h"
18 #include "qapi/qmp/qerror.h"
19 #include "migration/migration.h"
21 static const AIOCBInfo qed_aiocb_info = {
22 .aiocb_size = sizeof(QEDAIOCB),
25 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
26 const char *filename)
28 const QEDHeader *header = (const QEDHeader *)buf;
30 if (buf_size < sizeof(*header)) {
31 return 0;
33 if (le32_to_cpu(header->magic) != QED_MAGIC) {
34 return 0;
36 return 100;
39 /**
40 * Check whether an image format is raw
42 * @fmt: Backing file format, may be NULL
44 static bool qed_fmt_is_raw(const char *fmt)
46 return fmt && strcmp(fmt, "raw") == 0;
49 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
51 cpu->magic = le32_to_cpu(le->magic);
52 cpu->cluster_size = le32_to_cpu(le->cluster_size);
53 cpu->table_size = le32_to_cpu(le->table_size);
54 cpu->header_size = le32_to_cpu(le->header_size);
55 cpu->features = le64_to_cpu(le->features);
56 cpu->compat_features = le64_to_cpu(le->compat_features);
57 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
58 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
59 cpu->image_size = le64_to_cpu(le->image_size);
60 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
61 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
64 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
66 le->magic = cpu_to_le32(cpu->magic);
67 le->cluster_size = cpu_to_le32(cpu->cluster_size);
68 le->table_size = cpu_to_le32(cpu->table_size);
69 le->header_size = cpu_to_le32(cpu->header_size);
70 le->features = cpu_to_le64(cpu->features);
71 le->compat_features = cpu_to_le64(cpu->compat_features);
72 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
73 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
74 le->image_size = cpu_to_le64(cpu->image_size);
75 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
76 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
79 int qed_write_header_sync(BDRVQEDState *s)
81 QEDHeader le;
82 int ret;
84 qed_header_cpu_to_le(&s->header, &le);
85 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
86 if (ret != sizeof(le)) {
87 return ret;
89 return 0;
92 typedef struct {
93 GenericCB gencb;
94 BDRVQEDState *s;
95 struct iovec iov;
96 QEMUIOVector qiov;
97 int nsectors;
98 uint8_t *buf;
99 } QEDWriteHeaderCB;
101 static void qed_write_header_cb(void *opaque, int ret)
103 QEDWriteHeaderCB *write_header_cb = opaque;
105 qemu_vfree(write_header_cb->buf);
106 gencb_complete(write_header_cb, ret);
109 static void qed_write_header_read_cb(void *opaque, int ret)
111 QEDWriteHeaderCB *write_header_cb = opaque;
112 BDRVQEDState *s = write_header_cb->s;
114 if (ret) {
115 qed_write_header_cb(write_header_cb, ret);
116 return;
119 /* Update header */
120 qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
122 bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
123 write_header_cb->nsectors, qed_write_header_cb,
124 write_header_cb);
128 * Update header in-place (does not rewrite backing filename or other strings)
130 * This function only updates known header fields in-place and does not affect
131 * extra data after the QED header.
133 static void qed_write_header(BDRVQEDState *s, BlockCompletionFunc cb,
134 void *opaque)
136 /* We must write full sectors for O_DIRECT but cannot necessarily generate
137 * the data following the header if an unrecognized compat feature is
138 * active. Therefore, first read the sectors containing the header, update
139 * them, and write back.
142 int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
143 BDRV_SECTOR_SIZE;
144 size_t len = nsectors * BDRV_SECTOR_SIZE;
145 QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
146 cb, opaque);
148 write_header_cb->s = s;
149 write_header_cb->nsectors = nsectors;
150 write_header_cb->buf = qemu_blockalign(s->bs, len);
151 write_header_cb->iov.iov_base = write_header_cb->buf;
152 write_header_cb->iov.iov_len = len;
153 qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
155 bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
156 qed_write_header_read_cb, write_header_cb);
159 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
161 uint64_t table_entries;
162 uint64_t l2_size;
164 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
165 l2_size = table_entries * cluster_size;
167 return l2_size * table_entries;
170 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
172 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
173 cluster_size > QED_MAX_CLUSTER_SIZE) {
174 return false;
176 if (cluster_size & (cluster_size - 1)) {
177 return false; /* not power of 2 */
179 return true;
182 static bool qed_is_table_size_valid(uint32_t table_size)
184 if (table_size < QED_MIN_TABLE_SIZE ||
185 table_size > QED_MAX_TABLE_SIZE) {
186 return false;
188 if (table_size & (table_size - 1)) {
189 return false; /* not power of 2 */
191 return true;
194 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
195 uint32_t table_size)
197 if (image_size % BDRV_SECTOR_SIZE != 0) {
198 return false; /* not multiple of sector size */
200 if (image_size > qed_max_image_size(cluster_size, table_size)) {
201 return false; /* image is too large */
203 return true;
207 * Read a string of known length from the image file
209 * @file: Image file
210 * @offset: File offset to start of string, in bytes
211 * @n: String length in bytes
212 * @buf: Destination buffer
213 * @buflen: Destination buffer length in bytes
214 * @ret: 0 on success, -errno on failure
216 * The string is NUL-terminated.
218 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
219 char *buf, size_t buflen)
221 int ret;
222 if (n >= buflen) {
223 return -EINVAL;
225 ret = bdrv_pread(file, offset, buf, n);
226 if (ret < 0) {
227 return ret;
229 buf[n] = '\0';
230 return 0;
234 * Allocate new clusters
236 * @s: QED state
237 * @n: Number of contiguous clusters to allocate
238 * @ret: Offset of first allocated cluster
240 * This function only produces the offset where the new clusters should be
241 * written. It updates BDRVQEDState but does not make any changes to the image
242 * file.
