target-i386: cpu_x86_register() consolidate freeing resources
[qemu.git] / hw / pc.c
blobba1f19d7e831ad885fd683c2944246e635d07111
1 /*
2 * QEMU PC System Emulator
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "pc.h"
26 #include "serial.h"
27 #include "apic.h"
28 #include "fdc.h"
29 #include "ide.h"
30 #include "pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "fw_cfg.h"
33 #include "hpet_emul.h"
34 #include "smbios.h"
35 #include "loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "mc146818rtc.h"
39 #include "i8254.h"
40 #include "pcspk.h"
41 #include "pci/msi.h"
42 #include "sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block-common.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
55 /* debug PC/ISA interrupts */
56 //#define DEBUG_IRQ
58 #ifdef DEBUG_IRQ
59 #define DPRINTF(fmt, ...) \
60 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
61 #else
62 #define DPRINTF(fmt, ...)
63 #endif
65 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */
66 #define ACPI_DATA_SIZE 0x10000
67 #define BIOS_CFG_IOPORT 0x510
68 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
69 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
70 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
71 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
72 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
74 #define E820_NR_ENTRIES 16
76 struct e820_entry {
77 uint64_t address;
78 uint64_t length;
79 uint32_t type;
80 } QEMU_PACKED __attribute((__aligned__(4)));
82 struct e820_table {
83 uint32_t count;
84 struct e820_entry entry[E820_NR_ENTRIES];
85 } QEMU_PACKED __attribute((__aligned__(4)));
87 static struct e820_table e820_table;
88 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
90 void gsi_handler(void *opaque, int n, int level)
92 GSIState *s = opaque;
94 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
95 if (n < ISA_NUM_IRQS) {
96 qemu_set_irq(s->i8259_irq[n], level);
98 qemu_set_irq(s->ioapic_irq[n], level);
101 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
102 unsigned size)
106 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
108 return 0xffffffffffffffffULL;
111 /* MSDOS compatibility mode FPU exception support */
112 static qemu_irq ferr_irq;
114 void pc_register_ferr_irq(qemu_irq irq)
116 ferr_irq = irq;
119 /* XXX: add IGNNE support */
120 void cpu_set_ferr(CPUX86State *s)
122 qemu_irq_raise(ferr_irq);
125 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
126 unsigned size)
128 qemu_irq_lower(ferr_irq);
131 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
133 return 0xffffffffffffffffULL;
136 /* TSC handling */
137 uint64_t cpu_get_tsc(CPUX86State *env)
139 return cpu_get_ticks();
142 /* SMM support */
144 static cpu_set_smm_t smm_set;
145 static void *smm_arg;
147 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
149 assert(smm_set == NULL);
150 assert(smm_arg == NULL);
151 smm_set = callback;
152 smm_arg = arg;
155 void cpu_smm_update(CPUX86State *env)
157 if (smm_set && smm_arg && env == first_cpu)
158 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
162 /* IRQ handling */
163 int cpu_get_pic_interrupt(CPUX86State *env)
165 int intno;
167 intno = apic_get_interrupt(env->apic_state);
168 if (intno >= 0) {
169 return intno;
171 /* read the irq from the PIC */
172 if (!apic_accept_pic_intr(env->apic_state)) {
173 return -1;
176 intno = pic_read_irq(isa_pic);
177 return intno;
180 static void pic_irq_request(void *opaque, int irq, int level)
182 CPUX86State *env = first_cpu;
184 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
185 if (env->apic_state) {
186 while (env) {
187 if (apic_accept_pic_intr(env->apic_state)) {
188 apic_deliver_pic_intr(env->apic_state, level);
190 env = env->next_cpu;
192 } else {
193 if (level)
194 cpu_interrupt(env, CPU_INTERRUPT_HARD);
195 else
196 cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
200 /* PC cmos mappings */
202 #define REG_EQUIPMENT_BYTE 0x14
204 static int cmos_get_fd_drive_type(FDriveType fd0)
206 int val;
208 switch (fd0) {
209 case FDRIVE_DRV_144:
210 /* 1.44 Mb 3"5 drive */
211 val = 4;
212 break;
213 case FDRIVE_DRV_288:
214 /* 2.88 Mb 3"5 drive */
215 val = 5;
216 break;
