slirp: Basic VLAN client info_str
[qemu.git] / hw / lsi53c895a.c
blob71f8281165c2fa315de4dfa27a9ffa80e707c6ca
1 /*
2 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the LGPL.
8 */
10 /* ??? Need to check if the {read,write}[wl] routines work properly on
11 big-endian targets. */
13 #include "hw.h"
14 #include "pci.h"
15 #include "scsi-disk.h"
16 #include "block_int.h"
18 //#define DEBUG_LSI
19 //#define DEBUG_LSI_REG
21 #ifdef DEBUG_LSI
22 #define DPRINTF(fmt, ...) \
23 do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
24 #define BADF(fmt, ...) \
25 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
26 #else
27 #define DPRINTF(fmt, ...) do {} while(0)
28 #define BADF(fmt, ...) \
29 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
30 #endif
32 #define LSI_SCNTL0_TRG 0x01
33 #define LSI_SCNTL0_AAP 0x02
34 #define LSI_SCNTL0_EPC 0x08
35 #define LSI_SCNTL0_WATN 0x10
36 #define LSI_SCNTL0_START 0x20
38 #define LSI_SCNTL1_SST 0x01
39 #define LSI_SCNTL1_IARB 0x02
40 #define LSI_SCNTL1_AESP 0x04
41 #define LSI_SCNTL1_RST 0x08
42 #define LSI_SCNTL1_CON 0x10
43 #define LSI_SCNTL1_DHP 0x20
44 #define LSI_SCNTL1_ADB 0x40
45 #define LSI_SCNTL1_EXC 0x80
47 #define LSI_SCNTL2_WSR 0x01
48 #define LSI_SCNTL2_VUE0 0x02
49 #define LSI_SCNTL2_VUE1 0x04
50 #define LSI_SCNTL2_WSS 0x08
51 #define LSI_SCNTL2_SLPHBEN 0x10
52 #define LSI_SCNTL2_SLPMD 0x20
53 #define LSI_SCNTL2_CHM 0x40
54 #define LSI_SCNTL2_SDU 0x80
56 #define LSI_ISTAT0_DIP 0x01
57 #define LSI_ISTAT0_SIP 0x02
58 #define LSI_ISTAT0_INTF 0x04
59 #define LSI_ISTAT0_CON 0x08
60 #define LSI_ISTAT0_SEM 0x10
61 #define LSI_ISTAT0_SIGP 0x20
62 #define LSI_ISTAT0_SRST 0x40
63 #define LSI_ISTAT0_ABRT 0x80
65 #define LSI_ISTAT1_SI 0x01
66 #define LSI_ISTAT1_SRUN 0x02
67 #define LSI_ISTAT1_FLSH 0x04
69 #define LSI_SSTAT0_SDP0 0x01
70 #define LSI_SSTAT0_RST 0x02
71 #define LSI_SSTAT0_WOA 0x04
72 #define LSI_SSTAT0_LOA 0x08
73 #define LSI_SSTAT0_AIP 0x10
74 #define LSI_SSTAT0_OLF 0x20
75 #define LSI_SSTAT0_ORF 0x40
76 #define LSI_SSTAT0_ILF 0x80
78 #define LSI_SIST0_PAR 0x01
79 #define LSI_SIST0_RST 0x02
80 #define LSI_SIST0_UDC 0x04
81 #define LSI_SIST0_SGE 0x08
82 #define LSI_SIST0_RSL 0x10
83 #define LSI_SIST0_SEL 0x20
84 #define LSI_SIST0_CMP 0x40
85 #define LSI_SIST0_MA 0x80
87 #define LSI_SIST1_HTH 0x01
88 #define LSI_SIST1_GEN 0x02
89 #define LSI_SIST1_STO 0x04
90 #define LSI_SIST1_SBMC 0x10
92 #define LSI_SOCL_IO 0x01
93 #define LSI_SOCL_CD 0x02
94 #define LSI_SOCL_MSG 0x04
95 #define LSI_SOCL_ATN 0x08
96 #define LSI_SOCL_SEL 0x10
97 #define LSI_SOCL_BSY 0x20
98 #define LSI_SOCL_ACK 0x40
99 #define LSI_SOCL_REQ 0x80
101 #define LSI_DSTAT_IID 0x01
102 #define LSI_DSTAT_SIR 0x04
103 #define LSI_DSTAT_SSI 0x08
104 #define LSI_DSTAT_ABRT 0x10
105 #define LSI_DSTAT_BF 0x20
106 #define LSI_DSTAT_MDPE 0x40
107 #define LSI_DSTAT_DFE 0x80
109 #define LSI_DCNTL_COM 0x01
110 #define LSI_DCNTL_IRQD 0x02
111 #define LSI_DCNTL_STD 0x04
112 #define LSI_DCNTL_IRQM 0x08
113 #define LSI_DCNTL_SSM 0x10
114 #define LSI_DCNTL_PFEN 0x20
115 #define LSI_DCNTL_PFF 0x40
116 #define LSI_DCNTL_CLSE 0x80
118 #define LSI_DMODE_MAN 0x01
119 #define LSI_DMODE_BOF 0x02
120 #define LSI_DMODE_ERMP 0x04
121 #define LSI_DMODE_ERL 0x08
122 #define LSI_DMODE_DIOM 0x10
123 #define LSI_DMODE_SIOM 0x20
125 #define LSI_CTEST2_DACK 0x01
126 #define LSI_CTEST2_DREQ 0x02
127 #define LSI_CTEST2_TEOP 0x04
128 #define LSI_CTEST2_PCICIE 0x08
129 #define LSI_CTEST2_CM 0x10
130 #define LSI_CTEST2_CIO 0x20
131 #define LSI_CTEST2_SIGP 0x40
132 #define LSI_CTEST2_DDIR 0x80
134 #define LSI_CTEST5_BL2 0x04
135 #define LSI_CTEST5_DDIR 0x08
136 #define LSI_CTEST5_MASR 0x10
137 #define LSI_CTEST5_DFSN 0x20
138 #define LSI_CTEST5_BBCK 0x40
139 #define LSI_CTEST5_ADCK 0x80
141 #define LSI_CCNTL0_DILS 0x01
142 #define LSI_CCNTL0_DISFC 0x10
143 #define LSI_CCNTL0_ENNDJ 0x20
144 #define LSI_CCNTL0_PMJCTL 0x40
145 #define LSI_CCNTL0_ENPMJ 0x80
147 #define LSI_CCNTL1_EN64DBMV 0x01
148 #define LSI_CCNTL1_EN64TIBMV 0x02
149 #define LSI_CCNTL1_64TIMOD 0x04
150 #define LSI_CCNTL1_DDAC 0x08
151 #define LSI_CCNTL1_ZMOD 0x80
153 #define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
155 #define PHASE_DO 0
156 #define PHASE_DI 1
157 #define PHASE_CMD 2
158 #define PHASE_ST 3
159 #define PHASE_MO 6
160 #define PHASE_MI 7
161 #define PHASE_MASK 7
163 /* Maximum length of MSG IN data. */
164 #define LSI_MAX_MSGIN_LEN 8
166 /* Flag set if this is a tagged command. */
167 #define LSI_TAG_VALID (1 << 16)
169 typedef struct {
170 uint32_t tag;
171 uint32_t pending;
172 int out;
173 } lsi_queue;
175 typedef struct {
176 PCIDevice pci_dev;
177 int mmio_io_addr;
178 int ram_io_addr;
179 uint32_t script_ram_base;
181 int carry; /* ??? Should this be an a visible register somewhere? */
182 int sense;
183 /* Action to take at the end of a MSG IN phase.
184 0 = COMMAND, 1 = disconect, 2 = DATA OUT, 3 = DATA IN. */
185 int msg_action;
186 int msg_len;
187 uint8_t msg[LSI_MAX_MSGIN_LEN];
188 /* 0 if SCRIPTS are running or stopped.
189 * 1 if a Wait Reselect instruction has been issued.
190 * 2 if processing DMA from lsi_execute_script.