244 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
246 uint64_t offset = s->file_size;
247 s->file_size += n * s->header.cluster_size;
248 return offset;
251 QEDTable *qed_alloc_table(BDRVQEDState *s)
253 /* Honor O_DIRECT memory alignment requirements */
254 return qemu_blockalign(s->bs,
255 s->header.cluster_size * s->header.table_size);
259 * Allocate a new zeroed L2 table
261 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
263 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
265 l2_table->table = qed_alloc_table(s);
266 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
268 memset(l2_table->table->offsets, 0,
269 s->header.cluster_size * s->header.table_size);
270 return l2_table;
273 static void qed_aio_next_io(void *opaque, int ret);
275 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
277 assert(!s->allocating_write_reqs_plugged);
279 s->allocating_write_reqs_plugged = true;
282 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
284 QEDAIOCB *acb;
286 assert(s->allocating_write_reqs_plugged);
288 s->allocating_write_reqs_plugged = false;
290 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
291 if (acb) {
292 qed_aio_next_io(acb, 0);
296 static void qed_finish_clear_need_check(void *opaque, int ret)
298 /* Do nothing */
301 static void qed_flush_after_clear_need_check(void *opaque, int ret)
303 BDRVQEDState *s = opaque;
305 bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
307 /* No need to wait until flush completes */
308 qed_unplug_allocating_write_reqs(s);
311 static void qed_clear_need_check(void *opaque, int ret)
313 BDRVQEDState *s = opaque;
315 if (ret) {
316 qed_unplug_allocating_write_reqs(s);
317 return;
320 s->header.features &= ~QED_F_NEED_CHECK;
321 qed_write_header(s, qed_flush_after_clear_need_check, s);
324 static void qed_need_check_timer_cb(void *opaque)
326 BDRVQEDState *s = opaque;
328 /* The timer should only fire when allocating writes have drained */
329 assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
331 trace_qed_need_check_timer_cb(s);
333 qed_plug_allocating_write_reqs(s);
335 /* Ensure writes are on disk before clearing flag */
336 bdrv_aio_flush(s->bs, qed_clear_need_check, s);
339 static void qed_start_need_check_timer(BDRVQEDState *s)
341 trace_qed_start_need_check_timer(s);
343 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
344 * migration.
346 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
347 get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
350 /* It's okay to call this multiple times or when no timer is started */
351 static void qed_cancel_need_check_timer(BDRVQEDState *s)
353 trace_qed_cancel_need_check_timer(s);
354 timer_del(s->need_check_timer);
357 static void bdrv_qed_rebind(BlockDriverState *bs)
359 BDRVQEDState *s = bs->opaque;
360 s->bs = bs;
363 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
365 BDRVQEDState *s = bs->opaque;
367 qed_cancel_need_check_timer(s);
368 timer_free(s->need_check_timer);
371 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
372 AioContext *new_context)
374 BDRVQEDState *s = bs->opaque;
376 s->need_check_timer = aio_timer_new(new_context,
377 QEMU_CLOCK_VIRTUAL, SCALE_NS,
378 qed_need_check_timer_cb, s);
379 if (s->header.features & QED_F_NEED_CHECK) {
380 qed_start_need_check_timer(s);
384 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
385 Error **errp)
387 BDRVQEDState *s = bs->opaque;
388 QEDHeader le_header;
389 int64_t file_size;
390 int ret;
392 s->bs = bs;
393 QSIMPLEQ_INIT(&s->allocating_write_reqs);
395 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
396 if (ret < 0) {
397 return ret;
399 qed_header_le_to_cpu(&le_header, &s->header);
401 if (s->header.magic != QED_MAGIC) {
402 error_setg(errp, "Image not in QED format");
403 return -EINVAL;
405 if (s->header.features & ~QED_FEATURE_MASK) {
406 /* image uses unsupported feature bits */
407 char buf[64];
408 snprintf(buf, sizeof(buf), "%" PRIx64,
409 s->header.features & ~QED_FEATURE_MASK);
410 error_setg(errp, QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
411 bdrv_get_device_or_node_name(bs), "QED", buf);
412 return -ENOTSUP;
414 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
415 return -EINVAL;
418 /* Round down file size to the last cluster */
419 file_size = bdrv_getlength(bs->file);
420 if (file_size < 0) {
421 return file_size;
423 s->file_size = qed_start_of_cluster(s, file_size);
425 if (!qed_is_table_size_valid(s->header.table_size)) {
426 return -EINVAL;
428 if (!qed_is_image_size_valid(s->header.image_size,
429 s->header.cluster_size,
430 s->header.table_size)) {
431 return -EINVAL;
433 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
434 return -EINVAL;
437 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
438 sizeof(uint64_t);
439 s->l2_shift = ctz32(s->header.cluster_size);
440 s->l2_mask = s->table_nelems - 1;
441 s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
443 /* Header size calculation must not overflow uint32_t */
444 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
445 return -EINVAL;
448 if ((s->header.features & QED_F_BACKING_FILE)) {
449 if ((uint64_t)s->header.backing_filename_offset +
450 s->header.backing_filename_size >
451 s->header.cluster_size * s->header.header_size) {
452 return -EINVAL;
455 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
456 s->header.backing_filename_size, bs->backing_file,
457 sizeof(bs->backing_file));
458 if (ret < 0) {
459 return ret;
462 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
463 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
467 /* Reset unknown autoclear feature bits. This is a backwards
468 * compatibility mechanism that allows images to be opened by older
469 * programs, which "knock out" unknown feature bits. When an image is
470 * opened by a newer program again it can detect that the autoclear
471 * feature is no longer valid.