217 case FDRIVE_DRV_120:
218 /* 1.2 Mb 5"5 drive */
219 val = 2;
220 break;
221 case FDRIVE_DRV_NONE:
222 default:
223 val = 0;
224 break;
226 return val;
229 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
230 int16_t cylinders, int8_t heads, int8_t sectors)
232 rtc_set_memory(s, type_ofs, 47);
233 rtc_set_memory(s, info_ofs, cylinders);
234 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
235 rtc_set_memory(s, info_ofs + 2, heads);
236 rtc_set_memory(s, info_ofs + 3, 0xff);
237 rtc_set_memory(s, info_ofs + 4, 0xff);
238 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
239 rtc_set_memory(s, info_ofs + 6, cylinders);
240 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
241 rtc_set_memory(s, info_ofs + 8, sectors);
244 /* convert boot_device letter to something recognizable by the bios */
245 static int boot_device2nibble(char boot_device)
247 switch(boot_device) {
248 case 'a':
249 case 'b':
250 return 0x01; /* floppy boot */
251 case 'c':
252 return 0x02; /* hard drive boot */
253 case 'd':
254 return 0x03; /* CD-ROM boot */
255 case 'n':
256 return 0x04; /* Network boot */
258 return 0;
261 static int set_boot_dev(ISADevice *s, const char *boot_device, int fd_bootchk)
263 #define PC_MAX_BOOT_DEVICES 3
264 int nbds, bds[3] = { 0, };
265 int i;
267 nbds = strlen(boot_device);
268 if (nbds > PC_MAX_BOOT_DEVICES) {
269 error_report("Too many boot devices for PC");
270 return(1);
272 for (i = 0; i < nbds; i++) {
273 bds[i] = boot_device2nibble(boot_device[i]);
274 if (bds[i] == 0) {
275 error_report("Invalid boot device for PC: '%c'",
276 boot_device[i]);
277 return(1);
280 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
281 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
282 return(0);
285 static int pc_boot_set(void *opaque, const char *boot_device)
287 return set_boot_dev(opaque, boot_device, 0);
290 typedef struct pc_cmos_init_late_arg {
291 ISADevice *rtc_state;
292 BusState *idebus[2];
293 } pc_cmos_init_late_arg;
295 static void pc_cmos_init_late(void *opaque)
297 pc_cmos_init_late_arg *arg = opaque;
298 ISADevice *s = arg->rtc_state;
299 int16_t cylinders;
300 int8_t heads, sectors;
301 int val;
302 int i, trans;
304 val = 0;
305 if (ide_get_geometry(arg->idebus[0], 0,
306 &cylinders, &heads, &sectors) >= 0) {
307 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
308 val |= 0xf0;
310 if (ide_get_geometry(arg->idebus[0], 1,
311 &cylinders, &heads, &sectors) >= 0) {
312 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
313 val |= 0x0f;
315 rtc_set_memory(s, 0x12, val);
317 val = 0;
318 for (i = 0; i < 4; i++) {
319 /* NOTE: ide_get_geometry() returns the physical
320 geometry. It is always such that: 1 <= sects <= 63, 1
321 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
322 geometry can be different if a translation is done. */
323 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
324 &cylinders, &heads, &sectors) >= 0) {
325 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
326 assert((trans & ~3) == 0);
327 val |= trans << (i * 2);
330 rtc_set_memory(s, 0x39, val);
332 qemu_unregister_reset(pc_cmos_init_late, opaque);
335 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
336 const char *boot_device,
337 ISADevice *floppy, BusState *idebus0, BusState *idebus1,
338 ISADevice *s)
340 int val, nb, i;
341 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
342 static pc_cmos_init_late_arg arg;
344 /* various important CMOS locations needed by PC/Bochs bios */
346 /* memory size */
347 /* base memory (first MiB) */
348 val = MIN(ram_size / 1024, 640);
349 rtc_set_memory(s, 0x15, val);
350 rtc_set_memory(s, 0x16, val >> 8);
351 /* extended memory (next 64MiB) */
352 if (ram_size > 1024 * 1024) {
353 val = (ram_size - 1024 * 1024) / 1024;
354 } else {
355 val = 0;
357 if (val > 65535)
358 val = 65535;
359 rtc_set_memory(s, 0x17, val);
360 rtc_set_memory(s, 0x18, val >> 8);
361 rtc_set_memory(s, 0x30, val);
362 rtc_set_memory(s, 0x31, val >> 8);
363 /* memory between 16MiB and 4GiB */
364 if (ram_size > 16 * 1024 * 1024) {
365 val = (ram_size - 16 * 1024 * 1024) / 65536;
366 } else {
367 val = 0;
369 if (val > 65535)
370 val = 65535;
371 rtc_set_memory(s, 0x34, val);
