target-i386: kvm: prevent buffer overflow if -cpu foo, [x]level is too big
[qemu.git] / target-i386 / kvm.c
blob4ecb728a5d7be5058234f4638b54316f02a5cb8e
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "exec/gdbstub.h"
29 #include "qemu/host-utils.h"
30 #include "qemu/config-file.h"
31 #include "hw/pc.h"
32 #include "hw/apic.h"
33 #include "exec/ioport.h"
34 #include "hyperv.h"
35 #include "hw/pci/pci.h"
37 //#define DEBUG_KVM
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
64 static bool has_msr_star;
65 static bool has_msr_hsave_pa;
66 static bool has_msr_tsc_adjust;
67 static bool has_msr_tsc_deadline;
68 static bool has_msr_async_pf_en;
69 static bool has_msr_pv_eoi_en;
70 static bool has_msr_misc_enable;
71 static int lm_capable_kernel;
73 bool kvm_allows_irq0_override(void)
75 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
78 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
80 struct kvm_cpuid2 *cpuid;
81 int r, size;
83 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
84 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
85 cpuid->nent = max;
86 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
87 if (r == 0 && cpuid->nent >= max) {
88 r = -E2BIG;
90 if (r < 0) {
91 if (r == -E2BIG) {
92 g_free(cpuid);
93 return NULL;
94 } else {
95 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
96 strerror(-r));
97 exit(1);
100 return cpuid;
103 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
104 * for all entries.
106 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
108 struct kvm_cpuid2 *cpuid;
109 int max = 1;
110 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
111 max *= 2;
113 return cpuid;
116 struct kvm_para_features {
117 int cap;
118 int feature;
119 } para_features[] = {
120 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
121 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
122 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
123 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
124 { -1, -1 }
127 static int get_para_features(KVMState *s)
129 int i, features = 0;
131 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
132 if (kvm_check_extension(s, para_features[i].cap)) {
133 features |= (1 << para_features[i].feature);
137 return features;
141 /* Returns the value for a specific register on the cpuid entry
143 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
145 uint32_t ret = 0;
146 switch (reg) {
147 case R_EAX:
148 ret = entry->eax;
149 break;
150 case R_EBX:
151 ret = entry->ebx;
152 break;
153 case R_ECX:
154 ret = entry->ecx;
155 break;
156 case R_EDX:
157 ret = entry->edx;
158 break;
160 return ret;
163 /* Find matching entry for function/index on kvm_cpuid2 struct
165 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
166 uint32_t function,
167 uint32_t index)
169 int i;
170 for (i = 0; i < cpuid->nent; ++i) {
171 if (cpuid->entries[i].function == function &&
172 cpuid->entries[i].index == index) {
173 return &cpuid->entries[i];
176 /* not found: */
177 return NULL;
180 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
181 uint32_t index, int reg)
183 struct kvm_cpuid2 *cpuid;
184 uint32_t ret = 0;
185 uint32_t cpuid_1_edx;
186 bool found = false;
188 cpuid = get_supported_cpuid(s);
190 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
191 if (entry) {
192 found = true;
193 ret = cpuid_entry_get_reg(entry, reg);
196 /* Fixups for the data returned by KVM, below */
198 if (function == 1 && reg == R_EDX) {
199 /* KVM before 2.6.30 misreports the following features */
200 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
201 } else if (function == 1 && reg == R_ECX) {
202 /* We can set the hypervisor flag, even if KVM does not return it on
203 * GET_SUPPORTED_CPUID
205 ret |= CPUID_EXT_HYPERVISOR;
206 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
207 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
208 * and the irqchip is in the kernel.
210 if (kvm_irqchip_in_kernel() &&
211 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
212 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
215 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
216 * without the in-kernel irqchip
218 if (!kvm_irqchip_in_kernel()) {
219 ret &= ~CPUID_EXT_X2APIC;
221 } else if (function == 0x80000001 && reg == R_EDX) {
222 /* On Intel, kvm returns cpuid according to the Intel spec,
223 * so add missing bits according to the AMD spec:
225 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
226 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
229 g_free(cpuid);
231 /* fallback for older kernels */
232 if ((function == KVM_CPUID_FEATURES) && !found) {
233 ret = get_para_features(s);
236 return ret;
239 typedef struct HWPoisonPage {
240 ram_addr_t ram_addr;
241 QLIST_ENTRY(HWPoisonPage) list;
242 } HWPoisonPage;
244 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
245 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
247 static void kvm_unpoison_all(void *param)
249 HWPoisonPage *page, *next_page;
251 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
252 QLIST_REMOVE(page, list);
253 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
254 g_free(page);
258 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
260 HWPoisonPage *page;
262 QLIST_FOREACH(page, &hwpoison_page_list, list) {
263 if (page->ram_addr == ram_addr) {
264 return;
267 page = g_malloc(sizeof(HWPoisonPage));
268 page->ram_addr = ram_addr;
269 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
272 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
273 int *max_banks)
275 int r;
277 r = kvm_check_extension(s, KVM_CAP_MCE);
278 if (r > 0) {
279 *max_banks = r;
280 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
282 return -ENOSYS;
285 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
287 CPUX86State *env = &cpu->env;
288 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
289 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
290 uint64_t mcg_status = MCG_STATUS_MCIP;
292 if (code == BUS_MCEERR_AR) {
293 status |= MCI_STATUS_AR | 0x134;
294 mcg_status |= MCG_STATUS_EIPV;
295 } else {
296 status |= 0xc0;
297 mcg_status |= MCG_STATUS_RIPV;
299 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
300 (MCM_ADDR_PHYS << 6) | 0xc,
301 cpu_x86_support_mca_broadcast(env) ?
