iotests/129: Do not check @busy
[qemu.git] / target / i386 / kvm / kvm.c
blob6dc1ee052d5fe8911e5a555705bc06034c220fdd
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include <sys/ioctl.h>
19 #include <sys/utsname.h>
21 #include <linux/kvm.h>
22 #include "standard-headers/asm-x86/kvm_para.h"
24 #include "cpu.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/hw_accel.h"
27 #include "sysemu/kvm_int.h"
28 #include "sysemu/runstate.h"
29 #include "kvm_i386.h"
30 #include "hyperv.h"
31 #include "hyperv-proto.h"
33 #include "exec/gdbstub.h"
34 #include "qemu/host-utils.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #include "hw/i386/x86.h"
39 #include "hw/i386/apic.h"
40 #include "hw/i386/apic_internal.h"
41 #include "hw/i386/apic-msidef.h"
42 #include "hw/i386/intel_iommu.h"
43 #include "hw/i386/x86-iommu.h"
44 #include "hw/i386/e820_memory_layout.h"
46 #include "hw/pci/pci.h"
47 #include "hw/pci/msi.h"
48 #include "hw/pci/msix.h"
49 #include "migration/blocker.h"
50 #include "exec/memattrs.h"
51 #include "trace.h"
53 //#define DEBUG_KVM
55 #ifdef DEBUG_KVM
56 #define DPRINTF(fmt, ...) \
57 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
58 #else
59 #define DPRINTF(fmt, ...) \
60 do { } while (0)
61 #endif
63 /* From arch/x86/kvm/lapic.h */
64 #define KVM_APIC_BUS_CYCLE_NS 1
65 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
67 #define MSR_KVM_WALL_CLOCK 0x11
68 #define MSR_KVM_SYSTEM_TIME 0x12
70 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
71 * 255 kvm_msr_entry structs */
72 #define MSR_BUF_SIZE 4096
74 static void kvm_init_msrs(X86CPU *cpu);
76 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
77 KVM_CAP_INFO(SET_TSS_ADDR),
78 KVM_CAP_INFO(EXT_CPUID),
79 KVM_CAP_INFO(MP_STATE),
80 KVM_CAP_LAST_INFO
83 static bool has_msr_star;
84 static bool has_msr_hsave_pa;
85 static bool has_msr_tsc_aux;
86 static bool has_msr_tsc_adjust;
87 static bool has_msr_tsc_deadline;
88 static bool has_msr_feature_control;
89 static bool has_msr_misc_enable;
90 static bool has_msr_smbase;
91 static bool has_msr_bndcfgs;
92 static int lm_capable_kernel;
93 static bool has_msr_hv_hypercall;
94 static bool has_msr_hv_crash;
95 static bool has_msr_hv_reset;
96 static bool has_msr_hv_vpindex;
97 static bool hv_vpindex_settable;
98 static bool has_msr_hv_runtime;
99 static bool has_msr_hv_synic;
100 static bool has_msr_hv_stimer;
101 static bool has_msr_hv_frequencies;
102 static bool has_msr_hv_reenlightenment;
103 static bool has_msr_xss;
104 static bool has_msr_umwait;
105 static bool has_msr_spec_ctrl;
106 static bool has_msr_tsx_ctrl;
107 static bool has_msr_virt_ssbd;
108 static bool has_msr_smi_count;
109 static bool has_msr_arch_capabs;
110 static bool has_msr_core_capabs;
111 static bool has_msr_vmx_vmfunc;
112 static bool has_msr_ucode_rev;
113 static bool has_msr_vmx_procbased_ctls2;
114 static bool has_msr_perf_capabs;
116 static uint32_t has_architectural_pmu_version;
117 static uint32_t num_architectural_pmu_gp_counters;
118 static uint32_t num_architectural_pmu_fixed_counters;
120 static int has_xsave;
121 static int has_xcrs;
122 static int has_pit_state2;
123 static int has_exception_payload;
125 static bool has_msr_mcg_ext_ctl;
127 static struct kvm_cpuid2 *cpuid_cache;
128 static struct kvm_msr_list *kvm_feature_msrs;
130 int kvm_has_pit_state2(void)
132 return has_pit_state2;
135 bool kvm_has_smm(void)
137 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
140 bool kvm_has_adjust_clock_stable(void)
142 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
144 return (ret == KVM_CLOCK_TSC_STABLE);
147 bool kvm_has_adjust_clock(void)
149 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
152 bool kvm_has_exception_payload(void)
154 return has_exception_payload;
157 static bool kvm_x2apic_api_set_flags(uint64_t flags)
159 KVMState *s = KVM_STATE(current_accel());
161 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
164 #define MEMORIZE(fn, _result) \
165 ({ \
166 static bool _memorized; \
168 if (_memorized) { \
169 return _result; \
171 _memorized = true; \
172 _result = fn; \
175 static bool has_x2apic_api;
177 bool kvm_has_x2apic_api(void)
179 return has_x2apic_api;
182 bool kvm_enable_x2apic(void)
184 return MEMORIZE(
185 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
186 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
187 has_x2apic_api);
190 bool kvm_hv_vpindex_settable(void)
192 return hv_vpindex_settable;
195 static int kvm_get_tsc(CPUState *cs)
197 X86CPU *cpu = X86_CPU(cs);
198 CPUX86State *env = &cpu->env;
199 struct {
200 struct kvm_msrs info;
201 struct kvm_msr_entry entries[1];
202 } msr_data = {};
203 int ret;
205 if (env->tsc_valid) {
206 return 0;
209 memset(&msr_data, 0, sizeof(msr_data));
210 msr_data.info.nmsrs = 1;
211 msr_data.entries[0].index = MSR_IA32_TSC;
212 env->tsc_valid = !runstate_is_running();
214 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
215 if (ret < 0) {
216 return ret;
219 assert(ret == 1);
220 env->tsc = msr_data.entries[0].data;
221 return 0;
224 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
226 kvm_get_tsc(cpu);
229 void kvm_synchronize_all_tsc(void)
231 CPUState *cpu;
233 if (kvm_enabled()) {
234 CPU_FOREACH(cpu) {
235 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
240 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
242 struct kvm_cpuid2 *cpuid;
243 int r, size;
245 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
246 cpuid = g_malloc0(size);
247 cpuid->nent = max;
248 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
249 if (r == 0 && cpuid->nent >= max) {
250 r = -E2BIG;
252 if (r < 0) {
253 if (r == -E2BIG) {
254 g_free(cpuid);
255 return NULL;
256 } else {
257 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
258 strerror(-r));
259 exit(1);
262 return cpuid;
265 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
266 * for all entries.
268 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
270 struct kvm_cpuid2 *cpuid;
271 int max = 1;
273 if (cpuid_cache != NULL) {
274 return cpuid_cache;
276 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
277 max *= 2;
279 cpuid_cache = cpuid;
280 return cpuid;
283 static bool host_tsx_broken(void)
285 int family, model, stepping;\
286 char vendor[CPUID_VENDOR_SZ + 1];
288 host_vendor_fms(vendor, &family, &model, &stepping);
290 /* Check if we are running on a Haswell host known to have broken TSX */
291 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
292 (family == 6) &&
293 ((model == 63 && stepping < 4) ||
294 model == 60 || model == 69 || model == 70);
297 /* Returns the value for a specific register on the cpuid entry
299 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
301 uint32_t ret = 0;
302 switch (reg) {
303 case R_EAX:
304 ret = entry->eax;
305 break;
306 case R_EBX:
307 ret = entry->ebx;
308 break;
309 case R_ECX:
310 ret = entry->ecx;
311 break;
312 case R_EDX:
313 ret = entry->edx;
314 break;
316 return ret;
319 /* Find matching entry for function/index on kvm_cpuid2 struct
321 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
322 uint32_t function,
323 uint32_t index)
325 int i;
326 for (i = 0; i < cpuid->nent; ++i) {
327 if (cpuid->entries[i].function == function &&
328 cpuid->entries[i].index == index) {
329 return &cpuid->entries[i];
332 /* not found: */
333 return NULL;
336 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
337 uint32_t index, int reg)
339 struct kvm_cpuid2 *cpuid;
340 uint32_t ret = 0;
341 uint32_t cpuid_1_edx;
343 cpuid = get_supported_cpuid(s);
345 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
346 if (entry) {
347 ret = cpuid_entry_get_reg(entry, reg);
350 /* Fixups for the data returned by KVM, below */
352 if (function == 1 && reg == R_EDX) {
353 /* KVM before 2.6.30 misreports the following features */
354 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
355 } else if (function == 1 && reg == R_ECX) {
356 /* We can set the hypervisor flag, even if KVM does not return it on
357 * GET_SUPPORTED_CPUID
359 ret |= CPUID_EXT_HYPERVISOR;
360 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
361 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
362 * and the irqchip is in the kernel.
364 if (kvm_irqchip_in_kernel() &&
365 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
366 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
369 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
370 * without the in-kernel irqchip
372 if (!kvm_irqchip_in_kernel()) {
373 ret &= ~CPUID_EXT_X2APIC;
376 if (enable_cpu_pm) {
377 int disable_exits = kvm_check_extension(s,
378 KVM_CAP_X86_DISABLE_EXITS);
380 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
381 ret |= CPUID_EXT_MONITOR;
384 } else if (function == 6 && reg == R_EAX) {
385 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
386 } else if (function == 7 && index == 0 && reg == R_EBX) {
387 if (host_tsx_broken()) {
388 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
390 } else if (function == 7 && index == 0 && reg == R_EDX) {
392 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
393 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
394 * returned by KVM_GET_MSR_INDEX_LIST.
396 if (!has_msr_arch_capabs) {
397 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
399 } else if (function == 0x80000001 && reg == R_ECX) {
401 * It's safe to enable TOPOEXT even if it's not returned by
402 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
403 * us to keep CPU models including TOPOEXT runnable on older kernels.
405 ret |= CPUID_EXT3_TOPOEXT;
406 } else if (function == 0x80000001 && reg == R_EDX) {
407 /* On Intel, kvm returns cpuid according to the Intel spec,
408 * so add missing bits according to the AMD spec:
410 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
411 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
412 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
413 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
414 * be enabled without the in-kernel irqchip
416 if (!kvm_irqchip_in_kernel()) {
417 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
419 if (kvm_irqchip_is_split()) {
420 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
422 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
423 ret |= 1U << KVM_HINTS_REALTIME;
426 return ret;
429 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
431 struct {
432 struct kvm_msrs info;
433 struct kvm_msr_entry entries[1];
434 } msr_data = {};
435 uint64_t value;
436 uint32_t ret, can_be_one, must_be_one;
438 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
439 return 0;
442 /* Check if requested MSR is supported feature MSR */
443 int i;
444 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
445 if (kvm_feature_msrs->indices[i] == index) {
446 break;
448 if (i == kvm_feature_msrs->nmsrs) {
449 return 0; /* if the feature MSR is not supported, simply return 0 */
452 msr_data.info.nmsrs = 1;
453 msr_data.entries[0].index = index;
455 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
456 if (ret != 1) {
457 error_report("KVM get MSR (index=0x%x) feature failed, %s",
458 index, strerror(-ret));
459 exit(1);
462 value = msr_data.entries[0].data;
463 switch (index) {
464 case MSR_IA32_VMX_PROCBASED_CTLS2:
465 if (!has_msr_vmx_procbased_ctls2) {
466 /* KVM forgot to add these bits for some time, do this ourselves. */
467 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
468 CPUID_XSAVE_XSAVES) {
469 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
471 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
472 CPUID_EXT_RDRAND) {
473 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
475 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
476 CPUID_7_0_EBX_INVPCID) {
477 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
479 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
480 CPUID_7_0_EBX_RDSEED) {
481 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
483 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
484 CPUID_EXT2_RDTSCP) {
485 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
488 /* fall through */
489 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
490 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
491 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
492 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
494 * Return true for bits that can be one, but do not have to be one.
495 * The SDM tells us which bits could have a "must be one" setting,
496 * so we can do the opposite transformation in make_vmx_msr_value.
498 must_be_one = (uint32_t)value;
499 can_be_one = (uint32_t)(value >> 32);
500 return can_be_one & ~must_be_one;
502 default:
503 return value;
507 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
508 int *max_banks)
510 int r;
512 r = kvm_check_extension(s, KVM_CAP_MCE);
513 if (r > 0) {
514 *max_banks = r;
515 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
517 return -ENOSYS;
520 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
522 CPUState *cs = CPU(cpu);
523 CPUX86State *env = &cpu->env;
524 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
525 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
526 uint64_t mcg_status = MCG_STATUS_MCIP;
527 int flags = 0;
529 if (code == BUS_MCEERR_AR) {
530 status |= MCI_STATUS_AR | 0x134;
531 mcg_status |= MCG_STATUS_EIPV;
532 } else {
533 status |= 0xc0;
534 mcg_status |= MCG_STATUS_RIPV;
537 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
538 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
539 * guest kernel back into env->mcg_ext_ctl.
541 cpu_synchronize_state(cs);
542 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
543 mcg_status |= MCG_STATUS_LMCE;
544 flags = 0;
547 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
548 (MCM_ADDR_PHYS << 6) | 0xc, flags);
551 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
553 MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
555 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
556 &mff);
559 static void hardware_memory_error(void *host_addr)
561 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
562 error_report("QEMU got Hardware memory error at addr %p", host_addr);
563 exit(1);
566 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
568 X86CPU *cpu = X86_CPU(c);
569 CPUX86State *env = &cpu->env;
570 ram_addr_t ram_addr;
571 hwaddr paddr;
573 /* If we get an action required MCE, it has been injected by KVM
574 * while the VM was running. An action optional MCE instead should
575 * be coming from the main thread, which qemu_init_sigbus identifies
576 * as the "early kill" thread.
578 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
580 if ((env->mcg_cap & MCG_SER_P) && addr) {
581 ram_addr = qemu_ram_addr_from_host(addr);
582 if (ram_addr != RAM_ADDR_INVALID &&
583 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
584 kvm_hwpoison_page_add(ram_addr);
585 kvm_mce_inject(cpu, paddr, code);
588 * Use different logging severity based on error type.
589 * If there is additional MCE reporting on the hypervisor, QEMU VA
590 * could be another source to identify the PA and MCE details.
