s390x/kvm: Fix potential deadlock in sigp handling
[qemu.git] / target-s390x / kvm.c
bloba95d3da0f81b9af7ecd3132391172e3645dc5c8f
1 /*
2 * QEMU S390x KVM implementation
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * Contributions after 2012-10-29 are licensed under the terms of the
18 * GNU GPL, version 2 or (at your option) any later version.
20 * You should have received a copy of the GNU (Lesser) General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include <sys/ioctl.h>
27 #include <linux/kvm.h>
28 #include <asm/ptrace.h>
30 #include "qemu-common.h"
31 #include "cpu.h"
32 #include "qemu/error-report.h"
33 #include "qemu/timer.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/kvm.h"
36 #include "hw/hw.h"
37 #include "sysemu/device_tree.h"
38 #include "qapi/qmp/qjson.h"
39 #include "exec/gdbstub.h"
40 #include "exec/address-spaces.h"
41 #include "trace.h"
42 #include "qapi-event.h"
43 #include "hw/s390x/s390-pci-inst.h"
44 #include "hw/s390x/s390-pci-bus.h"
45 #include "hw/s390x/ipl.h"
46 #include "hw/s390x/ebcdic.h"
47 #include "exec/memattrs.h"
48 #include "hw/s390x/s390-virtio-ccw.h"
50 /* #define DEBUG_KVM */
52 #ifdef DEBUG_KVM
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55 #else
56 #define DPRINTF(fmt, ...) \
57 do { } while (0)
58 #endif
60 #define kvm_vm_check_mem_attr(s, attr) \
61 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
63 #define IPA0_DIAG 0x8300
64 #define IPA0_SIGP 0xae00
65 #define IPA0_B2 0xb200
66 #define IPA0_B9 0xb900
67 #define IPA0_EB 0xeb00
68 #define IPA0_E3 0xe300
70 #define PRIV_B2_SCLP_CALL 0x20
71 #define PRIV_B2_CSCH 0x30
72 #define PRIV_B2_HSCH 0x31
73 #define PRIV_B2_MSCH 0x32
74 #define PRIV_B2_SSCH 0x33
75 #define PRIV_B2_STSCH 0x34
76 #define PRIV_B2_TSCH 0x35
77 #define PRIV_B2_TPI 0x36
78 #define PRIV_B2_SAL 0x37
79 #define PRIV_B2_RSCH 0x38
80 #define PRIV_B2_STCRW 0x39
81 #define PRIV_B2_STCPS 0x3a
82 #define PRIV_B2_RCHP 0x3b
83 #define PRIV_B2_SCHM 0x3c
84 #define PRIV_B2_CHSC 0x5f
85 #define PRIV_B2_SIGA 0x74
86 #define PRIV_B2_XSCH 0x76
88 #define PRIV_EB_SQBS 0x8a
89 #define PRIV_EB_PCISTB 0xd0
90 #define PRIV_EB_SIC 0xd1
92 #define PRIV_B9_EQBS 0x9c
93 #define PRIV_B9_CLP 0xa0
94 #define PRIV_B9_PCISTG 0xd0
95 #define PRIV_B9_PCILG 0xd2
96 #define PRIV_B9_RPCIT 0xd3
98 #define PRIV_E3_MPCIFC 0xd0
99 #define PRIV_E3_STPCIFC 0xd4
101 #define DIAG_TIMEREVENT 0x288
102 #define DIAG_IPL 0x308
103 #define DIAG_KVM_HYPERCALL 0x500
104 #define DIAG_KVM_BREAKPOINT 0x501
106 #define ICPT_INSTRUCTION 0x04
107 #define ICPT_PROGRAM 0x08
108 #define ICPT_EXT_INT 0x14
109 #define ICPT_WAITPSW 0x1c
110 #define ICPT_SOFT_INTERCEPT 0x24
111 #define ICPT_CPU_STOP 0x28
112 #define ICPT_OPEREXC 0x2c
113 #define ICPT_IO 0x40
115 #define NR_LOCAL_IRQS 32
117 * Needs to be big enough to contain max_cpus emergency signals
118 * and in addition NR_LOCAL_IRQS interrupts
120 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \
121 (max_cpus + NR_LOCAL_IRQS))
123 static CPUWatchpoint hw_watchpoint;
125 * We don't use a list because this structure is also used to transmit the
126 * hardware breakpoints to the kernel.
128 static struct kvm_hw_breakpoint *hw_breakpoints;
129 static int nb_hw_breakpoints;
131 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
132 KVM_CAP_LAST_INFO
135 static QemuMutex qemu_sigp_mutex;
137 static int cap_sync_regs;
138 static int cap_async_pf;
139 static int cap_mem_op;
140 static int cap_s390_irq;
141 static int cap_ri;
143 static void *legacy_s390_alloc(size_t size, uint64_t *align);
145 static int kvm_s390_query_mem_limit(KVMState *s, uint64_t *memory_limit)
147 struct kvm_device_attr attr = {
148 .group = KVM_S390_VM_MEM_CTRL,
149 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
150 .addr = (uint64_t) memory_limit,
153 return kvm_vm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
156 int kvm_s390_set_mem_limit(KVMState *s, uint64_t new_limit, uint64_t *hw_limit)
158 int rc;
160 struct kvm_device_attr attr = {
161 .group = KVM_S390_VM_MEM_CTRL,
162 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
163 .addr = (uint64_t) &new_limit,
166 if (!kvm_vm_check_mem_attr(s, KVM_S390_VM_MEM_LIMIT_SIZE)) {
167 return 0;
170 rc = kvm_s390_query_mem_limit(s, hw_limit);
171 if (rc) {
172 return rc;
173 } else if (*hw_limit < new_limit) {
174 return -E2BIG;
177 return kvm_vm_ioctl(s, KVM_SET_DEVICE_ATTR, &attr);
180 static bool kvm_s390_cmma_available(void)
182 static bool initialized, value;
184 if (!initialized) {
185 initialized = true;
186 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
187 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
189 return value;
192 void kvm_s390_cmma_reset(void)
194 int rc;
195 struct kvm_device_attr attr = {
196 .group = KVM_S390_VM_MEM_CTRL,
197 .attr = KVM_S390_VM_MEM_CLR_CMMA,
200 if (!mem_path || !kvm_s390_cmma_available()) {
201 return;
204 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
205 trace_kvm_clear_cmma(rc);
208 static void kvm_s390_enable_cmma(void)
210 int rc;
211 struct kvm_device_attr attr = {
212 .group = KVM_S390_VM_MEM_CTRL,
213 .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
216 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
217 trace_kvm_enable_cmma(rc);
220 static void kvm_s390_set_attr(uint64_t attr)
222 struct kvm_device_attr attribute = {
223 .group = KVM_S390_VM_CRYPTO,
224 .attr = attr,
227 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
229 if (ret) {
230 error_report("Failed to set crypto device attribute %lu: %s",
231 attr, strerror(-ret));
235 static void kvm_s390_init_aes_kw(void)
237 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
239 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
240 NULL)) {
241 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
244 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
245 kvm_s390_set_attr(attr);
249 static void kvm_s390_init_dea_kw(void)
251 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
253 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
254 NULL)) {
255 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
258 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
259 kvm_s390_set_attr(attr);
263 void kvm_s390_crypto_reset(void)
265 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
266 kvm_s390_init_aes_kw();
267 kvm_s390_init_dea_kw();
271 int kvm_arch_init(MachineState *ms, KVMState *s)
273 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
274 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
275 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
276 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
278 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
279 || !kvm_check_extension(s, KVM_CAP_S390_COW)) {
280 phys_mem_set_alloc(legacy_s390_alloc);
283 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
284 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
285 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
286 if (ri_allowed()) {
287 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
288 cap_ri = 1;
292 qemu_mutex_init(&qemu_sigp_mutex);
294 return 0;
297 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
299 return cpu->cpu_index;
302 int kvm_arch_init_vcpu(CPUState *cs)
304 S390CPU *cpu = S390_CPU(cs);
305 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
306 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE);
307 return 0;
310 void kvm_s390_reset_vcpu(S390CPU *cpu)
312 CPUState *cs = CPU(cpu);
314 /* The initial reset call is needed here to reset in-kernel
315 * vcpu data that we can't access directly from QEMU
316 * (i.e. with older kernels which don't support sync_regs/ONE_REG).