302 MCE_INJECT_BROADCAST : 0);
305 static void hardware_memory_error(void)
307 fprintf(stderr, "Hardware memory error!\n");
308 exit(1);
311 int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
313 X86CPU *cpu = X86_CPU(c);
314 CPUX86State *env = &cpu->env;
315 ram_addr_t ram_addr;
316 hwaddr paddr;
318 if ((env->mcg_cap & MCG_SER_P) && addr
319 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
320 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
321 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
322 fprintf(stderr, "Hardware memory error for memory used by "
323 "QEMU itself instead of guest system!\n");
324 /* Hope we are lucky for AO MCE */
325 if (code == BUS_MCEERR_AO) {
326 return 0;
327 } else {
328 hardware_memory_error();
331 kvm_hwpoison_page_add(ram_addr);
332 kvm_mce_inject(cpu, paddr, code);
333 } else {
334 if (code == BUS_MCEERR_AO) {
335 return 0;
336 } else if (code == BUS_MCEERR_AR) {
337 hardware_memory_error();
338 } else {
339 return 1;
342 return 0;
345 int kvm_arch_on_sigbus(int code, void *addr)
347 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
348 ram_addr_t ram_addr;
349 hwaddr paddr;
351 /* Hope we are lucky for AO MCE */
352 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
353 !kvm_physical_memory_addr_from_host(CPU(first_cpu)->kvm_state,
354 addr, &paddr)) {
355 fprintf(stderr, "Hardware memory error for memory used by "
356 "QEMU itself instead of guest system!: %p\n", addr);
357 return 0;
359 kvm_hwpoison_page_add(ram_addr);
360 kvm_mce_inject(x86_env_get_cpu(first_cpu), paddr, code);
361 } else {
362 if (code == BUS_MCEERR_AO) {
363 return 0;
364 } else if (code == BUS_MCEERR_AR) {
365 hardware_memory_error();
366 } else {
367 return 1;
370 return 0;
373 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
375 CPUX86State *env = &cpu->env;
377 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
378 unsigned int bank, bank_num = env->mcg_cap & 0xff;
379 struct kvm_x86_mce mce;
381 env->exception_injected = -1;
384 * There must be at least one bank in use if an MCE is pending.
385 * Find it and use its values for the event injection.
387 for (bank = 0; bank < bank_num; bank++) {
388 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
389 break;
392 assert(bank < bank_num);
394 mce.bank = bank;
395 mce.status = env->mce_banks[bank * 4 + 1];
396 mce.mcg_status = env->mcg_status;
397 mce.addr = env->mce_banks[bank * 4 + 2];
398 mce.misc = env->mce_banks[bank * 4 + 3];
400 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
402 return 0;
405 static void cpu_update_state(void *opaque, int running, RunState state)
407 CPUX86State *env = opaque;
409 if (running) {
410 env->tsc_valid = false;
414 #define KVM_MAX_CPUID_ENTRIES 100
415 int kvm_arch_init_vcpu(CPUState *cs)
417 struct {
418 struct kvm_cpuid2 cpuid;
419 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
420 } QEMU_PACKED cpuid_data;
421 X86CPU *cpu = X86_CPU(cs);
422 CPUX86State *env = &cpu->env;
423 uint32_t limit, i, j, cpuid_i;
424 uint32_t unused;
425 struct kvm_cpuid_entry2 *c;
426 uint32_t signature[3];
427 int r;
429 cpuid_i = 0;
431 /* Paravirtualization CPUIDs */
432 c = &cpuid_data.entries[cpuid_i++];
433 memset(c, 0, sizeof(*c));
434 c->function = KVM_CPUID_SIGNATURE;
435 if (!hyperv_enabled()) {
436 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
437 c->eax = 0;
438 } else {
439 memcpy(signature, "Microsoft Hv", 12);
440 c->eax = HYPERV_CPUID_MIN;
442 c->ebx = signature[0];
443 c->ecx = signature[1];
444 c->edx = signature[2];
446 c = &cpuid_data.entries[cpuid_i++];
447 memset(c, 0, sizeof(*c));
448 c->function = KVM_CPUID_FEATURES;
449 c->eax = env->cpuid_kvm_features;
451 if (hyperv_enabled()) {
452 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
453 c->eax = signature[0];
455 c = &cpuid_data.entries[cpuid_i++];
456 memset(c, 0, sizeof(*c));
457 c->function = HYPERV_CPUID_VERSION;
458 c->eax = 0x00001bbc;
459 c->ebx = 0x00060001;
461 c = &cpuid_data.entries[cpuid_i++];
462 memset(c, 0, sizeof(*c));
463 c->function = HYPERV_CPUID_FEATURES;
464 if (hyperv_relaxed_timing_enabled()) {
465 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
467 if (hyperv_vapic_recommended()) {
468 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
469 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
472 c = &cpuid_data.entries[cpuid_i++];
473 memset(c, 0, sizeof(*c));
474 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
475 if (hyperv_relaxed_timing_enabled()) {
476 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
478 if (hyperv_vapic_recommended()) {
479 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
481 c->ebx = hyperv_get_spinlock_retries();
483 c = &cpuid_data.entries[cpuid_i++];
484 memset(c, 0, sizeof(*c));
485 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
486 c->eax = 0x40;
487 c->ebx = 0x40;
489 c = &cpuid_data.entries[cpuid_i++];
490 memset(c, 0, sizeof(*c));
491 c->function = KVM_CPUID_SIGNATURE_NEXT;
492 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
493 c->eax = 0;
494 c->ebx = signature[0];
495 c->ecx = signature[1];
496 c->edx = signature[2];
499 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
501 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
