target-arm: Implement cp15 VA->PA translation
[qemu.git] / target-mips / op_helper.c
blobbd16ce35430cdbe884369fc7ca9b8507ec6f545a
1 /*
2 * MIPS emulation helpers for qemu.
4 * Copyright (c) 2004-2005 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include <stdlib.h>
20 #include "exec.h"
22 #include "host-utils.h"
24 #include "helper.h"
26 #ifndef CONFIG_USER_ONLY
27 static inline void cpu_mips_tlb_flush (CPUState *env, int flush_global);
28 #endif
30 /*****************************************************************************/
31 /* Exceptions processing helpers */
33 void helper_raise_exception_err (uint32_t exception, int error_code)
35 #if 1
36 if (exception < 0x100)
37 qemu_log("%s: %d %d\n", __func__, exception, error_code);
38 #endif
39 env->exception_index = exception;
40 env->error_code = error_code;
41 cpu_loop_exit();
44 void helper_raise_exception (uint32_t exception)
46 helper_raise_exception_err(exception, 0);
49 #if !defined(CONFIG_USER_ONLY)
50 static void do_restore_state (void *pc_ptr)
52 TranslationBlock *tb;
53 unsigned long pc = (unsigned long) pc_ptr;
55 tb = tb_find_pc (pc);
56 if (tb) {
57 cpu_restore_state (tb, env, pc, NULL);
60 #endif
62 #if defined(CONFIG_USER_ONLY)
63 #define HELPER_LD(name, insn, type) \
64 static inline type do_##name(target_ulong addr, int mem_idx) \
65 { \
66 return (type) insn##_raw(addr); \
68 #else
69 #define HELPER_LD(name, insn, type) \
70 static inline type do_##name(target_ulong addr, int mem_idx) \
71 { \
72 switch (mem_idx) \
73 { \
74 case 0: return (type) insn##_kernel(addr); break; \
75 case 1: return (type) insn##_super(addr); break; \
76 default: \
77 case 2: return (type) insn##_user(addr); break; \
78 } \
80 #endif
81 HELPER_LD(lbu, ldub, uint8_t)
82 HELPER_LD(lw, ldl, int32_t)
83 #ifdef TARGET_MIPS64
84 HELPER_LD(ld, ldq, int64_t)
85 #endif
86 #undef HELPER_LD
88 #if defined(CONFIG_USER_ONLY)
89 #define HELPER_ST(name, insn, type) \
90 static inline void do_##name(target_ulong addr, type val, int mem_idx) \
91 { \
92 insn##_raw(addr, val); \
94 #else
95 #define HELPER_ST(name, insn, type) \
96 static inline void do_##name(target_ulong addr, type val, int mem_idx) \
97 { \
98 switch (mem_idx) \
99 { \
100 case 0: insn##_kernel(addr, val); break; \
101 case 1: insn##_super(addr, val); break; \
102 default: \
103 case 2: insn##_user(addr, val); break; \
106 #endif
107 HELPER_ST(sb, stb, uint8_t)
108 HELPER_ST(sw, stl, uint32_t)
109 #ifdef TARGET_MIPS64
110 HELPER_ST(sd, stq, uint64_t)
111 #endif
112 #undef HELPER_ST
114 target_ulong helper_clo (target_ulong arg1)
116 return clo32(arg1);
119 target_ulong helper_clz (target_ulong arg1)
121 return clz32(arg1);
124 #if defined(TARGET_MIPS64)
125 target_ulong helper_dclo (target_ulong arg1)
127 return clo64(arg1);
130 target_ulong helper_dclz (target_ulong arg1)
132 return clz64(arg1);
134 #endif /* TARGET_MIPS64 */
136 /* 64 bits arithmetic for 32 bits hosts */
137 static inline uint64_t get_HILO (void)
139 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
142 static inline void set_HILO (uint64_t HILO)
144 env->active_tc.LO[0] = (int32_t)HILO;
145 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
148 static inline void set_HIT0_LO (target_ulong arg1, uint64_t HILO)
150 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
151 arg1 = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
154 static inline void set_HI_LOT0 (target_ulong arg1, uint64_t HILO)
156 arg1 = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
157 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
160 /* Multiplication variants of the vr54xx. */
161 target_ulong helper_muls (target_ulong arg1, target_ulong arg2)
163 set_HI_LOT0(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
165 return arg1;
168 target_ulong helper_mulsu (target_ulong arg1, target_ulong arg2)
170 set_HI_LOT0(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
172 return arg1;
175 target_ulong helper_macc (target_ulong arg1, target_ulong arg2)
177 set_HI_LOT0(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
179 return arg1;
182 target_ulong helper_macchi (target_ulong arg1, target_ulong arg2)
184 set_HIT0_LO(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
186 return arg1;
189 target_ulong helper_maccu (target_ulong arg1, target_ulong arg2)
191 set_HI_LOT0(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
193 return arg1;
196 target_ulong helper_macchiu (target_ulong arg1, target_ulong arg2)
198 set_HIT0_LO(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
200 return arg1;
203 target_ulong helper_msac (target_ulong arg1, target_ulong arg2)
205 set_HI_LOT0(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
207 return arg1;
210 target_ulong helper_msachi (target_ulong arg1, target_ulong arg2)
212 set_HIT0_LO(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
214 return arg1;
217 target_ulong helper_msacu (target_ulong arg1, target_ulong arg2)
219 set_HI_LOT0(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
221 return arg1;
224 target_ulong helper_msachiu (target_ulong arg1, target_ulong arg2)
226 set_HIT0_LO(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
228 return arg1;
231 target_ulong helper_mulhi (target_ulong arg1, target_ulong arg2)
233 set_HIT0_LO(arg1, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
235 return arg1;
238 target_ulong helper_mulhiu (target_ulong arg1, target_ulong arg2)
240 set_HIT0_LO(arg1, (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
242 return arg1;
245 target_ulong helper_mulshi (target_ulong arg1, target_ulong arg2)
247 set_HIT0_LO(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
249 return arg1;
252 target_ulong helper_mulshiu (target_ulong arg1, target_ulong arg2)
254 set_HIT0_LO(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
256 return arg1;
259 #ifdef TARGET_MIPS64
260 void helper_dmult (target_ulong arg1, target_ulong arg2)
262 muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
265 void helper_dmultu (target_ulong arg1, target_ulong arg2)
267 mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
269 #endif
271 #ifndef CONFIG_USER_ONLY
273 static inline target_phys_addr_t do_translate_address(target_ulong address, int rw)
275 target_phys_addr_t lladdr;
277 lladdr = cpu_mips_translate_address(env, address, rw);
279 if (lladdr == -1LL) {
280 cpu_loop_exit();
281 } else {
282 return lladdr;
286 #define HELPER_LD_ATOMIC(name, insn) \
287 target_ulong helper_##name(target_ulong arg, int mem_idx) \
289 env->lladdr = do_translate_address(arg, 0); \
290 env->llval = do_##insn(arg, mem_idx); \
291 return env->llval; \
293 HELPER_LD_ATOMIC(ll, lw)
294 #ifdef TARGET_MIPS64
295 HELPER_LD_ATOMIC(lld, ld)
296 #endif
297 #undef HELPER_LD_ATOMIC
299 #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
300 target_ulong helper_##name(target_ulong arg1, target_ulong arg2, int mem_idx) \
302 target_long tmp; \
304 if (arg2 & almask) { \
305 env->CP0_BadVAddr = arg2; \
306 helper_raise_exception(EXCP_AdES); \
308 if (do_translate_address(arg2, 1) == env->lladdr) { \
309 tmp = do_##ld_insn(arg2, mem_idx); \
310 if (tmp == env->llval) { \
311 do_##st_insn(arg2, arg1, mem_idx); \
312 return 1; \
315 return 0; \
317 HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
318 #ifdef TARGET_MIPS64
319 HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
320 #endif
321 #undef HELPER_ST_ATOMIC
322 #endif
324 #ifdef TARGET_WORDS_BIGENDIAN
325 #define GET_LMASK(v) ((v) & 3)
326 #define GET_OFFSET(addr, offset) (addr + (offset))
327 #else
328 #define GET_LMASK(v) (((v) & 3) ^ 3)
329 #define GET_OFFSET(addr, offset) (addr - (offset))
330 #endif
332 target_ulong helper_lwl(target_ulong arg1, target_ulong arg2, int mem_idx)
334 target_ulong tmp;
336 tmp = do_lbu(arg2, mem_idx);
337 arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24);
339 if (GET_LMASK(arg2) <= 2) {
340 tmp = do_lbu(GET_OFFSET(arg2, 1), mem_idx);
341 arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16);
344 if (GET_LMASK(arg2) <= 1) {
345 tmp = do_lbu(GET_OFFSET(arg2, 2), mem_idx);
346 arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8);
349 if (GET_LMASK(arg2) == 0) {
350 tmp = do_lbu(GET_OFFSET(arg2, 3), mem_idx);
351 arg1 = (arg1 & 0xFFFFFF00) | tmp;
353 return (int32_t)arg1;
356 target_ulong helper_lwr(target_ulong arg1, target_ulong arg2, int mem_idx)
358 target_ulong tmp;
360 tmp = do_lbu(arg2, mem_idx);
361 arg1 = (arg1 & 0xFFFFFF00) | tmp;
363 if (GET_LMASK(arg2) >= 1) {
364 tmp = do_lbu(GET_OFFSET(arg2, -1), mem_idx);
365 arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8);
368 if (GET_LMASK(arg2) >= 2) {
369 tmp = do_lbu(GET_OFFSET(arg2, -2), mem_idx);
370 arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16);
373 if (GET_LMASK(arg2) == 3) {
374 tmp = do_lbu(GET_OFFSET(arg2, -3), mem_idx);
375 arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24);
377 return (int32_t)arg1;
380 void helper_swl(target_ulong arg1, target_ulong arg2, int mem_idx)