317 * Before this ioctl cpu_synchronize_state() is called in common kvm
318 * code (kvm-all) */
319 if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) {
320 error_report("Initial CPU reset failed on CPU %i", cs->cpu_index);
324 static int can_sync_regs(CPUState *cs, int regs)
326 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
329 int kvm_arch_put_registers(CPUState *cs, int level)
331 S390CPU *cpu = S390_CPU(cs);
332 CPUS390XState *env = &cpu->env;
333 struct kvm_sregs sregs;
334 struct kvm_regs regs;
335 struct kvm_fpu fpu = {};
336 int r;
337 int i;
339 /* always save the PSW and the GPRS*/
340 cs->kvm_run->psw_addr = env->psw.addr;
341 cs->kvm_run->psw_mask = env->psw.mask;
343 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
344 for (i = 0; i < 16; i++) {
345 cs->kvm_run->s.regs.gprs[i] = env->regs[i];
346 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
348 } else {
349 for (i = 0; i < 16; i++) {
350 regs.gprs[i] = env->regs[i];
352 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
353 if (r < 0) {
354 return r;
358 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
359 for (i = 0; i < 32; i++) {
360 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0].ll;
361 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1].ll;
363 cs->kvm_run->s.regs.fpc = env->fpc;
364 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
365 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
366 for (i = 0; i < 16; i++) {
367 cs->kvm_run->s.regs.fprs[i] = get_freg(env, i)->ll;
369 cs->kvm_run->s.regs.fpc = env->fpc;
370 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
371 } else {
372 /* Floating point */
373 for (i = 0; i < 16; i++) {
374 fpu.fprs[i] = get_freg(env, i)->ll;
376 fpu.fpc = env->fpc;
378 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
379 if (r < 0) {
380 return r;
384 /* Do we need to save more than that? */
385 if (level == KVM_PUT_RUNTIME_STATE) {
386 return 0;
389 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
390 cs->kvm_run->s.regs.cputm = env->cputm;
391 cs->kvm_run->s.regs.ckc = env->ckc;
392 cs->kvm_run->s.regs.todpr = env->todpr;
393 cs->kvm_run->s.regs.gbea = env->gbea;
394 cs->kvm_run->s.regs.pp = env->pp;
395 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
396 } else {
398 * These ONE_REGS are not protected by a capability. As they are only
399 * necessary for migration we just trace a possible error, but don't
400 * return with an error return code.
402 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
403 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
404 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
405 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
406 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
409 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
410 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
411 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
414 /* pfault parameters */
415 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
416 cs->kvm_run->s.regs.pft = env->pfault_token;
417 cs->kvm_run->s.regs.pfs = env->pfault_select;
418 cs->kvm_run->s.regs.pfc = env->pfault_compare;
419 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
420 } else if (cap_async_pf) {
421 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
422 if (r < 0) {
423 return r;
425 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
426 if (r < 0) {
427 return r;
429 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
430 if (r < 0) {
431 return r;
435 /* access registers and control registers*/
436 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
437 for (i = 0; i < 16; i++) {
438 cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
439 cs->kvm_run->s.regs.crs[i] = env->cregs[i];
441 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
442 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
443 } else {
444 for (i = 0; i < 16; i++) {
445 sregs.acrs[i] = env->aregs[i];
446 sregs.crs[i] = env->cregs[i];
448 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
449 if (r < 0) {
450 return r;
454 /* Finally the prefix */
455 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
456 cs->kvm_run->s.regs.prefix = env->psa;
457 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
458 } else {
459 /* prefix is only supported via sync regs */
461 return 0;
464 int kvm_arch_get_registers(CPUState *cs)
466 S390CPU *cpu = S390_CPU(cs);
467 CPUS390XState *env = &cpu->env;
468 struct kvm_sregs sregs;
469 struct kvm_regs regs;
470 struct kvm_fpu fpu;
471 int i, r;
473 /* get the PSW */
474 env->psw.addr = cs->kvm_run->psw_addr;
475 env->psw.mask = cs->kvm_run->psw_mask;
477 /* the GPRS */
478 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
479 for (i = 0; i < 16; i++) {
480 env->regs[i] = cs->kvm_run->s.regs.gprs[i];
482 } else {
483 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
484 if (r < 0) {
485 return r;
487 for (i = 0; i < 16; i++) {
488 env->regs[i] = regs.gprs[i];
492 /* The ACRS and CRS */
493 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
494 for (i = 0; i < 16; i++) {
495 env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
496 env->cregs[i] = cs->kvm_run->s.regs.crs[i];
498 } else {
499 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
500 if (r < 0) {
501 return r;
503 for (i = 0; i < 16; i++) {
504 env->aregs[i] = sregs.acrs[i];
505 env->cregs[i] = sregs.crs[i];
509 /* Floating point and vector registers */
510 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
511 for (i = 0; i < 32; i++) {
512 env->vregs[i][0].ll = cs->kvm_run->s.regs.vrs[i][0];
513 env->vregs[i][1].ll = cs->kvm_run->s.regs.vrs[i][1];
515 env->fpc = cs->kvm_run->s.regs.fpc;
516 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
517 for (i = 0; i < 16; i++) {
518 get_freg(env, i)->ll = cs->kvm_run->s.regs.fprs[i];
520 env->fpc = cs->kvm_run->s.regs.fpc;
521 } else {
522 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
523 if (r < 0) {
524 return r;
526 for (i = 0; i < 16; i++) {
527 get_freg(env, i)->ll = fpu.fprs[i];
529 env->fpc = fpu.fpc;
532 /* The prefix */
533 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
534 env->psa = cs->kvm_run->s.regs.prefix;
537 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
538 env->cputm = cs->kvm_run->s.regs.cputm;
539 env->ckc = cs->kvm_run->s.regs.ckc;
540 env->todpr = cs->kvm_run->s.regs.todpr;
541 env->gbea = cs->kvm_run->s.regs.gbea;
542 env->pp = cs->kvm_run->s.regs.pp;
543 } else {
545 * These ONE_REGS are not protected by a capability. As they are only
546 * necessary for migration we just trace a possible error, but don't
547 * return with an error return code.
549 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
550 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
551 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
552 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
553 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
556 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
557 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
560 /* pfault parameters */
561 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
562 env->pfault_token = cs->kvm_run->s.regs.pft;
563 env->pfault_select = cs->kvm_run->s.regs.pfs;
564 env->pfault_compare = cs->kvm_run->s.regs.pfc;
565 } else if (cap_async_pf) {
566 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
567 if (r < 0) {
568 return r;
570 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
571 if (r < 0) {
572 return r;
574 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
575 if (r < 0) {
576 return r;
580 return 0;
583 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
585 int r;
586 struct kvm_device_attr attr = {
587 .group = KVM_S390_VM_TOD,
588 .attr = KVM_S390_VM_TOD_LOW,
589 .addr = (uint64_t)tod_low,
592 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
593 if (r) {
594 return r;
597 attr.attr = KVM_S390_VM_TOD_HIGH;
598 attr.addr = (uint64_t)tod_high;
599 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
602 int kvm_s390_set_clock(uint8_t *tod_high, uint64_t *tod_low)
604 int r;
606 struct kvm_device_attr attr = {
607 .group = KVM_S390_VM_TOD,
608 .attr = KVM_S390_VM_TOD_LOW,
609 .addr = (uint64_t)tod_low,
612 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
613 if (r) {
614 return r;
617 attr.attr = KVM_S390_VM_TOD_HIGH;
618 attr.addr = (uint64_t)tod_high;
619 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
623 * kvm_s390_mem_op:
624 * @addr: the logical start address in guest memory
625 * @ar: the access register number
626 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
627 * @len: length that should be transferred
628 * @is_write: true = write, false = read
629 * Returns: 0 on success, non-zero if an exception or error occurred
631 * Use KVM ioctl to read/write from/to guest memory. An access exception
632 * is injected into the vCPU in case of translation errors.
634 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
635 int len, bool is_write)
637 struct kvm_s390_mem_op mem_op = {
638 .gaddr = addr,
639 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
640 .size = len,
641 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
642 : KVM_S390_MEMOP_LOGICAL_READ,
643 .buf = (uint64_t)hostbuf,
644 .ar = ar,
646 int ret;
648 if (!cap_mem_op) {
649 return -ENOSYS;
651 if (!hostbuf) {
652 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
655 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
656 if (ret < 0) {
657 error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret));
659 return ret;
663 * Legacy layout for s390:
664 * Older S390 KVM requires the topmost vma of the RAM to be
665 * smaller than an system defined value, which is at least 256GB.
666 * Larger systems have larger values. We put the guest between
667 * the end of data segment (system break) and this value. We
668 * use 32GB as a base to have enough room for the system break
669 * to grow. We also have to use MAP parameters that avoid
670 * read-only mapping of guest pages.