503 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
505 for (i = 0; i <= limit; i++) {
506 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
507 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
508 abort();
510 c = &cpuid_data.entries[cpuid_i++];
512 switch (i) {
513 case 2: {
514 /* Keep reading function 2 till all the input is received */
515 int times;
517 c->function = i;
518 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
519 KVM_CPUID_FLAG_STATE_READ_NEXT;
520 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
521 times = c->eax & 0xff;
523 for (j = 1; j < times; ++j) {
524 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
525 fprintf(stderr, "cpuid_data is full, no space for "
526 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
527 abort();
529 c = &cpuid_data.entries[cpuid_i++];
530 c->function = i;
531 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
532 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
534 break;
536 case 4:
537 case 0xb:
538 case 0xd:
539 for (j = 0; ; j++) {
540 if (i == 0xd && j == 64) {
541 break;
543 c->function = i;
544 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
545 c->index = j;
546 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
548 if (i == 4 && c->eax == 0) {
549 break;
551 if (i == 0xb && !(c->ecx & 0xff00)) {
552 break;
554 if (i == 0xd && c->eax == 0) {
555 continue;
557 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
558 fprintf(stderr, "cpuid_data is full, no space for "
559 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
560 abort();
562 c = &cpuid_data.entries[cpuid_i++];
564 break;
565 default:
566 c->function = i;
567 c->flags = 0;
568 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
569 break;
572 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
574 for (i = 0x80000000; i <= limit; i++) {
575 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
576 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
577 abort();
579 c = &cpuid_data.entries[cpuid_i++];
581 c->function = i;
582 c->flags = 0;
583 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
586 /* Call Centaur's CPUID instructions they are supported. */
587 if (env->cpuid_xlevel2 > 0) {
588 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
590 for (i = 0xC0000000; i <= limit; i++) {
591 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
592 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
593 abort();
595 c = &cpuid_data.entries[cpuid_i++];
597 c->function = i;
598 c->flags = 0;
599 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
603 cpuid_data.cpuid.nent = cpuid_i;
605 if (((env->cpuid_version >> 8)&0xF) >= 6
606 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
607 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
608 uint64_t mcg_cap;
609 int banks;
610 int ret;
612 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
613 if (ret < 0) {
614 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
615 return ret;
618 if (banks > MCE_BANKS_DEF) {
619 banks = MCE_BANKS_DEF;
621 mcg_cap &= MCE_CAP_DEF;
622 mcg_cap |= banks;
623 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
624 if (ret < 0) {
625 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
626 return ret;
629 env->mcg_cap = mcg_cap;
632 qemu_add_vm_change_state_handler(cpu_update_state, env);
634 cpuid_data.cpuid.padding = 0;
635 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
636 if (r) {
637 return r;
640 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
641 if (r && env->tsc_khz) {
642 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
643 if (r < 0) {
644 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
645 return r;
649 if (kvm_has_xsave()) {
650 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
653 return 0;
656 void kvm_arch_reset_vcpu(CPUState *cs)
658 X86CPU *cpu = X86_CPU(cs);
659 CPUX86State *env = &cpu->env;
661 env->exception_injected = -1;
662 env->interrupt_injected = -1;
663 env->xcr0 = 1;
664 if (kvm_irqchip_in_kernel()) {
665 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
666 KVM_MP_STATE_UNINITIALIZED;
667 } else {
668 env->mp_state = KVM_MP_STATE_RUNNABLE;
672 static int kvm_get_supported_msrs(KVMState *s)
674 static int kvm_supported_msrs;
675 int ret = 0;
677 /* first time */
678 if (kvm_supported_msrs == 0) {
679 struct kvm_msr_list msr_list, *kvm_msr_list;
681 kvm_supported_msrs = -1;
683 /* Obtain MSR list from KVM. These are the MSRs that we must
684 * save/restore */
685 msr_list.nmsrs = 0;
686 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
687 if (ret < 0 && ret != -E2BIG) {
688 return ret;
690 /* Old kernel modules had a bug and could write beyond the provided
691 memory. Allocate at least a safe amount of 1K. */
692 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
693 msr_list.nmsrs *
694 sizeof(msr_list.indices[0])));
696 kvm_msr_list->nmsrs = msr_list.nmsrs;
697 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
698 if (ret >= 0) {
699 int i;
701 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
702 if (kvm_msr_list->indices[i] == MSR_STAR) {
703 has_msr_star = true;
704 continue;
706 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
707 has_msr_hsave_pa = true;
708 continue;
710 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