473 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
474 !bdrv_is_read_only(bs->file) && !(flags & BDRV_O_INCOMING)) {
475 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
477 ret = qed_write_header_sync(s);
478 if (ret) {
479 return ret;
482 /* From here on only known autoclear feature bits are valid */
483 bdrv_flush(bs->file);
486 s->l1_table = qed_alloc_table(s);
487 qed_init_l2_cache(&s->l2_cache);
489 ret = qed_read_l1_table_sync(s);
490 if (ret) {
491 goto out;
494 /* If image was not closed cleanly, check consistency */
495 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
496 /* Read-only images cannot be fixed. There is no risk of corruption
497 * since write operations are not possible. Therefore, allow
498 * potentially inconsistent images to be opened read-only. This can
499 * aid data recovery from an otherwise inconsistent image.
501 if (!bdrv_is_read_only(bs->file) &&
502 !(flags & BDRV_O_INCOMING)) {
503 BdrvCheckResult result = {0};
505 ret = qed_check(s, &result, true);
506 if (ret) {
507 goto out;
512 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
514 out:
515 if (ret) {
516 qed_free_l2_cache(&s->l2_cache);
517 qemu_vfree(s->l1_table);
519 return ret;
522 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
524 BDRVQEDState *s = bs->opaque;
526 bs->bl.write_zeroes_alignment = s->header.cluster_size >> BDRV_SECTOR_BITS;
529 /* We have nothing to do for QED reopen, stubs just return
530 * success */
531 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
532 BlockReopenQueue *queue, Error **errp)
534 return 0;
537 static void bdrv_qed_close(BlockDriverState *bs)
539 BDRVQEDState *s = bs->opaque;
541 bdrv_qed_detach_aio_context(bs);
543 /* Ensure writes reach stable storage */
544 bdrv_flush(bs->file);
546 /* Clean shutdown, no check required on next open */
547 if (s->header.features & QED_F_NEED_CHECK) {
548 s->header.features &= ~QED_F_NEED_CHECK;
549 qed_write_header_sync(s);
552 qed_free_l2_cache(&s->l2_cache);
553 qemu_vfree(s->l1_table);
556 static int qed_create(const char *filename, uint32_t cluster_size,
557 uint64_t image_size, uint32_t table_size,
558 const char *backing_file, const char *backing_fmt,
559 QemuOpts *opts, Error **errp)
561 QEDHeader header = {
562 .magic = QED_MAGIC,
563 .cluster_size = cluster_size,
564 .table_size = table_size,
565 .header_size = 1,
566 .features = 0,
567 .compat_features = 0,
568 .l1_table_offset = cluster_size,
569 .image_size = image_size,
571 QEDHeader le_header;
572 uint8_t *l1_table = NULL;
573 size_t l1_size = header.cluster_size * header.table_size;
574 Error *local_err = NULL;
575 int ret = 0;
576 BlockDriverState *bs;
578 ret = bdrv_create_file(filename, opts, &local_err);
579 if (ret < 0) {
580 error_propagate(errp, local_err);
581 return ret;
584 bs = NULL;
585 ret = bdrv_open(&bs, filename, NULL, NULL,
586 BDRV_O_RDWR | BDRV_O_CACHE_WB | BDRV_O_PROTOCOL, NULL,
587 &local_err);
588 if (ret < 0) {
589 error_propagate(errp, local_err);
590 return ret;
593 /* File must start empty and grow, check truncate is supported */
594 ret = bdrv_truncate(bs, 0);
595 if (ret < 0) {
596 goto out;
599 if (backing_file) {
600 header.features |= QED_F_BACKING_FILE;
601 header.backing_filename_offset = sizeof(le_header);
602 header.backing_filename_size = strlen(backing_file);
604 if (qed_fmt_is_raw(backing_fmt)) {
605 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
609 qed_header_cpu_to_le(&header, &le_header);
610 ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
611 if (ret < 0) {
612 goto out;
614 ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
615 header.backing_filename_size);
616 if (ret < 0) {
617 goto out;
620 l1_table = g_malloc0(l1_size);
621 ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
622 if (ret < 0) {
623 goto out;
626 ret = 0; /* success */
627 out:
628 g_free(l1_table);
629 bdrv_unref(bs);
630 return ret;
633 static int bdrv_qed_create(const char *filename, QemuOpts *opts, Error **errp)
635 uint64_t image_size = 0;
636 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
637 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
638 char *backing_file = NULL;
639 char *backing_fmt = NULL;
640 int ret;
642 image_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0),
643 BDRV_SECTOR_SIZE);
644 backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
645 backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT);
646 cluster_size = qemu_opt_get_size_del(opts,
647 BLOCK_OPT_CLUSTER_SIZE,
648 QED_DEFAULT_CLUSTER_SIZE);
649 table_size = qemu_opt_get_size_del(opts, BLOCK_OPT_TABLE_SIZE,
650 QED_DEFAULT_TABLE_SIZE);
652 if (!qed_is_cluster_size_valid(cluster_size)) {
653 error_setg(errp, "QED cluster size must be within range [%u, %u] "
654 "and power of 2",
655 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
656 ret = -EINVAL;
657 goto finish;
659 if (!qed_is_table_size_valid(table_size)) {
660 error_setg(errp, "QED table size must be within range [%u, %u] "
661 "and power of 2",
662 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
663 ret = -EINVAL;
664 goto finish;
666 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
667 error_setg(errp, "QED image size must be a non-zero multiple of "
668 "cluster size and less than %" PRIu64 " bytes",
669 qed_max_image_size(cluster_size, table_size));
670 ret = -EINVAL;
671 goto finish;
674 ret = qed_create(filename, cluster_size, image_size, table_size,
675 backing_file, backing_fmt, opts, errp);
677 finish:
678 g_free(backing_file);
679 g_free(backing_fmt);
680 return ret;
683 typedef struct {