191 * 3 if a DMA operation is in progress. */
192 int waiting;
193 SCSIDevice *scsi_dev[LSI_MAX_DEVS];
194 SCSIDevice *current_dev;
195 int current_lun;
196 /* The tag is a combination of the device ID and the SCSI tag. */
197 uint32_t current_tag;
198 uint32_t current_dma_len;
199 int command_complete;
200 uint8_t *dma_buf;
201 lsi_queue *queue;
202 int queue_len;
203 int active_commands;
205 uint32_t dsa;
206 uint32_t temp;
207 uint32_t dnad;
208 uint32_t dbc;
209 uint8_t istat0;
210 uint8_t istat1;
211 uint8_t dcmd;
212 uint8_t dstat;
213 uint8_t dien;
214 uint8_t sist0;
215 uint8_t sist1;
216 uint8_t sien0;
217 uint8_t sien1;
218 uint8_t mbox0;
219 uint8_t mbox1;
220 uint8_t dfifo;
221 uint8_t ctest2;
222 uint8_t ctest3;
223 uint8_t ctest4;
224 uint8_t ctest5;
225 uint8_t ccntl0;
226 uint8_t ccntl1;
227 uint32_t dsp;
228 uint32_t dsps;
229 uint8_t dmode;
230 uint8_t dcntl;
231 uint8_t scntl0;
232 uint8_t scntl1;
233 uint8_t scntl2;
234 uint8_t scntl3;
235 uint8_t sstat0;
236 uint8_t sstat1;
237 uint8_t scid;
238 uint8_t sxfer;
239 uint8_t socl;
240 uint8_t sdid;
241 uint8_t ssid;
242 uint8_t sfbr;
243 uint8_t stest1;
244 uint8_t stest2;
245 uint8_t stest3;
246 uint8_t sidl;
247 uint8_t stime0;
248 uint8_t respid0;
249 uint8_t respid1;
250 uint32_t mmrs;
251 uint32_t mmws;
252 uint32_t sfs;
253 uint32_t drs;
254 uint32_t sbms;
255 uint32_t dbms;
256 uint32_t dnad64;
257 uint32_t pmjad1;
258 uint32_t pmjad2;
259 uint32_t rbc;
260 uint32_t ua;
261 uint32_t ia;
262 uint32_t sbc;
263 uint32_t csbc;
264 uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
265 uint8_t sbr;
267 /* Script ram is stored as 32-bit words in host byteorder. */
268 uint32_t script_ram[2048];
269 } LSIState;
271 static void lsi_soft_reset(LSIState *s)
273 DPRINTF("Reset\n");
274 s->carry = 0;
276 s->waiting = 0;
277 s->dsa = 0;
278 s->dnad = 0;
279 s->dbc = 0;
280 s->temp = 0;
281 memset(s->scratch, 0, sizeof(s->scratch));
282 s->istat0 = 0;
283 s->istat1 = 0;
284 s->dcmd = 0;
285 s->dstat = 0;
286 s->dien = 0;
287 s->sist0 = 0;
288 s->sist1 = 0;
289 s->sien0 = 0;
290 s->sien1 = 0;
291 s->mbox0 = 0;
292 s->mbox1 = 0;
293 s->dfifo = 0;
294 s->ctest2 = 0;
295 s->ctest3 = 0;
296 s->ctest4 = 0;
297 s->ctest5 = 0;
298 s->ccntl0 = 0;
299 s->ccntl1 = 0;
300 s->dsp = 0;
301 s->dsps = 0;
302 s->dmode = 0;
303 s->dcntl = 0;
304 s->scntl0 = 0xc0;
305 s->scntl1 = 0;
306 s->scntl2 = 0;
307 s->scntl3 = 0;
308 s->sstat0 = 0;
309 s->sstat1 = 0;
310 s->scid = 7;
311 s->sxfer = 0;
312 s->socl = 0;
313 s->stest1 = 0;
314 s->stest2 = 0;
315 s->stest3 = 0;
316 s->sidl = 0;
317 s->stime0 = 0;
318 s->respid0 = 0x80;
319 s->respid1 = 0;
320 s->mmrs = 0;
321 s->mmws = 0;
322 s->sfs = 0;
323 s->drs = 0;
324 s->sbms = 0;
325 s->dbms = 0;
326 s->dnad64 = 0;
327 s->pmjad1 = 0;
328 s->pmjad2 = 0;
329 s->rbc = 0;
330 s->ua = 0;
331 s->ia = 0;
332 s->sbc = 0;
333 s->csbc = 0;
334 s->sbr = 0;
337 static int lsi_dma_40bit(LSIState *s)
339 if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
340 return 1;
341 return 0;
344 static int lsi_dma_ti64bit(LSIState *s)
346 if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
347 return 1;
348 return 0;
351 static int lsi_dma_64bit(LSIState *s)
353 if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
354 return 1;
355 return 0;
358 static uint8_t lsi_reg_readb(LSIState *s, int offset);
359 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
360 static void lsi_execute_script(LSIState *s);
362 static inline uint32_t read_dword(LSIState *s, uint32_t addr)
364 uint32_t buf;
366 /* Optimize reading from SCRIPTS RAM. */
367 if ((addr & 0xffffe000) == s->script_ram_base) {
368 return s->script_ram[(addr & 0x1fff) >> 2];
370 cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
371 return cpu_to_le32(buf);
374 static void lsi_stop_script(LSIState *s)
376 s->istat1 &= ~LSI_ISTAT1_SRUN;
379 static void lsi_update_irq(LSIState *s)
381 int level;
382 static int last_level;
384 /* It's unclear whether the DIP/SIP bits should be cleared when the
385 Interrupt Status Registers are cleared or when istat0 is read.
386 We currently do the formwer, which seems to work. */
387 level = 0;
388 if (s->dstat) {
389 if (s->dstat & s->dien)
390 level = 1;
391 s->istat0 |= LSI_ISTAT0_DIP;
392 } else {
393 s->istat0 &= ~LSI_ISTAT0_DIP;
396 if (s->sist0 || s->sist1) {
397 if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
398 level = 1;
399 s->istat0 |= LSI_ISTAT0_SIP;
400 } else {
401 s->istat0 &= ~LSI_ISTAT0_SIP;
403 if (s->istat0 & LSI_ISTAT0_INTF)
404 level = 1;
406 if (level != last_level) {
407 DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
408 level, s->dstat, s->sist1, s->sist0);
409 last_level = level;
411 qemu_set_irq(s->pci_dev.irq[0], level);
414 /* Stop SCRIPTS execution and raise a SCSI interrupt. */
415 static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
417 uint32_t mask0;
418 uint32_t mask1;
420 DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
421 stat1, stat0, s->sist1, s->sist0);
422 s->sist0 |= stat0;
423 s->sist1 |= stat1;
424 /* Stop processor on fatal or unmasked interrupt. As a special hack
425 we don't stop processing when raising STO. Instead continue
426 execution and stop at the next insn that accesses the SCSI bus. */
427 mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
428 mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
429 mask1 &= ~LSI_SIST1_STO;
430 if (s->sist0 & mask0 || s->sist1 & mask1) {
431 lsi_stop_script(s);
433 lsi_update_irq(s);
436 /* Stop SCRIPTS execution and raise a DMA interrupt. */
437 static void lsi_script_dma_interrupt(LSIState *s, int stat)
439 DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
440 s->dstat |= stat;
441 lsi_update_irq(s);
442 lsi_stop_script(s);
445 static inline void lsi_set_phase(LSIState *s, int phase)
447 s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
450 static void lsi_bad_phase(LSIState *s, int out, int new_phase)
452 /* Trigger a phase mismatch. */
453 if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
454 if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
455 s->dsp = s->pmjad1;
456 } else {
457 s->dsp = s->pmjad2;
459 DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
460 } else {
461 DPRINTF("Phase mismatch interrupt\n");
462 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
463 lsi_stop_script(s);
465 lsi_set_phase(s, new_phase);
469 /* Resume SCRIPTS execution after a DMA operation. */
470 static void lsi_resume_script(LSIState *s)
472 if (s->waiting != 2) {
473 s->waiting = 0;
474 lsi_execute_script(s);
475 } else {
476 s->waiting = 0;
480 /* Initiate a SCSI layer data transfer. */
481 static void lsi_do_dma(LSIState *s, int out)
483 uint32_t count;
484 target_phys_addr_t addr;
486 if (!s->current_dma_len) {
487 /* Wait until data is available. */
488 DPRINTF("DMA no data available\n");
489 return;
492 count = s->dbc;
493 if (count > s->current_dma_len)
