module: Simplify module_load()
[qemu.git] / hw / sd / sdhci.c
blobb5a9eee3e2ba1740f1c8cd87bdb60dff8c9022f9
1 /*
2 * SD Association Host Standard Specification v2.0 controller emulation
4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5 * Mitsyanko Igor <i.mitsyanko@samsung.com>
6 * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Based on MMC controller for Samsung S5PC1xx-based board emulation
9 * by Alexey Merkulov and Vladimir Monakhov.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
19 * See the GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, see <http://www.gnu.org/licenses/>.
25 #include "hw/hw.h"
26 #include "sysemu/blockdev.h"
27 #include "sysemu/dma.h"
28 #include "qemu/timer.h"
29 #include "qemu/bitops.h"
31 #include "sdhci.h"
33 /* host controller debug messages */
34 #ifndef SDHC_DEBUG
35 #define SDHC_DEBUG 0
36 #endif
38 #if SDHC_DEBUG == 0
39 #define DPRINT_L1(fmt, args...) do { } while (0)
40 #define DPRINT_L2(fmt, args...) do { } while (0)
41 #define ERRPRINT(fmt, args...) do { } while (0)
42 #elif SDHC_DEBUG == 1
43 #define DPRINT_L1(fmt, args...) \
44 do {fprintf(stderr, "QEMU SDHC: "fmt, ## args); } while (0)
45 #define DPRINT_L2(fmt, args...) do { } while (0)
46 #define ERRPRINT(fmt, args...) \
47 do {fprintf(stderr, "QEMU SDHC ERROR: "fmt, ## args); } while (0)
48 #else
49 #define DPRINT_L1(fmt, args...) \
50 do {fprintf(stderr, "QEMU SDHC: "fmt, ## args); } while (0)
51 #define DPRINT_L2(fmt, args...) \
52 do {fprintf(stderr, "QEMU SDHC: "fmt, ## args); } while (0)
53 #define ERRPRINT(fmt, args...) \
54 do {fprintf(stderr, "QEMU SDHC ERROR: "fmt, ## args); } while (0)
55 #endif
57 /* Default SD/MMC host controller features information, which will be
58 * presented in CAPABILITIES register of generic SD host controller at reset.
59 * If not stated otherwise:
60 * 0 - not supported, 1 - supported, other - prohibited.
62 #define SDHC_CAPAB_64BITBUS 0ul /* 64-bit System Bus Support */
63 #define SDHC_CAPAB_18V 1ul /* Voltage support 1.8v */
64 #define SDHC_CAPAB_30V 0ul /* Voltage support 3.0v */
65 #define SDHC_CAPAB_33V 1ul /* Voltage support 3.3v */
66 #define SDHC_CAPAB_SUSPRESUME 0ul /* Suspend/resume support */
67 #define SDHC_CAPAB_SDMA 1ul /* SDMA support */
68 #define SDHC_CAPAB_HIGHSPEED 1ul /* High speed support */
69 #define SDHC_CAPAB_ADMA1 1ul /* ADMA1 support */
70 #define SDHC_CAPAB_ADMA2 1ul /* ADMA2 support */
71 /* Maximum host controller R/W buffers size
72 * Possible values: 512, 1024, 2048 bytes */
73 #define SDHC_CAPAB_MAXBLOCKLENGTH 512ul
74 /* Maximum clock frequency for SDclock in MHz
75 * value in range 10-63 MHz, 0 - not defined */
76 #define SDHC_CAPAB_BASECLKFREQ 0ul
77 #define SDHC_CAPAB_TOUNIT 1ul /* Timeout clock unit 0 - kHz, 1 - MHz */
78 /* Timeout clock frequency 1-63, 0 - not defined */
79 #define SDHC_CAPAB_TOCLKFREQ 0ul
81 /* Now check all parameters and calculate CAPABILITIES REGISTER value */
82 #if SDHC_CAPAB_64BITBUS > 1 || SDHC_CAPAB_18V > 1 || SDHC_CAPAB_30V > 1 || \
83 SDHC_CAPAB_33V > 1 || SDHC_CAPAB_SUSPRESUME > 1 || SDHC_CAPAB_SDMA > 1 || \
84 SDHC_CAPAB_HIGHSPEED > 1 || SDHC_CAPAB_ADMA2 > 1 || SDHC_CAPAB_ADMA1 > 1 ||\
85 SDHC_CAPAB_TOUNIT > 1
86 #error Capabilities features can have value 0 or 1 only!
87 #endif
89 #if SDHC_CAPAB_MAXBLOCKLENGTH == 512
90 #define MAX_BLOCK_LENGTH 0ul
91 #elif SDHC_CAPAB_MAXBLOCKLENGTH == 1024
92 #define MAX_BLOCK_LENGTH 1ul
93 #elif SDHC_CAPAB_MAXBLOCKLENGTH == 2048
94 #define MAX_BLOCK_LENGTH 2ul
95 #else
96 #error Max host controller block size can have value 512, 1024 or 2048 only!
97 #endif
99 #if (SDHC_CAPAB_BASECLKFREQ > 0 && SDHC_CAPAB_BASECLKFREQ < 10) || \
100 SDHC_CAPAB_BASECLKFREQ > 63
101 #error SDclock frequency can have value in range 0, 10-63 only!
102 #endif
104 #if SDHC_CAPAB_TOCLKFREQ > 63
105 #error Timeout clock frequency can have value in range 0-63 only!