382 do_sb(arg2, (uint8_t)(arg1 >> 24), mem_idx);
384 if (GET_LMASK(arg2) <= 2)
385 do_sb(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx);
387 if (GET_LMASK(arg2) <= 1)
388 do_sb(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx);
390 if (GET_LMASK(arg2) == 0)
391 do_sb(GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx);
394 void helper_swr(target_ulong arg1, target_ulong arg2, int mem_idx)
396 do_sb(arg2, (uint8_t)arg1, mem_idx);
398 if (GET_LMASK(arg2) >= 1)
399 do_sb(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
401 if (GET_LMASK(arg2) >= 2)
402 do_sb(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
404 if (GET_LMASK(arg2) == 3)
405 do_sb(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
408 #if defined(TARGET_MIPS64)
409 /* "half" load and stores. We must do the memory access inline,
410 or fault handling won't work. */
412 #ifdef TARGET_WORDS_BIGENDIAN
413 #define GET_LMASK64(v) ((v) & 7)
414 #else
415 #define GET_LMASK64(v) (((v) & 7) ^ 7)
416 #endif
418 target_ulong helper_ldl(target_ulong arg1, target_ulong arg2, int mem_idx)
420 uint64_t tmp;
422 tmp = do_lbu(arg2, mem_idx);
423 arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
425 if (GET_LMASK64(arg2) <= 6) {
426 tmp = do_lbu(GET_OFFSET(arg2, 1), mem_idx);
427 arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
430 if (GET_LMASK64(arg2) <= 5) {
431 tmp = do_lbu(GET_OFFSET(arg2, 2), mem_idx);
432 arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
435 if (GET_LMASK64(arg2) <= 4) {
436 tmp = do_lbu(GET_OFFSET(arg2, 3), mem_idx);
437 arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
440 if (GET_LMASK64(arg2) <= 3) {
441 tmp = do_lbu(GET_OFFSET(arg2, 4), mem_idx);
442 arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
445 if (GET_LMASK64(arg2) <= 2) {
446 tmp = do_lbu(GET_OFFSET(arg2, 5), mem_idx);
447 arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
450 if (GET_LMASK64(arg2) <= 1) {
451 tmp = do_lbu(GET_OFFSET(arg2, 6), mem_idx);
452 arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
455 if (GET_LMASK64(arg2) == 0) {
456 tmp = do_lbu(GET_OFFSET(arg2, 7), mem_idx);
457 arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
460 return arg1;
463 target_ulong helper_ldr(target_ulong arg1, target_ulong arg2, int mem_idx)
465 uint64_t tmp;
467 tmp = do_lbu(arg2, mem_idx);
468 arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
470 if (GET_LMASK64(arg2) >= 1) {
471 tmp = do_lbu(GET_OFFSET(arg2, -1), mem_idx);
472 arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
475 if (GET_LMASK64(arg2) >= 2) {
476 tmp = do_lbu(GET_OFFSET(arg2, -2), mem_idx);
477 arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
480 if (GET_LMASK64(arg2) >= 3) {
481 tmp = do_lbu(GET_OFFSET(arg2, -3), mem_idx);
482 arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
485 if (GET_LMASK64(arg2) >= 4) {
486 tmp = do_lbu(GET_OFFSET(arg2, -4), mem_idx);
487 arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
490 if (GET_LMASK64(arg2) >= 5) {
491 tmp = do_lbu(GET_OFFSET(arg2, -5), mem_idx);
492 arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
495 if (GET_LMASK64(arg2) >= 6) {
496 tmp = do_lbu(GET_OFFSET(arg2, -6), mem_idx);
497 arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
500 if (GET_LMASK64(arg2) == 7) {
501 tmp = do_lbu(GET_OFFSET(arg2, -7), mem_idx);
502 arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
505 return arg1;
508 void helper_sdl(target_ulong arg1, target_ulong arg2, int mem_idx)
510 do_sb(arg2, (uint8_t)(arg1 >> 56), mem_idx);
512 if (GET_LMASK64(arg2) <= 6)
513 do_sb(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx);
515 if (GET_LMASK64(arg2) <= 5)
516 do_sb(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx);
518 if (GET_LMASK64(arg2) <= 4)
519 do_sb(GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx);
521 if (GET_LMASK64(arg2) <= 3)
522 do_sb(GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx);
524 if (GET_LMASK64(arg2) <= 2)
525 do_sb(GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx);
527 if (GET_LMASK64(arg2) <= 1)
528 do_sb(GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx);
530 if (GET_LMASK64(arg2) <= 0)
531 do_sb(GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx);
534 void helper_sdr(target_ulong arg1, target_ulong arg2, int mem_idx)
536 do_sb(arg2, (uint8_t)arg1, mem_idx);
538 if (GET_LMASK64(arg2) >= 1)
539 do_sb(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
541 if (GET_LMASK64(arg2) >= 2)
542 do_sb(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
544 if (GET_LMASK64(arg2) >= 3)
545 do_sb(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
547 if (GET_LMASK64(arg2) >= 4)
548 do_sb(GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx);
550 if (GET_LMASK64(arg2) >= 5)
551 do_sb(GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx);
553 if (GET_LMASK64(arg2) >= 6)
554 do_sb(GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx);
556 if (GET_LMASK64(arg2) == 7)
557 do_sb(GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx);
559 #endif /* TARGET_MIPS64 */
561 static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
563 void helper_lwm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
565 target_ulong base_reglist = reglist & 0xf;
566 target_ulong do_r31 = reglist & 0x10;
567 #ifdef CONFIG_USER_ONLY
568 #undef ldfun
569 #define ldfun ldl_raw
570 #else
571 uint32_t (*ldfun)(target_ulong);
573 switch (mem_idx)
575 case 0: ldfun = ldl_kernel; break;
576 case 1: ldfun = ldl_super; break;
577 default:
578 case 2: ldfun = ldl_user; break;
580 #endif
582 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
583 target_ulong i;
585 for (i = 0; i < base_reglist; i++) {
586 env->active_tc.gpr[multiple_regs[i]] = (target_long) ldfun(addr);
587 addr += 4;
591 if (do_r31) {
592 env->active_tc.gpr[31] = (target_long) ldfun(addr);
596 void helper_swm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
598 target_ulong base_reglist = reglist & 0xf;
599 target_ulong do_r31 = reglist & 0x10;
600 #ifdef CONFIG_USER_ONLY
601 #undef stfun
602 #define stfun stl_raw
603 #else
604 void (*stfun)(target_ulong, uint32_t);
606 switch (mem_idx)
608 case 0: stfun = stl_kernel; break;
609 case 1: stfun = stl_super; break;
610 default:
611 case 2: stfun = stl_user; break;
613 #endif
615 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
616 target_ulong i;
618 for (i = 0; i < base_reglist; i++) {
619 stfun(addr, env->active_tc.gpr[multiple_regs[i]]);
620 addr += 4;
624 if (do_r31) {
625 stfun(addr, env->active_tc.gpr[31]);
629 #if defined(TARGET_MIPS64)
630 void helper_ldm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
632 target_ulong base_reglist = reglist & 0xf;
633 target_ulong do_r31 = reglist & 0x10;
634 #ifdef CONFIG_USER_ONLY
635 #undef ldfun
636 #define ldfun ldq_raw
637 #else
638 uint64_t (*ldfun)(target_ulong);
640 switch (mem_idx)
642 case 0: ldfun = ldq_kernel; break;
643 case 1: ldfun = ldq_super; break;
644 default:
645 case 2: ldfun = ldq_user; break;
647 #endif
649 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
650 target_ulong i;
652 for (i = 0; i < base_reglist; i++) {
653 env->active_tc.gpr[multiple_regs[i]] = ldfun(addr);
654 addr += 8;
658 if (do_r31) {
659 env->active_tc.gpr[31] = ldfun(addr);
663 void helper_sdm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
665 target_ulong base_reglist = reglist & 0xf;
666 target_ulong do_r31 = reglist & 0x10;
667 #ifdef CONFIG_USER_ONLY
668 #undef stfun
669 #define stfun stq_raw
670 #else
671 void (*stfun)(target_ulong, uint64_t);
673 switch (mem_idx)
675 case 0: stfun = stq_kernel; break;
676 case 1: stfun = stq_super; break;
677 default:
678 case 2: stfun = stq_user; break;
680 #endif
682 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
683 target_ulong i;
685 for (i = 0; i < base_reglist; i++) {
686 stfun(addr, env->active_tc.gpr[multiple_regs[i]]);
687 addr += 8;
691 if (do_r31) {
692 stfun(addr, env->active_tc.gpr[31]);
695 #endif
697 #ifndef CONFIG_USER_ONLY
698 /* CP0 helpers */
699 target_ulong helper_mfc0_mvpcontrol (void)
701 return env->mvp->CP0_MVPControl;
704 target_ulong helper_mfc0_mvpconf0 (void)
706 return env->mvp->CP0_MVPConf0;
709 target_ulong helper_mfc0_mvpconf1 (void)
711 return env->mvp->CP0_MVPConf1;
714 target_ulong helper_mfc0_random (void)
716 return (int32_t)cpu_mips_get_random(env);
719 target_ulong helper_mfc0_tcstatus (void)
721 return env->active_tc.CP0_TCStatus;
724 target_ulong helper_mftc0_tcstatus(void)
726 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
728 if (other_tc == env->current_tc)
729 return env->active_tc.CP0_TCStatus;
730 else
731 return env->tcs[other_tc].CP0_TCStatus;
734 target_ulong helper_mfc0_tcbind (void)
736 return env->active_tc.CP0_TCBind;
739 target_ulong helper_mftc0_tcbind(void)
741 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
743 if (other_tc == env->current_tc)
744 return env->active_tc.CP0_TCBind;
745 else
746 return env->tcs[other_tc].CP0_TCBind;