711 has_msr_tsc_adjust = true;
712 continue;
714 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
715 has_msr_tsc_deadline = true;
716 continue;
718 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
719 has_msr_misc_enable = true;
720 continue;
725 g_free(kvm_msr_list);
728 return ret;
731 int kvm_arch_init(KVMState *s)
733 QemuOptsList *list = qemu_find_opts("machine");
734 uint64_t identity_base = 0xfffbc000;
735 uint64_t shadow_mem;
736 int ret;
737 struct utsname utsname;
739 ret = kvm_get_supported_msrs(s);
740 if (ret < 0) {
741 return ret;
744 uname(&utsname);
745 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
748 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
749 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
750 * Since these must be part of guest physical memory, we need to allocate
751 * them, both by setting their start addresses in the kernel and by
752 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
754 * Older KVM versions may not support setting the identity map base. In
755 * that case we need to stick with the default, i.e. a 256K maximum BIOS
756 * size.
758 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
759 /* Allows up to 16M BIOSes. */
760 identity_base = 0xfeffc000;
762 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
763 if (ret < 0) {
764 return ret;
768 /* Set TSS base one page after EPT identity map. */
769 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
770 if (ret < 0) {
771 return ret;
774 /* Tell fw_cfg to notify the BIOS to reserve the range. */
775 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
776 if (ret < 0) {
777 fprintf(stderr, "e820_add_entry() table is full\n");
778 return ret;
780 qemu_register_reset(kvm_unpoison_all, NULL);
782 if (!QTAILQ_EMPTY(&list->head)) {
783 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
784 "kvm_shadow_mem", -1);
785 if (shadow_mem != -1) {
786 shadow_mem /= 4096;
787 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
788 if (ret < 0) {
789 return ret;
793 return 0;
796 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
798 lhs->selector = rhs->selector;
799 lhs->base = rhs->base;
800 lhs->limit = rhs->limit;
801 lhs->type = 3;
802 lhs->present = 1;
803 lhs->dpl = 3;
804 lhs->db = 0;
805 lhs->s = 1;
806 lhs->l = 0;
807 lhs->g = 0;
808 lhs->avl = 0;
809 lhs->unusable = 0;
812 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
814 unsigned flags = rhs->flags;
815 lhs->selector = rhs->selector;
816 lhs->base = rhs->base;
817 lhs->limit = rhs->limit;
818 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
819 lhs->present = (flags & DESC_P_MASK) != 0;
820 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
821 lhs->db = (flags >> DESC_B_SHIFT) & 1;
822 lhs->s = (flags & DESC_S_MASK) != 0;
823 lhs->l = (flags >> DESC_L_SHIFT) & 1;
824 lhs->g = (flags & DESC_G_MASK) != 0;
825 lhs->avl = (flags & DESC_AVL_MASK) != 0;
826 lhs->unusable = 0;
827 lhs->padding = 0;
830 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
832 lhs->selector = rhs->selector;
833 lhs->base = rhs->base;
834 lhs->limit = rhs->limit;
835 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
836 (rhs->present * DESC_P_MASK) |
837 (rhs->dpl << DESC_DPL_SHIFT) |
838 (rhs->db << DESC_B_SHIFT) |
839 (rhs->s * DESC_S_MASK) |
840 (rhs->l << DESC_L_SHIFT) |
841 (rhs->g * DESC_G_MASK) |
842 (rhs->avl * DESC_AVL_MASK);
845 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
847 if (set) {
848 *kvm_reg = *qemu_reg;
849 } else {
850 *qemu_reg = *kvm_reg;
854 static int kvm_getput_regs(X86CPU *cpu, int set)
856 CPUX86State *env = &cpu->env;
857 struct kvm_regs regs;
858 int ret = 0;
860 if (!set) {
861 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
862 if (ret < 0) {
863 return ret;
867 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
868 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
869 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
870 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
871 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
872 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
873 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
874 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
875 #ifdef TARGET_X86_64
876 kvm_getput_reg(&regs.r8, &env->regs[8], set);
877 kvm_getput_reg(&regs.r9, &env->regs[9], set);
878 kvm_getput_reg(&regs.r10, &env->regs[10], set);
879 kvm_getput_reg(&regs.r11, &env->regs[11], set);
880 kvm_getput_reg(&regs.r12, &env->regs[12], set);
881 kvm_getput_reg(&regs.r13, &env->regs[13], set);
882 kvm_getput_reg(&regs.r14, &env->regs[14], set);
883 kvm_getput_reg(&regs.r15, &env->regs[15], set);
884 #endif
886 kvm_getput_reg(&regs.rflags, &env->eflags, set);
887 kvm_getput_reg(&regs.rip, &env->eip, set);
889 if (set) {
890 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
893 return ret;
896 static int kvm_put_fpu(X86CPU *cpu)
898 CPUX86State *env = &cpu->env;
899 struct kvm_fpu fpu;
900 int i;
902 memset(&fpu, 0, sizeof fpu);
903 fpu.fsw = env->fpus & ~(7 << 11);
904 fpu.fsw |= (env->fpstt & 7) << 11;
905 fpu.fcw = env->fpuc;
906 fpu.last_opcode = env->fpop;
907 fpu.last_ip = env->fpip;
908 fpu.last_dp = env->fpdp;
909 for (i = 0; i < 8; ++i) {