106 #endif
108 #define SDHC_CAPAB_REG_DEFAULT \
109 ((SDHC_CAPAB_64BITBUS << 28) | (SDHC_CAPAB_18V << 26) | \
110 (SDHC_CAPAB_30V << 25) | (SDHC_CAPAB_33V << 24) | \
111 (SDHC_CAPAB_SUSPRESUME << 23) | (SDHC_CAPAB_SDMA << 22) | \
112 (SDHC_CAPAB_HIGHSPEED << 21) | (SDHC_CAPAB_ADMA1 << 20) | \
113 (SDHC_CAPAB_ADMA2 << 19) | (MAX_BLOCK_LENGTH << 16) | \
114 (SDHC_CAPAB_BASECLKFREQ << 8) | (SDHC_CAPAB_TOUNIT << 7) | \
115 (SDHC_CAPAB_TOCLKFREQ))
117 #define MASKED_WRITE(reg, mask, val) (reg = (reg & (mask)) | (val))
119 static uint8_t sdhci_slotint(SDHCIState *s)
121 return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
122 ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
123 ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
126 static inline void sdhci_update_irq(SDHCIState *s)
128 qemu_set_irq(s->irq, sdhci_slotint(s));
131 static void sdhci_raise_insertion_irq(void *opaque)
133 SDHCIState *s = (SDHCIState *)opaque;
135 if (s->norintsts & SDHC_NIS_REMOVE) {
136 timer_mod(s->insert_timer,
137 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
138 } else {
139 s->prnsts = 0x1ff0000;
140 if (s->norintstsen & SDHC_NISEN_INSERT) {
141 s->norintsts |= SDHC_NIS_INSERT;
143 sdhci_update_irq(s);
147 static void sdhci_insert_eject_cb(void *opaque, int irq, int level)
149 SDHCIState *s = (SDHCIState *)opaque;
150 DPRINT_L1("Card state changed: %s!\n", level ? "insert" : "eject");
152 if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
153 /* Give target some time to notice card ejection */
154 timer_mod(s->insert_timer,
155 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
156 } else {
157 if (level) {
158 s->prnsts = 0x1ff0000;
159 if (s->norintstsen & SDHC_NISEN_INSERT) {
160 s->norintsts |= SDHC_NIS_INSERT;
162 } else {
163 s->prnsts = 0x1fa0000;
164 s->pwrcon &= ~SDHC_POWER_ON;
165 s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
166 if (s->norintstsen & SDHC_NISEN_REMOVE) {
167 s->norintsts |= SDHC_NIS_REMOVE;
170 sdhci_update_irq(s);
174 static void sdhci_card_readonly_cb(void *opaque, int irq, int level)
176 SDHCIState *s = (SDHCIState *)opaque;
178 if (level) {
179 s->prnsts &= ~SDHC_WRITE_PROTECT;
180 } else {
181 /* Write enabled */
182 s->prnsts |= SDHC_WRITE_PROTECT;
186 static void sdhci_reset(SDHCIState *s)
188 timer_del(s->insert_timer);
189 timer_del(s->transfer_timer);
190 /* Set all registers to 0. Capabilities registers are not cleared
191 * and assumed to always preserve their value, given to them during
192 * initialization */
193 memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);
195 sd_set_cb(s->card, s->ro_cb, s->eject_cb);
196 s->data_count = 0;
197 s->stopped_state = sdhc_not_stopped;
200 static void sdhci_do_data_transfer(void *opaque)
202 SDHCIState *s = (SDHCIState *)opaque;
204 SDHCI_GET_CLASS(s)->data_transfer(s);
207 static void sdhci_send_command(SDHCIState *s)
209 SDRequest request;
210 uint8_t response[16];
211 int rlen;
213 s->errintsts = 0;
214 s->acmd12errsts = 0;
215 request.cmd = s->cmdreg >> 8;
216 request.arg = s->argument;
217 DPRINT_L1("sending CMD%u ARG[0x%08x]\n", request.cmd, request.arg);
218 rlen = sd_do_command(s->card, &request, response);
220 if (s->cmdreg & SDHC_CMD_RESPONSE) {
221 if (rlen == 4) {
222 s->rspreg[0] = (response[0] << 24) | (response[1] << 16) |
223 (response[2] << 8) | response[3];
224 s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
225 DPRINT_L1("Response: RSPREG[31..0]=0x%08x\n", s->rspreg[0]);
226 } else if (rlen == 16) {
227 s->rspreg[0] = (response[11] << 24) | (response[12] << 16) |
228 (response[13] << 8) | response[14];
229 s->rspreg[1] = (response[7] << 24) | (response[8] << 16) |
230 (response[9] << 8) | response[10];
231 s->rspreg[2] = (response[3] << 24) | (response[4] << 16) |
232 (response[5] << 8) | response[6];
233 s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
234 response[2];