749 target_ulong helper_mfc0_tcrestart (void)
751 return env->active_tc.PC;
754 target_ulong helper_mftc0_tcrestart(void)
756 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
758 if (other_tc == env->current_tc)
759 return env->active_tc.PC;
760 else
761 return env->tcs[other_tc].PC;
764 target_ulong helper_mfc0_tchalt (void)
766 return env->active_tc.CP0_TCHalt;
769 target_ulong helper_mftc0_tchalt(void)
771 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
773 if (other_tc == env->current_tc)
774 return env->active_tc.CP0_TCHalt;
775 else
776 return env->tcs[other_tc].CP0_TCHalt;
779 target_ulong helper_mfc0_tccontext (void)
781 return env->active_tc.CP0_TCContext;
784 target_ulong helper_mftc0_tccontext(void)
786 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
788 if (other_tc == env->current_tc)
789 return env->active_tc.CP0_TCContext;
790 else
791 return env->tcs[other_tc].CP0_TCContext;
794 target_ulong helper_mfc0_tcschedule (void)
796 return env->active_tc.CP0_TCSchedule;
799 target_ulong helper_mftc0_tcschedule(void)
801 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
803 if (other_tc == env->current_tc)
804 return env->active_tc.CP0_TCSchedule;
805 else
806 return env->tcs[other_tc].CP0_TCSchedule;
809 target_ulong helper_mfc0_tcschefback (void)
811 return env->active_tc.CP0_TCScheFBack;
814 target_ulong helper_mftc0_tcschefback(void)
816 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
818 if (other_tc == env->current_tc)
819 return env->active_tc.CP0_TCScheFBack;
820 else
821 return env->tcs[other_tc].CP0_TCScheFBack;
824 target_ulong helper_mfc0_count (void)
826 return (int32_t)cpu_mips_get_count(env);
829 target_ulong helper_mftc0_entryhi(void)
831 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
832 int32_t tcstatus;
834 if (other_tc == env->current_tc)
835 tcstatus = env->active_tc.CP0_TCStatus;
836 else
837 tcstatus = env->tcs[other_tc].CP0_TCStatus;
839 return (env->CP0_EntryHi & ~0xff) | (tcstatus & 0xff);
842 target_ulong helper_mftc0_status(void)
844 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
845 target_ulong t0;
846 int32_t tcstatus;
848 if (other_tc == env->current_tc)
849 tcstatus = env->active_tc.CP0_TCStatus;
850 else
851 tcstatus = env->tcs[other_tc].CP0_TCStatus;
853 t0 = env->CP0_Status & ~0xf1000018;
854 t0 |= tcstatus & (0xf << CP0TCSt_TCU0);
855 t0 |= (tcstatus & (1 << CP0TCSt_TMX)) >> (CP0TCSt_TMX - CP0St_MX);
856 t0 |= (tcstatus & (0x3 << CP0TCSt_TKSU)) >> (CP0TCSt_TKSU - CP0St_KSU);
858 return t0;
861 target_ulong helper_mfc0_lladdr (void)
863 return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
866 target_ulong helper_mfc0_watchlo (uint32_t sel)
868 return (int32_t)env->CP0_WatchLo[sel];
871 target_ulong helper_mfc0_watchhi (uint32_t sel)
873 return env->CP0_WatchHi[sel];
876 target_ulong helper_mfc0_debug (void)
878 target_ulong t0 = env->CP0_Debug;
879 if (env->hflags & MIPS_HFLAG_DM)
880 t0 |= 1 << CP0DB_DM;
882 return t0;
885 target_ulong helper_mftc0_debug(void)
887 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
888 int32_t tcstatus;
890 if (other_tc == env->current_tc)
891 tcstatus = env->active_tc.CP0_Debug_tcstatus;
892 else
893 tcstatus = env->tcs[other_tc].CP0_Debug_tcstatus;
895 /* XXX: Might be wrong, check with EJTAG spec. */
896 return (env->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
897 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
900 #if defined(TARGET_MIPS64)
901 target_ulong helper_dmfc0_tcrestart (void)
903 return env->active_tc.PC;
906 target_ulong helper_dmfc0_tchalt (void)
908 return env->active_tc.CP0_TCHalt;
911 target_ulong helper_dmfc0_tccontext (void)
913 return env->active_tc.CP0_TCContext;
916 target_ulong helper_dmfc0_tcschedule (void)
918 return env->active_tc.CP0_TCSchedule;
921 target_ulong helper_dmfc0_tcschefback (void)
923 return env->active_tc.CP0_TCScheFBack;
926 target_ulong helper_dmfc0_lladdr (void)
928 return env->lladdr >> env->CP0_LLAddr_shift;
931 target_ulong helper_dmfc0_watchlo (uint32_t sel)
933 return env->CP0_WatchLo[sel];
935 #endif /* TARGET_MIPS64 */
937 void helper_mtc0_index (target_ulong arg1)
939 int num = 1;
940 unsigned int tmp = env->tlb->nb_tlb;
942 do {
943 tmp >>= 1;
944 num <<= 1;
945 } while (tmp);
946 env->CP0_Index = (env->CP0_Index & 0x80000000) | (arg1 & (num - 1));
949 void helper_mtc0_mvpcontrol (target_ulong arg1)
951 uint32_t mask = 0;
952 uint32_t newval;
954 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
955 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
956 (1 << CP0MVPCo_EVP);
957 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
958 mask |= (1 << CP0MVPCo_STLB);
959 newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
961 // TODO: Enable/disable shared TLB, enable/disable VPEs.
963 env->mvp->CP0_MVPControl = newval;
966 void helper_mtc0_vpecontrol (target_ulong arg1)
968 uint32_t mask;
969 uint32_t newval;
971 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
972 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
973 newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
975 /* Yield scheduler intercept not implemented. */
976 /* Gating storage scheduler intercept not implemented. */
978 // TODO: Enable/disable TCs.
980 env->CP0_VPEControl = newval;
983 void helper_mtc0_vpeconf0 (target_ulong arg1)
985 uint32_t mask = 0;
986 uint32_t newval;
988 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
989 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
990 mask |= (0xff << CP0VPEC0_XTC);
991 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
993 newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
995 // TODO: TC exclusive handling due to ERL/EXL.
997 env->CP0_VPEConf0 = newval;
1000 void helper_mtc0_vpeconf1 (target_ulong arg1)
1002 uint32_t mask = 0;
1003 uint32_t newval;
1005 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1006 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
1007 (0xff << CP0VPEC1_NCP1);
1008 newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
1010 /* UDI not implemented. */
1011 /* CP2 not implemented. */
1013 // TODO: Handle FPU (CP1) binding.
1015 env->CP0_VPEConf1 = newval;
1018 void helper_mtc0_yqmask (target_ulong arg1)
1020 /* Yield qualifier inputs not implemented. */
1021 env->CP0_YQMask = 0x00000000;
1024 void helper_mtc0_vpeopt (target_ulong arg1)
1026 env->CP0_VPEOpt = arg1 & 0x0000ffff;
1029 void helper_mtc0_entrylo0 (target_ulong arg1)
1031 /* Large physaddr (PABITS) not implemented */
1032 /* 1k pages not implemented */
1033 env->CP0_EntryLo0 = arg1 & 0x3FFFFFFF;
1036 void helper_mtc0_tcstatus (target_ulong arg1)
1038 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
1039 uint32_t newval;
1041 newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
1043 // TODO: Sync with CP0_Status.
1045 env->active_tc.CP0_TCStatus = newval;
1048 void helper_mttc0_tcstatus (target_ulong arg1)
1050 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1052 // TODO: Sync with CP0_Status.
1054 if (other_tc == env->current_tc)
1055 env->active_tc.CP0_TCStatus = arg1;
1056 else
1057 env->tcs[other_tc].CP0_TCStatus = arg1;
1060 void helper_mtc0_tcbind (target_ulong arg1)
1062 uint32_t mask = (1 << CP0TCBd_TBE);
1063 uint32_t newval;
1065 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1066 mask |= (1 << CP0TCBd_CurVPE);
1067 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1068 env->active_tc.CP0_TCBind = newval;
1071 void helper_mttc0_tcbind (target_ulong arg1)
1073 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1074 uint32_t mask = (1 << CP0TCBd_TBE);
1075 uint32_t newval;
1077 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1078 mask |= (1 << CP0TCBd_CurVPE);
1079 if (other_tc == env->current_tc) {
1080 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1081 env->active_tc.CP0_TCBind = newval;
1082 } else {
1083 newval = (env->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
1084 env->tcs[other_tc].CP0_TCBind = newval;
1088 void helper_mtc0_tcrestart (target_ulong arg1)
1090 env->active_tc.PC = arg1;
1091 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1092 env->lladdr = 0ULL;
1093 /* MIPS16 not implemented. */
1096 void helper_mttc0_tcrestart (target_ulong arg1)
1098 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1100 if (other_tc == env->current_tc) {
1101 env->active_tc.PC = arg1;
1102 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1103 env->lladdr = 0ULL;
1104 /* MIPS16 not implemented. */
1105 } else {
1106 env->tcs[other_tc].PC = arg1;
1107 env->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1108 env->lladdr = 0ULL;
1109 /* MIPS16 not implemented. */
1113 void helper_mtc0_tchalt (target_ulong arg1)
1115 env->active_tc.CP0_TCHalt = arg1 & 0x1;
1117 // TODO: Halt TC / Restart (if allocated+active) TC.
1120 void helper_mttc0_tchalt (target_ulong arg1)
1122 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1124 // TODO: Halt TC / Restart (if allocated+active) TC.
