2 * ARM implementation of KVM hooks, 32 bit specific code.
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
12 #include <sys/types.h>
13 #include <sys/ioctl.h>
16 #include <linux/kvm.h>
18 #include "qemu-common.h"
19 #include "qemu/timer.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
24 #include "internals.h"
25 #include "hw/arm/arm.h"
27 static inline void set_feature(uint64_t *features
, int feature
)
29 *features
|= 1ULL << feature
;
32 bool kvm_arm_get_host_cpu_features(ARMHostCPUClass
*ahcc
)
34 /* Identify the feature bits corresponding to the host CPU, and
35 * fill out the ARMHostCPUClass fields accordingly. To do this
36 * we have to create a scratch VM, create a single CPU inside it,
37 * and then query that CPU for the relevant ID registers.
39 int i
, ret
, fdarray
[3];
40 uint32_t midr
, id_pfr0
, id_isar0
, mvfr1
;
41 uint64_t features
= 0;
42 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
43 * we know these will only support creating one kind of guest CPU,
44 * which is its preferred CPU type.
46 static const uint32_t cpus_to_try
[] = {
47 QEMU_KVM_ARM_TARGET_CORTEX_A15
,
48 QEMU_KVM_ARM_TARGET_NONE
50 struct kvm_vcpu_init init
;
51 struct kvm_one_reg idregs
[] = {
53 .id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
54 | ENCODE_CP_REG(15, 0, 0, 0, 0, 0, 0),
55 .addr
= (uintptr_t)&midr
,
58 .id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
59 | ENCODE_CP_REG(15, 0, 0, 0, 1, 0, 0),
60 .addr
= (uintptr_t)&id_pfr0
,
63 .id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
64 | ENCODE_CP_REG(15, 0, 0, 0, 2, 0, 0),
65 .addr
= (uintptr_t)&id_isar0
,
68 .id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
69 | KVM_REG_ARM_VFP
| KVM_REG_ARM_VFP_MVFR1
,
70 .addr
= (uintptr_t)&mvfr1
,
74 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try
, fdarray
, &init
)) {
78 ahcc
->target
= init
.target
;
80 /* This is not strictly blessed by the device tree binding docs yet,
81 * but in practice the kernel does not care about this string so
82 * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
84 ahcc
->dtb_compatible
= "arm,arm-v7";
86 for (i
= 0; i
< ARRAY_SIZE(idregs
); i
++) {
87 ret
= ioctl(fdarray
[2], KVM_GET_ONE_REG
, &idregs
[i
]);
93 kvm_arm_destroy_scratch_host_vcpu(fdarray
);
99 /* Now we've retrieved all the register information we can
100 * set the feature bits based on the ID register fields.
101 * We can assume any KVM supporting CPU is at least a v7
102 * with VFPv3, LPAE and the generic timers; this in turn implies
103 * most of the other feature bits, but a few must be tested.
105 set_feature(&features
, ARM_FEATURE_V7
);
106 set_feature(&features
, ARM_FEATURE_VFP3
);
107 set_feature(&features
, ARM_FEATURE_LPAE
);
108 set_feature(&features
, ARM_FEATURE_GENERIC_TIMER
);
110 switch (extract32(id_isar0
, 24, 4)) {
112 set_feature(&features
, ARM_FEATURE_THUMB_DIV
);
115 set_feature(&features
, ARM_FEATURE_ARM_DIV
);
116 set_feature(&features
, ARM_FEATURE_THUMB_DIV
);
122 if (extract32(id_pfr0
, 12, 4) == 1) {
123 set_feature(&features
, ARM_FEATURE_THUMB2EE
);
125 if (extract32(mvfr1
, 20, 4) == 1) {
126 set_feature(&features
, ARM_FEATURE_VFP_FP16
);
128 if (extract32(mvfr1
, 12, 4) == 1) {
129 set_feature(&features
, ARM_FEATURE_NEON
);
131 if (extract32(mvfr1
, 28, 4) == 1) {
132 /* FMAC support implies VFPv4 */
133 set_feature(&features
, ARM_FEATURE_VFP4
);
136 ahcc
->features
= features
;
141 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx
)
143 /* Return true if the regidx is a register we should synchronize
144 * via the cpreg_tuples array (ie is not a core reg we sync by
145 * hand in kvm_arch_get/put_registers())
147 switch (regidx
& KVM_REG_ARM_COPROC_MASK
) {
148 case KVM_REG_ARM_CORE
:
149 case KVM_REG_ARM_VFP
:
156 #define ARM_MPIDR_HWID_BITMASK 0xFFFFFF
157 #define ARM_CPU_ID_MPIDR 0, 0, 0, 5
159 int kvm_arch_init_vcpu(CPUState
*cs
)
164 struct kvm_one_reg r
;
165 ARMCPU
*cpu
= ARM_CPU(cs
);
167 if (cpu
->kvm_target
== QEMU_KVM_ARM_TARGET_NONE
) {
168 fprintf(stderr
, "KVM is not supported for this guest CPU type\n");
172 /* Determine init features for this CPU */
173 memset(cpu
->kvm_init_features
, 0, sizeof(cpu
->kvm_init_features
));
174 if (cpu
->start_powered_off
) {
175 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_POWER_OFF
;
177 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_ARM_PSCI_0_2
)) {
178 cpu
->psci_version
= 2;
179 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2
;
182 /* Do KVM_ARM_VCPU_INIT ioctl */
183 ret
= kvm_arm_vcpu_init(cs
);
188 /* Query the kernel to make sure it supports 32 VFP
189 * registers: QEMU's "cortex-a15" CPU is always a
190 * VFP-D32 core. The simplest way to do this is just
191 * to attempt to read register d31.