592 if (code == BUS_MCEERR_AR) {
593 error_report("Guest MCE Memory Error at QEMU addr %p and "
594 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
595 addr, paddr, "BUS_MCEERR_AR");
596 } else {
597 warn_report("Guest MCE Memory Error at QEMU addr %p and "
598 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
599 addr, paddr, "BUS_MCEERR_AO");
602 return;
605 if (code == BUS_MCEERR_AO) {
606 warn_report("Hardware memory error at addr %p of type %s "
607 "for memory used by QEMU itself instead of guest system!",
608 addr, "BUS_MCEERR_AO");
612 if (code == BUS_MCEERR_AR) {
613 hardware_memory_error(addr);
616 /* Hope we are lucky for AO MCE, just notify a event */
617 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
620 static void kvm_reset_exception(CPUX86State *env)
622 env->exception_nr = -1;
623 env->exception_pending = 0;
624 env->exception_injected = 0;
625 env->exception_has_payload = false;
626 env->exception_payload = 0;
629 static void kvm_queue_exception(CPUX86State *env,
630 int32_t exception_nr,
631 uint8_t exception_has_payload,
632 uint64_t exception_payload)
634 assert(env->exception_nr == -1);
635 assert(!env->exception_pending);
636 assert(!env->exception_injected);
637 assert(!env->exception_has_payload);
639 env->exception_nr = exception_nr;
641 if (has_exception_payload) {
642 env->exception_pending = 1;
644 env->exception_has_payload = exception_has_payload;
645 env->exception_payload = exception_payload;
646 } else {
647 env->exception_injected = 1;
649 if (exception_nr == EXCP01_DB) {
650 assert(exception_has_payload);
651 env->dr[6] = exception_payload;
652 } else if (exception_nr == EXCP0E_PAGE) {
653 assert(exception_has_payload);
654 env->cr[2] = exception_payload;
655 } else {
656 assert(!exception_has_payload);
661 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
663 CPUX86State *env = &cpu->env;
665 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
666 unsigned int bank, bank_num = env->mcg_cap & 0xff;
667 struct kvm_x86_mce mce;
669 kvm_reset_exception(env);
672 * There must be at least one bank in use if an MCE is pending.
673 * Find it and use its values for the event injection.
675 for (bank = 0; bank < bank_num; bank++) {
676 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
677 break;
680 assert(bank < bank_num);
682 mce.bank = bank;
683 mce.status = env->mce_banks[bank * 4 + 1];
684 mce.mcg_status = env->mcg_status;
685 mce.addr = env->mce_banks[bank * 4 + 2];
686 mce.misc = env->mce_banks[bank * 4 + 3];
688 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
690 return 0;
693 static void cpu_update_state(void *opaque, int running, RunState state)
695 CPUX86State *env = opaque;
697 if (running) {
698 env->tsc_valid = false;
702 unsigned long kvm_arch_vcpu_id(CPUState *cs)
704 X86CPU *cpu = X86_CPU(cs);
705 return cpu->apic_id;
708 #ifndef KVM_CPUID_SIGNATURE_NEXT
709 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
710 #endif
712 static bool hyperv_enabled(X86CPU *cpu)
714 CPUState *cs = CPU(cpu);
715 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
716 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
717 cpu->hyperv_features || cpu->hyperv_passthrough);
721 * Check whether target_freq is within conservative
722 * ntp correctable bounds (250ppm) of freq
724 static inline bool freq_within_bounds(int freq, int target_freq)
726 int max_freq = freq + (freq * 250 / 1000000);
727 int min_freq = freq - (freq * 250 / 1000000);
729 if (target_freq >= min_freq && target_freq <= max_freq) {
730 return true;
733 return false;
736 static int kvm_arch_set_tsc_khz(CPUState *cs)
738 X86CPU *cpu = X86_CPU(cs);
739 CPUX86State *env = &cpu->env;
740 int r, cur_freq;
741 bool set_ioctl = false;
743 if (!env->tsc_khz) {
744 return 0;
747 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
748 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
751 * If TSC scaling is supported, attempt to set TSC frequency.
753 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
754 set_ioctl = true;
758 * If desired TSC frequency is within bounds of NTP correction,
759 * attempt to set TSC frequency.
761 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
762 set_ioctl = true;
765 r = set_ioctl ?
766 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
767 -ENOTSUP;
769 if (r < 0) {
770 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
771 * TSC frequency doesn't match the one we want.
773 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
774 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
775 -ENOTSUP;
776 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
777 warn_report("TSC frequency mismatch between "
778 "VM (%" PRId64 " kHz) and host (%d kHz), "
779 "and TSC scaling unavailable",
780 env->tsc_khz, cur_freq);
781 return r;
785 return 0;
788 static bool tsc_is_stable_and_known(CPUX86State *env)
790 if (!env->tsc_khz) {
791 return false;
793 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
794 || env->user_tsc_khz;
797 static struct {
798 const char *desc;
799 struct {
800 uint32_t fw;
801 uint32_t bits;
802 } flags[2];
803 uint64_t dependencies;
804 } kvm_hyperv_properties[] = {
805 [HYPERV_FEAT_RELAXED] = {
806 .desc = "relaxed timing (hv-relaxed)",
807 .flags = {
808 {.fw = FEAT_HYPERV_EAX,
809 .bits = HV_HYPERCALL_AVAILABLE},
810 {.fw = FEAT_HV_RECOMM_EAX,
811 .bits = HV_RELAXED_TIMING_RECOMMENDED}
814 [HYPERV_FEAT_VAPIC] = {
815 .desc = "virtual APIC (hv-vapic)",
816 .flags = {
817 {.fw = FEAT_HYPERV_EAX,
818 .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
819 {.fw = FEAT_HV_RECOMM_EAX,
820 .bits = HV_APIC_ACCESS_RECOMMENDED}
823 [HYPERV_FEAT_TIME] = {
824 .desc = "clocksources (hv-time)",
825 .flags = {
826 {.fw = FEAT_HYPERV_EAX,
827 .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
828 HV_REFERENCE_TSC_AVAILABLE}
831 [HYPERV_FEAT_CRASH] = {
832 .desc = "crash MSRs (hv-crash)",
833 .flags = {
834 {.fw = FEAT_HYPERV_EDX,
835 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
838 [HYPERV_FEAT_RESET] = {
839 .desc = "reset MSR (hv-reset)",
840 .flags = {
841 {.fw = FEAT_HYPERV_EAX,
842 .bits = HV_RESET_AVAILABLE}
845 [HYPERV_FEAT_VPINDEX] = {
846 .desc = "VP_INDEX MSR (hv-vpindex)",
847 .flags = {
848 {.fw = FEAT_HYPERV_EAX,
849 .bits = HV_VP_INDEX_AVAILABLE}
852 [HYPERV_FEAT_RUNTIME] = {
853 .desc = "VP_RUNTIME MSR (hv-runtime)",
854 .flags = {
855 {.fw = FEAT_HYPERV_EAX,
856 .bits = HV_VP_RUNTIME_AVAILABLE}
859 [HYPERV_FEAT_SYNIC] = {
860 .desc = "synthetic interrupt controller (hv-synic)",
861 .flags = {
862 {.fw = FEAT_HYPERV_EAX,
863 .bits = HV_SYNIC_AVAILABLE}
866 [HYPERV_FEAT_STIMER] = {
867 .desc = "synthetic timers (hv-stimer)",
868 .flags = {
869 {.fw = FEAT_HYPERV_EAX,
870 .bits = HV_SYNTIMERS_AVAILABLE}
872 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
874 [HYPERV_FEAT_FREQUENCIES] = {
875 .desc = "frequency MSRs (hv-frequencies)",
876 .flags = {
877 {.fw = FEAT_HYPERV_EAX,
878 .bits = HV_ACCESS_FREQUENCY_MSRS},
879 {.fw = FEAT_HYPERV_EDX,
880 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
883 [HYPERV_FEAT_REENLIGHTENMENT] = {
884 .desc = "reenlightenment MSRs (hv-reenlightenment)",
885 .flags = {
886 {.fw = FEAT_HYPERV_EAX,
887 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
890 [HYPERV_FEAT_TLBFLUSH] = {
891 .desc = "paravirtualized TLB flush (hv-tlbflush)",
892 .flags = {
893 {.fw = FEAT_HV_RECOMM_EAX,
894 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
895 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
897 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
899 [HYPERV_FEAT_EVMCS] = {
900 .desc = "enlightened VMCS (hv-evmcs)",
901 .flags = {
902 {.fw = FEAT_HV_RECOMM_EAX,
903 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
905 .dependencies = BIT(HYPERV_FEAT_VAPIC)
907 [HYPERV_FEAT_IPI] = {
908 .desc = "paravirtualized IPI (hv-ipi)",
909 .flags = {
910 {.fw = FEAT_HV_RECOMM_EAX,
911 .bits = HV_CLUSTER_IPI_RECOMMENDED |
912 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
914 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
916 [HYPERV_FEAT_STIMER_DIRECT] = {
917 .desc = "direct mode synthetic timers (hv-stimer-direct)",
918 .flags = {
919 {.fw = FEAT_HYPERV_EDX,
920 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
922 .dependencies = BIT(HYPERV_FEAT_STIMER)
926 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
928 struct kvm_cpuid2 *cpuid;
929 int r, size;
931 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
932 cpuid = g_malloc0(size);
933 cpuid->nent = max;
935 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
936 if (r == 0 && cpuid->nent >= max) {
937 r = -E2BIG;
939 if (r < 0) {
940 if (r == -E2BIG) {
941 g_free(cpuid);
942 return NULL;
943 } else {
944 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
945 strerror(-r));
946 exit(1);
949 return cpuid;
953 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
954 * for all entries.
956 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
958 struct kvm_cpuid2 *cpuid;
959 int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
962 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
963 * -E2BIG, however, it doesn't report back the right size. Keep increasing
964 * it and re-trying until we succeed.
966 while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
967 max++;
969 return cpuid;
973 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
974 * leaves from KVM_CAP_HYPERV* and present MSRs data.
976 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
978 X86CPU *cpu = X86_CPU(cs);
979 struct kvm_cpuid2 *cpuid;
980 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
982 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
983 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
984 cpuid->nent = 2;
986 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
987 entry_feat = &cpuid->entries[0];
988 entry_feat->function = HV_CPUID_FEATURES;
990 entry_recomm = &cpuid->entries[1];
991 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
992 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
994 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
995 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
996 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
997 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
998 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
999 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1002 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1003 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1004 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1007 if (has_msr_hv_frequencies) {
1008 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1009 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1012 if (has_msr_hv_crash) {
1013 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1016 if (has_msr_hv_reenlightenment) {
1017 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1020 if (has_msr_hv_reset) {
1021 entry_feat->eax |= HV_RESET_AVAILABLE;
1024 if (has_msr_hv_vpindex) {
1025 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1028 if (has_msr_hv_runtime) {
1029 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1032 if (has_msr_hv_synic) {
1033 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1034 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1036 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1037 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1041 if (has_msr_hv_stimer) {
1042 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1045 if (kvm_check_extension(cs->kvm_state,
1046 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1047 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1048 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1051 if (kvm_check_extension(cs->kvm_state,
1052 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1053 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1056 if (kvm_check_extension(cs->kvm_state,
1057 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1058 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1059 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1062 return cpuid;
1065 static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
1067 struct kvm_cpuid_entry2 *entry;
1068 uint32_t func;
1069 int reg;
1071 switch (fw) {
1072 case FEAT_HYPERV_EAX:
1073 reg = R_EAX;
1074 func = HV_CPUID_FEATURES;
1075 break;
1076 case FEAT_HYPERV_EDX:
1077 reg = R_EDX;
1078 func = HV_CPUID_FEATURES;
1079 break;
1080 case FEAT_HV_RECOMM_EAX:
1081 reg = R_EAX;
1082 func = HV_CPUID_ENLIGHTMENT_INFO;
1083 break;
1084 default:
1085 return -EINVAL;
1088 entry = cpuid_find_entry(cpuid, func, 0);
1089 if (!entry) {
1090 return -ENOENT;
1093 switch (reg) {
1094 case R_EAX:
1095 *r = entry->eax;
1096 break;
1097 case R_EDX:
1098 *r = entry->edx;
1099 break;
1100 default:
1101 return -EINVAL;
1104 return 0;
1107 static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1108 int feature)
1110 X86CPU *cpu = X86_CPU(cs);
1111 CPUX86State *env = &cpu->env;
1112 uint32_t r, fw, bits;
1113 uint64_t deps;
1114 int i, dep_feat;
1116 if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
1117 return 0;
1120 deps = kvm_hyperv_properties[feature].dependencies;
1121 while (deps) {
1122 dep_feat = ctz64(deps);
1123 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1124 fprintf(stderr,
1125 "Hyper-V %s requires Hyper-V %s\n",
1126 kvm_hyperv_properties[feature].desc,
1127 kvm_hyperv_properties[dep_feat].desc);
1128 return 1;
1130 deps &= ~(1ull << dep_feat);
1133 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1134 fw = kvm_hyperv_properties[feature].flags[i].fw;
1135 bits = kvm_hyperv_properties[feature].flags[i].bits;
1137 if (!fw) {
1138 continue;
1141 if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
1142 if (hyperv_feat_enabled(cpu, feature)) {
1143 fprintf(stderr,
1144 "Hyper-V %s is not supported by kernel\n",
1145 kvm_hyperv_properties[feature].desc);
1146 return 1;
1147 } else {
1148 return 0;
1152 env->features[fw] |= bits;
1155 if (cpu->hyperv_passthrough) {
1156 cpu->hyperv_features |= BIT(feature);
1159 return 0;
1163 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1164 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1165 * extentions are enabled.