1126 if (other_tc == env->current_tc)
1127 env->active_tc.CP0_TCHalt = arg1;
1128 else
1129 env->tcs[other_tc].CP0_TCHalt = arg1;
1132 void helper_mtc0_tccontext (target_ulong arg1)
1134 env->active_tc.CP0_TCContext = arg1;
1137 void helper_mttc0_tccontext (target_ulong arg1)
1139 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1141 if (other_tc == env->current_tc)
1142 env->active_tc.CP0_TCContext = arg1;
1143 else
1144 env->tcs[other_tc].CP0_TCContext = arg1;
1147 void helper_mtc0_tcschedule (target_ulong arg1)
1149 env->active_tc.CP0_TCSchedule = arg1;
1152 void helper_mttc0_tcschedule (target_ulong arg1)
1154 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1156 if (other_tc == env->current_tc)
1157 env->active_tc.CP0_TCSchedule = arg1;
1158 else
1159 env->tcs[other_tc].CP0_TCSchedule = arg1;
1162 void helper_mtc0_tcschefback (target_ulong arg1)
1164 env->active_tc.CP0_TCScheFBack = arg1;
1167 void helper_mttc0_tcschefback (target_ulong arg1)
1169 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1171 if (other_tc == env->current_tc)
1172 env->active_tc.CP0_TCScheFBack = arg1;
1173 else
1174 env->tcs[other_tc].CP0_TCScheFBack = arg1;
1177 void helper_mtc0_entrylo1 (target_ulong arg1)
1179 /* Large physaddr (PABITS) not implemented */
1180 /* 1k pages not implemented */
1181 env->CP0_EntryLo1 = arg1 & 0x3FFFFFFF;
1184 void helper_mtc0_context (target_ulong arg1)
1186 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
1189 void helper_mtc0_pagemask (target_ulong arg1)
1191 /* 1k pages not implemented */
1192 env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1195 void helper_mtc0_pagegrain (target_ulong arg1)
1197 /* SmartMIPS not implemented */
1198 /* Large physaddr (PABITS) not implemented */
1199 /* 1k pages not implemented */
1200 env->CP0_PageGrain = 0;
1203 void helper_mtc0_wired (target_ulong arg1)
1205 env->CP0_Wired = arg1 % env->tlb->nb_tlb;
1208 void helper_mtc0_srsconf0 (target_ulong arg1)
1210 env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
1213 void helper_mtc0_srsconf1 (target_ulong arg1)
1215 env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
1218 void helper_mtc0_srsconf2 (target_ulong arg1)
1220 env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
1223 void helper_mtc0_srsconf3 (target_ulong arg1)
1225 env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
1228 void helper_mtc0_srsconf4 (target_ulong arg1)
1230 env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
1233 void helper_mtc0_hwrena (target_ulong arg1)
1235 env->CP0_HWREna = arg1 & 0x0000000F;
1238 void helper_mtc0_count (target_ulong arg1)
1240 cpu_mips_store_count(env, arg1);
1243 void helper_mtc0_entryhi (target_ulong arg1)
1245 target_ulong old, val;
1247 /* 1k pages not implemented */
1248 val = arg1 & ((TARGET_PAGE_MASK << 1) | 0xFF);
1249 #if defined(TARGET_MIPS64)
1250 val &= env->SEGMask;
1251 #endif
1252 old = env->CP0_EntryHi;
1253 env->CP0_EntryHi = val;
1254 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1255 uint32_t tcst = env->active_tc.CP0_TCStatus & ~0xff;
1256 env->active_tc.CP0_TCStatus = tcst | (val & 0xff);
1258 /* If the ASID changes, flush qemu's TLB. */
1259 if ((old & 0xFF) != (val & 0xFF))
1260 cpu_mips_tlb_flush(env, 1);
1263 void helper_mttc0_entryhi(target_ulong arg1)
1265 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1266 int32_t tcstatus;
1268 env->CP0_EntryHi = (env->CP0_EntryHi & 0xff) | (arg1 & ~0xff);
1269 if (other_tc == env->current_tc) {
1270 tcstatus = (env->active_tc.CP0_TCStatus & ~0xff) | (arg1 & 0xff);
1271 env->active_tc.CP0_TCStatus = tcstatus;
1272 } else {
1273 tcstatus = (env->tcs[other_tc].CP0_TCStatus & ~0xff) | (arg1 & 0xff);
1274 env->tcs[other_tc].CP0_TCStatus = tcstatus;
1278 void helper_mtc0_compare (target_ulong arg1)
1280 cpu_mips_store_compare(env, arg1);
1283 void helper_mtc0_status (target_ulong arg1)
1285 uint32_t val, old;
1286 uint32_t mask = env->CP0_Status_rw_bitmask;
1288 val = arg1 & mask;
1289 old = env->CP0_Status;
1290 env->CP0_Status = (env->CP0_Status & ~mask) | val;
1291 compute_hflags(env);
1292 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1293 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1294 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1295 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1296 env->CP0_Cause);
1297 switch (env->hflags & MIPS_HFLAG_KSU) {
1298 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1299 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1300 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1301 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1306 void helper_mttc0_status(target_ulong arg1)
1308 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1309 int32_t tcstatus = env->tcs[other_tc].CP0_TCStatus;
1311 env->CP0_Status = arg1 & ~0xf1000018;
1312 tcstatus = (tcstatus & ~(0xf << CP0TCSt_TCU0)) | (arg1 & (0xf << CP0St_CU0));
1313 tcstatus = (tcstatus & ~(1 << CP0TCSt_TMX)) | ((arg1 & (1 << CP0St_MX)) << (CP0TCSt_TMX - CP0St_MX));
1314 tcstatus = (tcstatus & ~(0x3 << CP0TCSt_TKSU)) | ((arg1 & (0x3 << CP0St_KSU)) << (CP0TCSt_TKSU - CP0St_KSU));
1315 if (other_tc == env->current_tc)
1316 env->active_tc.CP0_TCStatus = tcstatus;
1317 else
1318 env->tcs[other_tc].CP0_TCStatus = tcstatus;
1321 void helper_mtc0_intctl (target_ulong arg1)
1323 /* vectored interrupts not implemented, no performance counters. */
1324 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000002e0) | (arg1 & 0x000002e0);
1327 void helper_mtc0_srsctl (target_ulong arg1)
1329 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1330 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
1333 void helper_mtc0_cause (target_ulong arg1)
1335 uint32_t mask = 0x00C00300;
1336 uint32_t old = env->CP0_Cause;
1337 int i;
1339 if (env->insn_flags & ISA_MIPS32R2)
1340 mask |= 1 << CP0Ca_DC;
1342 env->CP0_Cause = (env->CP0_Cause & ~mask) | (arg1 & mask);
1344 if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
1345 if (env->CP0_Cause & (1 << CP0Ca_DC))
1346 cpu_mips_stop_count(env);
1347 else
1348 cpu_mips_start_count(env);
1351 /* Set/reset software interrupts */
1352 for (i = 0 ; i < 2 ; i++) {
1353 if ((old ^ env->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
1354 cpu_mips_soft_irq(env, i, env->CP0_Cause & (1 << (CP0Ca_IP + i)));
1359 void helper_mtc0_ebase (target_ulong arg1)
1361 /* vectored interrupts not implemented */
1362 env->CP0_EBase = (env->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
1365 void helper_mtc0_config0 (target_ulong arg1)
1367 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
1370 void helper_mtc0_config2 (target_ulong arg1)
1372 /* tertiary/secondary caches not implemented */
1373 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1376 void helper_mtc0_lladdr (target_ulong arg1)
1378 target_long mask = env->CP0_LLAddr_rw_bitmask;
1379 arg1 = arg1 << env->CP0_LLAddr_shift;
1380 env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
1383 void helper_mtc0_watchlo (target_ulong arg1, uint32_t sel)
1385 /* Watch exceptions for instructions, data loads, data stores
1386 not implemented. */
1387 env->CP0_WatchLo[sel] = (arg1 & ~0x7);
1390 void helper_mtc0_watchhi (target_ulong arg1, uint32_t sel)
1392 env->CP0_WatchHi[sel] = (arg1 & 0x40FF0FF8);
1393 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
1396 void helper_mtc0_xcontext (target_ulong arg1)
1398 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1399 env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
1402 void helper_mtc0_framemask (target_ulong arg1)
1404 env->CP0_Framemask = arg1; /* XXX */
1407 void helper_mtc0_debug (target_ulong arg1)
1409 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
1410 if (arg1 & (1 << CP0DB_DM))
1411 env->hflags |= MIPS_HFLAG_DM;
1412 else
1413 env->hflags &= ~MIPS_HFLAG_DM;
1416 void helper_mttc0_debug(target_ulong arg1)
1418 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1419 uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1421 /* XXX: Might be wrong, check with EJTAG spec. */
1422 if (other_tc == env->current_tc)
1423 env->active_tc.CP0_Debug_tcstatus = val;
1424 else
1425 env->tcs[other_tc].CP0_Debug_tcstatus = val;
1426 env->CP0_Debug = (env->CP0_Debug & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1427 (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1430 void helper_mtc0_performance0 (target_ulong arg1)
1432 env->CP0_Performance0 = arg1 & 0x000007ff;
1435 void helper_mtc0_taglo (target_ulong arg1)
1437 env->CP0_TagLo = arg1 & 0xFFFFFCF6;
1440 void helper_mtc0_datalo (target_ulong arg1)
1442 env->CP0_DataLo = arg1; /* XXX */
1445 void helper_mtc0_taghi (target_ulong arg1)
1447 env->CP0_TagHi = arg1; /* XXX */
1450 void helper_mtc0_datahi (target_ulong arg1)
1452 env->CP0_DataHi = arg1; /* XXX */
1455 /* MIPS MT functions */
1456 target_ulong helper_mftgpr(uint32_t sel)
1458 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1460 if (other_tc == env->current_tc)
1461 return env->active_tc.gpr[sel];
1462 else
1463 return env->tcs[other_tc].gpr[sel];
1466 target_ulong helper_mftlo(uint32_t sel)
1468 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1470 if (other_tc == env->current_tc)
1471 return env->active_tc.LO[sel];
1472 else
1473 return env->tcs[other_tc].LO[sel];
1476 target_ulong helper_mfthi(uint32_t sel)
1478 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1480 if (other_tc == env->current_tc)
1481 return env->active_tc.HI[sel];
1482 else
1483 return env->tcs[other_tc].HI[sel];
1486 target_ulong helper_mftacx(uint32_t sel)
1488 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1490 if (other_tc == env->current_tc)
1491 return env->active_tc.ACX[sel];
1492 else
1493 return env->tcs[other_tc].ACX[sel];
1496 target_ulong helper_mftdsp(void)
1498 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1500 if (other_tc == env->current_tc)
1501 return env->active_tc.DSPControl;
1502 else
1503 return env->tcs[other_tc].DSPControl;
1506 void helper_mttgpr(target_ulong arg1, uint32_t sel)
1508 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1510 if (other_tc == env->current_tc)
1511 env->active_tc.gpr[sel] = arg1;
1512 else
1513 env->tcs[other_tc].gpr[sel] = arg1;
1516 void helper_mttlo(target_ulong arg1, uint32_t sel)
1518 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1520 if (other_tc == env->current_tc)
1521 env->active_tc.LO[sel] = arg1;
1522 else
1523 env->tcs[other_tc].LO[sel] = arg1;
1526 void helper_mtthi(target_ulong arg1, uint32_t sel)
1528 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1530 if (other_tc == env->current_tc)
1531 env->active_tc.HI[sel] = arg1;
1532 else
1533 env->tcs[other_tc].HI[sel] = arg1;
1536 void helper_mttacx(target_ulong arg1, uint32_t sel)
1538 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1540 if (other_tc == env->current_tc)
1541 env->active_tc.ACX[sel] = arg1;
1542 else
1543 env->tcs[other_tc].ACX[sel] = arg1;
1546 void helper_mttdsp(target_ulong arg1)
1548 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1550 if (other_tc == env->current_tc)