494 count = s->current_dma_len;
496 addr = s->dnad;
497 /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
498 if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
499 addr |= ((uint64_t)s->dnad64 << 32);
500 else if (s->dbms)
501 addr |= ((uint64_t)s->dbms << 32);
502 else if (s->sbms)
503 addr |= ((uint64_t)s->sbms << 32);
505 DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
506 s->csbc += count;
507 s->dnad += count;
508 s->dbc -= count;
510 if (s->dma_buf == NULL) {
511 s->dma_buf = s->current_dev->get_buf(s->current_dev,
512 s->current_tag);
515 /* ??? Set SFBR to first data byte. */
516 if (out) {
517 cpu_physical_memory_read(addr, s->dma_buf, count);
518 } else {
519 cpu_physical_memory_write(addr, s->dma_buf, count);
521 s->current_dma_len -= count;
522 if (s->current_dma_len == 0) {
523 s->dma_buf = NULL;
524 if (out) {
525 /* Write the data. */
526 s->current_dev->write_data(s->current_dev, s->current_tag);
527 } else {
528 /* Request any remaining data. */
529 s->current_dev->read_data(s->current_dev, s->current_tag);
531 } else {
532 s->dma_buf += count;
533 lsi_resume_script(s);
538 /* Add a command to the queue. */
539 static void lsi_queue_command(LSIState *s)
541 lsi_queue *p;
543 DPRINTF("Queueing tag=0x%x\n", s->current_tag);
544 if (s->queue_len == s->active_commands) {
545 s->queue_len++;
546 s->queue = qemu_realloc(s->queue, s->queue_len * sizeof(lsi_queue));
548 p = &s->queue[s->active_commands++];
549 p->tag = s->current_tag;
550 p->pending = 0;
551 p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
554 /* Queue a byte for a MSG IN phase. */
555 static void lsi_add_msg_byte(LSIState *s, uint8_t data)
557 if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
558 BADF("MSG IN data too long\n");
559 } else {
560 DPRINTF("MSG IN 0x%02x\n", data);
561 s->msg[s->msg_len++] = data;
565 /* Perform reselection to continue a command. */
566 static void lsi_reselect(LSIState *s, uint32_t tag)
568 lsi_queue *p;
569 int n;
570 int id;
572 p = NULL;
573 for (n = 0; n < s->active_commands; n++) {
574 p = &s->queue[n];
575 if (p->tag == tag)
576 break;
578 if (n == s->active_commands) {
579 BADF("Reselected non-existant command tag=0x%x\n", tag);
580 return;
582 id = (tag >> 8) & 0xf;
583 s->ssid = id | 0x80;
584 DPRINTF("Reselected target %d\n", id);
585 s->current_dev = s->scsi_dev[id];
586 s->current_tag = tag;
587 s->scntl1 |= LSI_SCNTL1_CON;
588 lsi_set_phase(s, PHASE_MI);
589 s->msg_action = p->out ? 2 : 3;
590 s->current_dma_len = p->pending;
591 s->dma_buf = NULL;
592 lsi_add_msg_byte(s, 0x80);
593 if (s->current_tag & LSI_TAG_VALID) {
594 lsi_add_msg_byte(s, 0x20);
595 lsi_add_msg_byte(s, tag & 0xff);
598 s->active_commands--;
599 if (n != s->active_commands) {
600 s->queue[n] = s->queue[s->active_commands];
604 /* Record that data is available for a queued command. Returns zero if
605 the device was reselected, nonzero if the IO is deferred. */
606 static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
608 lsi_queue *p;
609 int i;
610 for (i = 0; i < s->active_commands; i++) {
611 p = &s->queue[i];
612 if (p->tag == tag) {
613 if (p->pending) {
614 BADF("Multiple IO pending for tag %d\n", tag);
616 p->pending = arg;
617 if (s->waiting == 1) {
618 /* Reselect device. */
619 lsi_reselect(s, tag);
620 return 0;
621 } else {
622 DPRINTF("Queueing IO tag=0x%x\n", tag);
623 p->pending = arg;
624 return 1;
628 BADF("IO with unknown tag %d\n", tag);
629 return 1;
632 /* Callback to indicate that the SCSI layer has completed a transfer. */
633 static void lsi_command_complete(void *opaque, int reason, uint32_t tag,
634 uint32_t arg)
636 LSIState *s = (LSIState *)opaque;
637 int out;
639 out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
640 if (reason == SCSI_REASON_DONE) {
641 DPRINTF("Command complete sense=%d\n", (int)arg);
642 s->sense = arg;
643 s->command_complete = 2;
644 if (s->waiting && s->dbc != 0) {
645 /* Raise phase mismatch for short transfers. */
646 lsi_bad_phase(s, out, PHASE_ST);
647 } else {
648 lsi_set_phase(s, PHASE_ST);
650 lsi_resume_script(s);
651 return;
654 if (s->waiting == 1 || tag != s->current_tag) {
655 if (lsi_queue_tag(s, tag, arg))
656 return;
658 DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
659 s->current_dma_len = arg;
660 s->command_complete = 1;
661 if (!s->waiting)
662 return;
663 if (s->waiting == 1 || s->dbc == 0) {
664 lsi_resume_script(s);
665 } else {
666 lsi_do_dma(s, out);
670 static void lsi_do_command(LSIState *s)
672 uint8_t buf[16];
673 int n;
675 DPRINTF("Send command len=%d\n", s->dbc);
676 if (s->dbc > 16)
677 s->dbc = 16;
678 cpu_physical_memory_read(s->dnad, buf, s->dbc);
679 s->sfbr = buf[0];
680 s->command_complete = 0;
681 n = s->current_dev->send_command(s->current_dev, s->current_tag, buf,
682 s->current_lun);
683 if (n > 0) {
684 lsi_set_phase(s, PHASE_DI);
685 s->current_dev->read_data(s->current_dev, s->current_tag);
686 } else if (n < 0) {
687 lsi_set_phase(s, PHASE_DO);
688 s->current_dev->write_data(s->current_dev, s->current_tag);
691 if (!s->command_complete) {
692 if (n) {
693 /* Command did not complete immediately so disconnect. */
694 lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
695 lsi_add_msg_byte(s, 4); /* DISCONNECT */
696 /* wait data */
697 lsi_set_phase(s, PHASE_MI);
698 s->msg_action = 1;
699 lsi_queue_command(s);
700 } else {
701 /* wait command complete */
702 lsi_set_phase(s, PHASE_DI);
707 static void lsi_do_status(LSIState *s)
709 uint8_t sense;
710 DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
711 if (s->dbc != 1)
712 BADF("Bad Status move\n");
713 s->dbc = 1;
714 sense = s->sense;
715 s->sfbr = sense;
716 cpu_physical_memory_write(s->dnad, &sense, 1);
717 lsi_set_phase(s, PHASE_MI);
718 s->msg_action = 1;
719 lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
722 static void lsi_disconnect(LSIState *s)
724 s->scntl1 &= ~LSI_SCNTL1_CON;
725 s->sstat1 &= ~PHASE_MASK;
728 static void lsi_do_msgin(LSIState *s)
730 int len;
731 DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
732 s->sfbr = s->msg[0];
733 len = s->msg_len;
734 if (len > s->dbc)
735 len = s->dbc;
736 cpu_physical_memory_write(s->dnad, s->msg, len);
737 /* Linux drivers rely on the last byte being in the SIDL. */
738 s->sidl = s->msg[len - 1];
739 s->msg_len -= len;
740 if (s->msg_len) {
741 memmove(s->msg, s->msg + len, s->msg_len);
742 } else {
743 /* ??? Check if ATN (not yet implemented) is asserted and maybe
744 switch to PHASE_MO. */
745 switch (s->msg_action) {
746 case 0:
747 lsi_set_phase(s, PHASE_CMD);
748 break;
749 case 1:
750 lsi_disconnect(s);
751 break;
752 case 2:
753 lsi_set_phase(s, PHASE_DO);
754 break;
755 case 3:
756 lsi_set_phase(s, PHASE_DI);
757 break;
758 default:
759 abort();
764 /* Read the next byte during a MSGOUT phase. */
765 static uint8_t lsi_get_msgbyte(LSIState *s)
767 uint8_t data;
768 cpu_physical_memory_read(s->dnad, &data, 1);