1167 static int hyperv_handle_properties(CPUState *cs,
1168 struct kvm_cpuid_entry2 *cpuid_ent)
1170 X86CPU *cpu = X86_CPU(cs);
1171 CPUX86State *env = &cpu->env;
1172 struct kvm_cpuid2 *cpuid;
1173 struct kvm_cpuid_entry2 *c;
1174 uint32_t cpuid_i = 0;
1175 int r;
1177 if (!hyperv_enabled(cpu))
1178 return 0;
1180 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1181 cpu->hyperv_passthrough) {
1182 uint16_t evmcs_version;
1184 r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1185 (uintptr_t)&evmcs_version);
1187 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
1188 fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1189 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1190 return -ENOSYS;
1193 if (!r) {
1194 env->features[FEAT_HV_RECOMM_EAX] |=
1195 HV_ENLIGHTENED_VMCS_RECOMMENDED;
1196 env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1200 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1201 cpuid = get_supported_hv_cpuid(cs);
1202 } else {
1203 cpuid = get_supported_hv_cpuid_legacy(cs);
1206 if (cpu->hyperv_passthrough) {
1207 memcpy(cpuid_ent, &cpuid->entries[0],
1208 cpuid->nent * sizeof(cpuid->entries[0]));
1210 c = cpuid_find_entry(cpuid, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, 0);
1211 if (c) {
1212 cpu->hyperv_vendor_id[0] = c->ebx;
1213 cpu->hyperv_vendor_id[1] = c->ecx;
1214 cpu->hyperv_vendor_id[2] = c->edx;
1217 c = cpuid_find_entry(cpuid, HV_CPUID_INTERFACE, 0);
1218 if (c) {
1219 cpu->hyperv_interface_id[0] = c->eax;
1220 cpu->hyperv_interface_id[1] = c->ebx;
1221 cpu->hyperv_interface_id[2] = c->ecx;
1222 cpu->hyperv_interface_id[3] = c->edx;
1225 c = cpuid_find_entry(cpuid, HV_CPUID_VERSION, 0);
1226 if (c) {
1227 cpu->hyperv_version_id[0] = c->eax;
1228 cpu->hyperv_version_id[1] = c->ebx;
1229 cpu->hyperv_version_id[2] = c->ecx;
1230 cpu->hyperv_version_id[3] = c->edx;
1233 c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1234 if (c) {
1235 env->features[FEAT_HYPERV_EAX] = c->eax;
1236 env->features[FEAT_HYPERV_EBX] = c->ebx;
1237 env->features[FEAT_HYPERV_EDX] = c->edx;
1240 c = cpuid_find_entry(cpuid, HV_CPUID_IMPLEMENT_LIMITS, 0);
1241 if (c) {
1242 cpu->hv_max_vps = c->eax;
1243 cpu->hyperv_limits[0] = c->ebx;
1244 cpu->hyperv_limits[1] = c->ecx;
1245 cpu->hyperv_limits[2] = c->edx;
1248 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1249 if (c) {
1250 env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1252 /* hv-spinlocks may have been overriden */
1253 if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) {
1254 c->ebx = cpu->hyperv_spinlock_attempts;
1257 c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1258 if (c) {
1259 env->features[FEAT_HV_NESTED_EAX] = c->eax;
1263 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1264 env->features[FEAT_HV_RECOMM_EAX] |= HV_NO_NONARCH_CORESHARING;
1265 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1266 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1267 if (c) {
1268 env->features[FEAT_HV_RECOMM_EAX] |=
1269 c->eax & HV_NO_NONARCH_CORESHARING;
1273 /* Features */
1274 r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
1275 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1276 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1277 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1278 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1279 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1280 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1281 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1282 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1283 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1284 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1285 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1286 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1287 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
1288 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
1290 /* Additional dependencies not covered by kvm_hyperv_properties[] */
1291 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1292 !cpu->hyperv_synic_kvm_only &&
1293 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1294 fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
1295 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1296 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1297 r |= 1;
1300 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1301 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1303 if (r) {
1304 r = -ENOSYS;
1305 goto free;
1308 if (cpu->hyperv_passthrough) {
1309 /* We already copied all feature words from KVM as is */
1310 r = cpuid->nent;
1311 goto free;
1314 c = &cpuid_ent[cpuid_i++];
1315 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1316 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1317 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1318 c->ebx = cpu->hyperv_vendor_id[0];
1319 c->ecx = cpu->hyperv_vendor_id[1];
1320 c->edx = cpu->hyperv_vendor_id[2];
1322 c = &cpuid_ent[cpuid_i++];
1323 c->function = HV_CPUID_INTERFACE;
1324 c->eax = cpu->hyperv_interface_id[0];
1325 c->ebx = cpu->hyperv_interface_id[1];
1326 c->ecx = cpu->hyperv_interface_id[2];
1327 c->edx = cpu->hyperv_interface_id[3];
1329 c = &cpuid_ent[cpuid_i++];
1330 c->function = HV_CPUID_VERSION;
1331 c->eax = cpu->hyperv_version_id[0];
1332 c->ebx = cpu->hyperv_version_id[1];
1333 c->ecx = cpu->hyperv_version_id[2];
1334 c->edx = cpu->hyperv_version_id[3];
1336 c = &cpuid_ent[cpuid_i++];
1337 c->function = HV_CPUID_FEATURES;
1338 c->eax = env->features[FEAT_HYPERV_EAX];
1339 c->ebx = env->features[FEAT_HYPERV_EBX];
1340 c->edx = env->features[FEAT_HYPERV_EDX];
1342 c = &cpuid_ent[cpuid_i++];
1343 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1344 c->eax = env->features[FEAT_HV_RECOMM_EAX];
1345 c->ebx = cpu->hyperv_spinlock_attempts;
1347 c = &cpuid_ent[cpuid_i++];
1348 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1349 c->eax = cpu->hv_max_vps;
1350 c->ebx = cpu->hyperv_limits[0];
1351 c->ecx = cpu->hyperv_limits[1];
1352 c->edx = cpu->hyperv_limits[2];
1354 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1355 __u32 function;
1357 /* Create zeroed 0x40000006..0x40000009 leaves */
1358 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1359 function < HV_CPUID_NESTED_FEATURES; function++) {
1360 c = &cpuid_ent[cpuid_i++];
1361 c->function = function;
1364 c = &cpuid_ent[cpuid_i++];
1365 c->function = HV_CPUID_NESTED_FEATURES;
1366 c->eax = env->features[FEAT_HV_NESTED_EAX];
1368 r = cpuid_i;
1370 free:
1371 g_free(cpuid);
1373 return r;
1376 static Error *hv_passthrough_mig_blocker;
1377 static Error *hv_no_nonarch_cs_mig_blocker;
1379 static int hyperv_init_vcpu(X86CPU *cpu)
1381 CPUState *cs = CPU(cpu);
1382 Error *local_err = NULL;
1383 int ret;
1385 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1386 error_setg(&hv_passthrough_mig_blocker,
1387 "'hv-passthrough' CPU flag prevents migration, use explicit"
1388 " set of hv-* flags instead");
1389 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1390 if (local_err) {
1391 error_report_err(local_err);
1392 error_free(hv_passthrough_mig_blocker);
1393 return ret;
1397 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1398 hv_no_nonarch_cs_mig_blocker == NULL) {
1399 error_setg(&hv_no_nonarch_cs_mig_blocker,
1400 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1401 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1402 " make sure SMT is disabled and/or that vCPUs are properly"
1403 " pinned)");
1404 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1405 if (local_err) {
1406 error_report_err(local_err);
1407 error_free(hv_no_nonarch_cs_mig_blocker);
1408 return ret;
1412 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1414 * the kernel doesn't support setting vp_index; assert that its value
1415 * is in sync
1417 struct {
1418 struct kvm_msrs info;
1419 struct kvm_msr_entry entries[1];
1420 } msr_data = {
1421 .info.nmsrs = 1,
1422 .entries[0].index = HV_X64_MSR_VP_INDEX,
1425 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1426 if (ret < 0) {
1427 return ret;
1429 assert(ret == 1);
1431 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1432 error_report("kernel's vp_index != QEMU's vp_index");
1433 return -ENXIO;
1437 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1438 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1439 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1440 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1441 if (ret < 0) {
1442 error_report("failed to turn on HyperV SynIC in KVM: %s",
1443 strerror(-ret));
1444 return ret;
1447 if (!cpu->hyperv_synic_kvm_only) {
1448 ret = hyperv_x86_synic_add(cpu);
1449 if (ret < 0) {
1450 error_report("failed to create HyperV SynIC: %s",
1451 strerror(-ret));
1452 return ret;
1457 return 0;
1460 static Error *invtsc_mig_blocker;
1462 #define KVM_MAX_CPUID_ENTRIES 100
1464 int kvm_arch_init_vcpu(CPUState *cs)
1466 struct {
1467 struct kvm_cpuid2 cpuid;
1468 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1469 } cpuid_data;
1471 * The kernel defines these structs with padding fields so there
1472 * should be no extra padding in our cpuid_data struct.
1474 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1475 sizeof(struct kvm_cpuid2) +
1476 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1478 X86CPU *cpu = X86_CPU(cs);
1479 CPUX86State *env = &cpu->env;
1480 uint32_t limit, i, j, cpuid_i;
1481 uint32_t unused;
1482 struct kvm_cpuid_entry2 *c;
1483 uint32_t signature[3];
1484 int kvm_base = KVM_CPUID_SIGNATURE;
1485 int max_nested_state_len;
1486 int r;
1487 Error *local_err = NULL;
1489 memset(&cpuid_data, 0, sizeof(cpuid_data));
1491 cpuid_i = 0;
1493 r = kvm_arch_set_tsc_khz(cs);
1494 if (r < 0) {
1495 return r;
1498 /* vcpu's TSC frequency is either specified by user, or following
1499 * the value used by KVM if the former is not present. In the
1500 * latter case, we query it from KVM and record in env->tsc_khz,
1501 * so that vcpu's TSC frequency can be migrated later via this field.
1503 if (!env->tsc_khz) {
1504 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1505 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1506 -ENOTSUP;
1507 if (r > 0) {
1508 env->tsc_khz = r;
1512 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1514 /* Paravirtualization CPUIDs */
1515 r = hyperv_handle_properties(cs, cpuid_data.entries);
1516 if (r < 0) {
1517 return r;
1518 } else if (r > 0) {
1519 cpuid_i = r;
1520 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1521 has_msr_hv_hypercall = true;
1524 if (cpu->expose_kvm) {
1525 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1526 c = &cpuid_data.entries[cpuid_i++];
1527 c->function = KVM_CPUID_SIGNATURE | kvm_base;
1528 c->eax = KVM_CPUID_FEATURES | kvm_base;
1529 c->ebx = signature[0];
1530 c->ecx = signature[1];
1531 c->edx = signature[2];
1533 c = &cpuid_data.entries[cpuid_i++];
1534 c->function = KVM_CPUID_FEATURES | kvm_base;
1535 c->eax = env->features[FEAT_KVM];
1536 c->edx = env->features[FEAT_KVM_HINTS];
1539 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1541 for (i = 0; i <= limit; i++) {
1542 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1543 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1544 abort();
1546 c = &cpuid_data.entries[cpuid_i++];
1548 switch (i) {
1549 case 2: {
1550 /* Keep reading function 2 till all the input is received */
1551 int times;
1553 c->function = i;
1554 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1555 KVM_CPUID_FLAG_STATE_READ_NEXT;
1556 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1557 times = c->eax & 0xff;
1559 for (j = 1; j < times; ++j) {
1560 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1561 fprintf(stderr, "cpuid_data is full, no space for "
1562 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1563 abort();
1565 c = &cpuid_data.entries[cpuid_i++];
1566 c->function = i;
1567 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1568 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1570 break;
1572 case 0x1f:
1573 if (env->nr_dies < 2) {
1574 break;
1576 /* fallthrough */
1577 case 4:
1578 case 0xb:
1579 case 0xd:
1580 for (j = 0; ; j++) {
1581 if (i == 0xd && j == 64) {
1582 break;
1585 if (i == 0x1f && j == 64) {
1586 break;
1589 c->function = i;
1590 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1591 c->index = j;
1592 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1594 if (i == 4 && c->eax == 0) {
1595 break;
1597 if (i == 0xb && !(c->ecx & 0xff00)) {
1598 break;
1600 if (i == 0x1f && !(c->ecx & 0xff00)) {
1601 break;
1603 if (i == 0xd && c->eax == 0) {
1604 continue;
1606 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1607 fprintf(stderr, "cpuid_data is full, no space for "
1608 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1609 abort();
1611 c = &cpuid_data.entries[cpuid_i++];
1613 break;
1614 case 0x7:
1615 case 0x14: {
1616 uint32_t times;
1618 c->function = i;
1619 c->index = 0;
1620 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1621 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1622 times = c->eax;
1624 for (j = 1; j <= times; ++j) {
1625 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1626 fprintf(stderr, "cpuid_data is full, no space for "
1627 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1628 abort();
1630 c = &cpuid_data.entries[cpuid_i++];
1631 c->function = i;
1632 c->index = j;
1633 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1634 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1636 break;
1638 default:
1639 c->function = i;
1640 c->flags = 0;
1641 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1642 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1644 * KVM already returns all zeroes if a CPUID entry is missing,
1645 * so we can omit it and avoid hitting KVM's 80-entry limit.
1647 cpuid_i--;
1649 break;
1653 if (limit >= 0x0a) {
1654 uint32_t eax, edx;
1656 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1658 has_architectural_pmu_version = eax & 0xff;
1659 if (has_architectural_pmu_version > 0) {
1660 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1662 /* Shouldn't be more than 32, since that's the number of bits
1663 * available in EBX to tell us _which_ counters are available.
1664 * Play it safe.
1666 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1667 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1670 if (has_architectural_pmu_version > 1) {
1671 num_architectural_pmu_fixed_counters = edx & 0x1f;
1673 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1674 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1680 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1682 for (i = 0x80000000; i <= limit; i++) {
1683 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1684 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1685 abort();
1687 c = &cpuid_data.entries[cpuid_i++];
1689 switch (i) {
1690 case 0x8000001d:
1691 /* Query for all AMD cache information leaves */
1692 for (j = 0; ; j++) {
1693 c->function = i;
1694 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1695 c->index = j;
1696 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1698 if (c->eax == 0) {
1699 break;
1701 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1702 fprintf(stderr, "cpuid_data is full, no space for "
1703 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1704 abort();
1706 c = &cpuid_data.entries[cpuid_i++];
1708 break;
1709 default:
1710 c->function = i;
1711 c->flags = 0;
1712 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1713 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1715 * KVM already returns all zeroes if a CPUID entry is missing,
1716 * so we can omit it and avoid hitting KVM's 80-entry limit.