684 BlockDriverState *bs;
685 Coroutine *co;
686 uint64_t pos;
687 int64_t status;
688 int *pnum;
689 } QEDIsAllocatedCB;
691 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
693 QEDIsAllocatedCB *cb = opaque;
694 BDRVQEDState *s = cb->bs->opaque;
695 *cb->pnum = len / BDRV_SECTOR_SIZE;
696 switch (ret) {
697 case QED_CLUSTER_FOUND:
698 offset |= qed_offset_into_cluster(s, cb->pos);
699 cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
700 break;
701 case QED_CLUSTER_ZERO:
702 cb->status = BDRV_BLOCK_ZERO;
703 break;
704 case QED_CLUSTER_L2:
705 case QED_CLUSTER_L1:
706 cb->status = 0;
707 break;
708 default:
709 assert(ret < 0);
710 cb->status = ret;
711 break;
714 if (cb->co) {
715 qemu_coroutine_enter(cb->co, NULL);
719 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
720 int64_t sector_num,
721 int nb_sectors, int *pnum)
723 BDRVQEDState *s = bs->opaque;
724 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
725 QEDIsAllocatedCB cb = {
726 .bs = bs,
727 .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
728 .status = BDRV_BLOCK_OFFSET_MASK,
729 .pnum = pnum,
731 QEDRequest request = { .l2_table = NULL };
733 qed_find_cluster(s, &request, cb.pos, len, qed_is_allocated_cb, &cb);
735 /* Now sleep if the callback wasn't invoked immediately */
736 while (cb.status == BDRV_BLOCK_OFFSET_MASK) {
737 cb.co = qemu_coroutine_self();
738 qemu_coroutine_yield();
741 qed_unref_l2_cache_entry(request.l2_table);
743 return cb.status;
746 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
748 return acb->common.bs->opaque;
752 * Read from the backing file or zero-fill if no backing file
754 * @s: QED state
755 * @pos: Byte position in device
756 * @qiov: Destination I/O vector
757 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here
758 * @cb: Completion function
759 * @opaque: User data for completion function
761 * This function reads qiov->size bytes starting at pos from the backing file.
762 * If there is no backing file then zeroes are read.
764 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
765 QEMUIOVector *qiov,
766 QEMUIOVector **backing_qiov,
767 BlockCompletionFunc *cb, void *opaque)
769 uint64_t backing_length = 0;
770 size_t size;
772 /* If there is a backing file, get its length. Treat the absence of a
773 * backing file like a zero length backing file.
775 if (s->bs->backing_hd) {
776 int64_t l = bdrv_getlength(s->bs->backing_hd);
777 if (l < 0) {
778 cb(opaque, l);
779 return;
781 backing_length = l;
784 /* Zero all sectors if reading beyond the end of the backing file */
785 if (pos >= backing_length ||
786 pos + qiov->size > backing_length) {
787 qemu_iovec_memset(qiov, 0, 0, qiov->size);
790 /* Complete now if there are no backing file sectors to read */
791 if (pos >= backing_length) {
792 cb(opaque, 0);
793 return;
796 /* If the read straddles the end of the backing file, shorten it */
797 size = MIN((uint64_t)backing_length - pos, qiov->size);
799 assert(*backing_qiov == NULL);
800 *backing_qiov = g_new(QEMUIOVector, 1);
801 qemu_iovec_init(*backing_qiov, qiov->niov);
802 qemu_iovec_concat(*backing_qiov, qiov, 0, size);
804 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
805 bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
806 *backing_qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
809 typedef struct {
810 GenericCB gencb;
811 BDRVQEDState *s;
812 QEMUIOVector qiov;
813 QEMUIOVector *backing_qiov;
814 struct iovec iov;
815 uint64_t offset;
816 } CopyFromBackingFileCB;
818 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
820 CopyFromBackingFileCB *copy_cb = opaque;
821 qemu_vfree(copy_cb->iov.iov_base);
822 gencb_complete(&copy_cb->gencb, ret);
825 static void qed_copy_from_backing_file_write(void *opaque, int ret)
827 CopyFromBackingFileCB *copy_cb = opaque;
828 BDRVQEDState *s = copy_cb->s;
830 if (copy_cb->backing_qiov) {
831 qemu_iovec_destroy(copy_cb->backing_qiov);
832 g_free(copy_cb->backing_qiov);
833 copy_cb->backing_qiov = NULL;
836 if (ret) {
837 qed_copy_from_backing_file_cb(copy_cb, ret);
838 return;
841 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
842 bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
843 &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
844 qed_copy_from_backing_file_cb, copy_cb);
848 * Copy data from backing file into the image
850 * @s: QED state
851 * @pos: Byte position in device
852 * @len: Number of bytes
853 * @offset: Byte offset in image file
854 * @cb: Completion function
855 * @opaque: User data for completion function
857 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
858 uint64_t len, uint64_t offset,
859 BlockCompletionFunc *cb,
860 void *opaque)
862 CopyFromBackingFileCB *copy_cb;
864 /* Skip copy entirely if there is no work to do */
865 if (len == 0) {
866 cb(opaque, 0);
867 return;
870 copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
871 copy_cb->s = s;
872 copy_cb->offset = offset;
873 copy_cb->backing_qiov = NULL;
874 copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
875 copy_cb->iov.iov_len = len;
876 qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
878 qed_read_backing_file(s, pos, &copy_cb->qiov, &copy_cb->backing_qiov,
879 qed_copy_from_backing_file_write, copy_cb);
883 * Link one or more contiguous clusters into a table
885 * @s: QED state
886 * @table: L2 table
887 * @index: First cluster index
888 * @n: Number of contiguous clusters
889 * @cluster: First cluster offset
891 * The cluster offset may be an allocated byte offset in the image file, the
892 * zero cluster marker, or the unallocated cluster marker.