910 fpu.ftwx |= (!env->fptags[i]) << i;
912 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
913 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
914 fpu.mxcsr = env->mxcsr;
916 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
919 #define XSAVE_FCW_FSW 0
920 #define XSAVE_FTW_FOP 1
921 #define XSAVE_CWD_RIP 2
922 #define XSAVE_CWD_RDP 4
923 #define XSAVE_MXCSR 6
924 #define XSAVE_ST_SPACE 8
925 #define XSAVE_XMM_SPACE 40
926 #define XSAVE_XSTATE_BV 128
927 #define XSAVE_YMMH_SPACE 144
929 static int kvm_put_xsave(X86CPU *cpu)
931 CPUX86State *env = &cpu->env;
932 struct kvm_xsave* xsave = env->kvm_xsave_buf;
933 uint16_t cwd, swd, twd;
934 int i, r;
936 if (!kvm_has_xsave()) {
937 return kvm_put_fpu(cpu);
940 memset(xsave, 0, sizeof(struct kvm_xsave));
941 twd = 0;
942 swd = env->fpus & ~(7 << 11);
943 swd |= (env->fpstt & 7) << 11;
944 cwd = env->fpuc;
945 for (i = 0; i < 8; ++i) {
946 twd |= (!env->fptags[i]) << i;
948 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
949 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
950 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
951 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
952 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
953 sizeof env->fpregs);
954 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
955 sizeof env->xmm_regs);
956 xsave->region[XSAVE_MXCSR] = env->mxcsr;
957 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
958 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
959 sizeof env->ymmh_regs);
960 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
961 return r;
964 static int kvm_put_xcrs(X86CPU *cpu)
966 CPUX86State *env = &cpu->env;
967 struct kvm_xcrs xcrs;
969 if (!kvm_has_xcrs()) {
970 return 0;
973 xcrs.nr_xcrs = 1;
974 xcrs.flags = 0;
975 xcrs.xcrs[0].xcr = 0;
976 xcrs.xcrs[0].value = env->xcr0;
977 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
980 static int kvm_put_sregs(X86CPU *cpu)
982 CPUX86State *env = &cpu->env;
983 struct kvm_sregs sregs;
985 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
986 if (env->interrupt_injected >= 0) {
987 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
988 (uint64_t)1 << (env->interrupt_injected % 64);
991 if ((env->eflags & VM_MASK)) {
992 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
993 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
994 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
995 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
996 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
997 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
998 } else {
999 set_seg(&sregs.cs, &env->segs[R_CS]);
1000 set_seg(&sregs.ds, &env->segs[R_DS]);
1001 set_seg(&sregs.es, &env->segs[R_ES]);
1002 set_seg(&sregs.fs, &env->segs[R_FS]);
1003 set_seg(&sregs.gs, &env->segs[R_GS]);
1004 set_seg(&sregs.ss, &env->segs[R_SS]);
1007 set_seg(&sregs.tr, &env->tr);
1008 set_seg(&sregs.ldt, &env->ldt);
1010 sregs.idt.limit = env->idt.limit;
1011 sregs.idt.base = env->idt.base;
1012 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1013 sregs.gdt.limit = env->gdt.limit;
1014 sregs.gdt.base = env->gdt.base;
1015 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1017 sregs.cr0 = env->cr[0];
1018 sregs.cr2 = env->cr[2];
1019 sregs.cr3 = env->cr[3];
1020 sregs.cr4 = env->cr[4];
1022 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
1023 sregs.apic_base = cpu_get_apic_base(env->apic_state);
1025 sregs.efer = env->efer;
1027 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1030 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1031 uint32_t index, uint64_t value)
1033 entry->index = index;
1034 entry->data = value;
1037 static int kvm_put_msrs(X86CPU *cpu, int level)
1039 CPUX86State *env = &cpu->env;
1040 struct {
1041 struct kvm_msrs info;
1042 struct kvm_msr_entry entries[100];
1043 } msr_data;
1044 struct kvm_msr_entry *msrs = msr_data.entries;
1045 int n = 0;
1047 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1048 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1049 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1050 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1051 if (has_msr_star) {
1052 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1054 if (has_msr_hsave_pa) {
1055 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1057 if (has_msr_tsc_adjust) {
1058 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1060 if (has_msr_tsc_deadline) {
1061 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1063 if (has_msr_misc_enable) {
1064 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1065 env->msr_ia32_misc_enable);
1067 #ifdef TARGET_X86_64
1068 if (lm_capable_kernel) {
1069 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1070 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1071 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1072 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1074 #endif
1075 if (level == KVM_PUT_FULL_STATE) {
1077 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1078 * writeback. Until this is fixed, we only write the offset to SMP
1079 * guests after migration, desynchronizing the VCPUs, but avoiding
1080 * huge jump-backs that would occur without any writeback at all.