235 DPRINT_L1("Response received:\n RSPREG[127..96]=0x%08x, RSPREG[95.."
236 "64]=0x%08x,\n RSPREG[63..32]=0x%08x, RSPREG[31..0]=0x%08x\n",
237 s->rspreg[3], s->rspreg[2], s->rspreg[1], s->rspreg[0]);
238 } else {
239 ERRPRINT("Timeout waiting for command response\n");
240 if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
241 s->errintsts |= SDHC_EIS_CMDTIMEOUT;
242 s->norintsts |= SDHC_NIS_ERR;
246 if ((s->norintstsen & SDHC_NISEN_TRSCMP) &&
247 (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
248 s->norintsts |= SDHC_NIS_TRSCMP;
250 } else if (rlen != 0 && (s->errintstsen & SDHC_EISEN_CMDIDX)) {
251 s->errintsts |= SDHC_EIS_CMDIDX;
252 s->norintsts |= SDHC_NIS_ERR;
255 if (s->norintstsen & SDHC_NISEN_CMDCMP) {
256 s->norintsts |= SDHC_NIS_CMDCMP;
259 sdhci_update_irq(s);
261 if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
262 s->data_count = 0;
263 sdhci_do_data_transfer(s);
267 static void sdhci_end_transfer(SDHCIState *s)
269 /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
270 if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
271 SDRequest request;
272 uint8_t response[16];
274 request.cmd = 0x0C;
275 request.arg = 0;
276 DPRINT_L1("Automatically issue CMD%d %08x\n", request.cmd, request.arg);
277 sd_do_command(s->card, &request, response);
278 /* Auto CMD12 response goes to the upper Response register */
279 s->rspreg[3] = (response[0] << 24) | (response[1] << 16) |
280 (response[2] << 8) | response[3];
283 s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
284 SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
285 SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);
287 if (s->norintstsen & SDHC_NISEN_TRSCMP) {
288 s->norintsts |= SDHC_NIS_TRSCMP;
291 sdhci_update_irq(s);
295 * Programmed i/o data transfer
298 /* Fill host controller's read buffer with BLKSIZE bytes of data from card */
299 static void sdhci_read_block_from_card(SDHCIState *s)
301 int index = 0;
303 if ((s->trnmod & SDHC_TRNS_MULTI) &&
304 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
305 return;
308 for (index = 0; index < (s->blksize & 0x0fff); index++) {
309 s->fifo_buffer[index] = sd_read_data(s->card);
312 /* New data now available for READ through Buffer Port Register */
313 s->prnsts |= SDHC_DATA_AVAILABLE;
314 if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
315 s->norintsts |= SDHC_NIS_RBUFRDY;
318 /* Clear DAT line active status if that was the last block */
319 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
320 ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
321 s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
324 /* If stop at block gap request was set and it's not the last block of
325 * data - generate Block Event interrupt */
326 if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
327 s->blkcnt != 1) {
328 s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
329 if (s->norintstsen & SDHC_EISEN_BLKGAP) {
330 s->norintsts |= SDHC_EIS_BLKGAP;
334 sdhci_update_irq(s);
337 /* Read @size byte of data from host controller @s BUFFER DATA PORT register */
338 static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
340 uint32_t value = 0;
341 int i;
343 /* first check that a valid data exists in host controller input buffer */
344 if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
345 ERRPRINT("Trying to read from empty buffer\n");
346 return 0;
349 for (i = 0; i < size; i++) {
350 value |= s->fifo_buffer[s->data_count] << i * 8;
351 s->data_count++;
352 /* check if we've read all valid data (blksize bytes) from buffer */
353 if ((s->data_count) >= (s->blksize & 0x0fff)) {
354 DPRINT_L2("All %u bytes of data have been read from input buffer\n",
355 s->data_count);
356 s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
357 s->data_count = 0; /* next buff read must start at position [0] */
359 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
360 s->blkcnt--;
363 /* if that was the last block of data */
364 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
365 ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
366 /* stop at gap request */
367 (s->stopped_state == sdhc_gap_read &&
368 !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
369 SDHCI_GET_CLASS(s)->end_data_transfer(s);
370 } else { /* if there are more data, read next block from card */
371 SDHCI_GET_CLASS(s)->read_block_from_card(s);
373 break;
377 return value;
380 /* Write data from host controller FIFO to card */
381 static void sdhci_write_block_to_card(SDHCIState *s)
383 int index = 0;
385 if (s->prnsts & SDHC_SPACE_AVAILABLE) {
386 if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
387 s->norintsts |= SDHC_NIS_WBUFRDY;
389 sdhci_update_irq(s);
390 return;
393 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
394 if (s->blkcnt == 0) {
395 return;
396 } else {
397 s->blkcnt--;
401 for (index = 0; index < (s->blksize & 0x0fff); index++) {
402 sd_write_data(s->card, s->fifo_buffer[index]);
405 /* Next data can be written through BUFFER DATORT register */
406 s->prnsts |= SDHC_SPACE_AVAILABLE;
408 /* Finish transfer if that was the last block of data */