894 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
895 unsigned int n, uint64_t cluster)
897 int i;
898 for (i = index; i < index + n; i++) {
899 table->offsets[i] = cluster;
900 if (!qed_offset_is_unalloc_cluster(cluster) &&
901 !qed_offset_is_zero_cluster(cluster)) {
902 cluster += s->header.cluster_size;
907 static void qed_aio_complete_bh(void *opaque)
909 QEDAIOCB *acb = opaque;
910 BlockCompletionFunc *cb = acb->common.cb;
911 void *user_opaque = acb->common.opaque;
912 int ret = acb->bh_ret;
914 qemu_bh_delete(acb->bh);
915 qemu_aio_unref(acb);
917 /* Invoke callback */
918 cb(user_opaque, ret);
921 static void qed_aio_complete(QEDAIOCB *acb, int ret)
923 BDRVQEDState *s = acb_to_s(acb);
925 trace_qed_aio_complete(s, acb, ret);
927 /* Free resources */
928 qemu_iovec_destroy(&acb->cur_qiov);
929 qed_unref_l2_cache_entry(acb->request.l2_table);
931 /* Free the buffer we may have allocated for zero writes */
932 if (acb->flags & QED_AIOCB_ZERO) {
933 qemu_vfree(acb->qiov->iov[0].iov_base);
934 acb->qiov->iov[0].iov_base = NULL;
937 /* Arrange for a bh to invoke the completion function */
938 acb->bh_ret = ret;
939 acb->bh = aio_bh_new(bdrv_get_aio_context(acb->common.bs),
940 qed_aio_complete_bh, acb);
941 qemu_bh_schedule(acb->bh);
943 /* Start next allocating write request waiting behind this one. Note that
944 * requests enqueue themselves when they first hit an unallocated cluster
945 * but they wait until the entire request is finished before waking up the
946 * next request in the queue. This ensures that we don't cycle through
947 * requests multiple times but rather finish one at a time completely.
949 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
950 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
951 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
952 if (acb) {
953 qed_aio_next_io(acb, 0);
954 } else if (s->header.features & QED_F_NEED_CHECK) {
955 qed_start_need_check_timer(s);
961 * Commit the current L2 table to the cache
963 static void qed_commit_l2_update(void *opaque, int ret)
965 QEDAIOCB *acb = opaque;
966 BDRVQEDState *s = acb_to_s(acb);
967 CachedL2Table *l2_table = acb->request.l2_table;
968 uint64_t l2_offset = l2_table->offset;
970 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
972 /* This is guaranteed to succeed because we just committed the entry to the
973 * cache.
975 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
976 assert(acb->request.l2_table != NULL);
978 qed_aio_next_io(opaque, ret);
982 * Update L1 table with new L2 table offset and write it out
984 static void qed_aio_write_l1_update(void *opaque, int ret)
986 QEDAIOCB *acb = opaque;
987 BDRVQEDState *s = acb_to_s(acb);
988 int index;
990 if (ret) {
991 qed_aio_complete(acb, ret);
992 return;
995 index = qed_l1_index(s, acb->cur_pos);
996 s->l1_table->offsets[index] = acb->request.l2_table->offset;
998 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
1002 * Update L2 table with new cluster offsets and write them out
1004 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
1006 BDRVQEDState *s = acb_to_s(acb);
1007 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1008 int index;
1010 if (ret) {
1011 goto err;
1014 if (need_alloc) {
1015 qed_unref_l2_cache_entry(acb->request.l2_table);
1016 acb->request.l2_table = qed_new_l2_table(s);
1019 index = qed_l2_index(s, acb->cur_pos);
1020 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1021 offset);
1023 if (need_alloc) {
1024 /* Write out the whole new L2 table */
1025 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
1026 qed_aio_write_l1_update, acb);
1027 } else {
1028 /* Write out only the updated part of the L2 table */
1029 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
1030 qed_aio_next_io, acb);
1032 return;
1034 err:
1035 qed_aio_complete(acb, ret);
1038 static void qed_aio_write_l2_update_cb(void *opaque, int ret)
1040 QEDAIOCB *acb = opaque;
1041 qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
1045 * Flush new data clusters before updating the L2 table
1047 * This flush is necessary when a backing file is in use. A crash during an
1048 * allocating write could result in empty clusters in the image. If the write
1049 * only touched a subregion of the cluster, then backing image sectors have
1050 * been lost in the untouched region. The solution is to flush after writing a
1051 * new data cluster and before updating the L2 table.