372 rtc_set_memory(s, 0x35, val >> 8);
373 /* memory above 4GiB */
374 val = above_4g_mem_size / 65536;
375 rtc_set_memory(s, 0x5b, val);
376 rtc_set_memory(s, 0x5c, val >> 8);
377 rtc_set_memory(s, 0x5d, val >> 16);
379 /* set the number of CPU */
380 rtc_set_memory(s, 0x5f, smp_cpus - 1);
382 /* set boot devices, and disable floppy signature check if requested */
383 if (set_boot_dev(s, boot_device, fd_bootchk)) {
384 exit(1);
387 /* floppy type */
388 if (floppy) {
389 for (i = 0; i < 2; i++) {
390 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
393 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
394 cmos_get_fd_drive_type(fd_type[1]);
395 rtc_set_memory(s, 0x10, val);
397 val = 0;
398 nb = 0;
399 if (fd_type[0] < FDRIVE_DRV_NONE) {
400 nb++;
402 if (fd_type[1] < FDRIVE_DRV_NONE) {
403 nb++;
405 switch (nb) {
406 case 0:
407 break;
408 case 1:
409 val |= 0x01; /* 1 drive, ready for boot */
410 break;
411 case 2:
412 val |= 0x41; /* 2 drives, ready for boot */
413 break;
415 val |= 0x02; /* FPU is there */
416 val |= 0x04; /* PS/2 mouse installed */
417 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
419 /* hard drives */
420 arg.rtc_state = s;
421 arg.idebus[0] = idebus0;
422 arg.idebus[1] = idebus1;
423 qemu_register_reset(pc_cmos_init_late, &arg);
426 /* port 92 stuff: could be split off */
427 typedef struct Port92State {
428 ISADevice dev;
429 MemoryRegion io;
430 uint8_t outport;
431 qemu_irq *a20_out;
432 } Port92State;
434 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
435 unsigned size)
437 Port92State *s = opaque;
439 DPRINTF("port92: write 0x%02x\n", val);
440 s->outport = val;
441 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
442 if (val & 1) {
443 qemu_system_reset_request();
447 static uint64_t port92_read(void *opaque, hwaddr addr,
448 unsigned size)
450 Port92State *s = opaque;
451 uint32_t ret;
453 ret = s->outport;
454 DPRINTF("port92: read 0x%02x\n", ret);
455 return ret;
458 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
460 Port92State *s = DO_UPCAST(Port92State, dev, dev);
462 s->a20_out = a20_out;
465 static const VMStateDescription vmstate_port92_isa = {
466 .name = "port92",
467 .version_id = 1,
468 .minimum_version_id = 1,
469 .minimum_version_id_old = 1,
470 .fields = (VMStateField []) {
471 VMSTATE_UINT8(outport, Port92State),
472 VMSTATE_END_OF_LIST()
476 static void port92_reset(DeviceState *d)
478 Port92State *s = container_of(d, Port92State, dev.qdev);
480 s->outport &= ~1;
483 static const MemoryRegionOps port92_ops = {
484 .read = port92_read,
485 .write = port92_write,
486 .impl = {
487 .min_access_size = 1,
488 .max_access_size = 1,
490 .endianness = DEVICE_LITTLE_ENDIAN,
493 static int port92_initfn(ISADevice *dev)
495 Port92State *s = DO_UPCAST(Port92State, dev, dev);
497 memory_region_init_io(&s->io, &port92_ops, s, "port92", 1);
498 isa_register_ioport(dev, &s->io, 0x92);
500 s->outport = 0;
501 return 0;
504 static void port92_class_initfn(ObjectClass *klass, void *data)
506 DeviceClass *dc = DEVICE_CLASS(klass);
507 ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
508 ic->init = port92_initfn;
509 dc->no_user = 1;
510 dc->reset = port92_reset;
511 dc->vmsd = &vmstate_port92_isa;
514 static const TypeInfo port92_info = {
515 .name = "port92",
516 .parent = TYPE_ISA_DEVICE,
517 .instance_size = sizeof(Port92State),
518 .class_init = port92_class_initfn,
521 static void port92_register_types(void)
523 type_register_static(&port92_info);
526 type_init(port92_register_types)
528 static void handle_a20_line_change(void *opaque, int irq, int level)
530 CPUX86State *cpu = opaque;
532 /* XXX: send to all CPUs ? */
533 /* XXX: add logic to handle multiple A20 line sources */
534 cpu_x86_set_a20(cpu, level);
537 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
539 int index = le32_to_cpu(e820_table.count);
540 struct e820_entry *entry;
542 if (index >= E820_NR_ENTRIES)
543 return -EBUSY;
544 entry = &e820_table.entry[index++];
546 entry->address = cpu_to_le64(address);
547 entry->length = cpu_to_le64(length);
548 entry->type = cpu_to_le32(type);
550 e820_table.count = cpu_to_le32(index);
551 return index;
554 static void *bochs_bios_init(void)