672 static void *legacy_s390_alloc(size_t size, uint64_t *align)
674 void *mem;
676 mem = mmap((void *) 0x800000000ULL, size,
677 PROT_EXEC|PROT_READ|PROT_WRITE,
678 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
679 return mem == MAP_FAILED ? NULL : mem;
682 static uint8_t const *sw_bp_inst;
683 static uint8_t sw_bp_ilen;
685 static void determine_sw_breakpoint_instr(void)
687 /* DIAG 501 is used for sw breakpoints with old kernels */
688 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
689 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
690 static const uint8_t instr_0x0000[] = {0x00, 0x00};
692 if (sw_bp_inst) {
693 return;
695 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
696 sw_bp_inst = diag_501;
697 sw_bp_ilen = sizeof(diag_501);
698 DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
699 } else {
700 sw_bp_inst = instr_0x0000;
701 sw_bp_ilen = sizeof(instr_0x0000);
702 DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
706 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
708 determine_sw_breakpoint_instr();
710 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
711 sw_bp_ilen, 0) ||
712 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
713 return -EINVAL;
715 return 0;
718 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
720 uint8_t t[MAX_ILEN];
722 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
723 return -EINVAL;
724 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
725 return -EINVAL;
726 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
727 sw_bp_ilen, 1)) {
728 return -EINVAL;
731 return 0;
734 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
735 int len, int type)
737 int n;
739 for (n = 0; n < nb_hw_breakpoints; n++) {
740 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
741 (hw_breakpoints[n].len == len || len == -1)) {
742 return &hw_breakpoints[n];
746 return NULL;
749 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
751 int size;
753 if (find_hw_breakpoint(addr, len, type)) {
754 return -EEXIST;
757 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
759 if (!hw_breakpoints) {
760 nb_hw_breakpoints = 0;
761 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
762 } else {
763 hw_breakpoints =
764 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
767 if (!hw_breakpoints) {
768 nb_hw_breakpoints = 0;
769 return -ENOMEM;
772 hw_breakpoints[nb_hw_breakpoints].addr = addr;
773 hw_breakpoints[nb_hw_breakpoints].len = len;
774 hw_breakpoints[nb_hw_breakpoints].type = type;
776 nb_hw_breakpoints++;
778 return 0;
781 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
782 target_ulong len, int type)
784 switch (type) {
785 case GDB_BREAKPOINT_HW:
786 type = KVM_HW_BP;
787 break;
788 case GDB_WATCHPOINT_WRITE:
789 if (len < 1) {
790 return -EINVAL;
792 type = KVM_HW_WP_WRITE;
793 break;
794 default:
795 return -ENOSYS;
797 return insert_hw_breakpoint(addr, len, type);
800 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
801 target_ulong len, int type)
803 int size;
804 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
806 if (bp == NULL) {
807 return -ENOENT;
810 nb_hw_breakpoints--;
811 if (nb_hw_breakpoints > 0) {
813 * In order to trim the array, move the last element to the position to
814 * be removed - if necessary.
816 if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
817 *bp = hw_breakpoints[nb_hw_breakpoints];
819 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
820 hw_breakpoints =
821 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
822 } else {
823 g_free(hw_breakpoints);
824 hw_breakpoints = NULL;
827 return 0;
830 void kvm_arch_remove_all_hw_breakpoints(void)
832 nb_hw_breakpoints = 0;
833 g_free(hw_breakpoints);
834 hw_breakpoints = NULL;
837 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
839 int i;
841 if (nb_hw_breakpoints > 0) {
842 dbg->arch.nr_hw_bp = nb_hw_breakpoints;
843 dbg->arch.hw_bp = hw_breakpoints;
845 for (i = 0; i < nb_hw_breakpoints; ++i) {
846 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
847 hw_breakpoints[i].addr);
849 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
850 } else {
851 dbg->arch.nr_hw_bp = 0;
852 dbg->arch.hw_bp = NULL;
856 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
860 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
862 return MEMTXATTRS_UNSPECIFIED;
865 int kvm_arch_process_async_events(CPUState *cs)
867 return cs->halted;
870 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
871 struct kvm_s390_interrupt *interrupt)
873 int r = 0;
875 interrupt->type = irq->type;
876 switch (irq->type) {
877 case KVM_S390_INT_VIRTIO:
878 interrupt->parm = irq->u.ext.ext_params;
879 /* fall through */
880 case KVM_S390_INT_PFAULT_INIT:
881 case KVM_S390_INT_PFAULT_DONE:
882 interrupt->parm64 = irq->u.ext.ext_params2;
883 break;
884 case KVM_S390_PROGRAM_INT:
885 interrupt->parm = irq->u.pgm.code;
886 break;
887 case KVM_S390_SIGP_SET_PREFIX:
888 interrupt->parm = irq->u.prefix.address;
889 break;
890 case KVM_S390_INT_SERVICE:
891 interrupt->parm = irq->u.ext.ext_params;
892 break;
893 case KVM_S390_MCHK:
894 interrupt->parm = irq->u.mchk.cr14;
895 interrupt->parm64 = irq->u.mchk.mcic;
896 break;
897 case KVM_S390_INT_EXTERNAL_CALL:
898 interrupt->parm = irq->u.extcall.code;
899 break;
900 case KVM_S390_INT_EMERGENCY:
901 interrupt->parm = irq->u.emerg.code;
902 break;
903 case KVM_S390_SIGP_STOP:
904 case KVM_S390_RESTART:
905 break; /* These types have no parameters */
906 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
907 interrupt->parm = irq->u.io.subchannel_id << 16;
908 interrupt->parm |= irq->u.io.subchannel_nr;
909 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
910 interrupt->parm64 |= irq->u.io.io_int_word;
911 break;
912 default:
913 r = -EINVAL;
914 break;
916 return r;
919 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
921 struct kvm_s390_interrupt kvmint = {};
922 int r;
924 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
925 if (r < 0) {
926 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
927 exit(1);
930 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
931 if (r < 0) {
932 fprintf(stderr, "KVM failed to inject interrupt\n");
933 exit(1);
937 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
939 CPUState *cs = CPU(cpu);
940 int r;
942 if (cap_s390_irq) {
943 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
944 if (!r) {
945 return;
947 error_report("KVM failed to inject interrupt %llx", irq->type);
948 exit(1);
951 inject_vcpu_irq_legacy(cs, irq);
954 static void __kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
956 struct kvm_s390_interrupt kvmint = {};
957 int r;
959 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
960 if (r < 0) {
961 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
962 exit(1);
965 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
966 if (r < 0) {
967 fprintf(stderr, "KVM failed to inject interrupt\n");
968 exit(1);
972 void kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
974 static bool use_flic = true;
975 int r;
977 if (use_flic) {
978 r = kvm_s390_inject_flic(irq);
979 if (r == -ENOSYS) {
980 use_flic = false;
982 if (!r) {
983 return;
986 __kvm_s390_floating_interrupt(irq);
989 void kvm_s390_service_interrupt(uint32_t parm)
991 struct kvm_s390_irq irq = {
992 .type = KVM_S390_INT_SERVICE,
993 .u.ext.ext_params = parm,
996 kvm_s390_floating_interrupt(&irq);
999 static void enter_pgmcheck(S390CPU *cpu, uint16_t code)
1001 struct kvm_s390_irq irq = {
1002 .type = KVM_S390_PROGRAM_INT,
1003 .u.pgm.code = code,
1006 kvm_s390_vcpu_interrupt(cpu, &irq);
1009 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1011 struct kvm_s390_irq irq = {
1012 .type = KVM_S390_PROGRAM_INT,
1013 .u.pgm.code = code,
1014 .u.pgm.trans_exc_code = te_code,
1015 .u.pgm.exc_access_id = te_code & 3,
1018 kvm_s390_vcpu_interrupt(cpu, &irq);
1021 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1022 uint16_t ipbh0)
1024 CPUS390XState *env = &cpu->env;
1025 uint64_t sccb;