1053 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
1055 QEDAIOCB *acb = opaque;
1056 BDRVQEDState *s = acb_to_s(acb);
1058 if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update_cb, opaque)) {
1059 qed_aio_complete(acb, -EIO);
1064 * Write data to the image file
1066 static void qed_aio_write_main(void *opaque, int ret)
1068 QEDAIOCB *acb = opaque;
1069 BDRVQEDState *s = acb_to_s(acb);
1070 uint64_t offset = acb->cur_cluster +
1071 qed_offset_into_cluster(s, acb->cur_pos);
1072 BlockCompletionFunc *next_fn;
1074 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1076 if (ret) {
1077 qed_aio_complete(acb, ret);
1078 return;
1081 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1082 next_fn = qed_aio_next_io;
1083 } else {
1084 if (s->bs->backing_hd) {
1085 next_fn = qed_aio_write_flush_before_l2_update;
1086 } else {
1087 next_fn = qed_aio_write_l2_update_cb;
1091 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1092 bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1093 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1094 next_fn, acb);
1098 * Populate back untouched region of new data cluster
1100 static void qed_aio_write_postfill(void *opaque, int ret)
1102 QEDAIOCB *acb = opaque;
1103 BDRVQEDState *s = acb_to_s(acb);
1104 uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1105 uint64_t len =
1106 qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1107 uint64_t offset = acb->cur_cluster +
1108 qed_offset_into_cluster(s, acb->cur_pos) +
1109 acb->cur_qiov.size;
1111 if (ret) {
1112 qed_aio_complete(acb, ret);
1113 return;
1116 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1117 qed_copy_from_backing_file(s, start, len, offset,
1118 qed_aio_write_main, acb);
1122 * Populate front untouched region of new data cluster
1124 static void qed_aio_write_prefill(void *opaque, int ret)
1126 QEDAIOCB *acb = opaque;
1127 BDRVQEDState *s = acb_to_s(acb);
1128 uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1129 uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1131 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1132 qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1133 qed_aio_write_postfill, acb);
1137 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1139 static bool qed_should_set_need_check(BDRVQEDState *s)
1141 /* The flush before L2 update path ensures consistency */
1142 if (s->bs->backing_hd) {
1143 return false;
1146 return !(s->header.features & QED_F_NEED_CHECK);
1149 static void qed_aio_write_zero_cluster(void *opaque, int ret)
1151 QEDAIOCB *acb = opaque;
1153 if (ret) {
1154 qed_aio_complete(acb, ret);
1155 return;
1158 qed_aio_write_l2_update(acb, 0, 1);
1162 * Write new data cluster
1164 * @acb: Write request
1165 * @len: Length in bytes
1167 * This path is taken when writing to previously unallocated clusters.
1169 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1171 BDRVQEDState *s = acb_to_s(acb);
1172 BlockCompletionFunc *cb;
1174 /* Cancel timer when the first allocating request comes in */
1175 if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1176 qed_cancel_need_check_timer(s);
1179 /* Freeze this request if another allocating write is in progress */
1180 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1181 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1183 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1184 s->allocating_write_reqs_plugged) {
1185 return; /* wait for existing request to finish */
1188 acb->cur_nclusters = qed_bytes_to_clusters(s,
1189 qed_offset_into_cluster(s, acb->cur_pos) + len);
1190 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1192 if (acb->flags & QED_AIOCB_ZERO) {
1193 /* Skip ahead if the clusters are already zero */
1194 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1195 qed_aio_next_io(acb, 0);
1196 return;
1199 cb = qed_aio_write_zero_cluster;
1200 } else {
1201 cb = qed_aio_write_prefill;
1202 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1205 if (qed_should_set_need_check(s)) {
1206 s->header.features |= QED_F_NEED_CHECK;
1207 qed_write_header(s, cb, acb);
1208 } else {
1209 cb(acb, 0);
1214 * Write data cluster in place
1216 * @acb: Write request
1217 * @offset: Cluster offset in bytes
1218 * @len: Length in bytes
1220 * This path is taken when writing to already allocated clusters.
1222 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1224 /* Allocate buffer for zero writes */
1225 if (acb->flags & QED_AIOCB_ZERO) {
1226 struct iovec *iov = acb->qiov->iov;
1228 if (!iov->iov_base) {
1229 iov->iov_base = qemu_try_blockalign(acb->common.bs, iov->iov_len);
1230 if (iov->iov_base == NULL) {
1231 qed_aio_complete(acb, -ENOMEM);
1232 return;
1234 memset(iov->iov_base, 0, iov->iov_len);
1238 /* Calculate the I/O vector */
1239 acb->cur_cluster = offset;
1240 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1242 /* Do the actual write */
1243 qed_aio_write_main(acb, 0);
1247 * Write data cluster
1249 * @opaque: Write request
1250 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1251 * or -errno
1252 * @offset: Cluster offset in bytes
1253 * @len: Length in bytes
1255 * Callback from qed_find_cluster().
1257 static void qed_aio_write_data(void *opaque, int ret,
1258 uint64_t offset, size_t len)
1260 QEDAIOCB *acb = opaque;
1262 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1264 acb->find_cluster_ret = ret;
1266 switch (ret) {
1267 case QED_CLUSTER_FOUND:
1268 qed_aio_write_inplace(acb, offset, len);
1269 break;
1271 case QED_CLUSTER_L2:
1272 case QED_CLUSTER_L1:
1273 case QED_CLUSTER_ZERO:
1274 qed_aio_write_alloc(acb, len);
1275 break;
1277 default:
1278 qed_aio_complete(acb, ret);
1279 break;
1284 * Read data cluster
1286 * @opaque: Read request
1287 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1288 * or -errno
1289 * @offset: Cluster offset in bytes
1290 * @len: Length in bytes
1292 * Callback from qed_find_cluster().