556 void *fw_cfg;
557 uint8_t *smbios_table;
558 size_t smbios_len;
559 uint64_t *numa_fw_cfg;
560 int i, j;
562 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
564 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
565 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
566 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, (uint8_t *)acpi_tables,
567 acpi_tables_len);
568 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
570 smbios_table = smbios_get_table(&smbios_len);
571 if (smbios_table)
572 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
573 smbios_table, smbios_len);
574 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, (uint8_t *)&e820_table,
575 sizeof(struct e820_table));
577 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, (uint8_t *)&hpet_cfg,
578 sizeof(struct hpet_fw_config));
579 /* allocate memory for the NUMA channel: one (64bit) word for the number
580 * of nodes, one word for each VCPU->node and one word for each node to
581 * hold the amount of memory.
583 numa_fw_cfg = g_malloc0((1 + max_cpus + nb_numa_nodes) * 8);
584 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
585 for (i = 0; i < max_cpus; i++) {
586 for (j = 0; j < nb_numa_nodes; j++) {
587 if (test_bit(i, node_cpumask[j])) {
588 numa_fw_cfg[i + 1] = cpu_to_le64(j);
589 break;
593 for (i = 0; i < nb_numa_nodes; i++) {
594 numa_fw_cfg[max_cpus + 1 + i] = cpu_to_le64(node_mem[i]);
596 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, (uint8_t *)numa_fw_cfg,
597 (1 + max_cpus + nb_numa_nodes) * 8);
599 return fw_cfg;
602 static long get_file_size(FILE *f)
604 long where, size;
606 /* XXX: on Unix systems, using fstat() probably makes more sense */
608 where = ftell(f);
609 fseek(f, 0, SEEK_END);
610 size = ftell(f);
611 fseek(f, where, SEEK_SET);
613 return size;
616 static void load_linux(void *fw_cfg,
617 const char *kernel_filename,
618 const char *initrd_filename,
619 const char *kernel_cmdline,
620 hwaddr max_ram_size)
622 uint16_t protocol;
623 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
624 uint32_t initrd_max;
625 uint8_t header[8192], *setup, *kernel, *initrd_data;
626 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
627 FILE *f;
628 char *vmode;
630 /* Align to 16 bytes as a paranoia measure */
631 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
633 /* load the kernel header */
634 f = fopen(kernel_filename, "rb");
635 if (!f || !(kernel_size = get_file_size(f)) ||
636 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
637 MIN(ARRAY_SIZE(header), kernel_size)) {
638 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
639 kernel_filename, strerror(errno));
640 exit(1);
643 /* kernel protocol version */
644 #if 0
645 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
646 #endif
647 if (ldl_p(header+0x202) == 0x53726448)
648 protocol = lduw_p(header+0x206);
649 else {
650 /* This looks like a multiboot kernel. If it is, let's stop
651 treating it like a Linux kernel. */
652 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
653 kernel_cmdline, kernel_size, header))
654 return;
655 protocol = 0;
658 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
659 /* Low kernel */
660 real_addr = 0x90000;
661 cmdline_addr = 0x9a000 - cmdline_size;
662 prot_addr = 0x10000;
663 } else if (protocol < 0x202) {
664 /* High but ancient kernel */
665 real_addr = 0x90000;
666 cmdline_addr = 0x9a000 - cmdline_size;
667 prot_addr = 0x100000;
668 } else {
669 /* High and recent kernel */
670 real_addr = 0x10000;
671 cmdline_addr = 0x20000;
672 prot_addr = 0x100000;
675 #if 0
676 fprintf(stderr,
677 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
678 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
679 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
680 real_addr,
681 cmdline_addr,
682 prot_addr);
683 #endif
685 /* highest address for loading the initrd */
686 if (protocol >= 0x203)
687 initrd_max = ldl_p(header+0x22c);
688 else
689 initrd_max = 0x37ffffff;
691 if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
692 initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
694 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