1026 uint32_t code;
1027 int r = 0;
1029 cpu_synchronize_state(CPU(cpu));
1030 sccb = env->regs[ipbh0 & 0xf];
1031 code = env->regs[(ipbh0 & 0xf0) >> 4];
1033 r = sclp_service_call(env, sccb, code);
1034 if (r < 0) {
1035 enter_pgmcheck(cpu, -r);
1036 } else {
1037 setcc(cpu, r);
1040 return 0;
1043 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1045 CPUS390XState *env = &cpu->env;
1046 int rc = 0;
1047 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1049 cpu_synchronize_state(CPU(cpu));
1051 switch (ipa1) {
1052 case PRIV_B2_XSCH:
1053 ioinst_handle_xsch(cpu, env->regs[1]);
1054 break;
1055 case PRIV_B2_CSCH:
1056 ioinst_handle_csch(cpu, env->regs[1]);
1057 break;
1058 case PRIV_B2_HSCH:
1059 ioinst_handle_hsch(cpu, env->regs[1]);
1060 break;
1061 case PRIV_B2_MSCH:
1062 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb);
1063 break;
1064 case PRIV_B2_SSCH:
1065 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb);
1066 break;
1067 case PRIV_B2_STCRW:
1068 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb);
1069 break;
1070 case PRIV_B2_STSCH:
1071 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb);
1072 break;
1073 case PRIV_B2_TSCH:
1074 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1075 fprintf(stderr, "Spurious tsch intercept\n");
1076 break;
1077 case PRIV_B2_CHSC:
1078 ioinst_handle_chsc(cpu, run->s390_sieic.ipb);
1079 break;
1080 case PRIV_B2_TPI:
1081 /* This should have been handled by kvm already. */
1082 fprintf(stderr, "Spurious tpi intercept\n");
1083 break;
1084 case PRIV_B2_SCHM:
1085 ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1086 run->s390_sieic.ipb);
1087 break;
1088 case PRIV_B2_RSCH:
1089 ioinst_handle_rsch(cpu, env->regs[1]);
1090 break;
1091 case PRIV_B2_RCHP:
1092 ioinst_handle_rchp(cpu, env->regs[1]);
1093 break;
1094 case PRIV_B2_STCPS:
1095 /* We do not provide this instruction, it is suppressed. */
1096 break;
1097 case PRIV_B2_SAL:
1098 ioinst_handle_sal(cpu, env->regs[1]);
1099 break;
1100 case PRIV_B2_SIGA:
1101 /* Not provided, set CC = 3 for subchannel not operational */
1102 setcc(cpu, 3);
1103 break;
1104 case PRIV_B2_SCLP_CALL:
1105 rc = kvm_sclp_service_call(cpu, run, ipbh0);
1106 break;
1107 default:
1108 rc = -1;
1109 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1110 break;
1113 return rc;
1116 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1117 uint8_t *ar)
1119 CPUS390XState *env = &cpu->env;
1120 uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1121 uint32_t base2 = run->s390_sieic.ipb >> 28;
1122 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1123 ((run->s390_sieic.ipb & 0xff00) << 4);
1125 if (disp2 & 0x80000) {
1126 disp2 += 0xfff00000;
1128 if (ar) {
1129 *ar = base2;
1132 return (base2 ? env->regs[base2] : 0) +
1133 (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1136 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1137 uint8_t *ar)
1139 CPUS390XState *env = &cpu->env;
1140 uint32_t base2 = run->s390_sieic.ipb >> 28;
1141 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1142 ((run->s390_sieic.ipb & 0xff00) << 4);
1144 if (disp2 & 0x80000) {
1145 disp2 += 0xfff00000;
1147 if (ar) {
1148 *ar = base2;
1151 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1154 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1156 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1158 return clp_service_call(cpu, r2);
1161 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1163 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1164 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1166 return pcilg_service_call(cpu, r1, r2);
1169 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1171 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1172 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1174 return pcistg_service_call(cpu, r1, r2);
1177 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1179 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1180 uint64_t fiba;
1181 uint8_t ar;
1183 cpu_synchronize_state(CPU(cpu));
1184 fiba = get_base_disp_rxy(cpu, run, &ar);
1186 return stpcifc_service_call(cpu, r1, fiba, ar);
1189 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1191 /* NOOP */
1192 return 0;
1195 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1197 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1198 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1200 return rpcit_service_call(cpu, r1, r2);
1203 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1205 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1206 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1207 uint64_t gaddr;
1208 uint8_t ar;
1210 cpu_synchronize_state(CPU(cpu));
1211 gaddr = get_base_disp_rsy(cpu, run, &ar);
1213 return pcistb_service_call(cpu, r1, r3, gaddr, ar);
1216 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1218 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1219 uint64_t fiba;
1220 uint8_t ar;
1222 cpu_synchronize_state(CPU(cpu));
1223 fiba = get_base_disp_rxy(cpu, run, &ar);
1225 return mpcifc_service_call(cpu, r1, fiba, ar);
1228 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1230 int r = 0;
1232 switch (ipa1) {
1233 case PRIV_B9_CLP:
1234 r = kvm_clp_service_call(cpu, run);
1235 break;
1236 case PRIV_B9_PCISTG:
1237 r = kvm_pcistg_service_call(cpu, run);
1238 break;
1239 case PRIV_B9_PCILG:
1240 r = kvm_pcilg_service_call(cpu, run);
1241 break;
1242 case PRIV_B9_RPCIT:
1243 r = kvm_rpcit_service_call(cpu, run);
1244 break;
1245 case PRIV_B9_EQBS:
1246 /* just inject exception */
1247 r = -1;
1248 break;
1249 default:
1250 r = -1;
1251 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1252 break;
1255 return r;
1258 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1260 int r = 0;
1262 switch (ipbl) {
1263 case PRIV_EB_PCISTB:
1264 r = kvm_pcistb_service_call(cpu, run);
1265 break;
1266 case PRIV_EB_SIC:
1267 r = kvm_sic_service_call(cpu, run);
1268 break;
1269 case PRIV_EB_SQBS:
1270 /* just inject exception */
1271 r = -1;
1272 break;
1273 default:
1274 r = -1;
1275 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1276 break;
1279 return r;
1282 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1284 int r = 0;
1286 switch (ipbl) {
1287 case PRIV_E3_MPCIFC:
1288 r = kvm_mpcifc_service_call(cpu, run);
1289 break;
1290 case PRIV_E3_STPCIFC:
1291 r = kvm_stpcifc_service_call(cpu, run);
1292 break;
1293 default:
1294 r = -1;
1295 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1296 break;
1299 return r;
1302 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1304 CPUS390XState *env = &cpu->env;
1305 int ret;
1307 cpu_synchronize_state(CPU(cpu));
1308 ret = s390_virtio_hypercall(env);
1309 if (ret == -EINVAL) {
1310 enter_pgmcheck(cpu, PGM_SPECIFICATION);
1311 return 0;
1314 return ret;
1317 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1319 uint64_t r1, r3;
1320 int rc;
1322 cpu_synchronize_state(CPU(cpu));
1323 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1324 r3 = run->s390_sieic.ipa & 0x000f;
1325 rc = handle_diag_288(&cpu->env, r1, r3);
1326 if (rc) {
1327 enter_pgmcheck(cpu, PGM_SPECIFICATION);
1331 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1333 uint64_t r1, r3;
1335 cpu_synchronize_state(CPU(cpu));
1336 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1337 r3 = run->s390_sieic.ipa & 0x000f;
1338 handle_diag_308(&cpu->env, r1, r3);
1341 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1343 CPUS390XState *env = &cpu->env;
1344 unsigned long pc;
1346 cpu_synchronize_state(CPU(cpu));
1348 pc = env->psw.addr - sw_bp_ilen;
1349 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1350 env->psw.addr = pc;
1351 return EXCP_DEBUG;
1354 return -ENOENT;
1357 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1359 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1361 int r = 0;
1362 uint16_t func_code;
1365 * For any diagnose call we support, bits 48-63 of the resulting
1366 * address specify the function code; the remainder is ignored.