1294 static void qed_aio_read_data(void *opaque, int ret,
1295 uint64_t offset, size_t len)
1297 QEDAIOCB *acb = opaque;
1298 BDRVQEDState *s = acb_to_s(acb);
1299 BlockDriverState *bs = acb->common.bs;
1301 /* Adjust offset into cluster */
1302 offset += qed_offset_into_cluster(s, acb->cur_pos);
1304 trace_qed_aio_read_data(s, acb, ret, offset, len);
1306 if (ret < 0) {
1307 goto err;
1310 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1312 /* Handle zero cluster and backing file reads */
1313 if (ret == QED_CLUSTER_ZERO) {
1314 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1315 qed_aio_next_io(acb, 0);
1316 return;
1317 } else if (ret != QED_CLUSTER_FOUND) {
1318 qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1319 &acb->backing_qiov, qed_aio_next_io, acb);
1320 return;
1323 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1324 bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1325 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1326 qed_aio_next_io, acb);
1327 return;
1329 err:
1330 qed_aio_complete(acb, ret);
1334 * Begin next I/O or complete the request
1336 static void qed_aio_next_io(void *opaque, int ret)
1338 QEDAIOCB *acb = opaque;
1339 BDRVQEDState *s = acb_to_s(acb);
1340 QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1341 qed_aio_write_data : qed_aio_read_data;
1343 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1345 if (acb->backing_qiov) {
1346 qemu_iovec_destroy(acb->backing_qiov);
1347 g_free(acb->backing_qiov);
1348 acb->backing_qiov = NULL;
1351 /* Handle I/O error */
1352 if (ret) {
1353 qed_aio_complete(acb, ret);
1354 return;
1357 acb->qiov_offset += acb->cur_qiov.size;
1358 acb->cur_pos += acb->cur_qiov.size;
1359 qemu_iovec_reset(&acb->cur_qiov);
1361 /* Complete request */
1362 if (acb->cur_pos >= acb->end_pos) {
1363 qed_aio_complete(acb, 0);
1364 return;
1367 /* Find next cluster and start I/O */
1368 qed_find_cluster(s, &acb->request,
1369 acb->cur_pos, acb->end_pos - acb->cur_pos,
1370 io_fn, acb);
1373 static BlockAIOCB *qed_aio_setup(BlockDriverState *bs,
1374 int64_t sector_num,
1375 QEMUIOVector *qiov, int nb_sectors,
1376 BlockCompletionFunc *cb,
1377 void *opaque, int flags)
1379 QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
1381 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1382 opaque, flags);
1384 acb->flags = flags;
1385 acb->qiov = qiov;
1386 acb->qiov_offset = 0;
1387 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1388 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1389 acb->backing_qiov = NULL;
1390 acb->request.l2_table = NULL;
1391 qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1393 /* Start request */
1394 qed_aio_next_io(acb, 0);
1395 return &acb->common;
1398 static BlockAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1399 int64_t sector_num,
1400 QEMUIOVector *qiov, int nb_sectors,
1401 BlockCompletionFunc *cb,
1402 void *opaque)
1404 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1407 static BlockAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1408 int64_t sector_num,
1409 QEMUIOVector *qiov, int nb_sectors,
1410 BlockCompletionFunc *cb,
1411 void *opaque)
1413 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1414 opaque, QED_AIOCB_WRITE);
1417 typedef struct {
1418 Coroutine *co;
1419 int ret;
1420 bool done;
1421 } QEDWriteZeroesCB;
1423 static void coroutine_fn qed_co_write_zeroes_cb(void *opaque, int ret)
1425 QEDWriteZeroesCB *cb = opaque;
1427 cb->done = true;
1428 cb->ret = ret;
1429 if (cb->co) {
1430 qemu_coroutine_enter(cb->co, NULL);
1434 static int coroutine_fn bdrv_qed_co_write_zeroes(BlockDriverState *bs,
1435 int64_t sector_num,
1436 int nb_sectors,
1437 BdrvRequestFlags flags)
1439 BlockAIOCB *blockacb;
1440 BDRVQEDState *s = bs->opaque;
1441 QEDWriteZeroesCB cb = { .done = false };
1442 QEMUIOVector qiov;
1443 struct iovec iov;
1445 /* Refuse if there are untouched backing file sectors */
1446 if (bs->backing_hd) {
1447 if (qed_offset_into_cluster(s, sector_num * BDRV_SECTOR_SIZE) != 0) {
1448 return -ENOTSUP;
1450 if (qed_offset_into_cluster(s, nb_sectors * BDRV_SECTOR_SIZE) != 0) {
1451 return -ENOTSUP;
1455 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1456 * then it will be allocated during request processing.
1458 iov.iov_base = NULL,
1459 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1461 qemu_iovec_init_external(&qiov, &iov, 1);
1462 blockacb = qed_aio_setup(bs, sector_num, &qiov, nb_sectors,
1463 qed_co_write_zeroes_cb, &cb,
1464 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1465 if (!blockacb) {
1466 return -EIO;
1468 if (!cb.done) {
1469 cb.co = qemu_coroutine_self();
1470 qemu_coroutine_yield();
1472 assert(cb.done);
1473 return cb.ret;
1476 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1478 BDRVQEDState *s = bs->opaque;
1479 uint64_t old_image_size;
1480 int ret;
1482 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1483 s->header.table_size)) {
1484 return -EINVAL;
1487 /* Shrinking is currently not supported */
1488 if ((uint64_t)offset < s->header.image_size) {
1489 return -ENOTSUP;
1492 old_image_size = s->header.image_size;
1493 s->header.image_size = offset;
1494 ret = qed_write_header_sync(s);
1495 if (ret < 0) {
1496 s->header.image_size = old_image_size;
1498 return ret;
1501 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1503 BDRVQEDState *s = bs->opaque;
1504 return s->header.image_size;
1507 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1509 BDRVQEDState *s = bs->opaque;
1511 memset(bdi, 0, sizeof(*bdi));
1512 bdi->cluster_size = s->header.cluster_size;
1513 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1514 bdi->unallocated_blocks_are_zero = true;
1515 bdi->can_write_zeroes_with_unmap = true;
1516 return 0;
1519 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1520 const char *backing_file,
1521 const char *backing_fmt)
1523 BDRVQEDState *s = bs->opaque;
1524 QEDHeader new_header, le_header;
1525 void *buffer;
1526 size_t buffer_len, backing_file_len;
1527 int ret;
1529 /* Refuse to set backing filename if unknown compat feature bits are
1530 * active. If the image uses an unknown compat feature then we may not
1531 * know the layout of data following the header structure and cannot safely
1532 * add a new string.
