target/ppc: implement vstri[bh][lr]
[qemu.git] / target / avr / helper.c
blobc27f7029010ff6260f9e47d1dd46fe7008253071
1 /*
2 * QEMU AVR CPU helpers
4 * Copyright (c) 2016-2020 Michael Rolnik
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see
18 * <http://www.gnu.org/licenses/lgpl-2.1.html>
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "cpu.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "exec/exec-all.h"
26 #include "exec/address-spaces.h"
27 #include "exec/helper-proto.h"
29 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
31 bool ret = false;
32 CPUClass *cc = CPU_GET_CLASS(cs);
33 AVRCPU *cpu = AVR_CPU(cs);
34 CPUAVRState *env = &cpu->env;
36 if (interrupt_request & CPU_INTERRUPT_RESET) {
37 if (cpu_interrupts_enabled(env)) {
38 cs->exception_index = EXCP_RESET;
39 cc->tcg_ops->do_interrupt(cs);
41 cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
43 ret = true;
46 if (interrupt_request & CPU_INTERRUPT_HARD) {
47 if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
48 int index = ctz32(env->intsrc);
49 cs->exception_index = EXCP_INT(index);
50 cc->tcg_ops->do_interrupt(cs);
52 env->intsrc &= env->intsrc - 1; /* clear the interrupt */
53 if (!env->intsrc) {
54 cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
57 ret = true;
60 return ret;
63 void avr_cpu_do_interrupt(CPUState *cs)
65 AVRCPU *cpu = AVR_CPU(cs);
66 CPUAVRState *env = &cpu->env;
68 uint32_t ret = env->pc_w;
69 int vector = 0;
70 int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
71 int base = 0;
73 if (cs->exception_index == EXCP_RESET) {
74 vector = 0;
75 } else if (env->intsrc != 0) {
76 vector = ctz32(env->intsrc) + 1;
79 if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
80 cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
81 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
82 cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
83 } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
84 cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
85 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
86 } else {
87 cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
90 env->pc_w = base + vector * size;
91 env->sregI = 0; /* clear Global Interrupt Flag */
93 cs->exception_index = -1;
96 int avr_cpu_memory_rw_debug(CPUState *cs, vaddr addr, uint8_t *buf,
97 int len, bool is_write)
99 return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
102 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
104 return addr; /* I assume 1:1 address correspondence */
107 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
108 MMUAccessType access_type, int mmu_idx,
109 bool probe, uintptr_t retaddr)
111 int prot = 0;
112 MemTxAttrs attrs = {};
113 uint32_t paddr;
115 address &= TARGET_PAGE_MASK;
117 if (mmu_idx == MMU_CODE_IDX) {
118 /* access to code in flash */
119 paddr = OFFSET_CODE + address;
120 prot = PAGE_READ | PAGE_EXEC;
121 if (paddr + TARGET_PAGE_SIZE > OFFSET_DATA) {
122 error_report("execution left flash memory");
123 abort();
125 } else if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
127 * access to CPU registers, exit and rebuilt this TB to use full access
128 * incase it touches specially handled registers like SREG or SP
130 AVRCPU *cpu = AVR_CPU(cs);
131 CPUAVRState *env = &cpu->env;
132 env->fullacc = 1;
133 cpu_loop_exit_restore(cs, retaddr);
134 } else {
135 /* access to memory. nothing special */
136 paddr = OFFSET_DATA + address;
137 prot = PAGE_READ | PAGE_WRITE;
140 tlb_set_page_with_attrs(cs, address, paddr, attrs, prot,
141 mmu_idx, TARGET_PAGE_SIZE);
143 return true;
147 * helpers
150 void helper_sleep(CPUAVRState *env)
152 CPUState *cs = env_cpu(env);
154 cs->exception_index = EXCP_HLT;
155 cpu_loop_exit(cs);
158 void helper_unsupported(CPUAVRState *env)
160 CPUState *cs = env_cpu(env);
163 * I count not find what happens on the real platform, so
164 * it's EXCP_DEBUG for meanwhile
166 cs->exception_index = EXCP_DEBUG;
167 if (qemu_loglevel_mask(LOG_UNIMP)) {
168 qemu_log("UNSUPPORTED\n");
169 cpu_dump_state(cs, stderr, 0);
171 cpu_loop_exit(cs);
174 void helper_debug(CPUAVRState *env)
176 CPUState *cs = env_cpu(env);
178 cs->exception_index = EXCP_DEBUG;
179 cpu_loop_exit(cs);
182 void helper_break(CPUAVRState *env)
184 CPUState *cs = env_cpu(env);
186 cs->exception_index = EXCP_DEBUG;
187 cpu_loop_exit(cs);
190 void helper_wdr(CPUAVRState *env)
192 qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n");
196 * This function implements IN instruction
198 * It does the following
199 * a. if an IO register belongs to CPU, its value is read and returned
200 * b. otherwise io address is translated to mem address and physical memory
201 * is read.