1368 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1369 switch (func_code) {
1370 case DIAG_TIMEREVENT:
1371 kvm_handle_diag_288(cpu, run);
1372 break;
1373 case DIAG_IPL:
1374 kvm_handle_diag_308(cpu, run);
1375 break;
1376 case DIAG_KVM_HYPERCALL:
1377 r = handle_hypercall(cpu, run);
1378 break;
1379 case DIAG_KVM_BREAKPOINT:
1380 r = handle_sw_breakpoint(cpu, run);
1381 break;
1382 default:
1383 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1384 enter_pgmcheck(cpu, PGM_SPECIFICATION);
1385 break;
1388 return r;
1391 typedef struct SigpInfo {
1392 S390CPU *cpu;
1393 uint64_t param;
1394 int cc;
1395 uint64_t *status_reg;
1396 } SigpInfo;
1398 static void set_sigp_status(SigpInfo *si, uint64_t status)
1400 *si->status_reg &= 0xffffffff00000000ULL;
1401 *si->status_reg |= status;
1402 si->cc = SIGP_CC_STATUS_STORED;
1405 static void sigp_start(void *arg)
1407 SigpInfo *si = arg;
1409 if (s390_cpu_get_state(si->cpu) != CPU_STATE_STOPPED) {
1410 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1411 return;
1414 s390_cpu_set_state(CPU_STATE_OPERATING, si->cpu);
1415 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1418 static void sigp_stop(void *arg)
1420 SigpInfo *si = arg;
1421 struct kvm_s390_irq irq = {
1422 .type = KVM_S390_SIGP_STOP,
1425 if (s390_cpu_get_state(si->cpu) != CPU_STATE_OPERATING) {
1426 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1427 return;
1430 /* disabled wait - sleeping in user space */
1431 if (CPU(si->cpu)->halted) {
1432 s390_cpu_set_state(CPU_STATE_STOPPED, si->cpu);
1433 } else {
1434 /* execute the stop function */
1435 si->cpu->env.sigp_order = SIGP_STOP;
1436 kvm_s390_vcpu_interrupt(si->cpu, &irq);
1438 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1441 #define ADTL_SAVE_AREA_SIZE 1024
1442 static int kvm_s390_store_adtl_status(S390CPU *cpu, hwaddr addr)
1444 void *mem;
1445 hwaddr len = ADTL_SAVE_AREA_SIZE;
1447 mem = cpu_physical_memory_map(addr, &len, 1);
1448 if (!mem) {
1449 return -EFAULT;
1451 if (len != ADTL_SAVE_AREA_SIZE) {
1452 cpu_physical_memory_unmap(mem, len, 1, 0);
1453 return -EFAULT;
1456 memcpy(mem, &cpu->env.vregs, 512);
1458 cpu_physical_memory_unmap(mem, len, 1, len);
1460 return 0;
1463 #define KVM_S390_STORE_STATUS_DEF_ADDR offsetof(LowCore, floating_pt_save_area)
1464 #define SAVE_AREA_SIZE 512
1465 static int kvm_s390_store_status(S390CPU *cpu, hwaddr addr, bool store_arch)
1467 static const uint8_t ar_id = 1;
1468 uint64_t ckc = cpu->env.ckc >> 8;
1469 void *mem;
1470 int i;
1471 hwaddr len = SAVE_AREA_SIZE;
1473 mem = cpu_physical_memory_map(addr, &len, 1);
1474 if (!mem) {
1475 return -EFAULT;
1477 if (len != SAVE_AREA_SIZE) {
1478 cpu_physical_memory_unmap(mem, len, 1, 0);
1479 return -EFAULT;
1482 if (store_arch) {
1483 cpu_physical_memory_write(offsetof(LowCore, ar_access_id), &ar_id, 1);
1485 for (i = 0; i < 16; ++i) {
1486 *((uint64_t *)mem + i) = get_freg(&cpu->env, i)->ll;
1488 memcpy(mem + 128, &cpu->env.regs, 128);
1489 memcpy(mem + 256, &cpu->env.psw, 16);
1490 memcpy(mem + 280, &cpu->env.psa, 4);
1491 memcpy(mem + 284, &cpu->env.fpc, 4);
1492 memcpy(mem + 292, &cpu->env.todpr, 4);
1493 memcpy(mem + 296, &cpu->env.cputm, 8);
1494 memcpy(mem + 304, &ckc, 8);
1495 memcpy(mem + 320, &cpu->env.aregs, 64);
1496 memcpy(mem + 384, &cpu->env.cregs, 128);
1498 cpu_physical_memory_unmap(mem, len, 1, len);
1500 return 0;
1503 static void sigp_stop_and_store_status(void *arg)
1505 SigpInfo *si = arg;
1506 struct kvm_s390_irq irq = {
1507 .type = KVM_S390_SIGP_STOP,
1510 /* disabled wait - sleeping in user space */
1511 if (s390_cpu_get_state(si->cpu) == CPU_STATE_OPERATING &&
1512 CPU(si->cpu)->halted) {
1513 s390_cpu_set_state(CPU_STATE_STOPPED, si->cpu);
1516 switch (s390_cpu_get_state(si->cpu)) {
1517 case CPU_STATE_OPERATING:
1518 si->cpu->env.sigp_order = SIGP_STOP_STORE_STATUS;
1519 kvm_s390_vcpu_interrupt(si->cpu, &irq);
1520 /* store will be performed when handling the stop intercept */
1521 break;
1522 case CPU_STATE_STOPPED:
1523 /* already stopped, just store the status */
1524 cpu_synchronize_state(CPU(si->cpu));
1525 kvm_s390_store_status(si->cpu, KVM_S390_STORE_STATUS_DEF_ADDR, true);
1526 break;
1528 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1531 static void sigp_store_status_at_address(void *arg)
1533 SigpInfo *si = arg;
1534 uint32_t address = si->param & 0x7ffffe00u;
1536 /* cpu has to be stopped */
1537 if (s390_cpu_get_state(si->cpu) != CPU_STATE_STOPPED) {
1538 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1539 return;
1542 cpu_synchronize_state(CPU(si->cpu));
1544 if (kvm_s390_store_status(si->cpu, address, false)) {
1545 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1546 return;
1548 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1551 static void sigp_store_adtl_status(void *arg)
1553 SigpInfo *si = arg;
1555 if (!s390_has_feat(S390_FEAT_VECTOR)) {
1556 set_sigp_status(si, SIGP_STAT_INVALID_ORDER);
1557 return;
1560 /* cpu has to be stopped */
1561 if (s390_cpu_get_state(si->cpu) != CPU_STATE_STOPPED) {
1562 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1563 return;
1566 /* parameter must be aligned to 1024-byte boundary */
1567 if (si->param & 0x3ff) {
1568 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1569 return;
1572 cpu_synchronize_state(CPU(si->cpu));
1574 if (kvm_s390_store_adtl_status(si->cpu, si->param)) {
1575 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1576 return;
1578 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1581 static void sigp_restart(void *arg)
1583 SigpInfo *si = arg;
1584 struct kvm_s390_irq irq = {
1585 .type = KVM_S390_RESTART,
1588 switch (s390_cpu_get_state(si->cpu)) {
1589 case CPU_STATE_STOPPED:
1590 /* the restart irq has to be delivered prior to any other pending irq */
1591 cpu_synchronize_state(CPU(si->cpu));
1592 do_restart_interrupt(&si->cpu->env);
1593 s390_cpu_set_state(CPU_STATE_OPERATING, si->cpu);
1594 break;
1595 case CPU_STATE_OPERATING:
1596 kvm_s390_vcpu_interrupt(si->cpu, &irq);
1597 break;
1599 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1602 int kvm_s390_cpu_restart(S390CPU *cpu)
1604 SigpInfo si = {
1605 .cpu = cpu,
1608 run_on_cpu(CPU(cpu), sigp_restart, &si);
1609 DPRINTF("DONE: KVM cpu restart: %p\n", &cpu->env);
1610 return 0;
1613 static void sigp_initial_cpu_reset(void *arg)
1615 SigpInfo *si = arg;
1616 CPUState *cs = CPU(si->cpu);
1617 S390CPUClass *scc = S390_CPU_GET_CLASS(si->cpu);
1619 cpu_synchronize_state(cs);
1620 scc->initial_cpu_reset(cs);
1621 cpu_synchronize_post_reset(cs);
1622 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1625 static void sigp_cpu_reset(void *arg)
1627 SigpInfo *si = arg;
1628 CPUState *cs = CPU(si->cpu);
1629 S390CPUClass *scc = S390_CPU_GET_CLASS(si->cpu);
1631 cpu_synchronize_state(cs);
1632 scc->cpu_reset(cs);
1633 cpu_synchronize_post_reset(cs);
1634 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1637 static void sigp_set_prefix(void *arg)
1639 SigpInfo *si = arg;
1640 uint32_t addr = si->param & 0x7fffe000u;
1642 cpu_synchronize_state(CPU(si->cpu));
1644 if (!address_space_access_valid(&address_space_memory, addr,
1645 sizeof(struct LowCore), false)) {
1646 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1647 return;
1650 /* cpu has to be stopped */
1651 if (s390_cpu_get_state(si->cpu) != CPU_STATE_STOPPED) {
1652 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1653 return;
1656 si->cpu->env.psa = addr;
1657 cpu_synchronize_post_init(CPU(si->cpu));
1658 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1661 static int handle_sigp_single_dst(S390CPU *dst_cpu, uint8_t order,
1662 uint64_t param, uint64_t *status_reg)
1664 SigpInfo si = {
1665 .cpu = dst_cpu,
1666 .param = param,
1667 .status_reg = status_reg,
1670 /* cpu available? */
1671 if (dst_cpu == NULL) {
1672 return SIGP_CC_NOT_OPERATIONAL;