1551 env->active_tc.DSPControl = arg1;
1552 else
1553 env->tcs[other_tc].DSPControl = arg1;
1556 /* MIPS MT functions */
1557 target_ulong helper_dmt(void)
1559 // TODO
1560 return 0;
1563 target_ulong helper_emt(void)
1565 // TODO
1566 return 0;
1569 target_ulong helper_dvpe(void)
1571 // TODO
1572 return 0;
1575 target_ulong helper_evpe(void)
1577 // TODO
1578 return 0;
1580 #endif /* !CONFIG_USER_ONLY */
1582 void helper_fork(target_ulong arg1, target_ulong arg2)
1584 // arg1 = rt, arg2 = rs
1585 arg1 = 0;
1586 // TODO: store to TC register
1589 target_ulong helper_yield(target_ulong arg)
1591 target_long arg1 = arg;
1593 if (arg1 < 0) {
1594 /* No scheduling policy implemented. */
1595 if (arg1 != -2) {
1596 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1597 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1598 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1599 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1600 helper_raise_exception(EXCP_THREAD);
1603 } else if (arg1 == 0) {
1604 if (0 /* TODO: TC underflow */) {
1605 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1606 helper_raise_exception(EXCP_THREAD);
1607 } else {
1608 // TODO: Deallocate TC
1610 } else if (arg1 > 0) {
1611 /* Yield qualifier inputs not implemented. */
1612 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1613 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1614 helper_raise_exception(EXCP_THREAD);
1616 return env->CP0_YQMask;
1619 #ifndef CONFIG_USER_ONLY
1620 /* TLB management */
1621 static void cpu_mips_tlb_flush (CPUState *env, int flush_global)
1623 /* Flush qemu's TLB and discard all shadowed entries. */
1624 tlb_flush (env, flush_global);
1625 env->tlb->tlb_in_use = env->tlb->nb_tlb;
1628 static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
1630 /* Discard entries from env->tlb[first] onwards. */
1631 while (env->tlb->tlb_in_use > first) {
1632 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
1636 static void r4k_fill_tlb (int idx)
1638 r4k_tlb_t *tlb;
1640 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1641 tlb = &env->tlb->mmu.r4k.tlb[idx];
1642 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1643 #if defined(TARGET_MIPS64)
1644 tlb->VPN &= env->SEGMask;
1645 #endif
1646 tlb->ASID = env->CP0_EntryHi & 0xFF;
1647 tlb->PageMask = env->CP0_PageMask;
1648 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1649 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
1650 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
1651 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
1652 tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
1653 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
1654 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
1655 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
1656 tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
1659 void r4k_helper_tlbwi (void)
1661 int idx;
1663 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1665 /* Discard cached TLB entries. We could avoid doing this if the
1666 tlbwi is just upgrading access permissions on the current entry;
1667 that might be a further win. */
1668 r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
1670 r4k_invalidate_tlb(env, idx, 0);
1671 r4k_fill_tlb(idx);
1674 void r4k_helper_tlbwr (void)
1676 int r = cpu_mips_get_random(env);
1678 r4k_invalidate_tlb(env, r, 1);
1679 r4k_fill_tlb(r);
1682 void r4k_helper_tlbp (void)
1684 r4k_tlb_t *tlb;
1685 target_ulong mask;
1686 target_ulong tag;
1687 target_ulong VPN;
1688 uint8_t ASID;
1689 int i;
1691 ASID = env->CP0_EntryHi & 0xFF;
1692 for (i = 0; i < env->tlb->nb_tlb; i++) {
1693 tlb = &env->tlb->mmu.r4k.tlb[i];
1694 /* 1k pages are not supported. */
1695 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1696 tag = env->CP0_EntryHi & ~mask;
1697 VPN = tlb->VPN & ~mask;
1698 /* Check ASID, virtual page number & size */
1699 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1700 /* TLB match */
1701 env->CP0_Index = i;
1702 break;
1705 if (i == env->tlb->nb_tlb) {
1706 /* No match. Discard any shadow entries, if any of them match. */
1707 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
1708 tlb = &env->tlb->mmu.r4k.tlb[i];
1709 /* 1k pages are not supported. */
1710 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1711 tag = env->CP0_EntryHi & ~mask;
1712 VPN = tlb->VPN & ~mask;
1713 /* Check ASID, virtual page number & size */
1714 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1715 r4k_mips_tlb_flush_extra (env, i);
1716 break;
1720 env->CP0_Index |= 0x80000000;
1724 void r4k_helper_tlbr (void)
1726 r4k_tlb_t *tlb;
1727 uint8_t ASID;
1728 int idx;
1730 ASID = env->CP0_EntryHi & 0xFF;
1731 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1732 tlb = &env->tlb->mmu.r4k.tlb[idx];
1734 /* If this will change the current ASID, flush qemu's TLB. */
1735 if (ASID != tlb->ASID)
1736 cpu_mips_tlb_flush (env, 1);
1738 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
1740 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
1741 env->CP0_PageMask = tlb->PageMask;
1742 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
1743 (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
1744 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
1745 (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
1748 void helper_tlbwi(void)
1750 env->tlb->helper_tlbwi();
1753 void helper_tlbwr(void)
1755 env->tlb->helper_tlbwr();
1758 void helper_tlbp(void)
1760 env->tlb->helper_tlbp();
1763 void helper_tlbr(void)
1765 env->tlb->helper_tlbr();
1768 /* Specials */
1769 target_ulong helper_di (void)
1771 target_ulong t0 = env->CP0_Status;
1773 env->CP0_Status = t0 & ~(1 << CP0St_IE);
1774 return t0;
1777 target_ulong helper_ei (void)
1779 target_ulong t0 = env->CP0_Status;
1781 env->CP0_Status = t0 | (1 << CP0St_IE);
1782 return t0;
1785 static void debug_pre_eret (void)
1787 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1788 qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1789 env->active_tc.PC, env->CP0_EPC);
1790 if (env->CP0_Status & (1 << CP0St_ERL))
1791 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1792 if (env->hflags & MIPS_HFLAG_DM)
1793 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1794 qemu_log("\n");
1798 static void debug_post_eret (void)
1800 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1801 qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1802 env->active_tc.PC, env->CP0_EPC);
1803 if (env->CP0_Status & (1 << CP0St_ERL))
1804 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1805 if (env->hflags & MIPS_HFLAG_DM)
1806 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1807 switch (env->hflags & MIPS_HFLAG_KSU) {
1808 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1809 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1810 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1811 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1816 static void set_pc (target_ulong error_pc)
1818 env->active_tc.PC = error_pc & ~(target_ulong)1;
1819 if (error_pc & 1) {
1820 env->hflags |= MIPS_HFLAG_M16;
1821 } else {
1822 env->hflags &= ~(MIPS_HFLAG_M16);
1826 void helper_eret (void)
1828 debug_pre_eret();
1829 if (env->CP0_Status & (1 << CP0St_ERL)) {
1830 set_pc(env->CP0_ErrorEPC);
1831 env->CP0_Status &= ~(1 << CP0St_ERL);
1832 } else {
1833 set_pc(env->CP0_EPC);
1834 env->CP0_Status &= ~(1 << CP0St_EXL);
1836 compute_hflags(env);
1837 debug_post_eret();
1838 env->lladdr = 1;
1841 void helper_deret (void)
1843 debug_pre_eret();
1844 set_pc(env->CP0_DEPC);
1846 env->hflags &= MIPS_HFLAG_DM;
1847 compute_hflags(env);
1848 debug_post_eret();
1849 env->lladdr = 1;
1851 #endif /* !CONFIG_USER_ONLY */
1853 target_ulong helper_rdhwr_cpunum(void)
1855 if ((env->hflags & MIPS_HFLAG_CP0) ||
1856 (env->CP0_HWREna & (1 << 0)))
1857 return env->CP0_EBase & 0x3ff;
1858 else
1859 helper_raise_exception(EXCP_RI);
1861 return 0;
1864 target_ulong helper_rdhwr_synci_step(void)
1866 if ((env->hflags & MIPS_HFLAG_CP0) ||
1867 (env->CP0_HWREna & (1 << 1)))
1868 return env->SYNCI_Step;
1869 else
1870 helper_raise_exception(EXCP_RI);
1872 return 0;
1875 target_ulong helper_rdhwr_cc(void)
1877 if ((env->hflags & MIPS_HFLAG_CP0) ||
1878 (env->CP0_HWREna & (1 << 2)))
1879 return env->CP0_Count;
1880 else
1881 helper_raise_exception(EXCP_RI);
1883 return 0;
1886 target_ulong helper_rdhwr_ccres(void)
1888 if ((env->hflags & MIPS_HFLAG_CP0) ||
1889 (env->CP0_HWREna & (1 << 3)))
1890 return env->CCRes;
1891 else
1892 helper_raise_exception(EXCP_RI);
1894 return 0;
1897 void helper_pmon (int function)
1899 function /= 2;
1900 switch (function) {
1901 case 2: /* TODO: char inbyte(int waitflag); */
1902 if (env->active_tc.gpr[4] == 0)
1903 env->active_tc.gpr[2] = -1;
1904 /* Fall through */
1905 case 11: /* TODO: char inbyte (void); */
1906 env->active_tc.gpr[2] = -1;
1907 break;
1908 case 3:
1909 case 12:
1910 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
1911 break;
1912 case 17:
1913 break;
1914 case 158:
1916 unsigned char *fmt = (void *)(unsigned long)env->active_tc.gpr[4];
1917 printf("%s", fmt);
1919 break;
1923 void helper_wait (void)
1925 env->halted = 1;
1926 helper_raise_exception(EXCP_HLT);
1929 #if !defined(CONFIG_USER_ONLY)
1931 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
1933 #define MMUSUFFIX _mmu
1934 #define ALIGNED_ONLY
1936 #define SHIFT 0
1937 #include "softmmu_template.h"
1939 #define SHIFT 1
1940 #include "softmmu_template.h"
1942 #define SHIFT 2
1943 #include "softmmu_template.h"
1945 #define SHIFT 3
1946 #include "softmmu_template.h"
1948 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
1950 env->CP0_BadVAddr = addr;
1951 do_restore_state (retaddr);
1952 helper_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
1955 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1957 TranslationBlock *tb;
1958 CPUState *saved_env;
1959 unsigned long pc;
1960 int ret;
1962 /* XXX: hack to restore env in all cases, even if not called from
1963 generated code */
1964 saved_env = env;
1965 env = cpu_single_env;
1966 ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1967 if (ret) {
1968 if (retaddr) {
1969 /* now we have a real cpu fault */
1970 pc = (unsigned long)retaddr;
1971 tb = tb_find_pc(pc);
1972 if (tb) {
1973 /* the PC is inside the translated code. It means that we have
1974 a virtual CPU fault */
1975 cpu_restore_state(tb, env, pc, NULL);
1978 helper_raise_exception_err(env->exception_index, env->error_code);
1980 env = saved_env;
1983 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1984 int unused, int size)
1986 if (is_exec)
1987 helper_raise_exception(EXCP_IBE);
1988 else
1989 helper_raise_exception(EXCP_DBE);
1991 #endif /* !CONFIG_USER_ONLY */
1993 /* Complex FPU operations which may need stack space. */
1995 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
1996 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
1997 #define FLOAT_TWO32 make_float32(1 << 30)
1998 #define FLOAT_TWO64 make_float64(1ULL << 62)