1718 cpuid_i--;
1720 break;
1724 /* Call Centaur's CPUID instructions they are supported. */
1725 if (env->cpuid_xlevel2 > 0) {
1726 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1728 for (i = 0xC0000000; i <= limit; i++) {
1729 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1730 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1731 abort();
1733 c = &cpuid_data.entries[cpuid_i++];
1735 c->function = i;
1736 c->flags = 0;
1737 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1741 cpuid_data.cpuid.nent = cpuid_i;
1743 if (((env->cpuid_version >> 8)&0xF) >= 6
1744 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1745 (CPUID_MCE | CPUID_MCA)
1746 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1747 uint64_t mcg_cap, unsupported_caps;
1748 int banks;
1749 int ret;
1751 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1752 if (ret < 0) {
1753 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1754 return ret;
1757 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1758 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1759 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1760 return -ENOTSUP;
1763 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1764 if (unsupported_caps) {
1765 if (unsupported_caps & MCG_LMCE_P) {
1766 error_report("kvm: LMCE not supported");
1767 return -ENOTSUP;
1769 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1770 unsupported_caps);
1773 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1774 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1775 if (ret < 0) {
1776 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1777 return ret;
1781 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
1783 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1784 if (c) {
1785 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1786 !!(c->ecx & CPUID_EXT_SMX);
1789 if (env->mcg_cap & MCG_LMCE_P) {
1790 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1793 if (!env->user_tsc_khz) {
1794 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1795 invtsc_mig_blocker == NULL) {
1796 error_setg(&invtsc_mig_blocker,
1797 "State blocked by non-migratable CPU device"
1798 " (invtsc flag)");
1799 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1800 if (local_err) {
1801 error_report_err(local_err);
1802 error_free(invtsc_mig_blocker);
1803 return r;
1808 if (cpu->vmware_cpuid_freq
1809 /* Guests depend on 0x40000000 to detect this feature, so only expose
1810 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1811 && cpu->expose_kvm
1812 && kvm_base == KVM_CPUID_SIGNATURE
1813 /* TSC clock must be stable and known for this feature. */
1814 && tsc_is_stable_and_known(env)) {
1816 c = &cpuid_data.entries[cpuid_i++];
1817 c->function = KVM_CPUID_SIGNATURE | 0x10;
1818 c->eax = env->tsc_khz;
1819 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
1820 c->ecx = c->edx = 0;
1822 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1823 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1826 cpuid_data.cpuid.nent = cpuid_i;
1828 cpuid_data.cpuid.padding = 0;
1829 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1830 if (r) {
1831 goto fail;
1834 if (has_xsave) {
1835 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1836 memset(env->xsave_buf, 0, sizeof(struct kvm_xsave));
1839 max_nested_state_len = kvm_max_nested_state_length();
1840 if (max_nested_state_len > 0) {
1841 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
1843 if (cpu_has_vmx(env) || cpu_has_svm(env)) {
1844 struct kvm_vmx_nested_state_hdr *vmx_hdr;
1846 env->nested_state = g_malloc0(max_nested_state_len);
1847 env->nested_state->size = max_nested_state_len;
1849 if (cpu_has_vmx(env)) {
1850 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1851 vmx_hdr = &env->nested_state->hdr.vmx;
1852 vmx_hdr->vmxon_pa = -1ull;
1853 vmx_hdr->vmcs12_pa = -1ull;
1854 } else {
1855 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1860 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1862 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1863 has_msr_tsc_aux = false;
1866 kvm_init_msrs(cpu);
1868 r = hyperv_init_vcpu(cpu);
1869 if (r) {
1870 goto fail;
1873 return 0;
1875 fail:
1876 migrate_del_blocker(invtsc_mig_blocker);
1878 return r;
1881 int kvm_arch_destroy_vcpu(CPUState *cs)
1883 X86CPU *cpu = X86_CPU(cs);
1884 CPUX86State *env = &cpu->env;
1886 if (cpu->kvm_msr_buf) {
1887 g_free(cpu->kvm_msr_buf);
1888 cpu->kvm_msr_buf = NULL;
1891 if (env->nested_state) {
1892 g_free(env->nested_state);
1893 env->nested_state = NULL;
1896 qemu_del_vm_change_state_handler(cpu->vmsentry);
1898 return 0;
1901 void kvm_arch_reset_vcpu(X86CPU *cpu)
1903 CPUX86State *env = &cpu->env;
1905 env->xcr0 = 1;
1906 if (kvm_irqchip_in_kernel()) {
1907 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1908 KVM_MP_STATE_UNINITIALIZED;
1909 } else {
1910 env->mp_state = KVM_MP_STATE_RUNNABLE;
1913 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1914 int i;
1915 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1916 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1919 hyperv_x86_synic_reset(cpu);
1921 /* enabled by default */
1922 env->poll_control_msr = 1;
1925 void kvm_arch_do_init_vcpu(X86CPU *cpu)
1927 CPUX86State *env = &cpu->env;
1929 /* APs get directly into wait-for-SIPI state. */
1930 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1931 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1935 static int kvm_get_supported_feature_msrs(KVMState *s)
1937 int ret = 0;
1939 if (kvm_feature_msrs != NULL) {
1940 return 0;
1943 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1944 return 0;
1947 struct kvm_msr_list msr_list;
1949 msr_list.nmsrs = 0;
1950 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1951 if (ret < 0 && ret != -E2BIG) {
1952 error_report("Fetch KVM feature MSR list failed: %s",
1953 strerror(-ret));
1954 return ret;
1957 assert(msr_list.nmsrs > 0);
1958 kvm_feature_msrs = (struct kvm_msr_list *) \
1959 g_malloc0(sizeof(msr_list) +
1960 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1962 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1963 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1965 if (ret < 0) {
1966 error_report("Fetch KVM feature MSR list failed: %s",
1967 strerror(-ret));
1968 g_free(kvm_feature_msrs);
1969 kvm_feature_msrs = NULL;
1970 return ret;
1973 return 0;
1976 static int kvm_get_supported_msrs(KVMState *s)
1978 int ret = 0;
1979 struct kvm_msr_list msr_list, *kvm_msr_list;
1982 * Obtain MSR list from KVM. These are the MSRs that we must
1983 * save/restore.
1985 msr_list.nmsrs = 0;
1986 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1987 if (ret < 0 && ret != -E2BIG) {
1988 return ret;
1991 * Old kernel modules had a bug and could write beyond the provided
1992 * memory. Allocate at least a safe amount of 1K.
1994 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1995 msr_list.nmsrs *
1996 sizeof(msr_list.indices[0])));
1998 kvm_msr_list->nmsrs = msr_list.nmsrs;
1999 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2000 if (ret >= 0) {
2001 int i;
2003 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2004 switch (kvm_msr_list->indices[i]) {
2005 case MSR_STAR:
2006 has_msr_star = true;
2007 break;
2008 case MSR_VM_HSAVE_PA:
2009 has_msr_hsave_pa = true;
2010 break;
2011 case MSR_TSC_AUX:
2012 has_msr_tsc_aux = true;
2013 break;
2014 case MSR_TSC_ADJUST:
2015 has_msr_tsc_adjust = true;
2016 break;
2017 case MSR_IA32_TSCDEADLINE:
2018 has_msr_tsc_deadline = true;
2019 break;
2020 case MSR_IA32_SMBASE:
2021 has_msr_smbase = true;
2022 break;
2023 case MSR_SMI_COUNT:
2024 has_msr_smi_count = true;
2025 break;
2026 case MSR_IA32_MISC_ENABLE:
2027 has_msr_misc_enable = true;
2028 break;
2029 case MSR_IA32_BNDCFGS:
2030 has_msr_bndcfgs = true;
2031 break;
2032 case MSR_IA32_XSS:
2033 has_msr_xss = true;
2034 break;
2035 case MSR_IA32_UMWAIT_CONTROL:
2036 has_msr_umwait = true;
2037 break;
2038 case HV_X64_MSR_CRASH_CTL:
2039 has_msr_hv_crash = true;
2040 break;
2041 case HV_X64_MSR_RESET:
2042 has_msr_hv_reset = true;
2043 break;
2044 case HV_X64_MSR_VP_INDEX:
2045 has_msr_hv_vpindex = true;
2046 break;
2047 case HV_X64_MSR_VP_RUNTIME:
2048 has_msr_hv_runtime = true;
2049 break;
2050 case HV_X64_MSR_SCONTROL:
2051 has_msr_hv_synic = true;
2052 break;
2053 case HV_X64_MSR_STIMER0_CONFIG:
2054 has_msr_hv_stimer = true;
2055 break;
2056 case HV_X64_MSR_TSC_FREQUENCY:
2057 has_msr_hv_frequencies = true;
2058 break;
2059 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2060 has_msr_hv_reenlightenment = true;
2061 break;
2062 case MSR_IA32_SPEC_CTRL:
2063 has_msr_spec_ctrl = true;
2064 break;
2065 case MSR_IA32_TSX_CTRL:
2066 has_msr_tsx_ctrl = true;
2067 break;
2068 case MSR_VIRT_SSBD:
2069 has_msr_virt_ssbd = true;
2070 break;
2071 case MSR_IA32_ARCH_CAPABILITIES:
2072 has_msr_arch_capabs = true;
2073 break;
2074 case MSR_IA32_CORE_CAPABILITY:
2075 has_msr_core_capabs = true;
2076 break;
2077 case MSR_IA32_PERF_CAPABILITIES:
2078 has_msr_perf_capabs = true;
2079 break;
2080 case MSR_IA32_VMX_VMFUNC:
2081 has_msr_vmx_vmfunc = true;
2082 break;
2083 case MSR_IA32_UCODE_REV:
2084 has_msr_ucode_rev = true;
2085 break;
2086 case MSR_IA32_VMX_PROCBASED_CTLS2:
2087 has_msr_vmx_procbased_ctls2 = true;
2088 break;
2093 g_free(kvm_msr_list);
2095 return ret;
2098 static Notifier smram_machine_done;
2099 static KVMMemoryListener smram_listener;
2100 static AddressSpace smram_address_space;
2101 static MemoryRegion smram_as_root;
2102 static MemoryRegion smram_as_mem;
2104 static void register_smram_listener(Notifier *n, void *unused)
2106 MemoryRegion *smram =
2107 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2109 /* Outer container... */
2110 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2111 memory_region_set_enabled(&smram_as_root, true);
2113 /* ... with two regions inside: normal system memory with low
2114 * priority, and...
2116 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2117 get_system_memory(), 0, ~0ull);
2118 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2119 memory_region_set_enabled(&smram_as_mem, true);
2121 if (smram) {
2122 /* ... SMRAM with higher priority */
2123 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2124 memory_region_set_enabled(smram, true);
2127 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2128 kvm_memory_listener_register(kvm_state, &smram_listener,
2129 &smram_address_space, 1);
2132 int kvm_arch_init(MachineState *ms, KVMState *s)
2134 uint64_t identity_base = 0xfffbc000;
2135 uint64_t shadow_mem;
2136 int ret;
2137 struct utsname utsname;
2139 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2140 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2141 return -ENOTSUP;
2144 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2145 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2146 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2148 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2150 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2151 if (has_exception_payload) {
2152 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2153 if (ret < 0) {
2154 error_report("kvm: Failed to enable exception payload cap: %s",
2155 strerror(-ret));
2156 return ret;
2160 ret = kvm_get_supported_msrs(s);
2161 if (ret < 0) {
2162 return ret;
2165 kvm_get_supported_feature_msrs(s);
2167 uname(&utsname);
2168 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2171 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2172 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2173 * Since these must be part of guest physical memory, we need to allocate
2174 * them, both by setting their start addresses in the kernel and by
2175 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2177 * Older KVM versions may not support setting the identity map base. In
2178 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2179 * size.
2181 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2182 /* Allows up to 16M BIOSes. */
2183 identity_base = 0xfeffc000;
2185 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2186 if (ret < 0) {
2187 return ret;
2191 /* Set TSS base one page after EPT identity map. */
2192 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2193 if (ret < 0) {
2194 return ret;
2197 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2198 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2199 if (ret < 0) {
2200 fprintf(stderr, "e820_add_entry() table is full\n");
2201 return ret;
2204 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2205 if (shadow_mem != -1) {
2206 shadow_mem /= 4096;
2207 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2208 if (ret < 0) {
2209 return ret;
2213 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2214 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2215 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2216 smram_machine_done.notify = register_smram_listener;
2217 qemu_add_machine_init_done_notifier(&smram_machine_done);
2220 if (enable_cpu_pm) {
2221 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2222 int ret;
2224 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2225 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2226 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2227 #endif
2228 if (disable_exits) {
2229 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2230 KVM_X86_DISABLE_EXITS_HLT |
2231 KVM_X86_DISABLE_EXITS_PAUSE |
2232 KVM_X86_DISABLE_EXITS_CSTATE);
2235 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2236 disable_exits);
2237 if (ret < 0) {
2238 error_report("kvm: guest stopping CPU not supported: %s",
2239 strerror(-ret));
2243 return 0;
2246 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2248 lhs->selector = rhs->selector;
2249 lhs->base = rhs->base;
2250 lhs->limit = rhs->limit;
2251 lhs->type = 3;
2252 lhs->present = 1;
2253 lhs->dpl = 3;
2254 lhs->db = 0;
2255 lhs->s = 1;
2256 lhs->l = 0;
2257 lhs->g = 0;
2258 lhs->avl = 0;
2259 lhs->unusable = 0;
2262 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2264 unsigned flags = rhs->flags;
2265 lhs->selector = rhs->selector;
2266 lhs->base = rhs->base;
2267 lhs->limit = rhs->limit;
2268 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2269 lhs->present = (flags & DESC_P_MASK) != 0;
2270 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2271 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2272 lhs->s = (flags & DESC_S_MASK) != 0;
2273 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2274 lhs->g = (flags & DESC_G_MASK) != 0;
2275 lhs->avl = (flags & DESC_AVL_MASK) != 0;
2276 lhs->unusable = !lhs->present;
2277 lhs->padding = 0;
2280 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2282 lhs->selector = rhs->selector;
2283 lhs->base = rhs->base;
2284 lhs->limit = rhs->limit;
2285 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2286 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2287 (rhs->dpl << DESC_DPL_SHIFT) |
2288 (rhs->db << DESC_B_SHIFT) |
2289 (rhs->s * DESC_S_MASK) |
2290 (rhs->l << DESC_L_SHIFT) |
2291 (rhs->g * DESC_G_MASK) |
2292 (rhs->avl * DESC_AVL_MASK);
2295 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2297 if (set) {
2298 *kvm_reg = *qemu_reg;
2299 } else {
2300 *qemu_reg = *kvm_reg;
2304 static int kvm_getput_regs(X86CPU *cpu, int set)
2306 CPUX86State *env = &cpu->env;
2307 struct kvm_regs regs;
2308 int ret = 0;
2310 if (!set) {
2311 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2312 if (ret < 0) {
2313 return ret;
2317 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2318 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2319 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2320 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2321 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2322 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2323 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2324 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2325 #ifdef TARGET_X86_64
2326 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2327 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2328 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2329 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2330 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2331 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2332 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2333 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2334 #endif
2336 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2337 kvm_getput_reg(&regs.rip, &env->eip, set);
2339 if (set) {
2340 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2343 return ret;
2346 static int kvm_put_fpu(X86CPU *cpu)
2348 CPUX86State *env = &cpu->env;
2349 struct kvm_fpu fpu;
2350 int i;
2352 memset(&fpu, 0, sizeof fpu);
2353 fpu.fsw = env->fpus & ~(7 << 11);
2354 fpu.fsw |= (env->fpstt & 7) << 11;
2355 fpu.fcw = env->fpuc;
2356 fpu.last_opcode = env->fpop;
2357 fpu.last_ip = env->fpip;
2358 fpu.last_dp = env->fpdp;
2359 for (i = 0; i < 8; ++i) {
2360 fpu.ftwx |= (!env->fptags[i]) << i;
2362 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2363 for (i = 0; i < CPU_NB_REGS; i++) {
2364 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2365 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2367 fpu.mxcsr = env->mxcsr;
2369 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2372 #define XSAVE_FCW_FSW 0
2373 #define XSAVE_FTW_FOP 1
2374 #define XSAVE_CWD_RIP 2
2375 #define XSAVE_CWD_RDP 4
2376 #define XSAVE_MXCSR 6
2377 #define XSAVE_ST_SPACE 8
2378 #define XSAVE_XMM_SPACE 40
2379 #define XSAVE_XSTATE_BV 128
2380 #define XSAVE_YMMH_SPACE 144
2381 #define XSAVE_BNDREGS 240
2382 #define XSAVE_BNDCSR 256
2383 #define XSAVE_OPMASK 272
2384 #define XSAVE_ZMM_Hi256 288
2385 #define XSAVE_Hi16_ZMM 416
2386 #define XSAVE_PKRU 672
2388 #define XSAVE_BYTE_OFFSET(word_offset) \
2389 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
2391 #define ASSERT_OFFSET(word_offset, field) \
2392 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2393 offsetof(X86XSaveArea, field))
2395 ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2396 ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2397 ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2398 ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2399 ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2400 ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2401 ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2402 ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2403 ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2404 ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2405 ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2406 ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2407 ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2408 ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2409 ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2411 static int kvm_put_xsave(X86CPU *cpu)
2413 CPUX86State *env = &cpu->env;
2414 X86XSaveArea *xsave = env->xsave_buf;
2416 if (!has_xsave) {
2417 return kvm_put_fpu(cpu);
2419 x86_cpu_xsave_all_areas(cpu, xsave);
2421 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2424 static int kvm_put_xcrs(X86CPU *cpu)
2426 CPUX86State *env = &cpu->env;
2427 struct kvm_xcrs xcrs = {};
2429 if (!has_xcrs) {
2430 return 0;
2433 xcrs.nr_xcrs = 1;
2434 xcrs.flags = 0;
2435 xcrs.xcrs[0].xcr = 0;
2436 xcrs.xcrs[0].value = env->xcr0;
2437 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2440 static int kvm_put_sregs(X86CPU *cpu)
2442 CPUX86State *env = &cpu->env;
2443 struct kvm_sregs sregs;
2445 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2446 if (env->interrupt_injected >= 0) {
2447 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2448 (uint64_t)1 << (env->interrupt_injected % 64);
2451 if ((env->eflags & VM_MASK)) {
2452 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2453 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2454 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2455 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2456 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2457 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2458 } else {
2459 set_seg(&sregs.cs, &env->segs[R_CS]);
2460 set_seg(&sregs.ds, &env->segs[R_DS]);
2461 set_seg(&sregs.es, &env->segs[R_ES]);
2462 set_seg(&sregs.fs, &env->segs[R_FS]);
2463 set_seg(&sregs.gs, &env->segs[R_GS]);
2464 set_seg(&sregs.ss, &env->segs[R_SS]);
2467 set_seg(&sregs.tr, &env->tr);
2468 set_seg(&sregs.ldt, &env->ldt);
2470 sregs.idt.limit = env->idt.limit;
2471 sregs.idt.base = env->idt.base;
2472 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2473 sregs.gdt.limit = env->gdt.limit;
2474 sregs.gdt.base = env->gdt.base;
2475 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2477 sregs.cr0 = env->cr[0];
2478 sregs.cr2 = env->cr[2];
2479 sregs.cr3 = env->cr[3];
2480 sregs.cr4 = env->cr[4];
2482 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2483 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2485 sregs.efer = env->efer;
2487 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2490 static void kvm_msr_buf_reset(X86CPU *cpu)
2492 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2495 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2497 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2498 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2499 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2501 assert((void *)(entry + 1) <= limit);
2503 entry->index = index;
2504 entry->reserved = 0;
2505 entry->data = value;
2506 msrs->nmsrs++;
2509 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2511 kvm_msr_buf_reset(cpu);
2512 kvm_msr_entry_add(cpu, index, value);
2514 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2517 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2519 int ret;
2521 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2522 assert(ret == 1);
2525 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2527 CPUX86State *env = &cpu->env;
2528 int ret;
2530 if (!has_msr_tsc_deadline) {
2531 return 0;
2534 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2535 if (ret < 0) {
2536 return ret;
2539 assert(ret == 1);
2540 return 0;
2544 * Provide a separate write service for the feature control MSR in order to
2545 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2546 * before writing any other state because forcibly leaving nested mode
2547 * invalidates the VCPU state.