1675 /* only resets can break pending orders */
1676 if (dst_cpu->env.sigp_order != 0 &&
1677 order != SIGP_CPU_RESET &&
1678 order != SIGP_INITIAL_CPU_RESET) {
1679 return SIGP_CC_BUSY;
1682 switch (order) {
1683 case SIGP_START:
1684 run_on_cpu(CPU(dst_cpu), sigp_start, &si);
1685 break;
1686 case SIGP_STOP:
1687 run_on_cpu(CPU(dst_cpu), sigp_stop, &si);
1688 break;
1689 case SIGP_RESTART:
1690 run_on_cpu(CPU(dst_cpu), sigp_restart, &si);
1691 break;
1692 case SIGP_STOP_STORE_STATUS:
1693 run_on_cpu(CPU(dst_cpu), sigp_stop_and_store_status, &si);
1694 break;
1695 case SIGP_STORE_STATUS_ADDR:
1696 run_on_cpu(CPU(dst_cpu), sigp_store_status_at_address, &si);
1697 break;
1698 case SIGP_STORE_ADTL_STATUS:
1699 run_on_cpu(CPU(dst_cpu), sigp_store_adtl_status, &si);
1700 break;
1701 case SIGP_SET_PREFIX:
1702 run_on_cpu(CPU(dst_cpu), sigp_set_prefix, &si);
1703 break;
1704 case SIGP_INITIAL_CPU_RESET:
1705 run_on_cpu(CPU(dst_cpu), sigp_initial_cpu_reset, &si);
1706 break;
1707 case SIGP_CPU_RESET:
1708 run_on_cpu(CPU(dst_cpu), sigp_cpu_reset, &si);
1709 break;
1710 default:
1711 DPRINTF("KVM: unknown SIGP: 0x%x\n", order);
1712 set_sigp_status(&si, SIGP_STAT_INVALID_ORDER);
1715 return si.cc;
1718 static int sigp_set_architecture(S390CPU *cpu, uint32_t param,
1719 uint64_t *status_reg)
1721 CPUState *cur_cs;
1722 S390CPU *cur_cpu;
1724 /* due to the BQL, we are the only active cpu */
1725 CPU_FOREACH(cur_cs) {
1726 cur_cpu = S390_CPU(cur_cs);
1727 if (cur_cpu->env.sigp_order != 0) {
1728 return SIGP_CC_BUSY;
1730 cpu_synchronize_state(cur_cs);
1731 /* all but the current one have to be stopped */
1732 if (cur_cpu != cpu &&
1733 s390_cpu_get_state(cur_cpu) != CPU_STATE_STOPPED) {
1734 *status_reg &= 0xffffffff00000000ULL;
1735 *status_reg |= SIGP_STAT_INCORRECT_STATE;
1736 return SIGP_CC_STATUS_STORED;
1740 switch (param & 0xff) {
1741 case SIGP_MODE_ESA_S390:
1742 /* not supported */
1743 return SIGP_CC_NOT_OPERATIONAL;
1744 case SIGP_MODE_Z_ARCH_TRANS_ALL_PSW:
1745 case SIGP_MODE_Z_ARCH_TRANS_CUR_PSW:
1746 CPU_FOREACH(cur_cs) {
1747 cur_cpu = S390_CPU(cur_cs);
1748 cur_cpu->env.pfault_token = -1UL;
1750 break;
1751 default:
1752 *status_reg &= 0xffffffff00000000ULL;
1753 *status_reg |= SIGP_STAT_INVALID_PARAMETER;
1754 return SIGP_CC_STATUS_STORED;
1757 return SIGP_CC_ORDER_CODE_ACCEPTED;
1760 #define SIGP_ORDER_MASK 0x000000ff
1762 static int handle_sigp(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1764 CPUS390XState *env = &cpu->env;
1765 const uint8_t r1 = ipa1 >> 4;
1766 const uint8_t r3 = ipa1 & 0x0f;
1767 int ret;
1768 uint8_t order;
1769 uint64_t *status_reg;
1770 uint64_t param;
1771 S390CPU *dst_cpu = NULL;
1773 cpu_synchronize_state(CPU(cpu));
1775 /* get order code */
1776 order = decode_basedisp_rs(env, run->s390_sieic.ipb, NULL)
1777 & SIGP_ORDER_MASK;
1778 status_reg = &env->regs[r1];
1779 param = (r1 % 2) ? env->regs[r1] : env->regs[r1 + 1];
1781 if (qemu_mutex_trylock(&qemu_sigp_mutex)) {
1782 ret = SIGP_CC_BUSY;
1783 goto out;
1786 switch (order) {
1787 case SIGP_SET_ARCH:
1788 ret = sigp_set_architecture(cpu, param, status_reg);
1789 break;
1790 default:
1791 /* all other sigp orders target a single vcpu */
1792 dst_cpu = s390_cpu_addr2state(env->regs[r3]);
1793 ret = handle_sigp_single_dst(dst_cpu, order, param, status_reg);
1795 qemu_mutex_unlock(&qemu_sigp_mutex);
1797 out:
1798 trace_kvm_sigp_finished(order, CPU(cpu)->cpu_index,
1799 dst_cpu ? CPU(dst_cpu)->cpu_index : -1, ret);
1801 if (ret >= 0) {
1802 setcc(cpu, ret);
1803 return 0;
1806 return ret;
1809 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1811 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1812 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1813 int r = -1;
1815 DPRINTF("handle_instruction 0x%x 0x%x\n",
1816 run->s390_sieic.ipa, run->s390_sieic.ipb);
1817 switch (ipa0) {
1818 case IPA0_B2:
1819 r = handle_b2(cpu, run, ipa1);
1820 break;
1821 case IPA0_B9:
1822 r = handle_b9(cpu, run, ipa1);
1823 break;
1824 case IPA0_EB:
1825 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1826 break;
1827 case IPA0_E3:
1828 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1829 break;
1830 case IPA0_DIAG:
1831 r = handle_diag(cpu, run, run->s390_sieic.ipb);
1832 break;
1833 case IPA0_SIGP:
1834 r = handle_sigp(cpu, run, ipa1);
1835 break;
1838 if (r < 0) {
1839 r = 0;
1840 enter_pgmcheck(cpu, 0x0001);
1843 return r;
1846 static bool is_special_wait_psw(CPUState *cs)
1848 /* signal quiesce */
1849 return cs->kvm_run->psw_addr == 0xfffUL;
1852 static void unmanageable_intercept(S390CPU *cpu, const char *str, int pswoffset)
1854 CPUState *cs = CPU(cpu);
1856 error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx",
1857 str, cs->cpu_index, ldq_phys(cs->as, cpu->env.psa + pswoffset),
1858 ldq_phys(cs->as, cpu->env.psa + pswoffset + 8));
1859 s390_cpu_halt(cpu);
1860 qemu_system_guest_panicked();
1863 static int handle_intercept(S390CPU *cpu)
1865 CPUState *cs = CPU(cpu);
1866 struct kvm_run *run = cs->kvm_run;
1867 int icpt_code = run->s390_sieic.icptcode;
1868 int r = 0;
1870 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
1871 (long)cs->kvm_run->psw_addr);
1872 switch (icpt_code) {
1873 case ICPT_INSTRUCTION:
1874 r = handle_instruction(cpu, run);
1875 break;
1876 case ICPT_PROGRAM:
1877 unmanageable_intercept(cpu, "program interrupt",
1878 offsetof(LowCore, program_new_psw));
1879 r = EXCP_HALTED;
1880 break;
1881 case ICPT_EXT_INT:
1882 unmanageable_intercept(cpu, "external interrupt",
1883 offsetof(LowCore, external_new_psw));
1884 r = EXCP_HALTED;
1885 break;
1886 case ICPT_WAITPSW:
1887 /* disabled wait, since enabled wait is handled in kernel */
1888 cpu_synchronize_state(cs);
1889 if (s390_cpu_halt(cpu) == 0) {
1890 if (is_special_wait_psw(cs)) {
1891 qemu_system_shutdown_request();
1892 } else {
1893 qemu_system_guest_panicked();
1896 r = EXCP_HALTED;
1897 break;
1898 case ICPT_CPU_STOP:
1899 if (s390_cpu_set_state(CPU_STATE_STOPPED, cpu) == 0) {
1900 qemu_system_shutdown_request();
1902 if (cpu->env.sigp_order == SIGP_STOP_STORE_STATUS) {
1903 kvm_s390_store_status(cpu, KVM_S390_STORE_STATUS_DEF_ADDR,
1904 true);
1906 cpu->env.sigp_order = 0;
1907 r = EXCP_HALTED;
1908 break;
1909 case ICPT_OPEREXC:
1910 /* currently only instr 0x0000 after enabled via capability */
1911 r = handle_sw_breakpoint(cpu, run);
1912 if (r == -ENOENT) {
1913 enter_pgmcheck(cpu, PGM_OPERATION);
1914 r = 0;
1916 break;
1917 case ICPT_SOFT_INTERCEPT:
1918 fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1919 exit(1);
1920 break;
1921 case ICPT_IO:
1922 fprintf(stderr, "KVM unimplemented icpt IO\n");
1923 exit(1);
1924 break;
1925 default:
1926 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1927 exit(1);
1928 break;
1931 return r;
1934 static int handle_tsch(S390CPU *cpu)
1936 CPUState *cs = CPU(cpu);
1937 struct kvm_run *run = cs->kvm_run;
1938 int ret;
1940 cpu_synchronize_state(cs);
1942 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb);
1943 if (ret < 0) {
1945 * Failure.
1946 * If an I/O interrupt had been dequeued, we have to reinject it.
1948 if (run->s390_tsch.dequeued) {
1949 kvm_s390_io_interrupt(run->s390_tsch.subchannel_id,
1950 run->s390_tsch.subchannel_nr,
1951 run->s390_tsch.io_int_parm,
1952 run->s390_tsch.io_int_word);
1954 ret = 0;
1956 return ret;
1959 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1961 struct sysib_322 sysib;
1962 int del;
1964 if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1965 return;
1967 /* Shift the stack of Extended Names to prepare for our own data */
1968 memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1969 sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1970 /* First virt level, that doesn't provide Ext Names delimits stack. It is
1971 * assumed it's not capable of managing Extended Names for lower levels.