202 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
205 target_ulong helper_inb(CPUAVRState *env, uint32_t port)
207 target_ulong data = 0;
209 switch (port) {
210 case 0x38: /* RAMPD */
211 data = 0xff & (env->rampD >> 16);
212 break;
213 case 0x39: /* RAMPX */
214 data = 0xff & (env->rampX >> 16);
215 break;
216 case 0x3a: /* RAMPY */
217 data = 0xff & (env->rampY >> 16);
218 break;
219 case 0x3b: /* RAMPZ */
220 data = 0xff & (env->rampZ >> 16);
221 break;
222 case 0x3c: /* EIND */
223 data = 0xff & (env->eind >> 16);
224 break;
225 case 0x3d: /* SPL */
226 data = env->sp & 0x00ff;
227 break;
228 case 0x3e: /* SPH */
229 data = env->sp >> 8;
230 break;
231 case 0x3f: /* SREG */
232 data = cpu_get_sreg(env);
233 break;
234 default:
235 /* not a special register, pass to normal memory access */
236 data = address_space_ldub(&address_space_memory,
237 OFFSET_IO_REGISTERS + port,
238 MEMTXATTRS_UNSPECIFIED, NULL);
241 return data;
245 * This function implements OUT instruction
247 * It does the following
248 * a. if an IO register belongs to CPU, its value is written into the register
249 * b. otherwise io address is translated to mem address and physical memory
250 * is written.
251 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
254 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
256 data &= 0x000000ff;
258 switch (port) {
259 case 0x38: /* RAMPD */
260 if (avr_feature(env, AVR_FEATURE_RAMPD)) {
261 env->rampD = (data & 0xff) << 16;
263 break;
264 case 0x39: /* RAMPX */
265 if (avr_feature(env, AVR_FEATURE_RAMPX)) {
266 env->rampX = (data & 0xff) << 16;
268 break;
269 case 0x3a: /* RAMPY */
270 if (avr_feature(env, AVR_FEATURE_RAMPY)) {
271 env->rampY = (data & 0xff) << 16;
273 break;
274 case 0x3b: /* RAMPZ */
275 if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
276 env->rampZ = (data & 0xff) << 16;
278 break;
279 case 0x3c: /* EIDN */
280 env->eind = (data & 0xff) << 16;
281 break;
282 case 0x3d: /* SPL */
283 env->sp = (env->sp & 0xff00) | (data);
284 break;
285 case 0x3e: /* SPH */
286 if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
287 env->sp = (env->sp & 0x00ff) | (data << 8);
289 break;
290 case 0x3f: /* SREG */
291 cpu_set_sreg(env, data);
292 break;
293 default:
294 /* not a special register, pass to normal memory access */
295 address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
296 data, MEMTXATTRS_UNSPECIFIED, NULL);
301 * this function implements LD instruction when there is a possibility to read
302 * from a CPU register
304 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
306 uint8_t data;
308 env->fullacc = false;
310 if (addr < NUMBER_OF_CPU_REGISTERS) {
311 /* CPU registers */
312 data = env->r[addr];
313 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
314 /* IO registers */
315 data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
316 } else {
317 /* memory */
318 data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
319 MEMTXATTRS_UNSPECIFIED, NULL);
321 return data;
325 * this function implements ST instruction when there is a possibility to write
326 * into a CPU register
328 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
330 env->fullacc = false;
332 /* Following logic assumes this: */
333 assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
334 assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
335 NUMBER_OF_CPU_REGISTERS);
337 if (addr < NUMBER_OF_CPU_REGISTERS) {
338 /* CPU registers */
339 env->r[addr] = data;
340 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
341 /* IO registers */
342 helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
343 } else {
344 /* memory */
345 address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
346 MEMTXATTRS_UNSPECIFIED, NULL);