1082 if (smp_cpus == 1 || env->tsc != 0) {
1083 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1087 * The following paravirtual MSRs have side effects on the guest or are
1088 * too heavy for normal writeback. Limit them to reset or full state
1089 * updates.
1091 if (level >= KVM_PUT_RESET_STATE) {
1092 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1093 env->system_time_msr);
1094 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1095 if (has_msr_async_pf_en) {
1096 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1097 env->async_pf_en_msr);
1099 if (has_msr_pv_eoi_en) {
1100 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1101 env->pv_eoi_en_msr);
1103 if (hyperv_hypercall_available()) {
1104 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1105 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1107 if (hyperv_vapic_recommended()) {
1108 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1111 if (env->mcg_cap) {
1112 int i;
1114 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1115 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1116 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1117 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1121 msr_data.info.nmsrs = n;
1123 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1128 static int kvm_get_fpu(X86CPU *cpu)
1130 CPUX86State *env = &cpu->env;
1131 struct kvm_fpu fpu;
1132 int i, ret;
1134 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1135 if (ret < 0) {
1136 return ret;
1139 env->fpstt = (fpu.fsw >> 11) & 7;
1140 env->fpus = fpu.fsw;
1141 env->fpuc = fpu.fcw;
1142 env->fpop = fpu.last_opcode;
1143 env->fpip = fpu.last_ip;
1144 env->fpdp = fpu.last_dp;
1145 for (i = 0; i < 8; ++i) {
1146 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1148 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1149 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1150 env->mxcsr = fpu.mxcsr;
1152 return 0;
1155 static int kvm_get_xsave(X86CPU *cpu)
1157 CPUX86State *env = &cpu->env;
1158 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1159 int ret, i;
1160 uint16_t cwd, swd, twd;
1162 if (!kvm_has_xsave()) {
1163 return kvm_get_fpu(cpu);
1166 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1167 if (ret < 0) {
1168 return ret;
1171 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1172 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1173 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1174 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1175 env->fpstt = (swd >> 11) & 7;
1176 env->fpus = swd;
1177 env->fpuc = cwd;
1178 for (i = 0; i < 8; ++i) {
1179 env->fptags[i] = !((twd >> i) & 1);
1181 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1182 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1183 env->mxcsr = xsave->region[XSAVE_MXCSR];
1184 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1185 sizeof env->fpregs);
1186 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1187 sizeof env->xmm_regs);
1188 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1189 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1190 sizeof env->ymmh_regs);
1191 return 0;
1194 static int kvm_get_xcrs(X86CPU *cpu)
1196 CPUX86State *env = &cpu->env;
1197 int i, ret;
1198 struct kvm_xcrs xcrs;
1200 if (!kvm_has_xcrs()) {
1201 return 0;
1204 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1205 if (ret < 0) {
1206 return ret;
1209 for (i = 0; i < xcrs.nr_xcrs; i++) {
1210 /* Only support xcr0 now */
1211 if (xcrs.xcrs[0].xcr == 0) {
1212 env->xcr0 = xcrs.xcrs[0].value;
1213 break;
1216 return 0;
1219 static int kvm_get_sregs(X86CPU *cpu)
1221 CPUX86State *env = &cpu->env;
1222 struct kvm_sregs sregs;
1223 uint32_t hflags;
1224 int bit, i, ret;
1226 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1227 if (ret < 0) {
1228 return ret;
1231 /* There can only be one pending IRQ set in the bitmap at a time, so try
1232 to find it and save its number instead (-1 for none). */
1233 env->interrupt_injected = -1;
1234 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1235 if (sregs.interrupt_bitmap[i]) {
1236 bit = ctz64(sregs.interrupt_bitmap[i]);
1237 env->interrupt_injected = i * 64 + bit;
1238 break;
1242 get_seg(&env->segs[R_CS], &sregs.cs);
1243 get_seg(&env->segs[R_DS], &sregs.ds);
1244 get_seg(&env->segs[R_ES], &sregs.es);
1245 get_seg(&env->segs[R_FS], &sregs.fs);
1246 get_seg(&env->segs[R_GS], &sregs.gs);
1247 get_seg(&env->segs[R_SS], &sregs.ss);
1249 get_seg(&env->tr, &sregs.tr);
1250 get_seg(&env->ldt, &sregs.ldt);
1252 env->idt.limit = sregs.idt.limit;
1253 env->idt.base = sregs.idt.base;
1254 env->gdt.limit = sregs.gdt.limit;
1255 env->gdt.base = sregs.gdt.base;
1257 env->cr[0] = sregs.cr0;
1258 env->cr[2] = sregs.cr2;
1259 env->cr[3] = sregs.cr3;
1260 env->cr[4] = sregs.cr4;