409 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
410 ((s->trnmod & SDHC_TRNS_MULTI) &&
411 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
412 SDHCI_GET_CLASS(s)->end_data_transfer(s);
413 } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
414 s->norintsts |= SDHC_NIS_WBUFRDY;
417 /* Generate Block Gap Event if requested and if not the last block */
418 if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
419 s->blkcnt > 0) {
420 s->prnsts &= ~SDHC_DOING_WRITE;
421 if (s->norintstsen & SDHC_EISEN_BLKGAP) {
422 s->norintsts |= SDHC_EIS_BLKGAP;
424 SDHCI_GET_CLASS(s)->end_data_transfer(s);
427 sdhci_update_irq(s);
430 /* Write @size bytes of @value data to host controller @s Buffer Data Port
431 * register */
432 static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
434 unsigned i;
436 /* Check that there is free space left in a buffer */
437 if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
438 ERRPRINT("Can't write to data buffer: buffer full\n");
439 return;
442 for (i = 0; i < size; i++) {
443 s->fifo_buffer[s->data_count] = value & 0xFF;
444 s->data_count++;
445 value >>= 8;
446 if (s->data_count >= (s->blksize & 0x0fff)) {
447 DPRINT_L2("write buffer filled with %u bytes of data\n",
448 s->data_count);
449 s->data_count = 0;
450 s->prnsts &= ~SDHC_SPACE_AVAILABLE;
451 if (s->prnsts & SDHC_DOING_WRITE) {
452 SDHCI_GET_CLASS(s)->write_block_to_card(s);
459 * Single DMA data transfer
462 /* Multi block SDMA transfer */
463 static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
465 bool page_aligned = false;
466 unsigned int n, begin;
467 const uint16_t block_size = s->blksize & 0x0fff;
468 uint32_t boundary_chk = 1 << (((s->blksize & 0xf000) >> 12) + 12);
469 uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);
471 /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
472 * possible stop at page boundary if initial address is not page aligned,
473 * allow them to work properly */
474 if ((s->sdmasysad % boundary_chk) == 0) {
475 page_aligned = true;
478 if (s->trnmod & SDHC_TRNS_READ) {
479 s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
480 SDHC_DAT_LINE_ACTIVE;
481 while (s->blkcnt) {
482 if (s->data_count == 0) {
483 for (n = 0; n < block_size; n++) {
484 s->fifo_buffer[n] = sd_read_data(s->card);
487 begin = s->data_count;
488 if (((boundary_count + begin) < block_size) && page_aligned) {
489 s->data_count = boundary_count + begin;
490 boundary_count = 0;
491 } else {
492 s->data_count = block_size;
493 boundary_count -= block_size - begin;
494 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
495 s->blkcnt--;
498 dma_memory_write(&address_space_memory, s->sdmasysad,
499 &s->fifo_buffer[begin], s->data_count - begin);
500 s->sdmasysad += s->data_count - begin;
501 if (s->data_count == block_size) {
502 s->data_count = 0;
504 if (page_aligned && boundary_count == 0) {
505 break;
508 } else {
509 s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT |
510 SDHC_DAT_LINE_ACTIVE;
511 while (s->blkcnt) {
512 begin = s->data_count;
513 if (((boundary_count + begin) < block_size) && page_aligned) {
514 s->data_count = boundary_count + begin;
515 boundary_count = 0;
516 } else {
517 s->data_count = block_size;
518 boundary_count -= block_size - begin;
520 dma_memory_read(&address_space_memory, s->sdmasysad,
521 &s->fifo_buffer[begin], s->data_count);
522 s->sdmasysad += s->data_count - begin;
523 if (s->data_count == block_size) {
524 for (n = 0; n < block_size; n++) {
525 sd_write_data(s->card, s->fifo_buffer[n]);
527 s->data_count = 0;
528 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
529 s->blkcnt--;
532 if (page_aligned && boundary_count == 0) {
533 break;
538 if (s->blkcnt == 0) {
539 SDHCI_GET_CLASS(s)->end_data_transfer(s);
540 } else {
541 if (s->norintstsen & SDHC_NISEN_DMA) {
542 s->norintsts |= SDHC_NIS_DMA;
544 sdhci_update_irq(s);
548 /* single block SDMA transfer */
550 static void sdhci_sdma_transfer_single_block(SDHCIState *s)
552 int n;
553 uint32_t datacnt = s->blksize & 0x0fff;
555 if (s->trnmod & SDHC_TRNS_READ) {
556 for (n = 0; n < datacnt; n++) {
557 s->fifo_buffer[n] = sd_read_data(s->card);
559 dma_memory_write(&address_space_memory, s->sdmasysad, s->fifo_buffer,
560 datacnt);
561 } else {
562 dma_memory_read(&address_space_memory, s->sdmasysad, s->fifo_buffer,
563 datacnt);
564 for (n = 0; n < datacnt; n++) {
565 sd_write_data(s->card, s->fifo_buffer[n]);
569 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
570 s->blkcnt--;
573 SDHCI_GET_CLASS(s)->end_data_transfer(s);
576 typedef struct ADMADescr {
577 hwaddr addr;
578 uint16_t length;
579 uint8_t attr;
580 uint8_t incr;
581 } ADMADescr;
583 static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
585 uint32_t adma1 = 0;
586 uint64_t adma2 = 0;
587 hwaddr entry_addr = (hwaddr)s->admasysaddr;
588 switch (SDHC_DMA_TYPE(s->hostctl)) {
589 case SDHC_CTRL_ADMA2_32:
590 dma_memory_read(&address_space_memory, entry_addr, (uint8_t *)&adma2,
591 sizeof(adma2));
592 adma2 = le64_to_cpu(adma2);
593 /* The spec does not specify endianness of descriptor table.