769 s->dnad++;
770 s->dbc--;
771 return data;
774 static void lsi_do_msgout(LSIState *s)
776 uint8_t msg;
777 int len;
779 DPRINTF("MSG out len=%d\n", s->dbc);
780 while (s->dbc) {
781 msg = lsi_get_msgbyte(s);
782 s->sfbr = msg;
784 switch (msg) {
785 case 0x00:
786 DPRINTF("MSG: Disconnect\n");
787 lsi_disconnect(s);
788 break;
789 case 0x08:
790 DPRINTF("MSG: No Operation\n");
791 lsi_set_phase(s, PHASE_CMD);
792 break;
793 case 0x01:
794 len = lsi_get_msgbyte(s);
795 msg = lsi_get_msgbyte(s);
796 DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
797 switch (msg) {
798 case 1:
799 DPRINTF("SDTR (ignored)\n");
800 s->dbc -= 2;
801 break;
802 case 3:
803 DPRINTF("WDTR (ignored)\n");
804 s->dbc -= 1;
805 break;
806 default:
807 goto bad;
809 break;
810 case 0x20: /* SIMPLE queue */
811 s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
812 DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
813 break;
814 case 0x21: /* HEAD of queue */
815 BADF("HEAD queue not implemented\n");
816 s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
817 break;
818 case 0x22: /* ORDERED queue */
819 BADF("ORDERED queue not implemented\n");
820 s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
821 break;
822 default:
823 if ((msg & 0x80) == 0) {
824 goto bad;
826 s->current_lun = msg & 7;
827 DPRINTF("Select LUN %d\n", s->current_lun);
828 lsi_set_phase(s, PHASE_CMD);
829 break;
832 return;
833 bad:
834 BADF("Unimplemented message 0x%02x\n", msg);
835 lsi_set_phase(s, PHASE_MI);
836 lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
837 s->msg_action = 0;
840 /* Sign extend a 24-bit value. */
841 static inline int32_t sxt24(int32_t n)
843 return (n << 8) >> 8;
846 #define LSI_BUF_SIZE 4096
847 static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
849 int n;
850 uint8_t buf[LSI_BUF_SIZE];
852 DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
853 while (count) {
854 n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
855 cpu_physical_memory_read(src, buf, n);
856 cpu_physical_memory_write(dest, buf, n);
857 src += n;
858 dest += n;
859 count -= n;
863 static void lsi_wait_reselect(LSIState *s)
865 int i;
866 DPRINTF("Wait Reselect\n");
867 if (s->current_dma_len)
868 BADF("Reselect with pending DMA\n");
869 for (i = 0; i < s->active_commands; i++) {
870 if (s->queue[i].pending) {
871 lsi_reselect(s, s->queue[i].tag);
872 break;
875 if (s->current_dma_len == 0) {
876 s->waiting = 1;
880 static void lsi_execute_script(LSIState *s)
882 uint32_t insn;
883 uint32_t addr, addr_high;
884 int opcode;
885 int insn_processed = 0;
887 s->istat1 |= LSI_ISTAT1_SRUN;
888 again:
889 insn_processed++;
890 insn = read_dword(s, s->dsp);
891 if (!insn) {
892 /* If we receive an empty opcode increment the DSP by 4 bytes
893 instead of 8 and execute the next opcode at that location */
894 s->dsp += 4;
895 goto again;
897 addr = read_dword(s, s->dsp + 4);
898 addr_high = 0;
899 DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
900 s->dsps = addr;
901 s->dcmd = insn >> 24;
902 s->dsp += 8;
903 switch (insn >> 30) {
904 case 0: /* Block move. */
905 if (s->sist1 & LSI_SIST1_STO) {
906 DPRINTF("Delayed select timeout\n");
907 lsi_stop_script(s);
908 break;
910 s->dbc = insn & 0xffffff;
911 s->rbc = s->dbc;
912 /* ??? Set ESA. */
913 s->ia = s->dsp - 8;
914 if (insn & (1 << 29)) {
915 /* Indirect addressing. */
916 addr = read_dword(s, addr);
917 } else if (insn & (1 << 28)) {
918 uint32_t buf[2];
919 int32_t offset;
920 /* Table indirect addressing. */
922 /* 32-bit Table indirect */
923 offset = sxt24(addr);
924 cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
925 /* byte count is stored in bits 0:23 only */
926 s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
927 s->rbc = s->dbc;
928 addr = cpu_to_le32(buf[1]);
930 /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
931 * table, bits [31:24] */
932 if (lsi_dma_40bit(s))
933 addr_high = cpu_to_le32(buf[0]) >> 24;
934 else if (lsi_dma_ti64bit(s)) {
935 int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
936 switch (selector) {
937 case 0 ... 0x0f:
938 /* offset index into scratch registers since
939 * TI64 mode can use registers C to R */
940 addr_high = s->scratch[2 + selector];
941 break;
942 case 0x10:
943 addr_high = s->mmrs;
944 break;
945 case 0x11:
946 addr_high = s->mmws;
947 break;
948 case 0x12:
949 addr_high = s->sfs;
950 break;
951 case 0x13:
952 addr_high = s->drs;
953 break;
954 case 0x14:
955 addr_high = s->sbms;
956 break;
957 case 0x15:
958 addr_high = s->dbms;
959 break;
960 default:
961 BADF("Illegal selector specified (0x%x > 0x15)"
962 " for 64-bit DMA block move", selector);
963 break;
966 } else if (lsi_dma_64bit(s)) {
967 /* fetch a 3rd dword if 64-bit direct move is enabled and
968 only if we're not doing table indirect or indirect addressing */
969 s->dbms = read_dword(s, s->dsp);
970 s->dsp += 4;
971 s->ia = s->dsp - 12;
973 if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
974 DPRINTF("Wrong phase got %d expected %d\n",
975 s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
976 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
977 break;
979 s->dnad = addr;
980 s->dnad64 = addr_high;
981 switch (s->sstat1 & 0x7) {
982 case PHASE_DO:
983 s->waiting = 2;
984 lsi_do_dma(s, 1);
985 if (s->waiting)
986 s->waiting = 3;
987 break;
988 case PHASE_DI:
989 s->waiting = 2;
990 lsi_do_dma(s, 0);
991 if (s->waiting)
992 s->waiting = 3;
993 break;
994 case PHASE_CMD:
995 lsi_do_command(s);
996 break;
997 case PHASE_ST:
998 lsi_do_status(s);
999 break;
1000 case PHASE_MO:
1001 lsi_do_msgout(s);
1002 break;
1003 case PHASE_MI:
1004 lsi_do_msgin(s);
1005 break;
1006 default:
1007 BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1008 exit(1);
1010 s->dfifo = s->dbc & 0xff;
1011 s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1012 s->sbc = s->dbc;
1013 s->rbc -= s->dbc;
1014 s->ua = addr + s->dbc;
1015 break;
1017 case 1: /* IO or Read/Write instruction. */
1018 opcode = (insn >> 27) & 7;
1019 if (opcode < 5) {
1020 uint32_t id;
1022 if (insn & (1 << 25)) {
1023 id = read_dword(s, s->dsa + sxt24(insn));
1024 } else {
1025 id = addr;
1027 id = (id >> 16) & 0xf;
1028 if (insn & (1 << 26)) {
1029 addr = s->dsp + sxt24(addr);
1031 s->dnad = addr;
1032 switch (opcode) {
1033 case 0: /* Select */
1034 s->sdid = id;
1035 if (s->current_dma_len && (s->ssid & 0xf) == id) {
1036 DPRINTF("Already reselected by target %d\n", id);
1037 break;
1039 s->sstat0 |= LSI_SSTAT0_WOA;
1040 s->scntl1 &= ~LSI_SCNTL1_IARB;
1041 if (id >= LSI_MAX_DEVS || !s->scsi_dev[id]) {
1042 DPRINTF("Selected absent target %d\n", id);
1043 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
1044 lsi_disconnect(s);
1045 break;
1047 DPRINTF("Selected target %d%s\n",
1048 id, insn & (1 << 3) ? " ATN" : "");
1049 /* ??? Linux drivers compain when this is set. Maybe
1050 it only applies in low-level mode (unimplemented).