2549 static int kvm_put_msr_feature_control(X86CPU *cpu)
2551 int ret;
2553 if (!has_msr_feature_control) {
2554 return 0;
2557 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2558 cpu->env.msr_ia32_feature_control);
2559 if (ret < 0) {
2560 return ret;
2563 assert(ret == 1);
2564 return 0;
2567 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2569 uint32_t default1, can_be_one, can_be_zero;
2570 uint32_t must_be_one;
2572 switch (index) {
2573 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2574 default1 = 0x00000016;
2575 break;
2576 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2577 default1 = 0x0401e172;
2578 break;
2579 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2580 default1 = 0x000011ff;
2581 break;
2582 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2583 default1 = 0x00036dff;
2584 break;
2585 case MSR_IA32_VMX_PROCBASED_CTLS2:
2586 default1 = 0;
2587 break;
2588 default:
2589 abort();
2592 /* If a feature bit is set, the control can be either set or clear.
2593 * Otherwise the value is limited to either 0 or 1 by default1.
2595 can_be_one = features | default1;
2596 can_be_zero = features | ~default1;
2597 must_be_one = ~can_be_zero;
2600 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2601 * Bit 32:63 -> 1 if the control bit can be one.
2603 return must_be_one | (((uint64_t)can_be_one) << 32);
2606 #define VMCS12_MAX_FIELD_INDEX (0x17)
2608 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2610 uint64_t kvm_vmx_basic =
2611 kvm_arch_get_supported_msr_feature(kvm_state,
2612 MSR_IA32_VMX_BASIC);
2614 if (!kvm_vmx_basic) {
2615 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2616 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2618 return;
2621 uint64_t kvm_vmx_misc =
2622 kvm_arch_get_supported_msr_feature(kvm_state,
2623 MSR_IA32_VMX_MISC);
2624 uint64_t kvm_vmx_ept_vpid =
2625 kvm_arch_get_supported_msr_feature(kvm_state,
2626 MSR_IA32_VMX_EPT_VPID_CAP);
2629 * If the guest is 64-bit, a value of 1 is allowed for the host address
2630 * space size vmexit control.
2632 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2633 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2636 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
2637 * not change them for backwards compatibility.
2639 uint64_t fixed_vmx_basic = kvm_vmx_basic &
2640 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2641 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2642 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2645 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
2646 * change in the future but are always zero for now, clear them to be
2647 * future proof. Bits 32-63 in theory could change, though KVM does
2648 * not support dual-monitor treatment and probably never will; mask
2649 * them out as well.
2651 uint64_t fixed_vmx_misc = kvm_vmx_misc &
2652 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2653 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2656 * EPT memory types should not change either, so we do not bother
2657 * adding features for them.
2659 uint64_t fixed_vmx_ept_mask =
2660 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2661 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2662 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2664 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2665 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2666 f[FEAT_VMX_PROCBASED_CTLS]));
2667 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2668 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2669 f[FEAT_VMX_PINBASED_CTLS]));
2670 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2671 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2672 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2673 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2674 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2675 f[FEAT_VMX_ENTRY_CTLS]));
2676 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2677 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2678 f[FEAT_VMX_SECONDARY_CTLS]));
2679 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2680 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2681 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2682 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2683 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2684 f[FEAT_VMX_MISC] | fixed_vmx_misc);
2685 if (has_msr_vmx_vmfunc) {
2686 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2690 * Just to be safe, write these with constant values. The CRn_FIXED1
2691 * MSRs are generated by KVM based on the vCPU's CPUID.
2693 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2694 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2695 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2696 CR4_VMXE_MASK);
2697 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM,
2698 VMCS12_MAX_FIELD_INDEX << 1);
2701 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
2703 uint64_t kvm_perf_cap =
2704 kvm_arch_get_supported_msr_feature(kvm_state,
2705 MSR_IA32_PERF_CAPABILITIES);
2707 if (kvm_perf_cap) {
2708 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
2709 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
2713 static int kvm_buf_set_msrs(X86CPU *cpu)
2715 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2716 if (ret < 0) {
2717 return ret;
2720 if (ret < cpu->kvm_msr_buf->nmsrs) {
2721 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2722 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2723 (uint32_t)e->index, (uint64_t)e->data);
2726 assert(ret == cpu->kvm_msr_buf->nmsrs);
2727 return 0;
2730 static void kvm_init_msrs(X86CPU *cpu)
2732 CPUX86State *env = &cpu->env;
2734 kvm_msr_buf_reset(cpu);
2735 if (has_msr_arch_capabs) {
2736 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2737 env->features[FEAT_ARCH_CAPABILITIES]);
2740 if (has_msr_core_capabs) {
2741 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2742 env->features[FEAT_CORE_CAPABILITY]);
2745 if (has_msr_perf_capabs && cpu->enable_pmu) {
2746 kvm_msr_entry_add_perf(cpu, env->features);
2749 if (has_msr_ucode_rev) {
2750 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
2754 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2755 * all kernels with MSR features should have them.
2757 if (kvm_feature_msrs && cpu_has_vmx(env)) {
2758 kvm_msr_entry_add_vmx(cpu, env->features);
2761 assert(kvm_buf_set_msrs(cpu) == 0);
2764 static int kvm_put_msrs(X86CPU *cpu, int level)
2766 CPUX86State *env = &cpu->env;
2767 int i;
2769 kvm_msr_buf_reset(cpu);
2771 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2772 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2773 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2774 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
2775 if (has_msr_star) {
2776 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
2778 if (has_msr_hsave_pa) {
2779 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
2781 if (has_msr_tsc_aux) {
2782 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
2784 if (has_msr_tsc_adjust) {
2785 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
2787 if (has_msr_misc_enable) {
2788 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
2789 env->msr_ia32_misc_enable);
2791 if (has_msr_smbase) {
2792 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
2794 if (has_msr_smi_count) {
2795 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2797 if (has_msr_bndcfgs) {
2798 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
2800 if (has_msr_xss) {
2801 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
2803 if (has_msr_umwait) {
2804 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
2806 if (has_msr_spec_ctrl) {
2807 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2809 if (has_msr_tsx_ctrl) {
2810 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
2812 if (has_msr_virt_ssbd) {
2813 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2816 #ifdef TARGET_X86_64
2817 if (lm_capable_kernel) {
2818 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2819 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2820 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2821 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
2823 #endif
2826 * The following MSRs have side effects on the guest or are too heavy
2827 * for normal writeback. Limit them to reset or full state updates.
2829 if (level >= KVM_PUT_RESET_STATE) {
2830 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2831 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2832 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
2833 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
2834 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
2836 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2837 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
2839 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2840 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
2842 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2843 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
2846 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
2847 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
2850 if (has_architectural_pmu_version > 0) {
2851 if (has_architectural_pmu_version > 1) {
2852 /* Stop the counter. */
2853 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2854 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2857 /* Set the counter values. */
2858 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2859 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
2860 env->msr_fixed_counters[i]);
2862 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2863 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
2864 env->msr_gp_counters[i]);
2865 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
2866 env->msr_gp_evtsel[i]);
2868 if (has_architectural_pmu_version > 1) {
2869 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2870 env->msr_global_status);
2871 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2872 env->msr_global_ovf_ctrl);
2874 /* Now start the PMU. */
2875 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2876 env->msr_fixed_ctr_ctrl);
2877 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2878 env->msr_global_ctrl);
2882 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2883 * only sync them to KVM on the first cpu
2885 if (current_cpu == first_cpu) {
2886 if (has_msr_hv_hypercall) {
2887 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2888 env->msr_hv_guest_os_id);
2889 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2890 env->msr_hv_hypercall);
2892 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
2893 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2894 env->msr_hv_tsc);
2896 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
2897 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2898 env->msr_hv_reenlightenment_control);
2899 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2900 env->msr_hv_tsc_emulation_control);
2901 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2902 env->msr_hv_tsc_emulation_status);
2905 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
2906 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
2907 env->msr_hv_vapic);
2909 if (has_msr_hv_crash) {
2910 int j;
2912 for (j = 0; j < HV_CRASH_PARAMS; j++)
2913 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
2914 env->msr_hv_crash_params[j]);
2916 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
2918 if (has_msr_hv_runtime) {
2919 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
2921 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2922 && hv_vpindex_settable) {
2923 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2924 hyperv_vp_index(CPU(cpu)));
2926 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2927 int j;
2929 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2931 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
2932 env->msr_hv_synic_control);
2933 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
2934 env->msr_hv_synic_evt_page);
2935 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
2936 env->msr_hv_synic_msg_page);
2938 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
2939 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
2940 env->msr_hv_synic_sint[j]);
2943 if (has_msr_hv_stimer) {
2944 int j;
2946 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
2947 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
2948 env->msr_hv_stimer_config[j]);
2951 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
2952 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
2953 env->msr_hv_stimer_count[j]);
2956 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2957 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2959 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2960 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2961 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2962 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2963 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2964 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2965 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2966 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2967 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2968 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2969 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2970 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
2971 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2972 /* The CPU GPs if we write to a bit above the physical limit of
2973 * the host CPU (and KVM emulates that)
2975 uint64_t mask = env->mtrr_var[i].mask;
2976 mask &= phys_mask;
2978 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2979 env->mtrr_var[i].base);
2980 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
2983 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2984 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2985 0x14, 1, R_EAX) & 0x7;
2987 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2988 env->msr_rtit_ctrl);
2989 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2990 env->msr_rtit_status);
2991 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2992 env->msr_rtit_output_base);
2993 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2994 env->msr_rtit_output_mask);
2995 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2996 env->msr_rtit_cr3_match);
2997 for (i = 0; i < addr_num; i++) {
2998 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2999 env->msr_rtit_addrs[i]);
3003 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3004 * kvm_put_msr_feature_control. */
3007 if (env->mcg_cap) {
3008 int i;
3010 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3011 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3012 if (has_msr_mcg_ext_ctl) {
3013 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3015 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3016 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3020 return kvm_buf_set_msrs(cpu);
3024 static int kvm_get_fpu(X86CPU *cpu)
3026 CPUX86State *env = &cpu->env;
3027 struct kvm_fpu fpu;
3028 int i, ret;
3030 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3031 if (ret < 0) {
3032 return ret;
3035 env->fpstt = (fpu.fsw >> 11) & 7;
3036 env->fpus = fpu.fsw;
3037 env->fpuc = fpu.fcw;
3038 env->fpop = fpu.last_opcode;
3039 env->fpip = fpu.last_ip;
3040 env->fpdp = fpu.last_dp;
3041 for (i = 0; i < 8; ++i) {
3042 env->fptags[i] = !((fpu.ftwx >> i) & 1);
3044 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3045 for (i = 0; i < CPU_NB_REGS; i++) {
3046 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3047 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3049 env->mxcsr = fpu.mxcsr;
3051 return 0;
3054 static int kvm_get_xsave(X86CPU *cpu)
3056 CPUX86State *env = &cpu->env;
3057 X86XSaveArea *xsave = env->xsave_buf;
3058 int ret;
3060 if (!has_xsave) {
3061 return kvm_get_fpu(cpu);
3064 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
3065 if (ret < 0) {
3066 return ret;
3068 x86_cpu_xrstor_all_areas(cpu, xsave);
3070 return 0;
3073 static int kvm_get_xcrs(X86CPU *cpu)
3075 CPUX86State *env = &cpu->env;
3076 int i, ret;
3077 struct kvm_xcrs xcrs;
3079 if (!has_xcrs) {
3080 return 0;
3083 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3084 if (ret < 0) {
3085 return ret;
3088 for (i = 0; i < xcrs.nr_xcrs; i++) {
3089 /* Only support xcr0 now */
3090 if (xcrs.xcrs[i].xcr == 0) {
3091 env->xcr0 = xcrs.xcrs[i].value;
3092 break;
3095 return 0;
3098 static int kvm_get_sregs(X86CPU *cpu)
3100 CPUX86State *env = &cpu->env;
3101 struct kvm_sregs sregs;
3102 int bit, i, ret;
3104 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3105 if (ret < 0) {
3106 return ret;
3109 /* There can only be one pending IRQ set in the bitmap at a time, so try
3110 to find it and save its number instead (-1 for none). */
3111 env->interrupt_injected = -1;
3112 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
3113 if (sregs.interrupt_bitmap[i]) {
3114 bit = ctz64(sregs.interrupt_bitmap[i]);
3115 env->interrupt_injected = i * 64 + bit;
3116 break;
3120 get_seg(&env->segs[R_CS], &sregs.cs);
3121 get_seg(&env->segs[R_DS], &sregs.ds);
3122 get_seg(&env->segs[R_ES], &sregs.es);
3123 get_seg(&env->segs[R_FS], &sregs.fs);
3124 get_seg(&env->segs[R_GS], &sregs.gs);
3125 get_seg(&env->segs[R_SS], &sregs.ss);
3127 get_seg(&env->tr, &sregs.tr);
3128 get_seg(&env->ldt, &sregs.ldt);
3130 env->idt.limit = sregs.idt.limit;
3131 env->idt.base = sregs.idt.base;
3132 env->gdt.limit = sregs.gdt.limit;