594 * We currently assume that it is LE.
596 dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
597 dscr->length = (uint16_t)extract64(adma2, 16, 16);
598 dscr->attr = (uint8_t)extract64(adma2, 0, 7);
599 dscr->incr = 8;
600 break;
601 case SDHC_CTRL_ADMA1_32:
602 dma_memory_read(&address_space_memory, entry_addr, (uint8_t *)&adma1,
603 sizeof(adma1));
604 adma1 = le32_to_cpu(adma1);
605 dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
606 dscr->attr = (uint8_t)extract32(adma1, 0, 7);
607 dscr->incr = 4;
608 if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
609 dscr->length = (uint16_t)extract32(adma1, 12, 16);
610 } else {
611 dscr->length = 4096;
613 break;
614 case SDHC_CTRL_ADMA2_64:
615 dma_memory_read(&address_space_memory, entry_addr,
616 (uint8_t *)(&dscr->attr), 1);
617 dma_memory_read(&address_space_memory, entry_addr + 2,
618 (uint8_t *)(&dscr->length), 2);
619 dscr->length = le16_to_cpu(dscr->length);
620 dma_memory_read(&address_space_memory, entry_addr + 4,
621 (uint8_t *)(&dscr->addr), 8);
622 dscr->attr = le64_to_cpu(dscr->attr);
623 dscr->attr &= 0xfffffff8;
624 dscr->incr = 12;
625 break;
629 /* Advanced DMA data transfer */
631 static void sdhci_do_adma(SDHCIState *s)
633 unsigned int n, begin, length;
634 const uint16_t block_size = s->blksize & 0x0fff;
635 ADMADescr dscr;
636 int i;
638 for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
639 s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;
641 get_adma_description(s, &dscr);
642 DPRINT_L2("ADMA loop: addr=" TARGET_FMT_plx ", len=%d, attr=%x\n",
643 dscr.addr, dscr.length, dscr.attr);
645 if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
646 /* Indicate that error occurred in ST_FDS state */
647 s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
648 s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;
650 /* Generate ADMA error interrupt */
651 if (s->errintstsen & SDHC_EISEN_ADMAERR) {
652 s->errintsts |= SDHC_EIS_ADMAERR;
653 s->norintsts |= SDHC_NIS_ERR;
656 sdhci_update_irq(s);
657 return;
660 length = dscr.length ? dscr.length : 65536;
662 switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
663 case SDHC_ADMA_ATTR_ACT_TRAN: /* data transfer */
665 if (s->trnmod & SDHC_TRNS_READ) {
666 while (length) {
667 if (s->data_count == 0) {
668 for (n = 0; n < block_size; n++) {
669 s->fifo_buffer[n] = sd_read_data(s->card);
672 begin = s->data_count;
673 if ((length + begin) < block_size) {
674 s->data_count = length + begin;
675 length = 0;
676 } else {
677 s->data_count = block_size;
678 length -= block_size - begin;
680 dma_memory_write(&address_space_memory, dscr.addr,
681 &s->fifo_buffer[begin],
682 s->data_count - begin);
683 dscr.addr += s->data_count - begin;
684 if (s->data_count == block_size) {
685 s->data_count = 0;
686 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
687 s->blkcnt--;
688 if (s->blkcnt == 0) {
689 break;
694 } else {
695 while (length) {
696 begin = s->data_count;
697 if ((length + begin) < block_size) {
698 s->data_count = length + begin;
699 length = 0;
700 } else {
701 s->data_count = block_size;
702 length -= block_size - begin;
704 dma_memory_read(&address_space_memory, dscr.addr,
705 &s->fifo_buffer[begin], s->data_count);
706 dscr.addr += s->data_count - begin;
707 if (s->data_count == block_size) {
708 for (n = 0; n < block_size; n++) {
709 sd_write_data(s->card, s->fifo_buffer[n]);
711 s->data_count = 0;
712 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
713 s->blkcnt--;
714 if (s->blkcnt == 0) {
715 break;
721 s->admasysaddr += dscr.incr;
722 break;
723 case SDHC_ADMA_ATTR_ACT_LINK: /* link to next descriptor table */
724 s->admasysaddr = dscr.addr;
725 DPRINT_L1("ADMA link: admasysaddr=0x%lx\n", s->admasysaddr);
726 break;
727 default:
728 s->admasysaddr += dscr.incr;
729 break;
732 if (dscr.attr & SDHC_ADMA_ATTR_INT) {
733 DPRINT_L1("ADMA interrupt: admasysaddr=0x%lx\n", s->admasysaddr);
734 if (s->norintstsen & SDHC_NISEN_DMA) {
735 s->norintsts |= SDHC_NIS_DMA;
738 sdhci_update_irq(s);
741 /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
742 if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
743 (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
744 DPRINT_L2("ADMA transfer completed\n");
745 if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
746 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
747 s->blkcnt != 0)) {
748 ERRPRINT("SD/MMC host ADMA length mismatch\n");
749 s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
750 SDHC_ADMAERR_STATE_ST_TFR;
751 if (s->errintstsen & SDHC_EISEN_ADMAERR) {
752 ERRPRINT("Set ADMA error flag\n");
753 s->errintsts |= SDHC_EIS_ADMAERR;
754 s->norintsts |= SDHC_NIS_ERR;
757 sdhci_update_irq(s);
759 SDHCI_GET_CLASS(s)->end_data_transfer(s);
760 return;
765 /* we have unfinished business - reschedule to continue ADMA */
766 timer_mod(s->transfer_timer,
767 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
770 /* Perform data transfer according to controller configuration */
772 static void sdhci_data_transfer(SDHCIState *s)
774 SDHCIClass *k = SDHCI_GET_CLASS(s);