1051 lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1052 s->current_dev = s->scsi_dev[id];
1053 s->current_tag = id << 8;
1054 s->scntl1 |= LSI_SCNTL1_CON;
1055 if (insn & (1 << 3)) {
1056 s->socl |= LSI_SOCL_ATN;
1058 lsi_set_phase(s, PHASE_MO);
1059 break;
1060 case 1: /* Disconnect */
1061 DPRINTF("Wait Disconect\n");
1062 s->scntl1 &= ~LSI_SCNTL1_CON;
1063 break;
1064 case 2: /* Wait Reselect */
1065 lsi_wait_reselect(s);
1066 break;
1067 case 3: /* Set */
1068 DPRINTF("Set%s%s%s%s\n",
1069 insn & (1 << 3) ? " ATN" : "",
1070 insn & (1 << 6) ? " ACK" : "",
1071 insn & (1 << 9) ? " TM" : "",
1072 insn & (1 << 10) ? " CC" : "");
1073 if (insn & (1 << 3)) {
1074 s->socl |= LSI_SOCL_ATN;
1075 lsi_set_phase(s, PHASE_MO);
1077 if (insn & (1 << 9)) {
1078 BADF("Target mode not implemented\n");
1079 exit(1);
1081 if (insn & (1 << 10))
1082 s->carry = 1;
1083 break;
1084 case 4: /* Clear */
1085 DPRINTF("Clear%s%s%s%s\n",
1086 insn & (1 << 3) ? " ATN" : "",
1087 insn & (1 << 6) ? " ACK" : "",
1088 insn & (1 << 9) ? " TM" : "",
1089 insn & (1 << 10) ? " CC" : "");
1090 if (insn & (1 << 3)) {
1091 s->socl &= ~LSI_SOCL_ATN;
1093 if (insn & (1 << 10))
1094 s->carry = 0;
1095 break;
1097 } else {
1098 uint8_t op0;
1099 uint8_t op1;
1100 uint8_t data8;
1101 int reg;
1102 int operator;
1103 #ifdef DEBUG_LSI
1104 static const char *opcode_names[3] =
1105 {"Write", "Read", "Read-Modify-Write"};
1106 static const char *operator_names[8] =
1107 {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1108 #endif
1110 reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1111 data8 = (insn >> 8) & 0xff;
1112 opcode = (insn >> 27) & 7;
1113 operator = (insn >> 24) & 7;
1114 DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1115 opcode_names[opcode - 5], reg,
1116 operator_names[operator], data8, s->sfbr,
1117 (insn & (1 << 23)) ? " SFBR" : "");
1118 op0 = op1 = 0;
1119 switch (opcode) {
1120 case 5: /* From SFBR */
1121 op0 = s->sfbr;
1122 op1 = data8;
1123 break;
1124 case 6: /* To SFBR */
1125 if (operator)
1126 op0 = lsi_reg_readb(s, reg);
1127 op1 = data8;
1128 break;
1129 case 7: /* Read-modify-write */
1130 if (operator)
1131 op0 = lsi_reg_readb(s, reg);
1132 if (insn & (1 << 23)) {
1133 op1 = s->sfbr;
1134 } else {
1135 op1 = data8;
1137 break;
1140 switch (operator) {
1141 case 0: /* move */
1142 op0 = op1;
1143 break;
1144 case 1: /* Shift left */
1145 op1 = op0 >> 7;
1146 op0 = (op0 << 1) | s->carry;
1147 s->carry = op1;
1148 break;
1149 case 2: /* OR */
1150 op0 |= op1;
1151 break;
1152 case 3: /* XOR */
1153 op0 ^= op1;
1154 break;
1155 case 4: /* AND */
1156 op0 &= op1;
1157 break;
1158 case 5: /* SHR */
1159 op1 = op0 & 1;
1160 op0 = (op0 >> 1) | (s->carry << 7);
1161 s->carry = op1;
1162 break;
1163 case 6: /* ADD */
1164 op0 += op1;
1165 s->carry = op0 < op1;
1166 break;
1167 case 7: /* ADC */
1168 op0 += op1 + s->carry;
1169 if (s->carry)
1170 s->carry = op0 <= op1;
1171 else
1172 s->carry = op0 < op1;
1173 break;
1176 switch (opcode) {
1177 case 5: /* From SFBR */
1178 case 7: /* Read-modify-write */
1179 lsi_reg_writeb(s, reg, op0);
1180 break;
1181 case 6: /* To SFBR */
1182 s->sfbr = op0;
1183 break;
1186 break;
1188 case 2: /* Transfer Control. */
1190 int cond;
1191 int jmp;
1193 if ((insn & 0x002e0000) == 0) {
1194 DPRINTF("NOP\n");
1195 break;
1197 if (s->sist1 & LSI_SIST1_STO) {
1198 DPRINTF("Delayed select timeout\n");
1199 lsi_stop_script(s);
1200 break;
1202 cond = jmp = (insn & (1 << 19)) != 0;
1203 if (cond == jmp && (insn & (1 << 21))) {
1204 DPRINTF("Compare carry %d\n", s->carry == jmp);
1205 cond = s->carry != 0;
1207 if (cond == jmp && (insn & (1 << 17))) {
1208 DPRINTF("Compare phase %d %c= %d\n",
1209 (s->sstat1 & PHASE_MASK),
1210 jmp ? '=' : '!',
1211 ((insn >> 24) & 7));
1212 cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1214 if (cond == jmp && (insn & (1 << 18))) {
1215 uint8_t mask;
1217 mask = (~insn >> 8) & 0xff;
1218 DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1219 s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1220 cond = (s->sfbr & mask) == (insn & mask);
1222 if (cond == jmp) {
1223 if (insn & (1 << 23)) {
1224 /* Relative address. */
1225 addr = s->dsp + sxt24(addr);
1227 switch ((insn >> 27) & 7) {
1228 case 0: /* Jump */
1229 DPRINTF("Jump to 0x%08x\n", addr);
1230 s->dsp = addr;
1231 break;
1232 case 1: /* Call */
1233 DPRINTF("Call 0x%08x\n", addr);
1234 s->temp = s->dsp;
1235 s->dsp = addr;
1236 break;
1237 case 2: /* Return */
1238 DPRINTF("Return to 0x%08x\n", s->temp);
1239 s->dsp = s->temp;
1240 break;
1241 case 3: /* Interrupt */
1242 DPRINTF("Interrupt 0x%08x\n", s->dsps);
1243 if ((insn & (1 << 20)) != 0) {
1244 s->istat0 |= LSI_ISTAT0_INTF;
1245 lsi_update_irq(s);
1246 } else {
1247 lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1249 break;
1250 default:
1251 DPRINTF("Illegal transfer control\n");
1252 lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1253 break;
1255 } else {
1256 DPRINTF("Control condition failed\n");
1259 break;
1261 case 3:
1262 if ((insn & (1 << 29)) == 0) {
1263 /* Memory move. */
1264 uint32_t dest;
1265 /* ??? The docs imply the destination address is loaded into
1266 the TEMP register. However the Linux drivers rely on
1267 the value being presrved. */
1268 dest = read_dword(s, s->dsp);
1269 s->dsp += 4;
1270 lsi_memcpy(s, dest, addr, insn & 0xffffff);
1271 } else {
1272 uint8_t data[7];
1273 int reg;
1274 int n;
1275 int i;
1277 if (insn & (1 << 28)) {
1278 addr = s->dsa + sxt24(addr);
1280 n = (insn & 7);
1281 reg = (insn >> 16) & 0xff;
1282 if (insn & (1 << 24)) {
1283 cpu_physical_memory_read(addr, data, n);
1284 DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1285 addr, *(int *)data);
1286 for (i = 0; i < n; i++) {
1287 lsi_reg_writeb(s, reg + i, data[i]);
1289 } else {
1290 DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1291 for (i = 0; i < n; i++) {
1292 data[i] = lsi_reg_readb(s, reg + i);
1294 cpu_physical_memory_write(addr, data, n);
1298 if (insn_processed > 10000 && !s->waiting) {
1299 /* Some windows drivers make the device spin waiting for a memory
1300 location to change. If we have been executed a lot of code then
1301 assume this is the case and force an unexpected device disconnect.