1973 for (del = 1; del < sysib.count; del++) {
1974 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1975 break;
1978 if (del < sysib.count) {
1979 memset(sysib.ext_names[del], 0,
1980 sizeof(sysib.ext_names[0]) * (sysib.count - del));
1982 /* Insert short machine name in EBCDIC, padded with blanks */
1983 if (qemu_name) {
1984 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1985 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1986 strlen(qemu_name)));
1988 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1989 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0]));
1990 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1991 * considered by s390 as not capable of providing any Extended Name.
1992 * Therefore if no name was specified on qemu invocation, we go with the
1993 * same "KVMguest" default, which KVM has filled into short name field.
1995 if (qemu_name) {
1996 strncpy((char *)sysib.ext_names[0], qemu_name,
1997 sizeof(sysib.ext_names[0]));
1998 } else {
1999 strcpy((char *)sysib.ext_names[0], "KVMguest");
2001 /* Insert UUID */
2002 memcpy(sysib.vm[0].uuid, qemu_uuid, sizeof(sysib.vm[0].uuid));
2004 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
2007 static int handle_stsi(S390CPU *cpu)
2009 CPUState *cs = CPU(cpu);
2010 struct kvm_run *run = cs->kvm_run;
2012 switch (run->s390_stsi.fc) {
2013 case 3:
2014 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
2015 return 0;
2017 /* Only sysib 3.2.2 needs post-handling for now. */
2018 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
2019 return 0;
2020 default:
2021 return 0;
2025 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
2027 CPUState *cs = CPU(cpu);
2028 struct kvm_run *run = cs->kvm_run;
2030 int ret = 0;
2031 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
2033 switch (arch_info->type) {
2034 case KVM_HW_WP_WRITE:
2035 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
2036 cs->watchpoint_hit = &hw_watchpoint;
2037 hw_watchpoint.vaddr = arch_info->addr;
2038 hw_watchpoint.flags = BP_MEM_WRITE;
2039 ret = EXCP_DEBUG;
2041 break;
2042 case KVM_HW_BP:
2043 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
2044 ret = EXCP_DEBUG;
2046 break;
2047 case KVM_SINGLESTEP:
2048 if (cs->singlestep_enabled) {
2049 ret = EXCP_DEBUG;
2051 break;
2052 default:
2053 ret = -ENOSYS;
2056 return ret;
2059 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2061 S390CPU *cpu = S390_CPU(cs);
2062 int ret = 0;
2064 qemu_mutex_lock_iothread();
2066 switch (run->exit_reason) {
2067 case KVM_EXIT_S390_SIEIC:
2068 ret = handle_intercept(cpu);
2069 break;
2070 case KVM_EXIT_S390_RESET:
2071 s390_reipl_request();
2072 break;
2073 case KVM_EXIT_S390_TSCH:
2074 ret = handle_tsch(cpu);
2075 break;
2076 case KVM_EXIT_S390_STSI:
2077 ret = handle_stsi(cpu);
2078 break;
2079 case KVM_EXIT_DEBUG:
2080 ret = kvm_arch_handle_debug_exit(cpu);
2081 break;
2082 default:
2083 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
2084 break;
2086 qemu_mutex_unlock_iothread();
2088 if (ret == 0) {
2089 ret = EXCP_INTERRUPT;
2091 return ret;
2094 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2096 return true;
2099 int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2101 return 1;
2104 int kvm_arch_on_sigbus(int code, void *addr)
2106 return 1;
2109 void kvm_s390_io_interrupt(uint16_t subchannel_id,
2110 uint16_t subchannel_nr, uint32_t io_int_parm,
2111 uint32_t io_int_word)
2113 struct kvm_s390_irq irq = {
2114 .u.io.subchannel_id = subchannel_id,
2115 .u.io.subchannel_nr = subchannel_nr,
2116 .u.io.io_int_parm = io_int_parm,
2117 .u.io.io_int_word = io_int_word,
2120 if (io_int_word & IO_INT_WORD_AI) {
2121 irq.type = KVM_S390_INT_IO(1, 0, 0, 0);
2122 } else {
2123 irq.type = KVM_S390_INT_IO(0, (subchannel_id & 0xff00) >> 8,
2124 (subchannel_id & 0x0006),
2125 subchannel_nr);
2127 kvm_s390_floating_interrupt(&irq);
2130 static uint64_t build_channel_report_mcic(void)
2132 uint64_t mcic;
2134 /* subclass: indicate channel report pending */
2135 mcic = MCIC_SC_CP |
2136 /* subclass modifiers: none */
2137 /* storage errors: none */
2138 /* validity bits: no damage */
2139 MCIC_VB_WP | MCIC_VB_MS | MCIC_VB_PM | MCIC_VB_IA | MCIC_VB_FP |
2140 MCIC_VB_GR | MCIC_VB_CR | MCIC_VB_ST | MCIC_VB_AR | MCIC_VB_PR |
2141 MCIC_VB_FC | MCIC_VB_CT | MCIC_VB_CC;
2142 if (s390_has_feat(S390_FEAT_VECTOR)) {
2143 mcic |= MCIC_VB_VR;
2145 return mcic;
2148 void kvm_s390_crw_mchk(void)
2150 struct kvm_s390_irq irq = {
2151 .type = KVM_S390_MCHK,
2152 .u.mchk.cr14 = 1 << 28,
2153 .u.mchk.mcic = build_channel_report_mcic(),
2155 kvm_s390_floating_interrupt(&irq);
2158 void kvm_s390_enable_css_support(S390CPU *cpu)
2160 int r;
2162 /* Activate host kernel channel subsystem support. */
2163 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
2164 assert(r == 0);
2167 void kvm_arch_init_irq_routing(KVMState *s)
2170 * Note that while irqchip capabilities generally imply that cpustates
2171 * are handled in-kernel, it is not true for s390 (yet); therefore, we
2172 * have to override the common code kvm_halt_in_kernel_allowed setting.
2174 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2175 kvm_gsi_routing_allowed = true;
2176 kvm_halt_in_kernel_allowed = false;
2180 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
2181 int vq, bool assign)
2183 struct kvm_ioeventfd kick = {
2184 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
2185 KVM_IOEVENTFD_FLAG_DATAMATCH,
2186 .fd = event_notifier_get_fd(notifier),
2187 .datamatch = vq,
2188 .addr = sch,
2189 .len = 8,
2191 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
2192 return -ENOSYS;
2194 if (!assign) {
2195 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2197 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2200 int kvm_s390_get_memslot_count(KVMState *s)
2202 return kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2205 int kvm_s390_get_ri(void)
2207 return cap_ri;
2210 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
2212 struct kvm_mp_state mp_state = {};
2213 int ret;
2215 /* the kvm part might not have been initialized yet */
2216 if (CPU(cpu)->kvm_state == NULL) {
2217 return 0;
2220 switch (cpu_state) {
2221 case CPU_STATE_STOPPED:
2222 mp_state.mp_state = KVM_MP_STATE_STOPPED;
2223 break;
2224 case CPU_STATE_CHECK_STOP:
2225 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2226 break;
2227 case CPU_STATE_OPERATING:
2228 mp_state.mp_state = KVM_MP_STATE_OPERATING;
2229 break;
2230 case CPU_STATE_LOAD:
2231 mp_state.mp_state = KVM_MP_STATE_LOAD;
2232 break;
2233 default:
2234 error_report("Requested CPU state is not a valid S390 CPU state: %u",
2235 cpu_state);
2236 exit(1);
2239 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2240 if (ret) {
2241 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2242 strerror(-ret));
2245 return ret;
2248 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
2250 struct kvm_s390_irq_state irq_state;
2251 CPUState *cs = CPU(cpu);
2252 int32_t bytes;
2254 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2255 return;
2258 irq_state.buf = (uint64_t) cpu->irqstate;
2259 irq_state.len = VCPU_IRQ_BUF_SIZE;
2261 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2262 if (bytes < 0) {
2263 cpu->irqstate_saved_size = 0;
2264 error_report("Migration of interrupt state failed");
2265 return;
2268 cpu->irqstate_saved_size = bytes;
2271 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2273 CPUState *cs = CPU(cpu);
2274 struct kvm_s390_irq_state irq_state;
2275 int r;
2277 if (cpu->irqstate_saved_size == 0) {
2278 return 0;
2281 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2282 return -ENOSYS;
2285 irq_state.buf = (uint64_t) cpu->irqstate;
2286 irq_state.len = cpu->irqstate_saved_size;
2288 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2289 if (r) {
2290 error_report("Setting interrupt state failed %d", r);
2292 return r;
2295 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2296 uint64_t address, uint32_t data, PCIDevice *dev)
2298 S390PCIBusDevice *pbdev;
2299 uint32_t idx = data >> ZPCI_MSI_VEC_BITS;
2300 uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2302 pbdev = s390_pci_find_dev_by_idx(idx);
2303 if (!pbdev) {
2304 DPRINTF("add_msi_route no dev\n");
2305 return -ENODEV;
2308 pbdev->routes.adapter.ind_offset = vec;
2310 route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2311 route->flags = 0;
2312 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2313 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2314 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2315 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset;
2316 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2317 return 0;
2320 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2321 int vector, PCIDevice *dev)
2323 return 0;
2326 int kvm_arch_release_virq_post(int virq)
2328 return 0;
2331 int kvm_arch_msi_data_to_gsi(uint32_t data)
2333 abort();
2336 static inline int test_bit_inv(long nr, const unsigned long *addr)
2338 return test_bit(BE_BIT_NR(nr), addr);
2341 static inline void set_bit_inv(long nr, unsigned long *addr)
2343 set_bit(BE_BIT_NR(nr), addr);
2346 static int query_cpu_subfunc(S390FeatBitmap features)
2348 struct kvm_s390_vm_cpu_subfunc prop;
2349 struct kvm_device_attr attr = {
2350 .group = KVM_S390_VM_CPU_MODEL,
2351 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2352 .addr = (uint64_t) &prop,
2354 int rc;
2356 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2357 if (rc) {
2358 return rc;
2362 * We're going to add all subfunctions now, if the corresponding feature
2363 * is available that unlocks the query functions.
