tests: Ignore another built executable (test-hmp)
[qemu.git] / pc-bios / optionrom / linuxboot_dma.c
blob4754282ad736ac3be6459d59dcca6edb64d3f4ed
1 /*
2 * Linux Boot Option ROM for fw_cfg DMA
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
17 * Copyright (c) 2015-2016 Red Hat Inc.
18 * Authors:
19 * Marc MarĂ­ <marc.mari.barcelo@gmail.com>
20 * Richard W.M. Jones <rjones@redhat.com>
23 asm(
24 ".text\n"
25 ".global _start\n"
26 "_start:\n"
27 " .short 0xaa55\n"
28 " .byte 3\n" /* desired size in 512 units; signrom.py adds padding */
29 " .byte 0xcb\n" /* far return without prefix */
30 " .org 0x18\n"
31 " .short 0\n"
32 " .short _pnph\n"
33 "_pnph:\n"
34 " .ascii \"$PnP\"\n"
35 " .byte 0x01\n"
36 " .byte (_pnph_len / 16)\n"
37 " .short 0x0000\n"
38 " .byte 0x00\n"
39 " .byte 0x00\n"
40 " .long 0x00000000\n"
41 " .short _manufacturer\n"
42 " .short _product\n"
43 " .long 0x00000000\n"
44 " .short 0x0000\n"
45 " .short 0x0000\n"
46 " .short _bev\n"
47 " .short 0x0000\n"
48 " .short 0x0000\n"
49 " .equ _pnph_len, . - _pnph\n"
50 "_manufacturer:\n"
51 " .asciz \"QEMU\"\n"
52 "_product:\n"
53 " .asciz \"Linux loader DMA\"\n"
54 " .align 4, 0\n"
55 "_bev:\n"
56 " cli\n"
57 " cld\n"
58 " jmp load_kernel\n"
61 #include "../../include/hw/nvram/fw_cfg_keys.h"
63 /* QEMU_CFG_DMA_CONTROL bits */
64 #define BIOS_CFG_DMA_CTL_ERROR 0x01
65 #define BIOS_CFG_DMA_CTL_READ 0x02
66 #define BIOS_CFG_DMA_CTL_SKIP 0x04
67 #define BIOS_CFG_DMA_CTL_SELECT 0x08
69 #define BIOS_CFG_DMA_ADDR_HIGH 0x514
70 #define BIOS_CFG_DMA_ADDR_LOW 0x518
72 #define uint64_t unsigned long long
73 #define uint32_t unsigned int
74 #define uint16_t unsigned short
76 #define barrier() asm("" : : : "memory")
78 typedef struct FWCfgDmaAccess {
79 uint32_t control;
80 uint32_t length;
81 uint64_t address;
82 } __attribute__((packed)) FWCfgDmaAccess;
84 static inline void outl(uint32_t value, uint16_t port)
86 asm("outl %0, %w1" : : "a"(value), "Nd"(port));
89 static inline void set_es(void *addr)
91 uint32_t seg = (uint32_t)addr >> 4;
92 asm("movl %0, %%es" : : "r"(seg));
95 #ifdef __clang__
96 #define ADDR32
97 #else
98 #define ADDR32 "addr32 "
99 #endif
101 static inline uint16_t readw_es(uint16_t offset)
103 uint16_t val;
104 asm(ADDR32 "movw %%es:(%1), %0" : "=r"(val) : "r"((uint32_t)offset));
105 barrier();
106 return val;
109 static inline uint32_t readl_es(uint16_t offset)
111 uint32_t val;
112 asm(ADDR32 "movl %%es:(%1), %0" : "=r"(val) : "r"((uint32_t)offset));
113 barrier();
114 return val;
117 static inline void writel_es(uint16_t offset, uint32_t val)
119 barrier();
120 asm(ADDR32 "movl %0, %%es:(%1)" : : "r"(val), "r"((uint32_t)offset));
123 static inline uint32_t bswap32(uint32_t x)
125 asm("bswapl %0" : "=r" (x) : "0" (x));
126 return x;
129 static inline uint64_t bswap64(uint64_t x)
131 asm("bswapl %%eax; bswapl %%edx; xchg %%eax, %%edx" : "=A" (x) : "0" (x));
132 return x;
135 static inline uint64_t cpu_to_be64(uint64_t x)
137 return bswap64(x);
140 static inline uint32_t cpu_to_be32(uint32_t x)
142 return bswap32(x);
145 static inline uint32_t be32_to_cpu(uint32_t x)
147 return bswap32(x);
150 /* clang is happy to inline this function, and bloats the
151 * ROM.