1302 This is apparently sufficient to beat the drivers into submission.
1304 if (!(s->sien0 & LSI_SIST0_UDC))
1305 fprintf(stderr, "inf. loop with UDC masked\n");
1306 lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1307 lsi_disconnect(s);
1308 } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1309 if (s->dcntl & LSI_DCNTL_SSM) {
1310 lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1311 } else {
1312 goto again;
1315 DPRINTF("SCRIPTS execution stopped\n");
1318 static uint8_t lsi_reg_readb(LSIState *s, int offset)
1320 uint8_t tmp;
1321 #define CASE_GET_REG24(name, addr) \
1322 case addr: return s->name & 0xff; \
1323 case addr + 1: return (s->name >> 8) & 0xff; \
1324 case addr + 2: return (s->name >> 16) & 0xff;
1326 #define CASE_GET_REG32(name, addr) \
1327 case addr: return s->name & 0xff; \
1328 case addr + 1: return (s->name >> 8) & 0xff; \
1329 case addr + 2: return (s->name >> 16) & 0xff; \
1330 case addr + 3: return (s->name >> 24) & 0xff;
1332 #ifdef DEBUG_LSI_REG
1333 DPRINTF("Read reg %x\n", offset);
1334 #endif
1335 switch (offset) {
1336 case 0x00: /* SCNTL0 */
1337 return s->scntl0;
1338 case 0x01: /* SCNTL1 */
1339 return s->scntl1;
1340 case 0x02: /* SCNTL2 */
1341 return s->scntl2;
1342 case 0x03: /* SCNTL3 */
1343 return s->scntl3;
1344 case 0x04: /* SCID */
1345 return s->scid;
1346 case 0x05: /* SXFER */
1347 return s->sxfer;
1348 case 0x06: /* SDID */
1349 return s->sdid;
1350 case 0x07: /* GPREG0 */
1351 return 0x7f;
1352 case 0x08: /* Revision ID */
1353 return 0x00;
1354 case 0xa: /* SSID */
1355 return s->ssid;
1356 case 0xb: /* SBCL */
1357 /* ??? This is not correct. However it's (hopefully) only
1358 used for diagnostics, so should be ok. */
1359 return 0;
1360 case 0xc: /* DSTAT */
1361 tmp = s->dstat | 0x80;
1362 if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1363 s->dstat = 0;
1364 lsi_update_irq(s);
1365 return tmp;
1366 case 0x0d: /* SSTAT0 */
1367 return s->sstat0;
1368 case 0x0e: /* SSTAT1 */
1369 return s->sstat1;
1370 case 0x0f: /* SSTAT2 */
1371 return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1372 CASE_GET_REG32(dsa, 0x10)
1373 case 0x14: /* ISTAT0 */
1374 return s->istat0;
1375 case 0x15: /* ISTAT1 */
1376 return s->istat1;
1377 case 0x16: /* MBOX0 */
1378 return s->mbox0;
1379 case 0x17: /* MBOX1 */
1380 return s->mbox1;
1381 case 0x18: /* CTEST0 */
1382 return 0xff;
1383 case 0x19: /* CTEST1 */
1384 return 0;
1385 case 0x1a: /* CTEST2 */
1386 tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1387 if (s->istat0 & LSI_ISTAT0_SIGP) {
1388 s->istat0 &= ~LSI_ISTAT0_SIGP;
1389 tmp |= LSI_CTEST2_SIGP;
1391 return tmp;
1392 case 0x1b: /* CTEST3 */
1393 return s->ctest3;
1394 CASE_GET_REG32(temp, 0x1c)
1395 case 0x20: /* DFIFO */
1396 return 0;
1397 case 0x21: /* CTEST4 */
1398 return s->ctest4;
1399 case 0x22: /* CTEST5 */
1400 return s->ctest5;
1401 case 0x23: /* CTEST6 */
1402 return 0;
1403 CASE_GET_REG24(dbc, 0x24)
1404 case 0x27: /* DCMD */
1405 return s->dcmd;
1406 CASE_GET_REG32(dnad, 0x28)
1407 CASE_GET_REG32(dsp, 0x2c)
1408 CASE_GET_REG32(dsps, 0x30)
1409 CASE_GET_REG32(scratch[0], 0x34)
1410 case 0x38: /* DMODE */
1411 return s->dmode;
1412 case 0x39: /* DIEN */
1413 return s->dien;
1414 case 0x3a: /* SBR */
1415 return s->sbr;
1416 case 0x3b: /* DCNTL */
1417 return s->dcntl;
1418 case 0x40: /* SIEN0 */
1419 return s->sien0;
1420 case 0x41: /* SIEN1 */
1421 return s->sien1;
1422 case 0x42: /* SIST0 */
1423 tmp = s->sist0;
1424 s->sist0 = 0;
1425 lsi_update_irq(s);
1426 return tmp;
1427 case 0x43: /* SIST1 */
1428 tmp = s->sist1;
1429 s->sist1 = 0;
1430 lsi_update_irq(s);
1431 return tmp;
1432 case 0x46: /* MACNTL */
1433 return 0x0f;
1434 case 0x47: /* GPCNTL0 */
1435 return 0x0f;
1436 case 0x48: /* STIME0 */
1437 return s->stime0;
1438 case 0x4a: /* RESPID0 */
1439 return s->respid0;
1440 case 0x4b: /* RESPID1 */
1441 return s->respid1;
1442 case 0x4d: /* STEST1 */
1443 return s->stest1;
1444 case 0x4e: /* STEST2 */
1445 return s->stest2;
1446 case 0x4f: /* STEST3 */
1447 return s->stest3;
1448 case 0x50: /* SIDL */
1449 /* This is needed by the linux drivers. We currently only update it
1450 during the MSG IN phase. */
1451 return s->sidl;
1452 case 0x52: /* STEST4 */
1453 return 0xe0;
1454 case 0x56: /* CCNTL0 */
1455 return s->ccntl0;
1456 case 0x57: /* CCNTL1 */
1457 return s->ccntl1;
1458 case 0x58: /* SBDL */
1459 /* Some drivers peek at the data bus during the MSG IN phase. */
1460 if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1461 return s->msg[0];
1462 return 0;
1463 case 0x59: /* SBDL high */
1464 return 0;
1465 CASE_GET_REG32(mmrs, 0xa0)
1466 CASE_GET_REG32(mmws, 0xa4)
1467 CASE_GET_REG32(sfs, 0xa8)
1468 CASE_GET_REG32(drs, 0xac)
1469 CASE_GET_REG32(sbms, 0xb0)
1470 CASE_GET_REG32(dbms, 0xb4)
1471 CASE_GET_REG32(dnad64, 0xb8)
1472 CASE_GET_REG32(pmjad1, 0xc0)
1473 CASE_GET_REG32(pmjad2, 0xc4)
1474 CASE_GET_REG32(rbc, 0xc8)
1475 CASE_GET_REG32(ua, 0xcc)
1476 CASE_GET_REG32(ia, 0xd4)
1477 CASE_GET_REG32(sbc, 0xd8)
1478 CASE_GET_REG32(csbc, 0xdc)
1480 if (offset >= 0x5c && offset < 0xa0) {
1481 int n;
1482 int shift;
1483 n = (offset - 0x58) >> 2;
1484 shift = (offset & 3) * 8;
1485 return (s->scratch[n] >> shift) & 0xff;
1487 BADF("readb 0x%x\n", offset);
1488 exit(1);
1489 #undef CASE_GET_REG24
1490 #undef CASE_GET_REG32
1493 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1495 #define CASE_SET_REG24(name, addr) \
1496 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1497 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1498 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1500 #define CASE_SET_REG32(name, addr) \
1501 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1502 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1503 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1504 case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1506 #ifdef DEBUG_LSI_REG
1507 DPRINTF("Write reg %x = %02x\n", offset, val);
1508 #endif
1509 switch (offset) {
1510 case 0x00: /* SCNTL0 */
1511 s->scntl0 = val;
1512 if (val & LSI_SCNTL0_START) {
1513 BADF("Start sequence not implemented\n");
1515 break;
1516 case 0x01: /* SCNTL1 */
1517 s->scntl1 = val & ~LSI_SCNTL1_SST;
1518 if (val & LSI_SCNTL1_IARB) {
1519 BADF("Immediate Arbritration not implemented\n");
1521 if (val & LSI_SCNTL1_RST) {
1522 s->sstat0 |= LSI_SSTAT0_RST;
1523 lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1524 } else {
1525 s->sstat0 &= ~LSI_SSTAT0_RST;
1527 break;
1528 case 0x02: /* SCNTL2 */
1529 val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1530 s->scntl2 = val;
1531 break;
1532 case 0x03: /* SCNTL3 */
1533 s->scntl3 = val;