1999 #define FLOAT_QNAN32 0x7fbfffff
2000 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
2001 #define FLOAT_SNAN32 0x7fffffff
2002 #define FLOAT_SNAN64 0x7fffffffffffffffULL
2004 /* convert MIPS rounding mode in FCR31 to IEEE library */
2005 static unsigned int ieee_rm[] = {
2006 float_round_nearest_even,
2007 float_round_to_zero,
2008 float_round_up,
2009 float_round_down
2012 #define RESTORE_ROUNDING_MODE \
2013 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
2015 #define RESTORE_FLUSH_MODE \
2016 set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0, &env->active_fpu.fp_status);
2018 target_ulong helper_cfc1 (uint32_t reg)
2020 target_ulong arg1;
2022 switch (reg) {
2023 case 0:
2024 arg1 = (int32_t)env->active_fpu.fcr0;
2025 break;
2026 case 25:
2027 arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
2028 break;
2029 case 26:
2030 arg1 = env->active_fpu.fcr31 & 0x0003f07c;
2031 break;
2032 case 28:
2033 arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
2034 break;
2035 default:
2036 arg1 = (int32_t)env->active_fpu.fcr31;
2037 break;
2040 return arg1;
2043 void helper_ctc1 (target_ulong arg1, uint32_t reg)
2045 switch(reg) {
2046 case 25:
2047 if (arg1 & 0xffffff00)
2048 return;
2049 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
2050 ((arg1 & 0x1) << 23);
2051 break;
2052 case 26:
2053 if (arg1 & 0x007c0000)
2054 return;
2055 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
2056 break;
2057 case 28:
2058 if (arg1 & 0x007c0000)
2059 return;
2060 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
2061 ((arg1 & 0x4) << 22);
2062 break;
2063 case 31:
2064 if (arg1 & 0x007c0000)
2065 return;
2066 env->active_fpu.fcr31 = arg1;
2067 break;
2068 default:
2069 return;
2071 /* set rounding mode */
2072 RESTORE_ROUNDING_MODE;
2073 /* set flush-to-zero mode */
2074 RESTORE_FLUSH_MODE;
2075 set_float_exception_flags(0, &env->active_fpu.fp_status);
2076 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
2077 helper_raise_exception(EXCP_FPE);
2080 static inline char ieee_ex_to_mips(char xcpt)
2082 return (xcpt & float_flag_inexact) >> 5 |
2083 (xcpt & float_flag_underflow) >> 3 |
2084 (xcpt & float_flag_overflow) >> 1 |
2085 (xcpt & float_flag_divbyzero) << 1 |
2086 (xcpt & float_flag_invalid) << 4;
2089 static inline char mips_ex_to_ieee(char xcpt)
2091 return (xcpt & FP_INEXACT) << 5 |
2092 (xcpt & FP_UNDERFLOW) << 3 |
2093 (xcpt & FP_OVERFLOW) << 1 |
2094 (xcpt & FP_DIV0) >> 1 |
2095 (xcpt & FP_INVALID) >> 4;
2098 static inline void update_fcr31(void)
2100 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2102 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2103 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp)
2104 helper_raise_exception(EXCP_FPE);
2105 else
2106 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2109 /* Float support.
2110 Single precition routines have a "s" suffix, double precision a
2111 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2112 paired single lower "pl", paired single upper "pu". */
2114 /* unary operations, modifying fp status */
2115 uint64_t helper_float_sqrt_d(uint64_t fdt0)
2117 return float64_sqrt(fdt0, &env->active_fpu.fp_status);
2120 uint32_t helper_float_sqrt_s(uint32_t fst0)
2122 return float32_sqrt(fst0, &env->active_fpu.fp_status);
2125 uint64_t helper_float_cvtd_s(uint32_t fst0)
2127 uint64_t fdt2;
2129 set_float_exception_flags(0, &env->active_fpu.fp_status);
2130 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2131 update_fcr31();
2132 return fdt2;
2135 uint64_t helper_float_cvtd_w(uint32_t wt0)
2137 uint64_t fdt2;
2139 set_float_exception_flags(0, &env->active_fpu.fp_status);
2140 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2141 update_fcr31();
2142 return fdt2;
2145 uint64_t helper_float_cvtd_l(uint64_t dt0)
2147 uint64_t fdt2;
2149 set_float_exception_flags(0, &env->active_fpu.fp_status);
2150 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2151 update_fcr31();
2152 return fdt2;
2155 uint64_t helper_float_cvtl_d(uint64_t fdt0)
2157 uint64_t dt2;
2159 set_float_exception_flags(0, &env->active_fpu.fp_status);
2160 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2161 update_fcr31();
2162 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2163 dt2 = FLOAT_SNAN64;
2164 return dt2;
2167 uint64_t helper_float_cvtl_s(uint32_t fst0)
2169 uint64_t dt2;
2171 set_float_exception_flags(0, &env->active_fpu.fp_status);
2172 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2173 update_fcr31();
2174 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2175 dt2 = FLOAT_SNAN64;
2176 return dt2;
2179 uint64_t helper_float_cvtps_pw(uint64_t dt0)
2181 uint32_t fst2;
2182 uint32_t fsth2;
2184 set_float_exception_flags(0, &env->active_fpu.fp_status);
2185 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2186 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2187 update_fcr31();
2188 return ((uint64_t)fsth2 << 32) | fst2;
2191 uint64_t helper_float_cvtpw_ps(uint64_t fdt0)
2193 uint32_t wt2;
2194 uint32_t wth2;
2196 set_float_exception_flags(0, &env->active_fpu.fp_status);
2197 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2198 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2199 update_fcr31();
2200 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) {
2201 wt2 = FLOAT_SNAN32;
2202 wth2 = FLOAT_SNAN32;
2204 return ((uint64_t)wth2 << 32) | wt2;
2207 uint32_t helper_float_cvts_d(uint64_t fdt0)
2209 uint32_t fst2;
2211 set_float_exception_flags(0, &env->active_fpu.fp_status);
2212 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2213 update_fcr31();
2214 return fst2;
2217 uint32_t helper_float_cvts_w(uint32_t wt0)
2219 uint32_t fst2;
2221 set_float_exception_flags(0, &env->active_fpu.fp_status);
2222 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2223 update_fcr31();
2224 return fst2;
2227 uint32_t helper_float_cvts_l(uint64_t dt0)
2229 uint32_t fst2;
2231 set_float_exception_flags(0, &env->active_fpu.fp_status);
2232 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2233 update_fcr31();
2234 return fst2;
2237 uint32_t helper_float_cvts_pl(uint32_t wt0)
2239 uint32_t wt2;
2241 set_float_exception_flags(0, &env->active_fpu.fp_status);
2242 wt2 = wt0;
2243 update_fcr31();
2244 return wt2;
2247 uint32_t helper_float_cvts_pu(uint32_t wth0)
2249 uint32_t wt2;
2251 set_float_exception_flags(0, &env->active_fpu.fp_status);
2252 wt2 = wth0;
2253 update_fcr31();
2254 return wt2;
2257 uint32_t helper_float_cvtw_s(uint32_t fst0)
2259 uint32_t wt2;
2261 set_float_exception_flags(0, &env->active_fpu.fp_status);
2262 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2263 update_fcr31();
2264 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2265 wt2 = FLOAT_SNAN32;
2266 return wt2;
2269 uint32_t helper_float_cvtw_d(uint64_t fdt0)
2271 uint32_t wt2;
2273 set_float_exception_flags(0, &env->active_fpu.fp_status);
2274 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2275 update_fcr31();
2276 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2277 wt2 = FLOAT_SNAN32;
2278 return wt2;
2281 uint64_t helper_float_roundl_d(uint64_t fdt0)
2283 uint64_t dt2;
2285 set_float_exception_flags(0, &env->active_fpu.fp_status);
2286 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2287 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2288 RESTORE_ROUNDING_MODE;
2289 update_fcr31();
2290 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2291 dt2 = FLOAT_SNAN64;
2292 return dt2;
2295 uint64_t helper_float_roundl_s(uint32_t fst0)
2297 uint64_t dt2;
2299 set_float_exception_flags(0, &env->active_fpu.fp_status);
2300 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2301 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2302 RESTORE_ROUNDING_MODE;
2303 update_fcr31();
2304 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2305 dt2 = FLOAT_SNAN64;
2306 return dt2;
2309 uint32_t helper_float_roundw_d(uint64_t fdt0)
2311 uint32_t wt2;
2313 set_float_exception_flags(0, &env->active_fpu.fp_status);
2314 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2315 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2316 RESTORE_ROUNDING_MODE;
2317 update_fcr31();
2318 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2319 wt2 = FLOAT_SNAN32;
2320 return wt2;
2323 uint32_t helper_float_roundw_s(uint32_t fst0)
2325 uint32_t wt2;
2327 set_float_exception_flags(0, &env->active_fpu.fp_status);
2328 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2329 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2330 RESTORE_ROUNDING_MODE;
2331 update_fcr31();
2332 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2333 wt2 = FLOAT_SNAN32;
2334 return wt2;
2337 uint64_t helper_float_truncl_d(uint64_t fdt0)
2339 uint64_t dt2;
2341 set_float_exception_flags(0, &env->active_fpu.fp_status);
2342 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
2343 update_fcr31();
2344 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2345 dt2 = FLOAT_SNAN64;
2346 return dt2;
2349 uint64_t helper_float_truncl_s(uint32_t fst0)
2351 uint64_t dt2;
2353 set_float_exception_flags(0, &env->active_fpu.fp_status);
2354 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
2355 update_fcr31();
2356 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2357 dt2 = FLOAT_SNAN64;
2358 return dt2;
2361 uint32_t helper_float_truncw_d(uint64_t fdt0)
2363 uint32_t wt2;
2365 set_float_exception_flags(0, &env->active_fpu.fp_status);
2366 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
2367 update_fcr31();
2368 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2369 wt2 = FLOAT_SNAN32;
2370 return wt2;
2373 uint32_t helper_float_truncw_s(uint32_t fst0)
2375 uint32_t wt2;
2377 set_float_exception_flags(0, &env->active_fpu.fp_status);
2378 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
2379 update_fcr31();
2380 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2381 wt2 = FLOAT_SNAN32;
2382 return wt2;
2385 uint64_t helper_float_ceill_d(uint64_t fdt0)
2387 uint64_t dt2;
2389 set_float_exception_flags(0, &env->active_fpu.fp_status);
2390 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2391 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2392 RESTORE_ROUNDING_MODE;
2393 update_fcr31();
2394 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2395 dt2 = FLOAT_SNAN64;
2396 return dt2;
2399 uint64_t helper_float_ceill_s(uint32_t fst0)
2401 uint64_t dt2;
2403 set_float_exception_flags(0, &env->active_fpu.fp_status);
2404 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2405 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2406 RESTORE_ROUNDING_MODE;
2407 update_fcr31();
2408 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2409 dt2 = FLOAT_SNAN64;
2410 return dt2;
2413 uint32_t helper_float_ceilw_d(uint64_t fdt0)
2415 uint32_t wt2;
2417 set_float_exception_flags(0, &env->active_fpu.fp_status);
2418 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2419 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2420 RESTORE_ROUNDING_MODE;
2421 update_fcr31();
2422 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2423 wt2 = FLOAT_SNAN32;