3133 env->gdt.base = sregs.gdt.base;
3135 env->cr[0] = sregs.cr0;
3136 env->cr[2] = sregs.cr2;
3137 env->cr[3] = sregs.cr3;
3138 env->cr[4] = sregs.cr4;
3140 env->efer = sregs.efer;
3142 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3143 x86_update_hflags(env);
3145 return 0;
3148 static int kvm_get_msrs(X86CPU *cpu)
3150 CPUX86State *env = &cpu->env;
3151 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3152 int ret, i;
3153 uint64_t mtrr_top_bits;
3155 kvm_msr_buf_reset(cpu);
3157 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3158 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3159 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3160 kvm_msr_entry_add(cpu, MSR_PAT, 0);
3161 if (has_msr_star) {
3162 kvm_msr_entry_add(cpu, MSR_STAR, 0);
3164 if (has_msr_hsave_pa) {
3165 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3167 if (has_msr_tsc_aux) {
3168 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3170 if (has_msr_tsc_adjust) {
3171 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3173 if (has_msr_tsc_deadline) {
3174 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3176 if (has_msr_misc_enable) {
3177 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3179 if (has_msr_smbase) {
3180 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3182 if (has_msr_smi_count) {
3183 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3185 if (has_msr_feature_control) {
3186 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3188 if (has_msr_bndcfgs) {
3189 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3191 if (has_msr_xss) {
3192 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3194 if (has_msr_umwait) {
3195 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3197 if (has_msr_spec_ctrl) {
3198 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3200 if (has_msr_tsx_ctrl) {
3201 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3203 if (has_msr_virt_ssbd) {
3204 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3206 if (!env->tsc_valid) {
3207 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3208 env->tsc_valid = !runstate_is_running();
3211 #ifdef TARGET_X86_64
3212 if (lm_capable_kernel) {
3213 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3214 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3215 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3216 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3218 #endif
3219 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3220 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3221 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3222 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3224 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3225 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3227 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3228 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3230 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3231 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3233 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3234 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3236 if (has_architectural_pmu_version > 0) {
3237 if (has_architectural_pmu_version > 1) {
3238 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3239 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3240 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3241 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3243 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3244 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3246 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3247 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3248 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3252 if (env->mcg_cap) {
3253 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3254 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3255 if (has_msr_mcg_ext_ctl) {
3256 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3258 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3259 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3263 if (has_msr_hv_hypercall) {
3264 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3265 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3267 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3268 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3270 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3271 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3273 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3274 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3275 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3276 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3278 if (has_msr_hv_crash) {
3279 int j;
3281 for (j = 0; j < HV_CRASH_PARAMS; j++) {
3282 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3285 if (has_msr_hv_runtime) {
3286 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3288 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3289 uint32_t msr;
3291 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3292 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3293 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3294 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3295 kvm_msr_entry_add(cpu, msr, 0);
3298 if (has_msr_hv_stimer) {
3299 uint32_t msr;
3301 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3302 msr++) {
3303 kvm_msr_entry_add(cpu, msr, 0);
3306 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3307 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3308 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3309 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3310 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3311 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3312 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3313 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3314 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3315 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3316 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3317 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3318 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3319 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3320 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3321 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3325 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3326 int addr_num =
3327 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3329 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3330 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3331 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3332 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3333 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3334 for (i = 0; i < addr_num; i++) {
3335 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3339 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3340 if (ret < 0) {
3341 return ret;
3344 if (ret < cpu->kvm_msr_buf->nmsrs) {
3345 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3346 error_report("error: failed to get MSR 0x%" PRIx32,
3347 (uint32_t)e->index);
3350 assert(ret == cpu->kvm_msr_buf->nmsrs);
3352 * MTRR masks: Each mask consists of 5 parts
3353 * a 10..0: must be zero
3354 * b 11 : valid bit
3355 * c n-1.12: actual mask bits
3356 * d 51..n: reserved must be zero
3357 * e 63.52: reserved must be zero
3359 * 'n' is the number of physical bits supported by the CPU and is
3360 * apparently always <= 52. We know our 'n' but don't know what
3361 * the destinations 'n' is; it might be smaller, in which case
3362 * it masks (c) on loading. It might be larger, in which case
3363 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3364 * we're migrating to.
3367 if (cpu->fill_mtrr_mask) {
3368 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3369 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3370 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3371 } else {
3372 mtrr_top_bits = 0;
3375 for (i = 0; i < ret; i++) {
3376 uint32_t index = msrs[i].index;
3377 switch (index) {
3378 case MSR_IA32_SYSENTER_CS:
3379 env->sysenter_cs = msrs[i].data;
3380 break;
3381 case MSR_IA32_SYSENTER_ESP:
3382 env->sysenter_esp = msrs[i].data;
3383 break;
3384 case MSR_IA32_SYSENTER_EIP:
3385 env->sysenter_eip = msrs[i].data;
3386 break;
3387 case MSR_PAT:
3388 env->pat = msrs[i].data;
3389 break;
3390 case MSR_STAR:
3391 env->star = msrs[i].data;
3392 break;
3393 #ifdef TARGET_X86_64
3394 case MSR_CSTAR:
3395 env->cstar = msrs[i].data;
3396 break;
3397 case MSR_KERNELGSBASE:
3398 env->kernelgsbase = msrs[i].data;
3399 break;
3400 case MSR_FMASK:
3401 env->fmask = msrs[i].data;
3402 break;
3403 case MSR_LSTAR:
3404 env->lstar = msrs[i].data;
3405 break;
3406 #endif
3407 case MSR_IA32_TSC:
3408 env->tsc = msrs[i].data;
3409 break;
3410 case MSR_TSC_AUX:
3411 env->tsc_aux = msrs[i].data;
3412 break;
3413 case MSR_TSC_ADJUST:
3414 env->tsc_adjust = msrs[i].data;
3415 break;
3416 case MSR_IA32_TSCDEADLINE:
3417 env->tsc_deadline = msrs[i].data;
3418 break;
3419 case MSR_VM_HSAVE_PA:
3420 env->vm_hsave = msrs[i].data;
3421 break;
3422 case MSR_KVM_SYSTEM_TIME:
3423 env->system_time_msr = msrs[i].data;
3424 break;
3425 case MSR_KVM_WALL_CLOCK:
3426 env->wall_clock_msr = msrs[i].data;
3427 break;
3428 case MSR_MCG_STATUS:
3429 env->mcg_status = msrs[i].data;
3430 break;
3431 case MSR_MCG_CTL:
3432 env->mcg_ctl = msrs[i].data;
3433 break;
3434 case MSR_MCG_EXT_CTL:
3435 env->mcg_ext_ctl = msrs[i].data;
3436 break;
3437 case MSR_IA32_MISC_ENABLE:
3438 env->msr_ia32_misc_enable = msrs[i].data;
3439 break;
3440 case MSR_IA32_SMBASE:
3441 env->smbase = msrs[i].data;
3442 break;
3443 case MSR_SMI_COUNT:
3444 env->msr_smi_count = msrs[i].data;
3445 break;
3446 case MSR_IA32_FEATURE_CONTROL:
3447 env->msr_ia32_feature_control = msrs[i].data;
3448 break;
3449 case MSR_IA32_BNDCFGS:
3450 env->msr_bndcfgs = msrs[i].data;
3451 break;
3452 case MSR_IA32_XSS:
3453 env->xss = msrs[i].data;
3454 break;
3455 case MSR_IA32_UMWAIT_CONTROL:
3456 env->umwait = msrs[i].data;
3457 break;
3458 default:
3459 if (msrs[i].index >= MSR_MC0_CTL &&
3460 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3461 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3463 break;
3464 case MSR_KVM_ASYNC_PF_EN:
3465 env->async_pf_en_msr = msrs[i].data;
3466 break;
3467 case MSR_KVM_ASYNC_PF_INT:
3468 env->async_pf_int_msr = msrs[i].data;
3469 break;
3470 case MSR_KVM_PV_EOI_EN:
3471 env->pv_eoi_en_msr = msrs[i].data;
3472 break;
3473 case MSR_KVM_STEAL_TIME:
3474 env->steal_time_msr = msrs[i].data;
3475 break;
3476 case MSR_KVM_POLL_CONTROL: {
3477 env->poll_control_msr = msrs[i].data;
3478 break;
3480 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3481 env->msr_fixed_ctr_ctrl = msrs[i].data;
3482 break;
3483 case MSR_CORE_PERF_GLOBAL_CTRL:
3484 env->msr_global_ctrl = msrs[i].data;
3485 break;
3486 case MSR_CORE_PERF_GLOBAL_STATUS:
3487 env->msr_global_status = msrs[i].data;
3488 break;
3489 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3490 env->msr_global_ovf_ctrl = msrs[i].data;
3491 break;
3492 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3493 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3494 break;
3495 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3496 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3497 break;
3498 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3499 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3500 break;
3501 case HV_X64_MSR_HYPERCALL:
3502 env->msr_hv_hypercall = msrs[i].data;
3503 break;
3504 case HV_X64_MSR_GUEST_OS_ID:
3505 env->msr_hv_guest_os_id = msrs[i].data;
3506 break;
3507 case HV_X64_MSR_APIC_ASSIST_PAGE:
3508 env->msr_hv_vapic = msrs[i].data;
3509 break;
3510 case HV_X64_MSR_REFERENCE_TSC:
3511 env->msr_hv_tsc = msrs[i].data;
3512 break;
3513 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3514 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3515 break;
3516 case HV_X64_MSR_VP_RUNTIME:
3517 env->msr_hv_runtime = msrs[i].data;
3518 break;
3519 case HV_X64_MSR_SCONTROL:
3520 env->msr_hv_synic_control = msrs[i].data;
3521 break;
3522 case HV_X64_MSR_SIEFP:
3523 env->msr_hv_synic_evt_page = msrs[i].data;
3524 break;
3525 case HV_X64_MSR_SIMP:
3526 env->msr_hv_synic_msg_page = msrs[i].data;
3527 break;
3528 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3529 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3530 break;
3531 case HV_X64_MSR_STIMER0_CONFIG:
3532 case HV_X64_MSR_STIMER1_CONFIG:
3533 case HV_X64_MSR_STIMER2_CONFIG:
3534 case HV_X64_MSR_STIMER3_CONFIG:
3535 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3536 msrs[i].data;
3537 break;
3538 case HV_X64_MSR_STIMER0_COUNT:
3539 case HV_X64_MSR_STIMER1_COUNT:
3540 case HV_X64_MSR_STIMER2_COUNT:
3541 case HV_X64_MSR_STIMER3_COUNT:
3542 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3543 msrs[i].data;
3544 break;
3545 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3546 env->msr_hv_reenlightenment_control = msrs[i].data;
3547 break;
3548 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3549 env->msr_hv_tsc_emulation_control = msrs[i].data;
3550 break;
3551 case HV_X64_MSR_TSC_EMULATION_STATUS:
3552 env->msr_hv_tsc_emulation_status = msrs[i].data;
3553 break;
3554 case MSR_MTRRdefType:
3555 env->mtrr_deftype = msrs[i].data;
3556 break;
3557 case MSR_MTRRfix64K_00000:
3558 env->mtrr_fixed[0] = msrs[i].data;
3559 break;
3560 case MSR_MTRRfix16K_80000:
3561 env->mtrr_fixed[1] = msrs[i].data;
3562 break;
3563 case MSR_MTRRfix16K_A0000:
3564 env->mtrr_fixed[2] = msrs[i].data;
3565 break;
3566 case MSR_MTRRfix4K_C0000:
3567 env->mtrr_fixed[3] = msrs[i].data;
3568 break;
3569 case MSR_MTRRfix4K_C8000:
3570 env->mtrr_fixed[4] = msrs[i].data;
3571 break;
3572 case MSR_MTRRfix4K_D0000:
3573 env->mtrr_fixed[5] = msrs[i].data;
3574 break;
3575 case MSR_MTRRfix4K_D8000:
3576 env->mtrr_fixed[6] = msrs[i].data;
3577 break;
3578 case MSR_MTRRfix4K_E0000:
3579 env->mtrr_fixed[7] = msrs[i].data;
3580 break;
3581 case MSR_MTRRfix4K_E8000:
3582 env->mtrr_fixed[8] = msrs[i].data;
3583 break;
3584 case MSR_MTRRfix4K_F0000:
3585 env->mtrr_fixed[9] = msrs[i].data;
3586 break;
3587 case MSR_MTRRfix4K_F8000:
3588 env->mtrr_fixed[10] = msrs[i].data;
3589 break;
3590 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3591 if (index & 1) {
3592 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3593 mtrr_top_bits;
3594 } else {
3595 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3597 break;
3598 case MSR_IA32_SPEC_CTRL:
3599 env->spec_ctrl = msrs[i].data;
3600 break;
3601 case MSR_IA32_TSX_CTRL:
3602 env->tsx_ctrl = msrs[i].data;
3603 break;
3604 case MSR_VIRT_SSBD:
3605 env->virt_ssbd = msrs[i].data;
3606 break;
3607 case MSR_IA32_RTIT_CTL:
3608 env->msr_rtit_ctrl = msrs[i].data;
3609 break;
3610 case MSR_IA32_RTIT_STATUS:
3611 env->msr_rtit_status = msrs[i].data;
3612 break;
3613 case MSR_IA32_RTIT_OUTPUT_BASE:
3614 env->msr_rtit_output_base = msrs[i].data;
3615 break;
3616 case MSR_IA32_RTIT_OUTPUT_MASK:
3617 env->msr_rtit_output_mask = msrs[i].data;
3618 break;
3619 case MSR_IA32_RTIT_CR3_MATCH:
3620 env->msr_rtit_cr3_match = msrs[i].data;
3621 break;
3622 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3623 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3624 break;
3628 return 0;
3631 static int kvm_put_mp_state(X86CPU *cpu)
3633 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
3635 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
3638 static int kvm_get_mp_state(X86CPU *cpu)
3640 CPUState *cs = CPU(cpu);
3641 CPUX86State *env = &cpu->env;
3642 struct kvm_mp_state mp_state;
3643 int ret;
3645 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
3646 if (ret < 0) {
3647 return ret;
3649 env->mp_state = mp_state.mp_state;
3650 if (kvm_irqchip_in_kernel()) {
3651 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
3653 return 0;
3656 static int kvm_get_apic(X86CPU *cpu)
3658 DeviceState *apic = cpu->apic_state;
3659 struct kvm_lapic_state kapic;
3660 int ret;
3662 if (apic && kvm_irqchip_in_kernel()) {
3663 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
3664 if (ret < 0) {
3665 return ret;
3668 kvm_get_apic_state(apic, &kapic);
3670 return 0;
3673 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
3675 CPUState *cs = CPU(cpu);
3676 CPUX86State *env = &cpu->env;
3677 struct kvm_vcpu_events events = {};
3679 if (!kvm_has_vcpu_events()) {
3680 return 0;
3683 events.flags = 0;
3685 if (has_exception_payload) {
3686 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3687 events.exception.pending = env->exception_pending;
3688 events.exception_has_payload = env->exception_has_payload;
3689 events.exception_payload = env->exception_payload;
3691 events.exception.nr = env->exception_nr;
3692 events.exception.injected = env->exception_injected;
3693 events.exception.has_error_code = env->has_error_code;
3694 events.exception.error_code = env->error_code;
3696 events.interrupt.injected = (env->interrupt_injected >= 0);
3697 events.interrupt.nr = env->interrupt_injected;
3698 events.interrupt.soft = env->soft_interrupt;
3700 events.nmi.injected = env->nmi_injected;
3701 events.nmi.pending = env->nmi_pending;
3702 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3704 events.sipi_vector = env->sipi_vector;
3706 if (has_msr_smbase) {
3707 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3708 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3709 if (kvm_irqchip_in_kernel()) {
3710 /* As soon as these are moved to the kernel, remove them
3711 * from cs->interrupt_request.