776 if (s->trnmod & SDHC_TRNS_DMA) {
777 switch (SDHC_DMA_TYPE(s->hostctl)) {
778 case SDHC_CTRL_SDMA:
779 if ((s->trnmod & SDHC_TRNS_MULTI) &&
780 (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || s->blkcnt == 0)) {
781 break;
784 if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
785 k->do_sdma_single(s);
786 } else {
787 k->do_sdma_multi(s);
790 break;
791 case SDHC_CTRL_ADMA1_32:
792 if (!(s->capareg & SDHC_CAN_DO_ADMA1)) {
793 ERRPRINT("ADMA1 not supported\n");
794 break;
797 k->do_adma(s);
798 break;
799 case SDHC_CTRL_ADMA2_32:
800 if (!(s->capareg & SDHC_CAN_DO_ADMA2)) {
801 ERRPRINT("ADMA2 not supported\n");
802 break;
805 k->do_adma(s);
806 break;
807 case SDHC_CTRL_ADMA2_64:
808 if (!(s->capareg & SDHC_CAN_DO_ADMA2) ||
809 !(s->capareg & SDHC_64_BIT_BUS_SUPPORT)) {
810 ERRPRINT("64 bit ADMA not supported\n");
811 break;
814 k->do_adma(s);
815 break;
816 default:
817 ERRPRINT("Unsupported DMA type\n");
818 break;
820 } else {
821 if ((s->trnmod & SDHC_TRNS_READ) && sd_data_ready(s->card)) {
822 s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
823 SDHC_DAT_LINE_ACTIVE;
824 SDHCI_GET_CLASS(s)->read_block_from_card(s);
825 } else {
826 s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
827 SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
828 SDHCI_GET_CLASS(s)->write_block_to_card(s);
833 static bool sdhci_can_issue_command(SDHCIState *s)
835 if (!SDHC_CLOCK_IS_ON(s->clkcon) || !(s->pwrcon & SDHC_POWER_ON) ||
836 (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
837 ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
838 ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
839 !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
840 return false;
843 return true;
846 /* The Buffer Data Port register must be accessed in sequential and
847 * continuous manner */
848 static inline bool
849 sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
851 if ((s->data_count & 0x3) != byte_num) {
852 ERRPRINT("Non-sequential access to Buffer Data Port register"
853 "is prohibited\n");
854 return false;
856 return true;
859 static uint32_t sdhci_read(SDHCIState *s, unsigned int offset, unsigned size)
861 uint32_t ret = 0;
863 switch (offset & ~0x3) {
864 case SDHC_SYSAD:
865 ret = s->sdmasysad;
866 break;
867 case SDHC_BLKSIZE:
868 ret = s->blksize | (s->blkcnt << 16);
869 break;
870 case SDHC_ARGUMENT:
871 ret = s->argument;
872 break;
873 case SDHC_TRNMOD:
874 ret = s->trnmod | (s->cmdreg << 16);
875 break;
876 case SDHC_RSPREG0 ... SDHC_RSPREG3:
877 ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
878 break;
879 case SDHC_BDATA:
880 if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
881 ret = SDHCI_GET_CLASS(s)->bdata_read(s, size);
882 DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, offset,
883 ret, ret);
884 return ret;
886 break;
887 case SDHC_PRNSTS:
888 ret = s->prnsts;
889 break;
890 case SDHC_HOSTCTL:
891 ret = s->hostctl | (s->pwrcon << 8) | (s->blkgap << 16) |
892 (s->wakcon << 24);
893 break;
894 case SDHC_CLKCON:
895 ret = s->clkcon | (s->timeoutcon << 16);
896 break;
897 case SDHC_NORINTSTS:
898 ret = s->norintsts | (s->errintsts << 16);
899 break;
900 case SDHC_NORINTSTSEN:
901 ret = s->norintstsen | (s->errintstsen << 16);
902 break;
903 case SDHC_NORINTSIGEN:
904 ret = s->norintsigen | (s->errintsigen << 16);
905 break;
906 case SDHC_ACMD12ERRSTS:
907 ret = s->acmd12errsts;
908 break;
909 case SDHC_CAPAREG:
910 ret = s->capareg;
911 break;
912 case SDHC_MAXCURR:
913 ret = s->maxcurr;
914 break;
915 case SDHC_ADMAERR:
916 ret = s->admaerr;
917 break;
918 case SDHC_ADMASYSADDR:
919 ret = (uint32_t)s->admasysaddr;
920 break;
921 case SDHC_ADMASYSADDR + 4:
922 ret = (uint32_t)(s->admasysaddr >> 32);
923 break;
924 case SDHC_SLOT_INT_STATUS:
925 ret = (SD_HOST_SPECv2_VERS << 16) | sdhci_slotint(s);
926 break;
927 default:
928 ERRPRINT("bad %ub read: addr[0x%04x]\n", size, offset);
929 break;
932 ret >>= (offset & 0x3) * 8;
933 ret &= (1ULL << (size * 8)) - 1;
934 DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, offset, ret, ret);
935 return ret;
938 static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
940 if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
941 return;
943 s->blkgap = value & SDHC_STOP_AT_GAP_REQ;
945 if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
946 (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
947 if (s->stopped_state == sdhc_gap_read) {
948 s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
949 SDHCI_GET_CLASS(s)->read_block_from_card(s);
950 } else {
951 s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
952 SDHCI_GET_CLASS(s)->write_block_to_card(s);
954 s->stopped_state = sdhc_not_stopped;
955 } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
956 if (s->prnsts & SDHC_DOING_READ) {
957 s->stopped_state = sdhc_gap_read;
958 } else if (s->prnsts & SDHC_DOING_WRITE) {
959 s->stopped_state = sdhc_gap_write;
964 static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
966 switch (value) {
967 case SDHC_RESET_ALL:
968 DEVICE_GET_CLASS(s)->reset(DEVICE(s));
969 break;