2424 return wt2;
2427 uint32_t helper_float_ceilw_s(uint32_t fst0)
2429 uint32_t wt2;
2431 set_float_exception_flags(0, &env->active_fpu.fp_status);
2432 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2433 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2434 RESTORE_ROUNDING_MODE;
2435 update_fcr31();
2436 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2437 wt2 = FLOAT_SNAN32;
2438 return wt2;
2441 uint64_t helper_float_floorl_d(uint64_t fdt0)
2443 uint64_t dt2;
2445 set_float_exception_flags(0, &env->active_fpu.fp_status);
2446 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2447 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2448 RESTORE_ROUNDING_MODE;
2449 update_fcr31();
2450 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2451 dt2 = FLOAT_SNAN64;
2452 return dt2;
2455 uint64_t helper_float_floorl_s(uint32_t fst0)
2457 uint64_t dt2;
2459 set_float_exception_flags(0, &env->active_fpu.fp_status);
2460 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2461 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2462 RESTORE_ROUNDING_MODE;
2463 update_fcr31();
2464 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2465 dt2 = FLOAT_SNAN64;
2466 return dt2;
2469 uint32_t helper_float_floorw_d(uint64_t fdt0)
2471 uint32_t wt2;
2473 set_float_exception_flags(0, &env->active_fpu.fp_status);
2474 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2475 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2476 RESTORE_ROUNDING_MODE;
2477 update_fcr31();
2478 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2479 wt2 = FLOAT_SNAN32;
2480 return wt2;
2483 uint32_t helper_float_floorw_s(uint32_t fst0)
2485 uint32_t wt2;
2487 set_float_exception_flags(0, &env->active_fpu.fp_status);
2488 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2489 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2490 RESTORE_ROUNDING_MODE;
2491 update_fcr31();
2492 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2493 wt2 = FLOAT_SNAN32;
2494 return wt2;
2497 /* unary operations, not modifying fp status */
2498 #define FLOAT_UNOP(name) \
2499 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
2501 return float64_ ## name(fdt0); \
2503 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
2505 return float32_ ## name(fst0); \
2507 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
2509 uint32_t wt0; \
2510 uint32_t wth0; \
2512 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2513 wth0 = float32_ ## name(fdt0 >> 32); \
2514 return ((uint64_t)wth0 << 32) | wt0; \
2516 FLOAT_UNOP(abs)
2517 FLOAT_UNOP(chs)
2518 #undef FLOAT_UNOP
2520 /* MIPS specific unary operations */
2521 uint64_t helper_float_recip_d(uint64_t fdt0)
2523 uint64_t fdt2;
2525 set_float_exception_flags(0, &env->active_fpu.fp_status);
2526 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2527 update_fcr31();
2528 return fdt2;
2531 uint32_t helper_float_recip_s(uint32_t fst0)
2533 uint32_t fst2;
2535 set_float_exception_flags(0, &env->active_fpu.fp_status);
2536 fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2537 update_fcr31();
2538 return fst2;
2541 uint64_t helper_float_rsqrt_d(uint64_t fdt0)
2543 uint64_t fdt2;
2545 set_float_exception_flags(0, &env->active_fpu.fp_status);
2546 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2547 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2548 update_fcr31();
2549 return fdt2;
2552 uint32_t helper_float_rsqrt_s(uint32_t fst0)
2554 uint32_t fst2;
2556 set_float_exception_flags(0, &env->active_fpu.fp_status);
2557 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2558 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2559 update_fcr31();
2560 return fst2;
2563 uint64_t helper_float_recip1_d(uint64_t fdt0)
2565 uint64_t fdt2;
2567 set_float_exception_flags(0, &env->active_fpu.fp_status);
2568 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2569 update_fcr31();
2570 return fdt2;
2573 uint32_t helper_float_recip1_s(uint32_t fst0)
2575 uint32_t fst2;
2577 set_float_exception_flags(0, &env->active_fpu.fp_status);
2578 fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2579 update_fcr31();
2580 return fst2;
2583 uint64_t helper_float_recip1_ps(uint64_t fdt0)
2585 uint32_t fst2;
2586 uint32_t fsth2;
2588 set_float_exception_flags(0, &env->active_fpu.fp_status);
2589 fst2 = float32_div(FLOAT_ONE32, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2590 fsth2 = float32_div(FLOAT_ONE32, fdt0 >> 32, &env->active_fpu.fp_status);
2591 update_fcr31();
2592 return ((uint64_t)fsth2 << 32) | fst2;
2595 uint64_t helper_float_rsqrt1_d(uint64_t fdt0)
2597 uint64_t fdt2;
2599 set_float_exception_flags(0, &env->active_fpu.fp_status);
2600 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2601 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2602 update_fcr31();
2603 return fdt2;
2606 uint32_t helper_float_rsqrt1_s(uint32_t fst0)
2608 uint32_t fst2;
2610 set_float_exception_flags(0, &env->active_fpu.fp_status);
2611 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2612 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2613 update_fcr31();
2614 return fst2;
2617 uint64_t helper_float_rsqrt1_ps(uint64_t fdt0)
2619 uint32_t fst2;
2620 uint32_t fsth2;
2622 set_float_exception_flags(0, &env->active_fpu.fp_status);
2623 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2624 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
2625 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2626 fsth2 = float32_div(FLOAT_ONE32, fsth2, &env->active_fpu.fp_status);
2627 update_fcr31();
2628 return ((uint64_t)fsth2 << 32) | fst2;
2631 #define FLOAT_OP(name, p) void helper_float_##name##_##p(void)
2633 /* binary operations */
2634 #define FLOAT_BINOP(name) \
2635 uint64_t helper_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \
2637 uint64_t dt2; \
2639 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2640 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
2641 update_fcr31(); \
2642 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2643 dt2 = FLOAT_QNAN64; \
2644 return dt2; \
2647 uint32_t helper_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \
2649 uint32_t wt2; \
2651 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2652 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2653 update_fcr31(); \
2654 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2655 wt2 = FLOAT_QNAN32; \
2656 return wt2; \
2659 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \
2661 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2662 uint32_t fsth0 = fdt0 >> 32; \
2663 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2664 uint32_t fsth1 = fdt1 >> 32; \
2665 uint32_t wt2; \
2666 uint32_t wth2; \
2668 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2669 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2670 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
2671 update_fcr31(); \
2672 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { \
2673 wt2 = FLOAT_QNAN32; \
2674 wth2 = FLOAT_QNAN32; \
2676 return ((uint64_t)wth2 << 32) | wt2; \
2679 FLOAT_BINOP(add)
2680 FLOAT_BINOP(sub)
2681 FLOAT_BINOP(mul)
2682 FLOAT_BINOP(div)
2683 #undef FLOAT_BINOP
2685 /* ternary operations */
2686 #define FLOAT_TERNOP(name1, name2) \
2687 uint64_t helper_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2688 uint64_t fdt2) \
2690 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2691 return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2694 uint32_t helper_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2695 uint32_t fst2) \
2697 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2698 return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2701 uint64_t helper_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
2702 uint64_t fdt2) \
2704 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2705 uint32_t fsth0 = fdt0 >> 32; \
2706 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2707 uint32_t fsth1 = fdt1 >> 32; \
2708 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2709 uint32_t fsth2 = fdt2 >> 32; \
2711 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2712 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2713 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2714 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2715 return ((uint64_t)fsth2 << 32) | fst2; \
2718 FLOAT_TERNOP(mul, add)
2719 FLOAT_TERNOP(mul, sub)
2720 #undef FLOAT_TERNOP
2722 /* negated ternary operations */
2723 #define FLOAT_NTERNOP(name1, name2) \
2724 uint64_t helper_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2725 uint64_t fdt2) \
2727 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2728 fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2729 return float64_chs(fdt2); \
2732 uint32_t helper_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2733 uint32_t fst2) \
2735 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2736 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2737 return float32_chs(fst2); \
2740 uint64_t helper_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
2741 uint64_t fdt2) \
2743 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2744 uint32_t fsth0 = fdt0 >> 32; \
2745 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2746 uint32_t fsth1 = fdt1 >> 32; \
2747 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2748 uint32_t fsth2 = fdt2 >> 32; \
2750 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2751 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2752 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2753 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2754 fst2 = float32_chs(fst2); \
2755 fsth2 = float32_chs(fsth2); \
2756 return ((uint64_t)fsth2 << 32) | fst2; \
2759 FLOAT_NTERNOP(mul, add)
2760 FLOAT_NTERNOP(mul, sub)
2761 #undef FLOAT_NTERNOP
2763 /* MIPS specific binary operations */
2764 uint64_t helper_float_recip2_d(uint64_t fdt0, uint64_t fdt2)
2766 set_float_exception_flags(0, &env->active_fpu.fp_status);
2767 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2768 fdt2 = float64_chs(float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status));
2769 update_fcr31();
2770 return fdt2;
2773 uint32_t helper_float_recip2_s(uint32_t fst0, uint32_t fst2)
2775 set_float_exception_flags(0, &env->active_fpu.fp_status);
2776 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2777 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
2778 update_fcr31();
2779 return fst2;
2782 uint64_t helper_float_recip2_ps(uint64_t fdt0, uint64_t fdt2)
2784 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2785 uint32_t fsth0 = fdt0 >> 32;
2786 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2787 uint32_t fsth2 = fdt2 >> 32;
2789 set_float_exception_flags(0, &env->active_fpu.fp_status);
2790 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2791 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2792 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
2793 fsth2 = float32_chs(float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status));