153 static __attribute__((__noinline__))
154 void bios_cfg_read_entry(void *buf, uint16_t entry, uint32_t len)
156 FWCfgDmaAccess access;
157 uint32_t control = (entry << 16) | BIOS_CFG_DMA_CTL_SELECT
158 | BIOS_CFG_DMA_CTL_READ;
160 access.address = cpu_to_be64((uint64_t)(uint32_t)buf);
161 access.length = cpu_to_be32(len);
162 access.control = cpu_to_be32(control);
164 barrier();
166 outl(cpu_to_be32((uint32_t)&access), BIOS_CFG_DMA_ADDR_LOW);
168 while (be32_to_cpu(access.control) & ~BIOS_CFG_DMA_CTL_ERROR) {
169 barrier();
173 /* Return top of memory using BIOS function E801. */
174 static uint32_t get_e801_addr(void)
176 uint16_t ax, bx, cx, dx;
177 uint32_t ret;
179 asm("int $0x15\n"
180 : "=a"(ax), "=b"(bx), "=c"(cx), "=d"(dx)
181 : "a"(0xe801), "b"(0), "c"(0), "d"(0));
183 /* Not SeaBIOS, but in theory a BIOS could return CX=DX=0 in which
184 * case we need to use the result from AX & BX instead.
186 if (cx == 0 && dx == 0) {
187 cx = ax;
188 dx = bx;
191 if (dx) {
192 /* DX = extended memory above 16M, in 64K units.
193 * Convert it to bytes and return.
195 ret = ((uint32_t)dx + 256 /* 16M in 64K units */) << 16;
196 } else {
197 /* This is a fallback path for machines with <= 16MB of RAM,
198 * which probably would never be the case, but deal with it
199 * anyway.
201 * CX = extended memory between 1M and 16M, in kilobytes
202 * Convert it to bytes and return.
204 ret = ((uint32_t)cx + 1024 /* 1M in K */) << 10;
207 return ret;
210 /* Force the asm name without leading underscore, even on Win32. */
211 extern void load_kernel(void) asm("load_kernel");
213 void load_kernel(void)
215 void *setup_addr;
216 void *initrd_addr;
217 void *kernel_addr;
218 void *cmdline_addr;
219 uint32_t setup_size;
220 uint32_t initrd_size;
221 uint32_t kernel_size;
222 uint32_t cmdline_size;
223 uint32_t initrd_end_page, max_allowed_page;
224 uint32_t segment_addr, stack_addr;
226 bios_cfg_read_entry(&setup_addr, FW_CFG_SETUP_ADDR, 4);
227 bios_cfg_read_entry(&setup_size, FW_CFG_SETUP_SIZE, 4);
228 bios_cfg_read_entry(setup_addr, FW_CFG_SETUP_DATA, setup_size);
230 set_es(setup_addr);
232 /* For protocol < 0x203 we don't have initrd_max ... */
233 if (readw_es(0x206) < 0x203) {
234 /* ... so we assume initrd_max = 0x37ffffff. */
235 writel_es(0x22c, 0x37ffffff);
238 bios_cfg_read_entry(&initrd_addr, FW_CFG_INITRD_ADDR, 4);
239 bios_cfg_read_entry(&initrd_size, FW_CFG_INITRD_SIZE, 4);
241 initrd_end_page = ((uint32_t)(initrd_addr + initrd_size) & -4096);
242 max_allowed_page = (readl_es(0x22c) & -4096);
244 if (initrd_end_page != 0 && max_allowed_page != 0 &&
245 initrd_end_page != max_allowed_page) {
246 /* Initrd at the end of memory. Compute better initrd address
247 * based on e801 data
249 initrd_addr = (void *)((get_e801_addr() - initrd_size) & -4096);
250 writel_es(0x218, (uint32_t)initrd_addr);
254 bios_cfg_read_entry(initrd_addr, FW_CFG_INITRD_DATA, initrd_size);
256 bios_cfg_read_entry(&kernel_addr, FW_CFG_KERNEL_ADDR, 4);
257 bios_cfg_read_entry(&kernel_size, FW_CFG_KERNEL_SIZE, 4);
258 bios_cfg_read_entry(kernel_addr, FW_CFG_KERNEL_DATA, kernel_size);
260 bios_cfg_read_entry(&cmdline_addr, FW_CFG_CMDLINE_ADDR, 4);
261 bios_cfg_read_entry(&cmdline_size, FW_CFG_CMDLINE_SIZE, 4);
262 bios_cfg_read_entry(cmdline_addr, FW_CFG_CMDLINE_DATA, cmdline_size);
264 /* Boot linux */
265 segment_addr = ((uint32_t)setup_addr >> 4);
266 stack_addr = (uint32_t)(cmdline_addr - setup_addr - 16);
268 /* As we are changing critical registers, we cannot leave freedom to the
269 * compiler.
271 asm("movw %%ax, %%ds\n"
272 "movw %%ax, %%es\n"
273 "movw %%ax, %%fs\n"
274 "movw %%ax, %%gs\n"
275 "movw %%ax, %%ss\n"
276 "movl %%ebx, %%esp\n"
277 "addw $0x20, %%ax\n"
278 "pushw %%ax\n" /* CS */
279 "pushw $0\n" /* IP */
280 /* Clear registers and jump to Linux */
281 "xor %%ebx, %%ebx\n"
282 "xor %%ecx, %%ecx\n"
283 "xor %%edx, %%edx\n"
284 "xor %%edi, %%edi\n"
285 "xor %%ebp, %%ebp\n"
286 "lretw\n"
287 : : "a"(segment_addr), "b"(stack_addr));