970 case SDHC_RESET_CMD:
971 s->prnsts &= ~SDHC_CMD_INHIBIT;
972 s->norintsts &= ~SDHC_NIS_CMDCMP;
973 break;
974 case SDHC_RESET_DATA:
975 s->data_count = 0;
976 s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
977 SDHC_DOING_READ | SDHC_DOING_WRITE |
978 SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
979 s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
980 s->stopped_state = sdhc_not_stopped;
981 s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
982 SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
983 break;
987 static void
988 sdhci_write(SDHCIState *s, unsigned int offset, uint32_t value, unsigned size)
990 unsigned shift = 8 * (offset & 0x3);
991 uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
992 value <<= shift;
994 switch (offset & ~0x3) {
995 case SDHC_SYSAD:
996 s->sdmasysad = (s->sdmasysad & mask) | value;
997 MASKED_WRITE(s->sdmasysad, mask, value);
998 /* Writing to last byte of sdmasysad might trigger transfer */
999 if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt &&
1000 s->blksize && SDHC_DMA_TYPE(s->hostctl) == SDHC_CTRL_SDMA) {
1001 SDHCI_GET_CLASS(s)->do_sdma_multi(s);
1003 break;
1004 case SDHC_BLKSIZE:
1005 if (!TRANSFERRING_DATA(s->prnsts)) {
1006 MASKED_WRITE(s->blksize, mask, value);
1007 MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
1009 break;
1010 case SDHC_ARGUMENT:
1011 MASKED_WRITE(s->argument, mask, value);
1012 break;
1013 case SDHC_TRNMOD:
1014 /* DMA can be enabled only if it is supported as indicated by
1015 * capabilities register */
1016 if (!(s->capareg & SDHC_CAN_DO_DMA)) {
1017 value &= ~SDHC_TRNS_DMA;
1019 MASKED_WRITE(s->trnmod, mask, value);
1020 MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);
1022 /* Writing to the upper byte of CMDREG triggers SD command generation */
1023 if ((mask & 0xFF000000) || !SDHCI_GET_CLASS(s)->can_issue_command(s)) {
1024 break;
1027 SDHCI_GET_CLASS(s)->send_command(s);
1028 break;
1029 case SDHC_BDATA:
1030 if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1031 SDHCI_GET_CLASS(s)->bdata_write(s, value >> shift, size);
1033 break;
1034 case SDHC_HOSTCTL:
1035 if (!(mask & 0xFF0000)) {
1036 sdhci_blkgap_write(s, value >> 16);
1038 MASKED_WRITE(s->hostctl, mask, value);
1039 MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
1040 MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
1041 if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
1042 !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
1043 s->pwrcon &= ~SDHC_POWER_ON;
1045 break;
1046 case SDHC_CLKCON:
1047 if (!(mask & 0xFF000000)) {
1048 sdhci_reset_write(s, value >> 24);
1050 MASKED_WRITE(s->clkcon, mask, value);
1051 MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
1052 if (s->clkcon & SDHC_CLOCK_INT_EN) {
1053 s->clkcon |= SDHC_CLOCK_INT_STABLE;
1054 } else {
1055 s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
1057 break;
1058 case SDHC_NORINTSTS:
1059 if (s->norintstsen & SDHC_NISEN_CARDINT) {
1060 value &= ~SDHC_NIS_CARDINT;
1062 s->norintsts &= mask | ~value;
1063 s->errintsts &= (mask >> 16) | ~(value >> 16);
1064 if (s->errintsts) {
1065 s->norintsts |= SDHC_NIS_ERR;
1066 } else {
1067 s->norintsts &= ~SDHC_NIS_ERR;
1069 sdhci_update_irq(s);
1070 break;
1071 case SDHC_NORINTSTSEN:
1072 MASKED_WRITE(s->norintstsen, mask, value);
1073 MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
1074 s->norintsts &= s->norintstsen;
1075 s->errintsts &= s->errintstsen;
1076 if (s->errintsts) {
1077 s->norintsts |= SDHC_NIS_ERR;
1078 } else {
1079 s->norintsts &= ~SDHC_NIS_ERR;
1081 sdhci_update_irq(s);
1082 break;
1083 case SDHC_NORINTSIGEN:
1084 MASKED_WRITE(s->norintsigen, mask, value);
1085 MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
1086 sdhci_update_irq(s);
1087 break;
1088 case SDHC_ADMAERR:
1089 MASKED_WRITE(s->admaerr, mask, value);
1090 break;
1091 case SDHC_ADMASYSADDR:
1092 s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
1093 (uint64_t)mask)) | (uint64_t)value;
1094 break;
1095 case SDHC_ADMASYSADDR + 4:
1096 s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
1097 ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
1098 break;
1099 case SDHC_FEAER:
1100 s->acmd12errsts |= value;
1101 s->errintsts |= (value >> 16) & s->errintstsen;
1102 if (s->acmd12errsts) {
1103 s->errintsts |= SDHC_EIS_CMD12ERR;
1105 if (s->errintsts) {
1106 s->norintsts |= SDHC_NIS_ERR;
1108 sdhci_update_irq(s);
1109 break;
1110 default:
1111 ERRPRINT("bad %ub write offset: addr[0x%04x] <- %u(0x%x)\n",
1112 size, offset, value >> shift, value >> shift);
1113 break;
1115 DPRINT_L2("write %ub: addr[0x%04x] <- %u(0x%x)\n",
1116 size, offset, value >> shift, value >> shift);
1119 static uint64_t
1120 sdhci_readfn(void *opaque, hwaddr offset, unsigned size)
1122 SDHCIState *s = (SDHCIState *)opaque;
1124 return SDHCI_GET_CLASS(s)->mem_read(s, offset, size);
1127 static void
1128 sdhci_writefn(void *opaque, hwaddr off, uint64_t val, unsigned sz)
1130 SDHCIState *s = (SDHCIState *)opaque;
1132 SDHCI_GET_CLASS(s)->mem_write(s, off, val, sz);
1135 static const MemoryRegionOps sdhci_mmio_ops = {