1534 break;
1535 case 0x04: /* SCID */
1536 s->scid = val;
1537 break;
1538 case 0x05: /* SXFER */
1539 s->sxfer = val;
1540 break;
1541 case 0x06: /* SDID */
1542 if ((val & 0xf) != (s->ssid & 0xf))
1543 BADF("Destination ID does not match SSID\n");
1544 s->sdid = val & 0xf;
1545 break;
1546 case 0x07: /* GPREG0 */
1547 break;
1548 case 0x08: /* SFBR */
1549 /* The CPU is not allowed to write to this register. However the
1550 SCRIPTS register move instructions are. */
1551 s->sfbr = val;
1552 break;
1553 case 0x0a: case 0x0b:
1554 /* Openserver writes to these readonly registers on startup */
1555 return;
1556 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1557 /* Linux writes to these readonly registers on startup. */
1558 return;
1559 CASE_SET_REG32(dsa, 0x10)
1560 case 0x14: /* ISTAT0 */
1561 s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1562 if (val & LSI_ISTAT0_ABRT) {
1563 lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1565 if (val & LSI_ISTAT0_INTF) {
1566 s->istat0 &= ~LSI_ISTAT0_INTF;
1567 lsi_update_irq(s);
1569 if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1570 DPRINTF("Woken by SIGP\n");
1571 s->waiting = 0;
1572 s->dsp = s->dnad;
1573 lsi_execute_script(s);
1575 if (val & LSI_ISTAT0_SRST) {
1576 lsi_soft_reset(s);
1578 break;
1579 case 0x16: /* MBOX0 */
1580 s->mbox0 = val;
1581 break;
1582 case 0x17: /* MBOX1 */
1583 s->mbox1 = val;
1584 break;
1585 case 0x1a: /* CTEST2 */
1586 s->ctest2 = val & LSI_CTEST2_PCICIE;
1587 break;
1588 case 0x1b: /* CTEST3 */
1589 s->ctest3 = val & 0x0f;
1590 break;
1591 CASE_SET_REG32(temp, 0x1c)
1592 case 0x21: /* CTEST4 */
1593 if (val & 7) {
1594 BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1596 s->ctest4 = val;
1597 break;
1598 case 0x22: /* CTEST5 */
1599 if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1600 BADF("CTEST5 DMA increment not implemented\n");
1602 s->ctest5 = val;
1603 break;
1604 CASE_SET_REG24(dbc, 0x24)
1605 CASE_SET_REG32(dnad, 0x28)
1606 case 0x2c: /* DSP[0:7] */
1607 s->dsp &= 0xffffff00;
1608 s->dsp |= val;
1609 break;
1610 case 0x2d: /* DSP[8:15] */
1611 s->dsp &= 0xffff00ff;
1612 s->dsp |= val << 8;
1613 break;
1614 case 0x2e: /* DSP[16:23] */
1615 s->dsp &= 0xff00ffff;
1616 s->dsp |= val << 16;
1617 break;
1618 case 0x2f: /* DSP[24:31] */
1619 s->dsp &= 0x00ffffff;
1620 s->dsp |= val << 24;
1621 if ((s->dmode & LSI_DMODE_MAN) == 0
1622 && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1623 lsi_execute_script(s);
1624 break;
1625 CASE_SET_REG32(dsps, 0x30)
1626 CASE_SET_REG32(scratch[0], 0x34)
1627 case 0x38: /* DMODE */
1628 if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1629 BADF("IO mappings not implemented\n");
1631 s->dmode = val;
1632 break;
1633 case 0x39: /* DIEN */
1634 s->dien = val;
1635 lsi_update_irq(s);
1636 break;
1637 case 0x3a: /* SBR */
1638 s->sbr = val;
1639 break;
1640 case 0x3b: /* DCNTL */
1641 s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1642 if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1643 lsi_execute_script(s);
1644 break;
1645 case 0x40: /* SIEN0 */
1646 s->sien0 = val;
1647 lsi_update_irq(s);
1648 break;
1649 case 0x41: /* SIEN1 */
1650 s->sien1 = val;
1651 lsi_update_irq(s);
1652 break;
1653 case 0x47: /* GPCNTL0 */
1654 break;
1655 case 0x48: /* STIME0 */
1656 s->stime0 = val;
1657 break;
1658 case 0x49: /* STIME1 */
1659 if (val & 0xf) {
1660 DPRINTF("General purpose timer not implemented\n");
1661 /* ??? Raising the interrupt immediately seems to be sufficient
1662 to keep the FreeBSD driver happy. */
1663 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1665 break;
1666 case 0x4a: /* RESPID0 */
1667 s->respid0 = val;
1668 break;
1669 case 0x4b: /* RESPID1 */
1670 s->respid1 = val;
1671 break;
1672 case 0x4d: /* STEST1 */
1673 s->stest1 = val;
1674 break;
1675 case 0x4e: /* STEST2 */
1676 if (val & 1) {
1677 BADF("Low level mode not implemented\n");
1679 s->stest2 = val;
1680 break;
1681 case 0x4f: /* STEST3 */
1682 if (val & 0x41) {
1683 BADF("SCSI FIFO test mode not implemented\n");
1685 s->stest3 = val;
1686 break;
1687 case 0x56: /* CCNTL0 */
1688 s->ccntl0 = val;
1689 break;
1690 case 0x57: /* CCNTL1 */
1691 s->ccntl1 = val;
1692 break;
1693 CASE_SET_REG32(mmrs, 0xa0)
1694 CASE_SET_REG32(mmws, 0xa4)
1695 CASE_SET_REG32(sfs, 0xa8)
1696 CASE_SET_REG32(drs, 0xac)
1697 CASE_SET_REG32(sbms, 0xb0)
1698 CASE_SET_REG32(dbms, 0xb4)
1699 CASE_SET_REG32(dnad64, 0xb8)
1700 CASE_SET_REG32(pmjad1, 0xc0)
1701 CASE_SET_REG32(pmjad2, 0xc4)
1702 CASE_SET_REG32(rbc, 0xc8)
1703 CASE_SET_REG32(ua, 0xcc)
1704 CASE_SET_REG32(ia, 0xd4)
1705 CASE_SET_REG32(sbc, 0xd8)
1706 CASE_SET_REG32(csbc, 0xdc)
1707 default:
1708 if (offset >= 0x5c && offset < 0xa0) {
1709 int n;
1710 int shift;
1711 n = (offset - 0x58) >> 2;
1712 shift = (offset & 3) * 8;
1713 s->scratch[n] &= ~(0xff << shift);
1714 s->scratch[n] |= (val & 0xff) << shift;
1715 } else {
1716 BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1719 #undef CASE_SET_REG24
1720 #undef CASE_SET_REG32
1723 static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1725 LSIState *s = (LSIState *)opaque;
1727 lsi_reg_writeb(s, addr & 0xff, val);
1730 static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1732 LSIState *s = (LSIState *)opaque;
1734 addr &= 0xff;
1735 lsi_reg_writeb(s, addr, val & 0xff);
1736 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1739 static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1741 LSIState *s = (LSIState *)opaque;
1743 addr &= 0xff;
1744 lsi_reg_writeb(s, addr, val & 0xff);
1745 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1746 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1747 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1750 static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1752 LSIState *s = (LSIState *)opaque;
1754 return lsi_reg_readb(s, addr & 0xff);
1757 static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1759 LSIState *s = (LSIState *)opaque;
1760 uint32_t val;
1762 addr &= 0xff;
1763 val = lsi_reg_readb(s, addr);
1764 val |= lsi_reg_readb(s, addr + 1) << 8;
1765 return val;
1768 static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1770 LSIState *s = (LSIState *)opaque;
1771 uint32_t val;
1772 addr &= 0xff;
1773 val = lsi_reg_readb(s, addr);
1774 val |= lsi_reg_readb(s, addr + 1) << 8;
1775 val |= lsi_reg_readb(s, addr + 2) << 16;
1776 val |= lsi_reg_readb(s, addr + 3) << 24;
1777 return val;
1780 static CPUReadMemoryFunc *lsi_mmio_readfn[3] = {
1781 lsi_mmio_readb,
1782 lsi_mmio_readw,
1783 lsi_mmio_readl,
1786 static CPUWriteMemoryFunc *lsi_mmio_writefn[3] = {
1787 lsi_mmio_writeb,
1788 lsi_mmio_writew,
1789 lsi_mmio_writel,