193 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
| 31;
194 r
.addr
= (uintptr_t)(&v
);
195 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
196 if (ret
== -ENOENT
) {
201 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
202 * Currently KVM has its own idea about MPIDR assignment, so we
203 * override our defaults with what we get from KVM.
205 ret
= kvm_get_one_reg(cs
, ARM_CP15_REG32(ARM_CPU_ID_MPIDR
), &mpidr
);
209 cpu
->mp_affinity
= mpidr
& ARM_MPIDR_HWID_BITMASK
;
211 return kvm_arm_init_cpreg_list(cpu
);
219 #define COREREG(KERNELNAME, QEMUFIELD) \
221 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
222 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
223 offsetof(CPUARMState, QEMUFIELD) \
226 #define VFPSYSREG(R) \
228 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
229 KVM_REG_ARM_VFP_##R, \
230 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
233 /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
234 #define COREREG64(KERNELNAME, QEMUFIELD) \
236 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
237 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
238 offsetoflow32(CPUARMState, QEMUFIELD) \
241 static const Reg regs
[] = {
242 /* R0_usr .. R14_usr */
243 COREREG(usr_regs
.uregs
[0], regs
[0]),
244 COREREG(usr_regs
.uregs
[1], regs
[1]),
245 COREREG(usr_regs
.uregs
[2], regs
[2]),
246 COREREG(usr_regs
.uregs
[3], regs
[3]),
247 COREREG(usr_regs
.uregs
[4], regs
[4]),
248 COREREG(usr_regs
.uregs
[5], regs
[5]),
249 COREREG(usr_regs
.uregs
[6], regs
[6]),
250 COREREG(usr_regs
.uregs
[7], regs
[7]),
251 COREREG(usr_regs
.uregs
[8], usr_regs
[0]),
252 COREREG(usr_regs
.uregs
[9], usr_regs
[1]),
253 COREREG(usr_regs
.uregs
[10], usr_regs
[2]),
254 COREREG(usr_regs
.uregs
[11], usr_regs
[3]),
255 COREREG(usr_regs
.uregs
[12], usr_regs
[4]),
256 COREREG(usr_regs
.uregs
[13], banked_r13
[0]),
257 COREREG(usr_regs
.uregs
[14], banked_r14
[0]),
258 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
259 COREREG(svc_regs
[0], banked_r13
[1]),
260 COREREG(svc_regs
[1], banked_r14
[1]),
261 COREREG64(svc_regs
[2], banked_spsr
[1]),
262 COREREG(abt_regs
[0], banked_r13
[2]),
263 COREREG(abt_regs
[1], banked_r14
[2]),
264 COREREG64(abt_regs
[2], banked_spsr
[2]),
265 COREREG(und_regs
[0], banked_r13
[3]),
266 COREREG(und_regs
[1], banked_r14
[3]),
267 COREREG64(und_regs
[2], banked_spsr
[3]),
268 COREREG(irq_regs
[0], banked_r13
[4]),
269 COREREG(irq_regs
[1], banked_r14
[4]),
270 COREREG64(irq_regs
[2], banked_spsr
[4]),
271 /* R8_fiq .. R14_fiq and SPSR_fiq */
272 COREREG(fiq_regs
[0], fiq_regs
[0]),
273 COREREG(fiq_regs
[1], fiq_regs
[1]),
274 COREREG(fiq_regs
[2], fiq_regs
[2]),
275 COREREG(fiq_regs
[3], fiq_regs
[3]),
276 COREREG(fiq_regs
[4], fiq_regs
[4]),
277 COREREG(fiq_regs
[5], banked_r13
[5]),
278 COREREG(fiq_regs
[6], banked_r14
[5]),
279 COREREG64(fiq_regs
[7], banked_spsr
[5]),
281 COREREG(usr_regs
.uregs
[15], regs
[15]),
282 /* VFP system registers */
291 int kvm_arch_put_registers(CPUState
*cs
, int level
)
293 ARMCPU
*cpu
= ARM_CPU(cs
);
294 CPUARMState
*env
= &cpu
->env
;
295 struct kvm_one_reg r
;
298 uint32_t cpsr
, fpscr
;
300 /* Make sure the banked regs are properly set */
301 mode
= env
->uncached_cpsr
& CPSR_M
;
302 bn
= bank_number(mode
);
303 if (mode
== ARM_CPU_MODE_FIQ
) {
304 memcpy(env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
306 memcpy(env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
308 env
->banked_r13
[bn
] = env
->regs
[13];
309 env
->banked_r14
[bn
] = env
->regs
[14];
310 env
->banked_spsr
[bn
] = env
->spsr
;
312 /* Now we can safely copy stuff down to the kernel */
313 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