3713 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3714 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3715 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3716 } else {
3717 /* Keep these in cs->interrupt_request. */
3718 events.smi.pending = 0;
3719 events.smi.latched_init = 0;
3721 /* Stop SMI delivery on old machine types to avoid a reboot
3722 * on an inward migration of an old VM.
3724 if (!cpu->kvm_no_smi_migration) {
3725 events.flags |= KVM_VCPUEVENT_VALID_SMM;
3729 if (level >= KVM_PUT_RESET_STATE) {
3730 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3731 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3732 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3736 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
3739 static int kvm_get_vcpu_events(X86CPU *cpu)
3741 CPUX86State *env = &cpu->env;
3742 struct kvm_vcpu_events events;
3743 int ret;
3745 if (!kvm_has_vcpu_events()) {
3746 return 0;
3749 memset(&events, 0, sizeof(events));
3750 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
3751 if (ret < 0) {
3752 return ret;
3755 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3756 env->exception_pending = events.exception.pending;
3757 env->exception_has_payload = events.exception_has_payload;
3758 env->exception_payload = events.exception_payload;
3759 } else {
3760 env->exception_pending = 0;
3761 env->exception_has_payload = false;
3763 env->exception_injected = events.exception.injected;
3764 env->exception_nr =
3765 (env->exception_pending || env->exception_injected) ?
3766 events.exception.nr : -1;
3767 env->has_error_code = events.exception.has_error_code;
3768 env->error_code = events.exception.error_code;
3770 env->interrupt_injected =
3771 events.interrupt.injected ? events.interrupt.nr : -1;
3772 env->soft_interrupt = events.interrupt.soft;
3774 env->nmi_injected = events.nmi.injected;
3775 env->nmi_pending = events.nmi.pending;
3776 if (events.nmi.masked) {
3777 env->hflags2 |= HF2_NMI_MASK;
3778 } else {
3779 env->hflags2 &= ~HF2_NMI_MASK;
3782 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3783 if (events.smi.smm) {
3784 env->hflags |= HF_SMM_MASK;
3785 } else {
3786 env->hflags &= ~HF_SMM_MASK;
3788 if (events.smi.pending) {
3789 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3790 } else {
3791 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3793 if (events.smi.smm_inside_nmi) {
3794 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3795 } else {
3796 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3798 if (events.smi.latched_init) {
3799 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3800 } else {
3801 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3805 env->sipi_vector = events.sipi_vector;
3807 return 0;
3810 static int kvm_guest_debug_workarounds(X86CPU *cpu)
3812 CPUState *cs = CPU(cpu);
3813 CPUX86State *env = &cpu->env;
3814 int ret = 0;
3815 unsigned long reinject_trap = 0;
3817 if (!kvm_has_vcpu_events()) {
3818 if (env->exception_nr == EXCP01_DB) {
3819 reinject_trap = KVM_GUESTDBG_INJECT_DB;
3820 } else if (env->exception_injected == EXCP03_INT3) {
3821 reinject_trap = KVM_GUESTDBG_INJECT_BP;
3823 kvm_reset_exception(env);
3827 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3828 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3829 * by updating the debug state once again if single-stepping is on.
3830 * Another reason to call kvm_update_guest_debug here is a pending debug
3831 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3832 * reinject them via SET_GUEST_DEBUG.
3834 if (reinject_trap ||
3835 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
3836 ret = kvm_update_guest_debug(cs, reinject_trap);
3838 return ret;
3841 static int kvm_put_debugregs(X86CPU *cpu)
3843 CPUX86State *env = &cpu->env;
3844 struct kvm_debugregs dbgregs;
3845 int i;
3847 if (!kvm_has_debugregs()) {
3848 return 0;
3851 memset(&dbgregs, 0, sizeof(dbgregs));
3852 for (i = 0; i < 4; i++) {
3853 dbgregs.db[i] = env->dr[i];
3855 dbgregs.dr6 = env->dr[6];
3856 dbgregs.dr7 = env->dr[7];
3857 dbgregs.flags = 0;
3859 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
3862 static int kvm_get_debugregs(X86CPU *cpu)
3864 CPUX86State *env = &cpu->env;
3865 struct kvm_debugregs dbgregs;
3866 int i, ret;
3868 if (!kvm_has_debugregs()) {
3869 return 0;
3872 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
3873 if (ret < 0) {
3874 return ret;
3876 for (i = 0; i < 4; i++) {
3877 env->dr[i] = dbgregs.db[i];
3879 env->dr[4] = env->dr[6] = dbgregs.dr6;
3880 env->dr[5] = env->dr[7] = dbgregs.dr7;
3882 return 0;
3885 static int kvm_put_nested_state(X86CPU *cpu)
3887 CPUX86State *env = &cpu->env;
3888 int max_nested_state_len = kvm_max_nested_state_length();
3890 if (!env->nested_state) {
3891 return 0;
3895 * Copy flags that are affected by reset from env->hflags and env->hflags2.
3897 if (env->hflags & HF_GUEST_MASK) {
3898 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
3899 } else {
3900 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
3903 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
3904 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
3905 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
3906 } else {
3907 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
3910 assert(env->nested_state->size <= max_nested_state_len);
3911 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3914 static int kvm_get_nested_state(X86CPU *cpu)
3916 CPUX86State *env = &cpu->env;
3917 int max_nested_state_len = kvm_max_nested_state_length();
3918 int ret;
3920 if (!env->nested_state) {
3921 return 0;
3925 * It is possible that migration restored a smaller size into
3926 * nested_state->hdr.size than what our kernel support.
3927 * We preserve migration origin nested_state->hdr.size for
3928 * call to KVM_SET_NESTED_STATE but wish that our next call
3929 * to KVM_GET_NESTED_STATE will use max size our kernel support.
3931 env->nested_state->size = max_nested_state_len;
3933 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3934 if (ret < 0) {
3935 return ret;
3939 * Copy flags that are affected by reset to env->hflags and env->hflags2.
3941 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3942 env->hflags |= HF_GUEST_MASK;
3943 } else {
3944 env->hflags &= ~HF_GUEST_MASK;
3947 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
3948 if (cpu_has_svm(env)) {
3949 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
3950 env->hflags2 |= HF2_GIF_MASK;
3951 } else {
3952 env->hflags2 &= ~HF2_GIF_MASK;
3956 return ret;
3959 int kvm_arch_put_registers(CPUState *cpu, int level)
3961 X86CPU *x86_cpu = X86_CPU(cpu);
3962 int ret;
3964 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
3966 /* must be before kvm_put_nested_state so that EFER.SVME is set */
3967 ret = kvm_put_sregs(x86_cpu);
3968 if (ret < 0) {
3969 return ret;
3972 if (level >= KVM_PUT_RESET_STATE) {
3973 ret = kvm_put_nested_state(x86_cpu);
3974 if (ret < 0) {
3975 return ret;
3978 ret = kvm_put_msr_feature_control(x86_cpu);
3979 if (ret < 0) {
3980 return ret;
3984 if (level == KVM_PUT_FULL_STATE) {
3985 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3986 * because TSC frequency mismatch shouldn't abort migration,
3987 * unless the user explicitly asked for a more strict TSC
3988 * setting (e.g. using an explicit "tsc-freq" option).
3990 kvm_arch_set_tsc_khz(cpu);
3993 ret = kvm_getput_regs(x86_cpu, 1);
3994 if (ret < 0) {
3995 return ret;
3997 ret = kvm_put_xsave(x86_cpu);
3998 if (ret < 0) {
3999 return ret;
4001 ret = kvm_put_xcrs(x86_cpu);
4002 if (ret < 0) {
4003 return ret;
4005 /* must be before kvm_put_msrs */
4006 ret = kvm_inject_mce_oldstyle(x86_cpu);
4007 if (ret < 0) {
4008 return ret;
4010 ret = kvm_put_msrs(x86_cpu, level);
4011 if (ret < 0) {
4012 return ret;
4014 ret = kvm_put_vcpu_events(x86_cpu, level);
4015 if (ret < 0) {
4016 return ret;
4018 if (level >= KVM_PUT_RESET_STATE) {
4019 ret = kvm_put_mp_state(x86_cpu);
4020 if (ret < 0) {
4021 return ret;
4025 ret = kvm_put_tscdeadline_msr(x86_cpu);
4026 if (ret < 0) {
4027 return ret;
4029 ret = kvm_put_debugregs(x86_cpu);
4030 if (ret < 0) {
4031 return ret;
4033 /* must be last */
4034 ret = kvm_guest_debug_workarounds(x86_cpu);
4035 if (ret < 0) {
4036 return ret;
4038 return 0;
4041 int kvm_arch_get_registers(CPUState *cs)
4043 X86CPU *cpu = X86_CPU(cs);
4044 int ret;
4046 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4048 ret = kvm_get_vcpu_events(cpu);
4049 if (ret < 0) {
4050 goto out;
4053 * KVM_GET_MPSTATE can modify CS and RIP, call it before
4054 * KVM_GET_REGS and KVM_GET_SREGS.
4056 ret = kvm_get_mp_state(cpu);
4057 if (ret < 0) {
4058 goto out;
4060 ret = kvm_getput_regs(cpu, 0);
4061 if (ret < 0) {
4062 goto out;
4064 ret = kvm_get_xsave(cpu);
4065 if (ret < 0) {
4066 goto out;
4068 ret = kvm_get_xcrs(cpu);
4069 if (ret < 0) {
4070 goto out;
4072 ret = kvm_get_sregs(cpu);
4073 if (ret < 0) {
4074 goto out;
4076 ret = kvm_get_msrs(cpu);
4077 if (ret < 0) {
4078 goto out;
4080 ret = kvm_get_apic(cpu);
4081 if (ret < 0) {
4082 goto out;
4084 ret = kvm_get_debugregs(cpu);
4085 if (ret < 0) {
4086 goto out;
4088 ret = kvm_get_nested_state(cpu);
4089 if (ret < 0) {
4090 goto out;
4092 ret = 0;
4093 out:
4094 cpu_sync_bndcs_hflags(&cpu->env);
4095 return ret;
4098 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4100 X86CPU *x86_cpu = X86_CPU(cpu);
4101 CPUX86State *env = &x86_cpu->env;
4102 int ret;
4104 /* Inject NMI */
4105 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4106 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4107 qemu_mutex_lock_iothread();
4108 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4109 qemu_mutex_unlock_iothread();
4110 DPRINTF("injected NMI\n");
4111 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4112 if (ret < 0) {
4113 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4114 strerror(-ret));
4117 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4118 qemu_mutex_lock_iothread();
4119 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4120 qemu_mutex_unlock_iothread();
4121 DPRINTF("injected SMI\n");
4122 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4123 if (ret < 0) {
4124 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4125 strerror(-ret));
4130 if (!kvm_pic_in_kernel()) {
4131 qemu_mutex_lock_iothread();
4134 /* Force the VCPU out of its inner loop to process any INIT requests
4135 * or (for userspace APIC, but it is cheap to combine the checks here)
4136 * pending TPR access reports.