1792 static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1794 LSIState *s = (LSIState *)opaque;
1795 uint32_t newval;
1796 int shift;
1798 addr &= 0x1fff;
1799 newval = s->script_ram[addr >> 2];
1800 shift = (addr & 3) * 8;
1801 newval &= ~(0xff << shift);
1802 newval |= val << shift;
1803 s->script_ram[addr >> 2] = newval;
1806 static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1808 LSIState *s = (LSIState *)opaque;
1809 uint32_t newval;
1811 addr &= 0x1fff;
1812 newval = s->script_ram[addr >> 2];
1813 if (addr & 2) {
1814 newval = (newval & 0xffff) | (val << 16);
1815 } else {
1816 newval = (newval & 0xffff0000) | val;
1818 s->script_ram[addr >> 2] = newval;
1822 static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1824 LSIState *s = (LSIState *)opaque;
1826 addr &= 0x1fff;
1827 s->script_ram[addr >> 2] = val;
1830 static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1832 LSIState *s = (LSIState *)opaque;
1833 uint32_t val;
1835 addr &= 0x1fff;
1836 val = s->script_ram[addr >> 2];
1837 val >>= (addr & 3) * 8;
1838 return val & 0xff;
1841 static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1843 LSIState *s = (LSIState *)opaque;
1844 uint32_t val;
1846 addr &= 0x1fff;
1847 val = s->script_ram[addr >> 2];
1848 if (addr & 2)
1849 val >>= 16;
1850 return le16_to_cpu(val);
1853 static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1855 LSIState *s = (LSIState *)opaque;
1857 addr &= 0x1fff;
1858 return le32_to_cpu(s->script_ram[addr >> 2]);
1861 static CPUReadMemoryFunc *lsi_ram_readfn[3] = {
1862 lsi_ram_readb,
1863 lsi_ram_readw,
1864 lsi_ram_readl,
1867 static CPUWriteMemoryFunc *lsi_ram_writefn[3] = {
1868 lsi_ram_writeb,
1869 lsi_ram_writew,
1870 lsi_ram_writel,
1873 static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1875 LSIState *s = (LSIState *)opaque;
1876 return lsi_reg_readb(s, addr & 0xff);
1879 static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1881 LSIState *s = (LSIState *)opaque;
1882 uint32_t val;
1883 addr &= 0xff;
1884 val = lsi_reg_readb(s, addr);
1885 val |= lsi_reg_readb(s, addr + 1) << 8;
1886 return val;
1889 static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1891 LSIState *s = (LSIState *)opaque;
1892 uint32_t val;
1893 addr &= 0xff;
1894 val = lsi_reg_readb(s, addr);
1895 val |= lsi_reg_readb(s, addr + 1) << 8;
1896 val |= lsi_reg_readb(s, addr + 2) << 16;
1897 val |= lsi_reg_readb(s, addr + 3) << 24;
1898 return val;
1901 static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1903 LSIState *s = (LSIState *)opaque;
1904 lsi_reg_writeb(s, addr & 0xff, val);
1907 static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1909 LSIState *s = (LSIState *)opaque;
1910 addr &= 0xff;
1911 lsi_reg_writeb(s, addr, val & 0xff);
1912 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1915 static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
1917 LSIState *s = (LSIState *)opaque;
1918 addr &= 0xff;
1919 lsi_reg_writeb(s, addr, val & 0xff);
1920 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1921 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1922 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1925 static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
1926 uint32_t addr, uint32_t size, int type)
1928 LSIState *s = (LSIState *)pci_dev;
1930 DPRINTF("Mapping IO at %08x\n", addr);
1932 register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
1933 register_ioport_read(addr, 256, 1, lsi_io_readb, s);
1934 register_ioport_write(addr, 256, 2, lsi_io_writew, s);
1935 register_ioport_read(addr, 256, 2, lsi_io_readw, s);
1936 register_ioport_write(addr, 256, 4, lsi_io_writel, s);
1937 register_ioport_read(addr, 256, 4, lsi_io_readl, s);
1940 static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
1941 uint32_t addr, uint32_t size, int type)
1943 LSIState *s = (LSIState *)pci_dev;
1945 DPRINTF("Mapping ram at %08x\n", addr);
1946 s->script_ram_base = addr;
1947 cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
1950 static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
1951 uint32_t addr, uint32_t size, int type)
1953 LSIState *s = (LSIState *)pci_dev;
1955 DPRINTF("Mapping registers at %08x\n", addr);
1956 cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
1959 void lsi_scsi_attach(DeviceState *host, BlockDriverState *bd, int id)
1961 LSIState *s = (LSIState *)host;
1963 if (id < 0) {
1964 for (id = 0; id < LSI_MAX_DEVS; id++) {
1965 if (s->scsi_dev[id] == NULL)
1966 break;
1969 if (id >= LSI_MAX_DEVS) {
1970 BADF("Bad Device ID %d\n", id);
1971 return;
1973 if (s->scsi_dev[id]) {
1974 DPRINTF("Destroying device %d\n", id);
1975 s->scsi_dev[id]->destroy(s->scsi_dev[id]);
1977 DPRINTF("Attaching block device %d\n", id);
1978 s->scsi_dev[id] = scsi_generic_init(bd, 1, lsi_command_complete, s);
1979 if (s->scsi_dev[id] == NULL)
1980 s->scsi_dev[id] = scsi_disk_init(bd, 1, lsi_command_complete, s);
1981 bd->private = &s->pci_dev;
1984 static int lsi_scsi_uninit(PCIDevice *d)
1986 LSIState *s = (LSIState *) d;
1988 cpu_unregister_io_memory(s->mmio_io_addr);
1989 cpu_unregister_io_memory(s->ram_io_addr);
1991 qemu_free(s->queue);
1993 return 0;
1996 static void lsi_scsi_init(PCIDevice *dev)
1998 LSIState *s = (LSIState *)dev;
1999 uint8_t *pci_conf;
2001 pci_conf = s->pci_dev.config;
2003 /* PCI Vendor ID (word) */
2004 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
2005 /* PCI device ID (word) */
2006 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
2007 /* PCI base class code */
2008 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
2009 /* PCI subsystem ID */
2010 pci_conf[0x2e] = 0x00;
2011 pci_conf[0x2f] = 0x10;
2012 /* PCI latency timer = 255 */
2013 pci_conf[0x0d] = 0xff;
2014 /* Interrupt pin 1 */
2015 pci_conf[0x3d] = 0x01;
2017 s->mmio_io_addr = cpu_register_io_memory(lsi_mmio_readfn,
2018 lsi_mmio_writefn, s);
2019 s->ram_io_addr = cpu_register_io_memory(lsi_ram_readfn,
2020 lsi_ram_writefn, s);
2022 pci_register_bar((struct PCIDevice *)s, 0, 256,
2023 PCI_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2024 pci_register_bar((struct PCIDevice *)s, 1, 0x400,
2025 PCI_ADDRESS_SPACE_MEM, lsi_mmio_mapfunc);
2026 pci_register_bar((struct PCIDevice *)s, 2, 0x2000,
2027 PCI_ADDRESS_SPACE_MEM, lsi_ram_mapfunc);
2028 s->queue = qemu_malloc(sizeof(lsi_queue));
2029 s->queue_len = 1;
2030 s->active_commands = 0;
2031 s->pci_dev.unregister = lsi_scsi_uninit;
2033 lsi_soft_reset(s);
2035 scsi_bus_new(&dev->qdev, lsi_scsi_attach);
2038 static void lsi53c895a_register_devices(void)
2040 pci_qdev_register("lsi53c895a", sizeof(LSIState), lsi_scsi_init);
2043 device_init(lsi53c895a_register_devices);