1262 env->efer = sregs.efer;
1264 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1266 #define HFLAG_COPY_MASK \
1267 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1268 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1269 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1270 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1272 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1273 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1274 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1275 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1276 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1277 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1278 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1280 if (env->efer & MSR_EFER_LMA) {
1281 hflags |= HF_LMA_MASK;
1284 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1285 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1286 } else {
1287 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1288 (DESC_B_SHIFT - HF_CS32_SHIFT);
1289 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1290 (DESC_B_SHIFT - HF_SS32_SHIFT);
1291 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1292 !(hflags & HF_CS32_MASK)) {
1293 hflags |= HF_ADDSEG_MASK;
1294 } else {
1295 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1296 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1299 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1301 return 0;
1304 static int kvm_get_msrs(X86CPU *cpu)
1306 CPUX86State *env = &cpu->env;
1307 struct {
1308 struct kvm_msrs info;
1309 struct kvm_msr_entry entries[100];
1310 } msr_data;
1311 struct kvm_msr_entry *msrs = msr_data.entries;
1312 int ret, i, n;
1314 n = 0;
1315 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1316 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1317 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1318 msrs[n++].index = MSR_PAT;
1319 if (has_msr_star) {
1320 msrs[n++].index = MSR_STAR;
1322 if (has_msr_hsave_pa) {
1323 msrs[n++].index = MSR_VM_HSAVE_PA;
1325 if (has_msr_tsc_adjust) {
1326 msrs[n++].index = MSR_TSC_ADJUST;
1328 if (has_msr_tsc_deadline) {
1329 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1331 if (has_msr_misc_enable) {
1332 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1335 if (!env->tsc_valid) {
1336 msrs[n++].index = MSR_IA32_TSC;
1337 env->tsc_valid = !runstate_is_running();
1340 #ifdef TARGET_X86_64
1341 if (lm_capable_kernel) {
1342 msrs[n++].index = MSR_CSTAR;
1343 msrs[n++].index = MSR_KERNELGSBASE;
1344 msrs[n++].index = MSR_FMASK;
1345 msrs[n++].index = MSR_LSTAR;
1347 #endif
1348 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1349 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1350 if (has_msr_async_pf_en) {
1351 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1353 if (has_msr_pv_eoi_en) {
1354 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1357 if (env->mcg_cap) {
1358 msrs[n++].index = MSR_MCG_STATUS;
1359 msrs[n++].index = MSR_MCG_CTL;
1360 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1361 msrs[n++].index = MSR_MC0_CTL + i;
1365 msr_data.info.nmsrs = n;
1366 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
1367 if (ret < 0) {
1368 return ret;
1371 for (i = 0; i < ret; i++) {
1372 switch (msrs[i].index) {
1373 case MSR_IA32_SYSENTER_CS:
1374 env->sysenter_cs = msrs[i].data;
1375 break;
1376 case MSR_IA32_SYSENTER_ESP:
1377 env->sysenter_esp = msrs[i].data;
1378 break;
1379 case MSR_IA32_SYSENTER_EIP:
1380 env->sysenter_eip = msrs[i].data;
1381 break;
1382 case MSR_PAT:
1383 env->pat = msrs[i].data;
1384 break;
1385 case MSR_STAR:
1386 env->star = msrs[i].data;
1387 break;
1388 #ifdef TARGET_X86_64
1389 case MSR_CSTAR:
1390 env->cstar = msrs[i].data;
1391 break;
1392 case MSR_KERNELGSBASE:
1393 env->kernelgsbase = msrs[i].data;
1394 break;
1395 case MSR_FMASK:
1396 env->fmask = msrs[i].data;
1397 break;
1398 case MSR_LSTAR:
1399 env->lstar = msrs[i].data;
1400 break;
1401 #endif
1402 case MSR_IA32_TSC:
1403 env->tsc = msrs[i].data;
1404 break;
1405 case MSR_TSC_ADJUST:
1406 env->tsc_adjust = msrs[i].data;
1407 break;
1408 case MSR_IA32_TSCDEADLINE:
1409 env->tsc_deadline = msrs[i].data;
1410 break;
1411 case MSR_VM_HSAVE_PA:
1412 env->vm_hsave = msrs[i].data;
1413 break;
1414 case MSR_KVM_SYSTEM_TIME:
1415 env->system_time_msr = msrs[i].data;
1416 break;
1417 case MSR_KVM_WALL_CLOCK:
1418 env->wall_clock_msr = msrs[i].data;
1419 break;
1420 case MSR_MCG_STATUS:
1421 env->mcg_status = msrs[i].data;
1422 break;
1423 case MSR_MCG_CTL:
1424 env->mcg_ctl = msrs[i].data;
1425 break;
1426 case MSR_IA32_MISC_ENABLE:
1427 env->msr_ia32_misc_enable = msrs[i].data;
1428 break;
1429 default:
1430 if (msrs[i].index >= MSR_MC0_CTL &&