695 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
696 fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA,
697 (uint8_t*)strdup(kernel_cmdline),
698 strlen(kernel_cmdline)+1);
700 if (protocol >= 0x202) {
701 stl_p(header+0x228, cmdline_addr);
702 } else {
703 stw_p(header+0x20, 0xA33F);
704 stw_p(header+0x22, cmdline_addr-real_addr);
707 /* handle vga= parameter */
708 vmode = strstr(kernel_cmdline, "vga=");
709 if (vmode) {
710 unsigned int video_mode;
711 /* skip "vga=" */
712 vmode += 4;
713 if (!strncmp(vmode, "normal", 6)) {
714 video_mode = 0xffff;
715 } else if (!strncmp(vmode, "ext", 3)) {
716 video_mode = 0xfffe;
717 } else if (!strncmp(vmode, "ask", 3)) {
718 video_mode = 0xfffd;
719 } else {
720 video_mode = strtol(vmode, NULL, 0);
722 stw_p(header+0x1fa, video_mode);
725 /* loader type */
726 /* High nybble = B reserved for QEMU; low nybble is revision number.
727 If this code is substantially changed, you may want to consider
728 incrementing the revision. */
729 if (protocol >= 0x200)
730 header[0x210] = 0xB0;
732 /* heap */
733 if (protocol >= 0x201) {
734 header[0x211] |= 0x80; /* CAN_USE_HEAP */
735 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
738 /* load initrd */
739 if (initrd_filename) {
740 if (protocol < 0x200) {
741 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
742 exit(1);
745 initrd_size = get_image_size(initrd_filename);
746 if (initrd_size < 0) {
747 fprintf(stderr, "qemu: error reading initrd %s\n",
748 initrd_filename);
749 exit(1);
752 initrd_addr = (initrd_max-initrd_size) & ~4095;
754 initrd_data = g_malloc(initrd_size);
755 load_image(initrd_filename, initrd_data);
757 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
758 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
759 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
761 stl_p(header+0x218, initrd_addr);
762 stl_p(header+0x21c, initrd_size);
765 /* load kernel and setup */
766 setup_size = header[0x1f1];
767 if (setup_size == 0)
768 setup_size = 4;
769 setup_size = (setup_size+1)*512;
770 kernel_size -= setup_size;
772 setup = g_malloc(setup_size);
773 kernel = g_malloc(kernel_size);
774 fseek(f, 0, SEEK_SET);
775 if (fread(setup, 1, setup_size, f) != setup_size) {
776 fprintf(stderr, "fread() failed\n");
777 exit(1);
779 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
780 fprintf(stderr, "fread() failed\n");
781 exit(1);
783 fclose(f);
784 memcpy(setup, header, MIN(sizeof(header), setup_size));
786 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
787 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
788 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
790 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
791 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
792 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
794 option_rom[nb_option_roms].name = "linuxboot.bin";
795 option_rom[nb_option_roms].bootindex = 0;
796 nb_option_roms++;
799 #define NE2000_NB_MAX 6
801 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
802 0x280, 0x380 };
803 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
805 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
806 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
808 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
810 static int nb_ne2k = 0;
812 if (nb_ne2k == NE2000_NB_MAX)
813 return;
814 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
815 ne2000_irq[nb_ne2k], nd);
816 nb_ne2k++;
819 DeviceState *cpu_get_current_apic(void)
821 if (cpu_single_env) {
822 return cpu_single_env->apic_state;
823 } else {
824 return NULL;
828 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
830 CPUX86State *s = opaque;
832 if (level) {
833 cpu_interrupt(s, CPU_INTERRUPT_SMI);
837 void pc_cpus_init(const char *cpu_model)
839 int i;
841 /* init CPUs */
842 if (cpu_model == NULL) {
843 #ifdef TARGET_X86_64
844 cpu_model = "qemu64";
845 #else
846 cpu_model = "qemu32";
847 #endif
850 for (i = 0; i < smp_cpus; i++) {
851 if (!cpu_x86_init(cpu_model)) {
852 fprintf(stderr, "Unable to find x86 CPU definition\n");
853 exit(1);
858 void pc_acpi_init(const char *default_dsdt)
860 char *filename = NULL, *arg = NULL;