4138 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4139 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4140 !(env->hflags & HF_SMM_MASK)) {
4141 cpu->exit_request = 1;
4143 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4144 cpu->exit_request = 1;
4148 if (!kvm_pic_in_kernel()) {
4149 /* Try to inject an interrupt if the guest can accept it */
4150 if (run->ready_for_interrupt_injection &&
4151 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4152 (env->eflags & IF_MASK)) {
4153 int irq;
4155 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4156 irq = cpu_get_pic_interrupt(env);
4157 if (irq >= 0) {
4158 struct kvm_interrupt intr;
4160 intr.irq = irq;
4161 DPRINTF("injected interrupt %d\n", irq);
4162 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4163 if (ret < 0) {
4164 fprintf(stderr,
4165 "KVM: injection failed, interrupt lost (%s)\n",
4166 strerror(-ret));
4171 /* If we have an interrupt but the guest is not ready to receive an
4172 * interrupt, request an interrupt window exit. This will
4173 * cause a return to userspace as soon as the guest is ready to
4174 * receive interrupts. */
4175 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4176 run->request_interrupt_window = 1;
4177 } else {
4178 run->request_interrupt_window = 0;
4181 DPRINTF("setting tpr\n");
4182 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4184 qemu_mutex_unlock_iothread();
4188 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4190 X86CPU *x86_cpu = X86_CPU(cpu);
4191 CPUX86State *env = &x86_cpu->env;
4193 if (run->flags & KVM_RUN_X86_SMM) {
4194 env->hflags |= HF_SMM_MASK;
4195 } else {
4196 env->hflags &= ~HF_SMM_MASK;
4198 if (run->if_flag) {
4199 env->eflags |= IF_MASK;
4200 } else {
4201 env->eflags &= ~IF_MASK;
4204 /* We need to protect the apic state against concurrent accesses from
4205 * different threads in case the userspace irqchip is used. */
4206 if (!kvm_irqchip_in_kernel()) {
4207 qemu_mutex_lock_iothread();
4209 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4210 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4211 if (!kvm_irqchip_in_kernel()) {
4212 qemu_mutex_unlock_iothread();
4214 return cpu_get_mem_attrs(env);
4217 int kvm_arch_process_async_events(CPUState *cs)
4219 X86CPU *cpu = X86_CPU(cs);
4220 CPUX86State *env = &cpu->env;
4222 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4223 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4224 assert(env->mcg_cap);
4226 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4228 kvm_cpu_synchronize_state(cs);
4230 if (env->exception_nr == EXCP08_DBLE) {
4231 /* this means triple fault */
4232 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4233 cs->exit_request = 1;
4234 return 0;
4236 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4237 env->has_error_code = 0;
4239 cs->halted = 0;
4240 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4241 env->mp_state = KVM_MP_STATE_RUNNABLE;
4245 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4246 !(env->hflags & HF_SMM_MASK)) {
4247 kvm_cpu_synchronize_state(cs);
4248 do_cpu_init(cpu);
4251 if (kvm_irqchip_in_kernel()) {
4252 return 0;
4255 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4256 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4257 apic_poll_irq(cpu->apic_state);
4259 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4260 (env->eflags & IF_MASK)) ||
4261 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4262 cs->halted = 0;
4264 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4265 kvm_cpu_synchronize_state(cs);
4266 do_cpu_sipi(cpu);
4268 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4269 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4270 kvm_cpu_synchronize_state(cs);
4271 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4272 env->tpr_access_type);
4275 return cs->halted;
4278 static int kvm_handle_halt(X86CPU *cpu)
4280 CPUState *cs = CPU(cpu);
4281 CPUX86State *env = &cpu->env;
4283 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4284 (env->eflags & IF_MASK)) &&
4285 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4286 cs->halted = 1;
4287 return EXCP_HLT;
4290 return 0;
4293 static int kvm_handle_tpr_access(X86CPU *cpu)
4295 CPUState *cs = CPU(cpu);
4296 struct kvm_run *run = cs->kvm_run;
4298 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4299 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4300 : TPR_ACCESS_READ);
4301 return 1;
4304 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4306 static const uint8_t int3 = 0xcc;
4308 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4309 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4310 return -EINVAL;
4312 return 0;
4315 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4317 uint8_t int3;
4319 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
4320 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4321 return -EINVAL;
4323 return 0;
4326 static struct {
4327 target_ulong addr;
4328 int len;
4329 int type;
4330 } hw_breakpoint[4];
4332 static int nb_hw_breakpoint;
4334 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4336 int n;
4338 for (n = 0; n < nb_hw_breakpoint; n++) {
4339 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4340 (hw_breakpoint[n].len == len || len == -1)) {
4341 return n;
4344 return -1;
4347 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4348 target_ulong len, int type)
4350 switch (type) {
4351 case GDB_BREAKPOINT_HW:
4352 len = 1;
4353 break;
4354 case GDB_WATCHPOINT_WRITE:
4355 case GDB_WATCHPOINT_ACCESS:
4356 switch (len) {
4357 case 1:
4358 break;
4359 case 2:
4360 case 4:
4361 case 8:
4362 if (addr & (len - 1)) {
4363 return -EINVAL;
4365 break;
4366 default:
4367 return -EINVAL;
4369 break;
4370 default:
4371 return -ENOSYS;
4374 if (nb_hw_breakpoint == 4) {
4375 return -ENOBUFS;
4377 if (find_hw_breakpoint(addr, len, type) >= 0) {
4378 return -EEXIST;
4380 hw_breakpoint[nb_hw_breakpoint].addr = addr;
4381 hw_breakpoint[nb_hw_breakpoint].len = len;
4382 hw_breakpoint[nb_hw_breakpoint].type = type;
4383 nb_hw_breakpoint++;
4385 return 0;
4388 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4389 target_ulong len, int type)
4391 int n;
4393 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
4394 if (n < 0) {
4395 return -ENOENT;
4397 nb_hw_breakpoint--;
4398 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4400 return 0;
4403 void kvm_arch_remove_all_hw_breakpoints(void)
4405 nb_hw_breakpoint = 0;
4408 static CPUWatchpoint hw_watchpoint;
4410 static int kvm_handle_debug(X86CPU *cpu,
4411 struct kvm_debug_exit_arch *arch_info)
4413 CPUState *cs = CPU(cpu);
4414 CPUX86State *env = &cpu->env;
4415 int ret = 0;
4416 int n;
4418 if (arch_info->exception == EXCP01_DB) {
4419 if (arch_info->dr6 & DR6_BS) {
4420 if (cs->singlestep_enabled) {
4421 ret = EXCP_DEBUG;
4423 } else {
4424 for (n = 0; n < 4; n++) {
4425 if (arch_info->dr6 & (1 << n)) {
4426 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4427 case 0x0:
4428 ret = EXCP_DEBUG;
4429 break;
4430 case 0x1:
4431 ret = EXCP_DEBUG;
4432 cs->watchpoint_hit = &hw_watchpoint;
4433 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4434 hw_watchpoint.flags = BP_MEM_WRITE;
4435 break;
4436 case 0x3:
4437 ret = EXCP_DEBUG;
4438 cs->watchpoint_hit = &hw_watchpoint;
4439 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4440 hw_watchpoint.flags = BP_MEM_ACCESS;
4441 break;
4446 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4447 ret = EXCP_DEBUG;
4449 if (ret == 0) {
4450 cpu_synchronize_state(cs);
4451 assert(env->exception_nr == -1);
4453 /* pass to guest */
4454 kvm_queue_exception(env, arch_info->exception,
4455 arch_info->exception == EXCP01_DB,
4456 arch_info->dr6);
4457 env->has_error_code = 0;
4460 return ret;
4463 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4465 const uint8_t type_code[] = {
4466 [GDB_BREAKPOINT_HW] = 0x0,
4467 [GDB_WATCHPOINT_WRITE] = 0x1,
4468 [GDB_WATCHPOINT_ACCESS] = 0x3
4470 const uint8_t len_code[] = {
4471 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4473 int n;
4475 if (kvm_sw_breakpoints_active(cpu)) {
4476 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4478 if (nb_hw_breakpoint > 0) {
4479 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4480 dbg->arch.debugreg[7] = 0x0600;
4481 for (n = 0; n < nb_hw_breakpoint; n++) {
4482 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4483 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4484 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4485 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4490 static bool host_supports_vmx(void)
4492 uint32_t ecx, unused;
4494 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4495 return ecx & CPUID_EXT_VMX;
4498 #define VMX_INVALID_GUEST_STATE 0x80000021
4500 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4502 X86CPU *cpu = X86_CPU(cs);
4503 uint64_t code;
4504 int ret;
4506 switch (run->exit_reason) {
4507 case KVM_EXIT_HLT:
4508 DPRINTF("handle_hlt\n");
4509 qemu_mutex_lock_iothread();
4510 ret = kvm_handle_halt(cpu);
4511 qemu_mutex_unlock_iothread();
4512 break;
4513 case KVM_EXIT_SET_TPR:
4514 ret = 0;
4515 break;
4516 case KVM_EXIT_TPR_ACCESS:
4517 qemu_mutex_lock_iothread();
4518 ret = kvm_handle_tpr_access(cpu);
4519 qemu_mutex_unlock_iothread();
4520 break;
4521 case KVM_EXIT_FAIL_ENTRY:
4522 code = run->fail_entry.hardware_entry_failure_reason;
4523 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4524 code);
4525 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4526 fprintf(stderr,
4527 "\nIf you're running a guest on an Intel machine without "
4528 "unrestricted mode\n"
4529 "support, the failure can be most likely due to the guest "
4530 "entering an invalid\n"
4531 "state for Intel VT. For example, the guest maybe running "
4532 "in big real mode\n"
4533 "which is not supported on less recent Intel processors."
4534 "\n\n");
4536 ret = -1;
4537 break;
4538 case KVM_EXIT_EXCEPTION:
4539 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4540 run->ex.exception, run->ex.error_code);
4541 ret = -1;
4542 break;
4543 case KVM_EXIT_DEBUG:
4544 DPRINTF("kvm_exit_debug\n");
4545 qemu_mutex_lock_iothread();
4546 ret = kvm_handle_debug(cpu, &run->debug.arch);
4547 qemu_mutex_unlock_iothread();
4548 break;
4549 case KVM_EXIT_HYPERV:
4550 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4551 break;
4552 case KVM_EXIT_IOAPIC_EOI:
4553 ioapic_eoi_broadcast(run->eoi.vector);
4554 ret = 0;
4555 break;
4556 default:
4557 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4558 ret = -1;
4559 break;
4562 return ret;
4565 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4567 X86CPU *cpu = X86_CPU(cs);
4568 CPUX86State *env = &cpu->env;
4570 kvm_cpu_synchronize_state(cs);
4571 return !(env->cr[0] & CR0_PE_MASK) ||
4572 ((env->segs[R_CS].selector & 3) != 3);
4575 void kvm_arch_init_irq_routing(KVMState *s)
4577 /* We know at this point that we're using the in-kernel
4578 * irqchip, so we can use irqfds, and on x86 we know
4579 * we can use msi via irqfd and GSI routing.
4581 kvm_msi_via_irqfd_allowed = true;
4582 kvm_gsi_routing_allowed = true;
4584 if (kvm_irqchip_is_split()) {
4585 int i;
4587 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4588 MSI routes for signaling interrupts to the local apics. */
4589 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
4590 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
4591 error_report("Could not enable split IRQ mode.");
4592 exit(1);
4598 int kvm_arch_irqchip_create(KVMState *s)
4600 int ret;
4601 if (kvm_kernel_irqchip_split()) {
4602 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4603 if (ret) {
4604 error_report("Could not enable split irqchip mode: %s",
4605 strerror(-ret));
4606 exit(1);
4607 } else {
4608 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4609 kvm_split_irqchip = true;
4610 return 1;
4612 } else {
4613 return 0;
4617 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
4619 CPUX86State *env;
4620 uint64_t ext_id;
4622 if (!first_cpu) {
4623 return address;
4625 env = &X86_CPU(first_cpu)->env;
4626 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
4627 return address;
4631 * If the remappable format bit is set, or the upper bits are
4632 * already set in address_hi, or the low extended bits aren't
4633 * there anyway, do nothing.
4635 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
4636 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
4637 return address;
4640 address &= ~ext_id;
4641 address |= ext_id << 35;
4642 return address;
4645 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
4646 uint64_t address, uint32_t data, PCIDevice *dev)
4648 X86IOMMUState *iommu = x86_iommu_get_default();
4650 if (iommu) {
4651 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
4653 if (class->int_remap) {
4654 int ret;
4655 MSIMessage src, dst;
4657 src.address = route->u.msi.address_hi;
4658 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4659 src.address |= route->u.msi.address_lo;
4660 src.data = route->u.msi.data;
4662 ret = class->int_remap(iommu, &src, &dst, dev ? \
4663 pci_requester_id(dev) : \
4664 X86_IOMMU_SID_INVALID);
4665 if (ret) {
4666 trace_kvm_x86_fixup_msi_error(route->gsi);
4667 return 1;
4671 * Handled untranslated compatibilty format interrupt with
4672 * extended destination ID in the low bits 11-5. */
4673 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
4675 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4676 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4677 route->u.msi.data = dst.data;
4678 return 0;
4682 address = kvm_swizzle_msi_ext_dest_id(address);
4683 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
4684 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
4685 return 0;
4688 typedef struct MSIRouteEntry MSIRouteEntry;
4690 struct MSIRouteEntry {
4691 PCIDevice *dev; /* Device pointer */
4692 int vector; /* MSI/MSIX vector index */
4693 int virq; /* Virtual IRQ index */
4694 QLIST_ENTRY(MSIRouteEntry) list;
4697 /* List of used GSI routes */
4698 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4699 QLIST_HEAD_INITIALIZER(msi_route_list);
4701 static void kvm_update_msi_routes_all(void *private, bool global,
4702 uint32_t index, uint32_t mask)
4704 int cnt = 0, vector;
4705 MSIRouteEntry *entry;
4706 MSIMessage msg;
4707 PCIDevice *dev;
4709 /* TODO: explicit route update */
4710 QLIST_FOREACH(entry, &msi_route_list, list) {
4711 cnt++;
4712 vector = entry->vector;
4713 dev = entry->dev;
4714 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4715 msg = msix_get_message(dev, vector);
4716 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4717 msg = msi_get_message(dev, vector);
4718 } else {
4720 * Either MSI/MSIX is disabled for the device, or the
4721 * specific message was masked out. Skip this one.
4723 continue;
4725 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
4727 kvm_irqchip_commit_routes(kvm_state);
4728 trace_kvm_x86_update_msi_routes(cnt);
4731 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4732 int vector, PCIDevice *dev)
4734 static bool notify_list_inited = false;
4735 MSIRouteEntry *entry;
4737 if (!dev) {
4738 /* These are (possibly) IOAPIC routes only used for split
4739 * kernel irqchip mode, while what we are housekeeping are
4740 * PCI devices only. */
4741 return 0;
4744 entry = g_new0(MSIRouteEntry, 1);
4745 entry->dev = dev;
4746 entry->vector = vector;
4747 entry->virq = route->gsi;
4748 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4750 trace_kvm_x86_add_msi_route(route->gsi);
4752 if (!notify_list_inited) {
4753 /* For the first time we do add route, add ourselves into
4754 * IOMMU's IEC notify list if needed. */
4755 X86IOMMUState *iommu = x86_iommu_get_default();
4756 if (iommu) {
4757 x86_iommu_iec_register_notifier(iommu,
4758 kvm_update_msi_routes_all,
4759 NULL);
4761 notify_list_inited = true;
4763 return 0;
4766 int kvm_arch_release_virq_post(int virq)
4768 MSIRouteEntry *entry, *next;
4769 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4770 if (entry->virq == virq) {
4771 trace_kvm_x86_remove_msi_route(virq);
4772 QLIST_REMOVE(entry, list);
4773 g_free(entry);
4774 break;
4777 return 0;
4780 int kvm_arch_msi_data_to_gsi(uint32_t data)
4782 abort();
4785 bool kvm_has_waitpkg(void)
4787 return has_msr_umwait;