1136 .read = sdhci_readfn,
1137 .write = sdhci_writefn,
1138 .valid = {
1139 .min_access_size = 1,
1140 .max_access_size = 4,
1141 .unaligned = false
1143 .endianness = DEVICE_LITTLE_ENDIAN,
1146 static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
1148 switch (SDHC_CAPAB_BLOCKSIZE(s->capareg)) {
1149 case 0:
1150 return 512;
1151 case 1:
1152 return 1024;
1153 case 2:
1154 return 2048;
1155 default:
1156 hw_error("SDHC: unsupported value for maximum block size\n");
1157 return 0;
1161 static void sdhci_initfn(Object *obj)
1163 SDHCIState *s = SDHCI(obj);
1164 DriveInfo *di;
1166 di = drive_get_next(IF_SD);
1167 s->card = sd_init(di ? di->bdrv : NULL, false);
1168 if (s->card == NULL) {
1169 exit(1);
1171 s->eject_cb = qemu_allocate_irq(sdhci_insert_eject_cb, s, 0);
1172 s->ro_cb = qemu_allocate_irq(sdhci_card_readonly_cb, s, 0);
1173 sd_set_cb(s->card, s->ro_cb, s->eject_cb);
1175 s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
1176 s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_do_data_transfer, s);
1179 static void sdhci_uninitfn(Object *obj)
1181 SDHCIState *s = SDHCI(obj);
1183 timer_del(s->insert_timer);
1184 timer_free(s->insert_timer);
1185 timer_del(s->transfer_timer);
1186 timer_free(s->transfer_timer);
1187 qemu_free_irq(s->eject_cb);
1188 qemu_free_irq(s->ro_cb);
1190 if (s->fifo_buffer) {
1191 g_free(s->fifo_buffer);
1192 s->fifo_buffer = NULL;
1196 const VMStateDescription sdhci_vmstate = {
1197 .name = "sdhci",
1198 .version_id = 1,
1199 .minimum_version_id = 1,
1200 .fields = (VMStateField[]) {
1201 VMSTATE_UINT32(sdmasysad, SDHCIState),
1202 VMSTATE_UINT16(blksize, SDHCIState),
1203 VMSTATE_UINT16(blkcnt, SDHCIState),
1204 VMSTATE_UINT32(argument, SDHCIState),
1205 VMSTATE_UINT16(trnmod, SDHCIState),
1206 VMSTATE_UINT16(cmdreg, SDHCIState),
1207 VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
1208 VMSTATE_UINT32(prnsts, SDHCIState),
1209 VMSTATE_UINT8(hostctl, SDHCIState),
1210 VMSTATE_UINT8(pwrcon, SDHCIState),
1211 VMSTATE_UINT8(blkgap, SDHCIState),
1212 VMSTATE_UINT8(wakcon, SDHCIState),
1213 VMSTATE_UINT16(clkcon, SDHCIState),
1214 VMSTATE_UINT8(timeoutcon, SDHCIState),
1215 VMSTATE_UINT8(admaerr, SDHCIState),
1216 VMSTATE_UINT16(norintsts, SDHCIState),
1217 VMSTATE_UINT16(errintsts, SDHCIState),
1218 VMSTATE_UINT16(norintstsen, SDHCIState),
1219 VMSTATE_UINT16(errintstsen, SDHCIState),
1220 VMSTATE_UINT16(norintsigen, SDHCIState),
1221 VMSTATE_UINT16(errintsigen, SDHCIState),
1222 VMSTATE_UINT16(acmd12errsts, SDHCIState),
1223 VMSTATE_UINT16(data_count, SDHCIState),
1224 VMSTATE_UINT64(admasysaddr, SDHCIState),
1225 VMSTATE_UINT8(stopped_state, SDHCIState),
1226 VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, 0, buf_maxsz),
1227 VMSTATE_TIMER(insert_timer, SDHCIState),
1228 VMSTATE_TIMER(transfer_timer, SDHCIState),
1229 VMSTATE_END_OF_LIST()
1233 /* Capabilities registers provide information on supported features of this
1234 * specific host controller implementation */
1235 static Property sdhci_properties[] = {
1236 DEFINE_PROP_UINT32("capareg", SDHCIState, capareg,
1237 SDHC_CAPAB_REG_DEFAULT),
1238 DEFINE_PROP_UINT32("maxcurr", SDHCIState, maxcurr, 0),
1239 DEFINE_PROP_END_OF_LIST(),
1242 static void sdhci_realize(DeviceState *dev, Error ** errp)
1244 SDHCIState *s = SDHCI(dev);
1245 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1247 s->buf_maxsz = sdhci_get_fifolen(s);
1248 s->fifo_buffer = g_malloc0(s->buf_maxsz);
1249 sysbus_init_irq(sbd, &s->irq);
1250 memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
1251 SDHC_REGISTERS_MAP_SIZE);
1252 sysbus_init_mmio(sbd, &s->iomem);
1255 static void sdhci_generic_reset(DeviceState *ds)
1257 SDHCIState *s = SDHCI(ds);
1258 SDHCI_GET_CLASS(s)->reset(s);
1261 static void sdhci_class_init(ObjectClass *klass, void *data)
1263 DeviceClass *dc = DEVICE_CLASS(klass);
1264 SDHCIClass *k = SDHCI_CLASS(klass);
1266 dc->vmsd = &sdhci_vmstate;
1267 dc->props = sdhci_properties;
1268 dc->reset = sdhci_generic_reset;
1269 dc->realize = sdhci_realize;
1271 k->reset = sdhci_reset;
1272 k->mem_read = sdhci_read;
1273 k->mem_write = sdhci_write;
1274 k->send_command = sdhci_send_command;
1275 k->can_issue_command = sdhci_can_issue_command;
1276 k->data_transfer = sdhci_data_transfer;
1277 k->end_data_transfer = sdhci_end_transfer;
1278 k->do_sdma_single = sdhci_sdma_transfer_single_block;
1279 k->do_sdma_multi = sdhci_sdma_transfer_multi_blocks;
1280 k->do_adma = sdhci_do_adma;
1281 k->read_block_from_card = sdhci_read_block_from_card;
1282 k->write_block_to_card = sdhci_write_block_to_card;
1283 k->bdata_read = sdhci_read_dataport;
1284 k->bdata_write = sdhci_write_dataport;
1287 static const TypeInfo sdhci_type_info = {
1288 .name = TYPE_SDHCI,
1289 .parent = TYPE_SYS_BUS_DEVICE,
1290 .instance_size = sizeof(SDHCIState),
1291 .instance_init = sdhci_initfn,
1292 .instance_finalize = sdhci_uninitfn,
1293 .class_init = sdhci_class_init,
1294 .class_size = sizeof(SDHCIClass)
1297 static void sdhci_register_types(void)
1299 type_register_static(&sdhci_type_info);
1302 type_init(sdhci_register_types)