1534 if (backing_file && (s->header.compat_features &
1535 ~QED_COMPAT_FEATURE_MASK)) {
1536 return -ENOTSUP;
1539 memcpy(&new_header, &s->header, sizeof(new_header));
1541 new_header.features &= ~(QED_F_BACKING_FILE |
1542 QED_F_BACKING_FORMAT_NO_PROBE);
1544 /* Adjust feature flags */
1545 if (backing_file) {
1546 new_header.features |= QED_F_BACKING_FILE;
1548 if (qed_fmt_is_raw(backing_fmt)) {
1549 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1553 /* Calculate new header size */
1554 backing_file_len = 0;
1556 if (backing_file) {
1557 backing_file_len = strlen(backing_file);
1560 buffer_len = sizeof(new_header);
1561 new_header.backing_filename_offset = buffer_len;
1562 new_header.backing_filename_size = backing_file_len;
1563 buffer_len += backing_file_len;
1565 /* Make sure we can rewrite header without failing */
1566 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1567 return -ENOSPC;
1570 /* Prepare new header */
1571 buffer = g_malloc(buffer_len);
1573 qed_header_cpu_to_le(&new_header, &le_header);
1574 memcpy(buffer, &le_header, sizeof(le_header));
1575 buffer_len = sizeof(le_header);
1577 if (backing_file) {
1578 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1579 buffer_len += backing_file_len;
1582 /* Write new header */
1583 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1584 g_free(buffer);
1585 if (ret == 0) {
1586 memcpy(&s->header, &new_header, sizeof(new_header));
1588 return ret;
1591 static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp)
1593 BDRVQEDState *s = bs->opaque;
1594 Error *local_err = NULL;
1595 int ret;
1597 bdrv_qed_close(bs);
1599 bdrv_invalidate_cache(bs->file, &local_err);
1600 if (local_err) {
1601 error_propagate(errp, local_err);
1602 return;
1605 memset(s, 0, sizeof(BDRVQEDState));
1606 ret = bdrv_qed_open(bs, NULL, bs->open_flags, &local_err);
1607 if (local_err) {
1608 error_setg(errp, "Could not reopen qed layer: %s",
1609 error_get_pretty(local_err));
1610 error_free(local_err);
1611 return;
1612 } else if (ret < 0) {
1613 error_setg_errno(errp, -ret, "Could not reopen qed layer");
1614 return;
1618 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1619 BdrvCheckMode fix)
1621 BDRVQEDState *s = bs->opaque;
1623 return qed_check(s, result, !!fix);
1626 static QemuOptsList qed_create_opts = {
1627 .name = "qed-create-opts",
1628 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1629 .desc = {
1631 .name = BLOCK_OPT_SIZE,
1632 .type = QEMU_OPT_SIZE,
1633 .help = "Virtual disk size"
1636 .name = BLOCK_OPT_BACKING_FILE,
1637 .type = QEMU_OPT_STRING,
1638 .help = "File name of a base image"
1641 .name = BLOCK_OPT_BACKING_FMT,
1642 .type = QEMU_OPT_STRING,
1643 .help = "Image format of the base image"
1646 .name = BLOCK_OPT_CLUSTER_SIZE,
1647 .type = QEMU_OPT_SIZE,
1648 .help = "Cluster size (in bytes)",
1649 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1652 .name = BLOCK_OPT_TABLE_SIZE,
1653 .type = QEMU_OPT_SIZE,
1654 .help = "L1/L2 table size (in clusters)"
1656 { /* end of list */ }
1660 static BlockDriver bdrv_qed = {
1661 .format_name = "qed",
1662 .instance_size = sizeof(BDRVQEDState),
1663 .create_opts = &qed_create_opts,
1664 .supports_backing = true,
1666 .bdrv_probe = bdrv_qed_probe,
1667 .bdrv_rebind = bdrv_qed_rebind,
1668 .bdrv_open = bdrv_qed_open,
1669 .bdrv_close = bdrv_qed_close,
1670 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1671 .bdrv_create = bdrv_qed_create,
1672 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1673 .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1674 .bdrv_aio_readv = bdrv_qed_aio_readv,
1675 .bdrv_aio_writev = bdrv_qed_aio_writev,
1676 .bdrv_co_write_zeroes = bdrv_qed_co_write_zeroes,
1677 .bdrv_truncate = bdrv_qed_truncate,
1678 .bdrv_getlength = bdrv_qed_getlength,
1679 .bdrv_get_info = bdrv_qed_get_info,
1680 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1681 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1682 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache,
1683 .bdrv_check = bdrv_qed_check,
1684 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
1685 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
1688 static void bdrv_qed_init(void)
1690 bdrv_register(&bdrv_qed);
1693 block_init(bdrv_qed_init);