315 r
.addr
= (uintptr_t)(env
) + regs
[i
].offset
;
316 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
322 /* Special cases which aren't a single CPUARMState field */
323 cpsr
= cpsr_read(env
);
324 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
|
325 KVM_REG_ARM_CORE
| KVM_REG_ARM_CORE_REG(usr_regs
.ARM_cpsr
);
326 r
.addr
= (uintptr_t)(&cpsr
);
327 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
333 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
334 for (i
= 0; i
< 32; i
++) {
335 r
.addr
= (uintptr_t)(&env
->vfp
.regs
[i
]);
336 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
343 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
|
344 KVM_REG_ARM_VFP_FPSCR
;
345 fpscr
= vfp_get_fpscr(env
);
346 r
.addr
= (uintptr_t)&fpscr
;
347 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
352 /* Note that we do not call write_cpustate_to_list()
353 * here, so we are only writing the tuple list back to
354 * KVM. This is safe because nothing can change the
355 * CPUARMState cp15 fields (in particular gdb accesses cannot)
356 * and so there are no changes to sync. In fact syncing would
357 * be wrong at this point: for a constant register where TCG and
358 * KVM disagree about its value, the preceding write_list_to_cpustate()
359 * would not have had any effect on the CPUARMState value (since the
360 * register is read-only), and a write_cpustate_to_list() here would
361 * then try to write the TCG value back into KVM -- this would either
362 * fail or incorrectly change the value the guest sees.
364 * If we ever want to allow the user to modify cp15 registers via
365 * the gdb stub, we would need to be more clever here (for instance
366 * tracking the set of registers kvm_arch_get_registers() successfully
367 * managed to update the CPUARMState with, and only allowing those
368 * to be written back up into the kernel).
370 if (!write_list_to_kvmstate(cpu
)) {
374 kvm_arm_sync_mpstate_to_kvm(cpu
);
379 int kvm_arch_get_registers(CPUState
*cs
)
381 ARMCPU
*cpu
= ARM_CPU(cs
);
382 CPUARMState
*env
= &cpu
->env
;
383 struct kvm_one_reg r
;
386 uint32_t cpsr
, fpscr
;
388 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
390 r
.addr
= (uintptr_t)(env
) + regs
[i
].offset
;
391 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
397 /* Special cases which aren't a single CPUARMState field */
398 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
|
399 KVM_REG_ARM_CORE
| KVM_REG_ARM_CORE_REG(usr_regs
.ARM_cpsr
);
400 r
.addr
= (uintptr_t)(&cpsr
);
401 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
405 cpsr_write(env
, cpsr
, 0xffffffff);
407 /* Make sure the current mode regs are properly set */
408 mode
= env
->uncached_cpsr
& CPSR_M
;
409 bn
= bank_number(mode
);
410 if (mode
== ARM_CPU_MODE_FIQ
) {
411 memcpy(env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
413 memcpy(env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
415 env
->regs
[13] = env
->banked_r13
[bn
];
416 env
->regs
[14] = env
->banked_r14
[bn
];
417 env
->spsr
= env
->banked_spsr
[bn
];
420 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
421 for (i
= 0; i
< 32; i
++) {
422 r
.addr
= (uintptr_t)(&env
->vfp
.regs
[i
]);
423 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
430 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
|
431 KVM_REG_ARM_VFP_FPSCR
;
432 r
.addr
= (uintptr_t)&fpscr
;
433 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
437 vfp_set_fpscr(env
, fpscr
);
439 if (!write_kvmstate_to_list(cpu
)) {
442 /* Note that it's OK to have registers which aren't in CPUState,
443 * so we can ignore a failure return here.
445 write_list_to_cpustate(cpu
);
447 kvm_arm_sync_mpstate_to_qemu(cpu
);