862 if (acpi_tables != NULL) {
863 /* manually set via -acpitable, leave it alone */
864 return;
867 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
868 if (filename == NULL) {
869 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
870 return;
873 arg = g_strdup_printf("file=%s", filename);
874 if (acpi_table_add(arg) != 0) {
875 fprintf(stderr, "WARNING: failed to load %s\n", filename);
877 g_free(arg);
878 g_free(filename);
881 void *pc_memory_init(MemoryRegion *system_memory,
882 const char *kernel_filename,
883 const char *kernel_cmdline,
884 const char *initrd_filename,
885 ram_addr_t below_4g_mem_size,
886 ram_addr_t above_4g_mem_size,
887 MemoryRegion *rom_memory,
888 MemoryRegion **ram_memory)
890 int linux_boot, i;
891 MemoryRegion *ram, *option_rom_mr;
892 MemoryRegion *ram_below_4g, *ram_above_4g;
893 void *fw_cfg;
895 linux_boot = (kernel_filename != NULL);
897 /* Allocate RAM. We allocate it as a single memory region and use
898 * aliases to address portions of it, mostly for backwards compatibility
899 * with older qemus that used qemu_ram_alloc().
901 ram = g_malloc(sizeof(*ram));
902 memory_region_init_ram(ram, "pc.ram",
903 below_4g_mem_size + above_4g_mem_size);
904 vmstate_register_ram_global(ram);
905 *ram_memory = ram;
906 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
907 memory_region_init_alias(ram_below_4g, "ram-below-4g", ram,
908 0, below_4g_mem_size);
909 memory_region_add_subregion(system_memory, 0, ram_below_4g);
910 if (above_4g_mem_size > 0) {
911 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
912 memory_region_init_alias(ram_above_4g, "ram-above-4g", ram,
913 below_4g_mem_size, above_4g_mem_size);
914 memory_region_add_subregion(system_memory, 0x100000000ULL,
915 ram_above_4g);
919 /* Initialize PC system firmware */
920 pc_system_firmware_init(rom_memory);
922 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
923 memory_region_init_ram(option_rom_mr, "pc.rom", PC_ROM_SIZE);
924 vmstate_register_ram_global(option_rom_mr);
925 memory_region_add_subregion_overlap(rom_memory,
926 PC_ROM_MIN_VGA,
927 option_rom_mr,
930 fw_cfg = bochs_bios_init();
931 rom_set_fw(fw_cfg);
933 if (linux_boot) {
934 load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
937 for (i = 0; i < nb_option_roms; i++) {
938 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
940 return fw_cfg;
943 qemu_irq *pc_allocate_cpu_irq(void)
945 return qemu_allocate_irqs(pic_irq_request, NULL, 1);
948 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
950 DeviceState *dev = NULL;
952 if (pci_bus) {
953 PCIDevice *pcidev = pci_vga_init(pci_bus);
954 dev = pcidev ? &pcidev->qdev : NULL;
955 } else if (isa_bus) {
956 ISADevice *isadev = isa_vga_init(isa_bus);
957 dev = isadev ? &isadev->qdev : NULL;
959 return dev;
962 static void cpu_request_exit(void *opaque, int irq, int level)
964 CPUX86State *env = cpu_single_env;
966 if (env && level) {
967 cpu_exit(env);
971 static const MemoryRegionOps ioport80_io_ops = {
972 .write = ioport80_write,
973 .read = ioport80_read,
974 .endianness = DEVICE_NATIVE_ENDIAN,
975 .impl = {
976 .min_access_size = 1,
977 .max_access_size = 1,
981 static const MemoryRegionOps ioportF0_io_ops = {
982 .write = ioportF0_write,
983 .read = ioportF0_read,
984 .endianness = DEVICE_NATIVE_ENDIAN,
985 .impl = {
986 .min_access_size = 1,
987 .max_access_size = 1,
991 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
992 ISADevice **rtc_state,
993 ISADevice **floppy,
994 bool no_vmport)
996 int i;
997 DriveInfo *fd[MAX_FD];
998 DeviceState *hpet = NULL;
999 int pit_isa_irq = 0;
1000 qemu_irq pit_alt_irq = NULL;
1001 qemu_irq rtc_irq = NULL;
1002 qemu_irq *a20_line;
1003 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1004 qemu_irq *cpu_exit_irq;
1005 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1006 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1008 memory_region_init_io(ioport80_io, &ioport80_io_ops, NULL, "ioport80", 1);
1009 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1011 memory_region_init_io(ioportF0_io, &ioportF0_io_ops, NULL, "ioportF0", 1);
1012 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1015 * Check if an HPET shall be created.