2365 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2366 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2367 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2369 if (test_bit(S390_FEAT_MSA, features)) {
2370 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2371 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2372 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2373 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2374 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2376 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2377 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2379 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2380 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2381 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2382 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2383 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2385 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2386 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2388 return 0;
2391 static int configure_cpu_subfunc(const S390FeatBitmap features)
2393 struct kvm_s390_vm_cpu_subfunc prop = {};
2394 struct kvm_device_attr attr = {
2395 .group = KVM_S390_VM_CPU_MODEL,
2396 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2397 .addr = (uint64_t) &prop,
2400 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2401 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2402 /* hardware support might be missing, IBC will handle most of this */
2403 return 0;
2406 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2407 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2408 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2409 prop.ptff[0] |= 0x80; /* query is always available */
2411 if (test_bit(S390_FEAT_MSA, features)) {
2412 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2413 prop.kmac[0] |= 0x80; /* query is always available */
2414 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2415 prop.kmc[0] |= 0x80; /* query is always available */
2416 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2417 prop.km[0] |= 0x80; /* query is always available */
2418 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2419 prop.kimd[0] |= 0x80; /* query is always available */
2420 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2421 prop.klmd[0] |= 0x80; /* query is always available */
2423 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2424 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2425 prop.pckmo[0] |= 0x80; /* query is always available */
2427 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2428 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2429 prop.kmctr[0] |= 0x80; /* query is always available */
2430 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2431 prop.kmf[0] |= 0x80; /* query is always available */
2432 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2433 prop.kmo[0] |= 0x80; /* query is always available */
2434 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2435 prop.pcc[0] |= 0x80; /* query is always available */
2437 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2438 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2439 prop.ppno[0] |= 0x80; /* query is always available */
2441 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2444 static int kvm_to_feat[][2] = {
2445 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2446 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2447 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2448 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2449 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2450 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2451 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2452 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2453 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2454 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2455 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2456 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2457 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2460 static int query_cpu_feat(S390FeatBitmap features)
2462 struct kvm_s390_vm_cpu_feat prop;
2463 struct kvm_device_attr attr = {
2464 .group = KVM_S390_VM_CPU_MODEL,
2465 .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2466 .addr = (uint64_t) &prop,
2468 int rc;
2469 int i;
2471 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2472 if (rc) {
2473 return rc;
2476 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2477 if (test_bit_inv(kvm_to_feat[i][0], (unsigned long *)prop.feat)) {
2478 set_bit(kvm_to_feat[i][1], features);
2481 return 0;
2484 static int configure_cpu_feat(const S390FeatBitmap features)
2486 struct kvm_s390_vm_cpu_feat prop = {};
2487 struct kvm_device_attr attr = {
2488 .group = KVM_S390_VM_CPU_MODEL,
2489 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2490 .addr = (uint64_t) &prop,
2492 int i;
2494 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2495 if (test_bit(kvm_to_feat[i][1], features)) {
2496 set_bit_inv(kvm_to_feat[i][0], (unsigned long *)prop.feat);
2499 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2502 bool kvm_s390_cpu_models_supported(void)
2504 if (!cpu_model_allowed()) {
2505 /* compatibility machines interfere with the cpu model */
2506 return false;
2508 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2509 KVM_S390_VM_CPU_MACHINE) &&
2510 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2511 KVM_S390_VM_CPU_PROCESSOR) &&
2512 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2513 KVM_S390_VM_CPU_MACHINE_FEAT) &&
2514 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2515 KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2516 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2517 KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2520 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2522 struct kvm_s390_vm_cpu_machine prop = {};
2523 struct kvm_device_attr attr = {
2524 .group = KVM_S390_VM_CPU_MODEL,
2525 .attr = KVM_S390_VM_CPU_MACHINE,
2526 .addr = (uint64_t) &prop,
2528 uint16_t unblocked_ibc = 0, cpu_type = 0;
2529 int rc;
2531 memset(model, 0, sizeof(*model));
2533 if (!kvm_s390_cpu_models_supported()) {
2534 error_setg(errp, "KVM doesn't support CPU models");
2535 return;
2538 /* query the basic cpu model properties */
2539 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2540 if (rc) {
2541 error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2542 return;
2545 cpu_type = cpuid_type(prop.cpuid);
2546 if (has_ibc(prop.ibc)) {
2547 model->lowest_ibc = lowest_ibc(prop.ibc);
2548 unblocked_ibc = unblocked_ibc(prop.ibc);
2550 model->cpu_id = cpuid_id(prop.cpuid);
2551 model->cpu_ver = 0xff;
2553 /* get supported cpu features indicated via STFL(E) */
2554 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2555 (uint8_t *) prop.fac_mask);
2556 /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2557 if (test_bit(S390_FEAT_STFLE, model->features)) {
2558 set_bit(S390_FEAT_DAT_ENH_2, model->features);
2560 /* get supported cpu features indicated e.g. via SCLP */
2561 rc = query_cpu_feat(model->features);
2562 if (rc) {
2563 error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2564 return;
2566 /* get supported cpu subfunctions indicated via query / test bit */
2567 rc = query_cpu_subfunc(model->features);
2568 if (rc) {
2569 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2570 return;
2573 /* with cpu model support, CMM is only indicated if really available */
2574 if (kvm_s390_cmma_available()) {
2575 set_bit(S390_FEAT_CMM, model->features);
2578 if (s390_known_cpu_type(cpu_type)) {
2579 /* we want the exact model, even if some features are missing */
2580 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2581 ibc_ec_ga(unblocked_ibc), NULL);
2582 } else {
2583 /* model unknown, e.g. too new - search using features */
2584 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2585 ibc_ec_ga(unblocked_ibc),
2586 model->features);
2588 if (!model->def) {
2589 error_setg(errp, "KVM: host CPU model could not be identified");
2590 return;
2592 /* strip of features that are not part of the maximum model */
2593 bitmap_and(model->features, model->features, model->def->full_feat,
2594 S390_FEAT_MAX);
2597 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2599 struct kvm_s390_vm_cpu_processor prop = {
2600 .fac_list = { 0 },
2602 struct kvm_device_attr attr = {
2603 .group = KVM_S390_VM_CPU_MODEL,
2604 .attr = KVM_S390_VM_CPU_PROCESSOR,
2605 .addr = (uint64_t) &prop,
2607 int rc;
2609 if (!model) {
2610 /* compatibility handling if cpu models are disabled */
2611 if (kvm_s390_cmma_available() && !mem_path) {
2612 kvm_s390_enable_cmma();
2614 return;
2616 if (!kvm_s390_cpu_models_supported()) {
2617 error_setg(errp, "KVM doesn't support CPU models");
2618 return;
2620 prop.cpuid = s390_cpuid_from_cpu_model(model);
2621 prop.ibc = s390_ibc_from_cpu_model(model);
2622 /* configure cpu features indicated via STFL(e) */
2623 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2624 (uint8_t *) prop.fac_list);
2625 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2626 if (rc) {
2627 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2628 return;
2630 /* configure cpu features indicated e.g. via SCLP */
2631 rc = configure_cpu_feat(model->features);
2632 if (rc) {
2633 error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2634 return;
2636 /* configure cpu subfunctions indicated via query / test bit */
2637 rc = configure_cpu_subfunc(model->features);
2638 if (rc) {
2639 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2640 return;
2642 /* enable CMM via CMMA - disable on hugetlbfs */
2643 if (test_bit(S390_FEAT_CMM, model->features)) {
2644 if (mem_path) {
2645 error_report("Warning: CMM will not be enabled because it is not "
2646 "compatible to hugetlbfs.");
2647 } else {
2648 kvm_s390_enable_cmma();