2794 update_fcr31();
2795 return ((uint64_t)fsth2 << 32) | fst2;
2798 uint64_t helper_float_rsqrt2_d(uint64_t fdt0, uint64_t fdt2)
2800 set_float_exception_flags(0, &env->active_fpu.fp_status);
2801 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2802 fdt2 = float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status);
2803 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
2804 update_fcr31();
2805 return fdt2;
2808 uint32_t helper_float_rsqrt2_s(uint32_t fst0, uint32_t fst2)
2810 set_float_exception_flags(0, &env->active_fpu.fp_status);
2811 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2812 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
2813 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2814 update_fcr31();
2815 return fst2;
2818 uint64_t helper_float_rsqrt2_ps(uint64_t fdt0, uint64_t fdt2)
2820 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2821 uint32_t fsth0 = fdt0 >> 32;
2822 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2823 uint32_t fsth2 = fdt2 >> 32;
2825 set_float_exception_flags(0, &env->active_fpu.fp_status);
2826 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2827 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2828 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
2829 fsth2 = float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status);
2830 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2831 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
2832 update_fcr31();
2833 return ((uint64_t)fsth2 << 32) | fst2;
2836 uint64_t helper_float_addr_ps(uint64_t fdt0, uint64_t fdt1)
2838 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2839 uint32_t fsth0 = fdt0 >> 32;
2840 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2841 uint32_t fsth1 = fdt1 >> 32;
2842 uint32_t fst2;
2843 uint32_t fsth2;
2845 set_float_exception_flags(0, &env->active_fpu.fp_status);
2846 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
2847 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
2848 update_fcr31();
2849 return ((uint64_t)fsth2 << 32) | fst2;
2852 uint64_t helper_float_mulr_ps(uint64_t fdt0, uint64_t fdt1)
2854 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2855 uint32_t fsth0 = fdt0 >> 32;
2856 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2857 uint32_t fsth1 = fdt1 >> 32;
2858 uint32_t fst2;
2859 uint32_t fsth2;
2861 set_float_exception_flags(0, &env->active_fpu.fp_status);
2862 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
2863 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
2864 update_fcr31();
2865 return ((uint64_t)fsth2 << 32) | fst2;
2868 /* compare operations */
2869 #define FOP_COND_D(op, cond) \
2870 void helper_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2872 int c = cond; \
2873 update_fcr31(); \
2874 if (c) \
2875 SET_FP_COND(cc, env->active_fpu); \
2876 else \
2877 CLEAR_FP_COND(cc, env->active_fpu); \
2879 void helper_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2881 int c; \
2882 fdt0 = float64_abs(fdt0); \
2883 fdt1 = float64_abs(fdt1); \
2884 c = cond; \
2885 update_fcr31(); \
2886 if (c) \
2887 SET_FP_COND(cc, env->active_fpu); \
2888 else \
2889 CLEAR_FP_COND(cc, env->active_fpu); \
2892 static int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
2894 if (float64_is_signaling_nan(a) ||
2895 float64_is_signaling_nan(b) ||
2896 (sig && (float64_is_quiet_nan(a) || float64_is_quiet_nan(b)))) {
2897 float_raise(float_flag_invalid, status);
2898 return 1;
2899 } else if (float64_is_quiet_nan(a) || float64_is_quiet_nan(b)) {
2900 return 1;
2901 } else {
2902 return 0;
2906 /* NOTE: the comma operator will make "cond" to eval to false,
2907 * but float*_is_unordered() is still called. */
2908 FOP_COND_D(f, (float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status), 0))
2909 FOP_COND_D(un, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status))
2910 FOP_COND_D(eq, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2911 FOP_COND_D(ueq, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2912 FOP_COND_D(olt, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2913 FOP_COND_D(ult, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2914 FOP_COND_D(ole, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2915 FOP_COND_D(ule, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2916 /* NOTE: the comma operator will make "cond" to eval to false,
2917 * but float*_is_unordered() is still called. */
2918 FOP_COND_D(sf, (float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status), 0))
2919 FOP_COND_D(ngle,float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status))
2920 FOP_COND_D(seq, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2921 FOP_COND_D(ngl, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2922 FOP_COND_D(lt, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2923 FOP_COND_D(nge, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2924 FOP_COND_D(le, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2925 FOP_COND_D(ngt, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2927 #define FOP_COND_S(op, cond) \
2928 void helper_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2930 int c = cond; \
2931 update_fcr31(); \
2932 if (c) \
2933 SET_FP_COND(cc, env->active_fpu); \
2934 else \
2935 CLEAR_FP_COND(cc, env->active_fpu); \
2937 void helper_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2939 int c; \
2940 fst0 = float32_abs(fst0); \
2941 fst1 = float32_abs(fst1); \
2942 c = cond; \
2943 update_fcr31(); \
2944 if (c) \
2945 SET_FP_COND(cc, env->active_fpu); \
2946 else \
2947 CLEAR_FP_COND(cc, env->active_fpu); \
2950 static flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
2952 if (float32_is_signaling_nan(a) ||
2953 float32_is_signaling_nan(b) ||
2954 (sig && (float32_is_quiet_nan(a) || float32_is_quiet_nan(b)))) {
2955 float_raise(float_flag_invalid, status);
2956 return 1;
2957 } else if (float32_is_quiet_nan(a) || float32_is_quiet_nan(b)) {
2958 return 1;
2959 } else {
2960 return 0;
2964 /* NOTE: the comma operator will make "cond" to eval to false,
2965 * but float*_is_unordered() is still called. */
2966 FOP_COND_S(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0))
2967 FOP_COND_S(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status))
2968 FOP_COND_S(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2969 FOP_COND_S(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2970 FOP_COND_S(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2971 FOP_COND_S(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2972 FOP_COND_S(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
2973 FOP_COND_S(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
2974 /* NOTE: the comma operator will make "cond" to eval to false,
2975 * but float*_is_unordered() is still called. */
2976 FOP_COND_S(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0))
2977 FOP_COND_S(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status))
2978 FOP_COND_S(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2979 FOP_COND_S(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2980 FOP_COND_S(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2981 FOP_COND_S(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2982 FOP_COND_S(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
2983 FOP_COND_S(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
2985 #define FOP_COND_PS(op, condl, condh) \
2986 void helper_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2988 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2989 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2990 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2991 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2992 int cl = condl; \
2993 int ch = condh; \
2995 update_fcr31(); \
2996 if (cl) \
2997 SET_FP_COND(cc, env->active_fpu); \
2998 else \
2999 CLEAR_FP_COND(cc, env->active_fpu); \
3000 if (ch) \
3001 SET_FP_COND(cc + 1, env->active_fpu); \
3002 else \
3003 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3005 void helper_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
3007 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
3008 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
3009 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
3010 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
3011 int cl = condl; \
3012 int ch = condh; \
3014 update_fcr31(); \
3015 if (cl) \
3016 SET_FP_COND(cc, env->active_fpu); \
3017 else \
3018 CLEAR_FP_COND(cc, env->active_fpu); \
3019 if (ch) \
3020 SET_FP_COND(cc + 1, env->active_fpu); \
3021 else \
3022 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3025 /* NOTE: the comma operator will make "cond" to eval to false,
3026 * but float*_is_unordered() is still called. */
3027 FOP_COND_PS(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0),
3028 (float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status), 0))
3029 FOP_COND_PS(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status),
3030 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status))
3031 FOP_COND_PS(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3032 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3033 FOP_COND_PS(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3034 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3035 FOP_COND_PS(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3036 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3037 FOP_COND_PS(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3038 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3039 FOP_COND_PS(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status),
3040 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3041 FOP_COND_PS(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
3042 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3043 /* NOTE: the comma operator will make "cond" to eval to false,
3044 * but float*_is_unordered() is still called. */
3045 FOP_COND_PS(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0),
3046 (float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status), 0))
3047 FOP_COND_PS(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status),
3048 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status))
3049 FOP_COND_PS(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3050 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3051 FOP_COND_PS(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3052 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3053 FOP_COND_PS(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3054 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3055 FOP_COND_PS(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3056 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3057 FOP_COND_PS(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status),
3058 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3059 FOP_COND_PS(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
3060 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))