1017 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1018 * when the HPET wants to take over. Thus we have to disable the latter.
1020 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1021 hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1023 if (hpet) {
1024 for (i = 0; i < GSI_NUM_PINS; i++) {
1025 sysbus_connect_irq(sysbus_from_qdev(hpet), i, gsi[i]);
1027 pit_isa_irq = -1;
1028 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1029 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1032 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1034 qemu_register_boot_set(pc_boot_set, *rtc_state);
1036 if (!xen_enabled()) {
1037 if (kvm_irqchip_in_kernel()) {
1038 pit = kvm_pit_init(isa_bus, 0x40);
1039 } else {
1040 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1042 if (hpet) {
1043 /* connect PIT to output control line of the HPET */
1044 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(&pit->qdev, 0));
1046 pcspk_init(isa_bus, pit);
1049 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1050 if (serial_hds[i]) {
1051 serial_isa_init(isa_bus, i, serial_hds[i]);
1055 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1056 if (parallel_hds[i]) {
1057 parallel_init(isa_bus, i, parallel_hds[i]);
1061 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1062 i8042 = isa_create_simple(isa_bus, "i8042");
1063 i8042_setup_a20_line(i8042, &a20_line[0]);
1064 if (!no_vmport) {
1065 vmport_init(isa_bus);
1066 vmmouse = isa_try_create(isa_bus, "vmmouse");
1067 } else {
1068 vmmouse = NULL;
1070 if (vmmouse) {
1071 qdev_prop_set_ptr(&vmmouse->qdev, "ps2_mouse", i8042);
1072 qdev_init_nofail(&vmmouse->qdev);
1074 port92 = isa_create_simple(isa_bus, "port92");
1075 port92_init(port92, &a20_line[1]);
1077 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1078 DMA_init(0, cpu_exit_irq);
1080 for(i = 0; i < MAX_FD; i++) {
1081 fd[i] = drive_get(IF_FLOPPY, 0, i);
1083 *floppy = fdctrl_init_isa(isa_bus, fd);
1086 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1088 int i;
1090 for (i = 0; i < nb_nics; i++) {
1091 NICInfo *nd = &nd_table[i];
1093 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1094 pc_init_ne2k_isa(isa_bus, nd);
1095 } else {
1096 pci_nic_init_nofail(nd, "e1000", NULL);
1101 void pc_pci_device_init(PCIBus *pci_bus)
1103 int max_bus;
1104 int bus;
1106 max_bus = drive_get_max_bus(IF_SCSI);
1107 for (bus = 0; bus <= max_bus; bus++) {
1108 pci_create_simple(pci_bus, -1, "lsi53c895a");
1112 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1114 DeviceState *dev;
1115 SysBusDevice *d;
1116 unsigned int i;
1118 if (kvm_irqchip_in_kernel()) {
1119 dev = qdev_create(NULL, "kvm-ioapic");
1120 } else {
1121 dev = qdev_create(NULL, "ioapic");
1123 if (parent_name) {
1124 object_property_add_child(object_resolve_path(parent_name, NULL),
1125 "ioapic", OBJECT(dev), NULL);
1127 qdev_init_nofail(dev);
1128 d = sysbus_from_qdev(dev);
1129 sysbus_mmio_map(d, 0, 0xfec00000);
1131 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1132 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);