1431 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1432 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1434 break;
1435 case MSR_KVM_ASYNC_PF_EN:
1436 env->async_pf_en_msr = msrs[i].data;
1437 break;
1438 case MSR_KVM_PV_EOI_EN:
1439 env->pv_eoi_en_msr = msrs[i].data;
1440 break;
1444 return 0;
1447 static int kvm_put_mp_state(X86CPU *cpu)
1449 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
1451 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1454 static int kvm_get_mp_state(X86CPU *cpu)
1456 CPUX86State *env = &cpu->env;
1457 struct kvm_mp_state mp_state;
1458 int ret;
1460 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
1461 if (ret < 0) {
1462 return ret;
1464 env->mp_state = mp_state.mp_state;
1465 if (kvm_irqchip_in_kernel()) {
1466 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1468 return 0;
1471 static int kvm_get_apic(X86CPU *cpu)
1473 CPUX86State *env = &cpu->env;
1474 DeviceState *apic = env->apic_state;
1475 struct kvm_lapic_state kapic;
1476 int ret;
1478 if (apic && kvm_irqchip_in_kernel()) {
1479 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
1480 if (ret < 0) {
1481 return ret;
1484 kvm_get_apic_state(apic, &kapic);
1486 return 0;
1489 static int kvm_put_apic(X86CPU *cpu)
1491 CPUX86State *env = &cpu->env;
1492 DeviceState *apic = env->apic_state;
1493 struct kvm_lapic_state kapic;
1495 if (apic && kvm_irqchip_in_kernel()) {
1496 kvm_put_apic_state(apic, &kapic);
1498 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
1500 return 0;
1503 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
1505 CPUX86State *env = &cpu->env;
1506 struct kvm_vcpu_events events;
1508 if (!kvm_has_vcpu_events()) {
1509 return 0;
1512 events.exception.injected = (env->exception_injected >= 0);
1513 events.exception.nr = env->exception_injected;
1514 events.exception.has_error_code = env->has_error_code;
1515 events.exception.error_code = env->error_code;
1516 events.exception.pad = 0;
1518 events.interrupt.injected = (env->interrupt_injected >= 0);
1519 events.interrupt.nr = env->interrupt_injected;
1520 events.interrupt.soft = env->soft_interrupt;
1522 events.nmi.injected = env->nmi_injected;
1523 events.nmi.pending = env->nmi_pending;
1524 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1525 events.nmi.pad = 0;
1527 events.sipi_vector = env->sipi_vector;
1529 events.flags = 0;
1530 if (level >= KVM_PUT_RESET_STATE) {
1531 events.flags |=
1532 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1535 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1538 static int kvm_get_vcpu_events(X86CPU *cpu)
1540 CPUX86State *env = &cpu->env;
1541 struct kvm_vcpu_events events;
1542 int ret;
1544 if (!kvm_has_vcpu_events()) {
1545 return 0;
1548 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1549 if (ret < 0) {
1550 return ret;
1552 env->exception_injected =
1553 events.exception.injected ? events.exception.nr : -1;
1554 env->has_error_code = events.exception.has_error_code;
1555 env->error_code = events.exception.error_code;
1557 env->interrupt_injected =
1558 events.interrupt.injected ? events.interrupt.nr : -1;
1559 env->soft_interrupt = events.interrupt.soft;
1561 env->nmi_injected = events.nmi.injected;
1562 env->nmi_pending = events.nmi.pending;
1563 if (events.nmi.masked) {
1564 env->hflags2 |= HF2_NMI_MASK;
1565 } else {
1566 env->hflags2 &= ~HF2_NMI_MASK;
1569 env->sipi_vector = events.sipi_vector;
1571 return 0;
1574 static int kvm_guest_debug_workarounds(X86CPU *cpu)
1576 CPUX86State *env = &cpu->env;
1577 int ret = 0;
1578 unsigned long reinject_trap = 0;
1580 if (!kvm_has_vcpu_events()) {
1581 if (env->exception_injected == 1) {
1582 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1583 } else if (env->exception_injected == 3) {
1584 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1586 env->exception_injected = -1;
1590 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1591 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1592 * by updating the debug state once again if single-stepping is on.
1593 * Another reason to call kvm_update_guest_debug here is a pending debug
1594 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1595 * reinject them via SET_GUEST_DEBUG.
1597 if (reinject_trap ||
1598 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1599 ret = kvm_update_guest_debug(env, reinject_trap);
1601 return ret;
1604 static int kvm_put_debugregs(X86CPU *cpu)
1606 CPUX86State *env = &cpu->env;
1607 struct kvm_debugregs dbgregs;
1608 int i;
1610 if (!kvm_has_debugregs()) {
1611 return 0;
1614 for (i = 0; i < 4; i++) {
1615 dbgregs.db[i] = env->dr[i];
1617 dbgregs.dr6 = env->dr[6];
1618 dbgregs.dr7 = env->dr[7];
1619 dbgregs.flags = 0;
1621 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
1624 static int kvm_get_debugregs(X86CPU *cpu)
1626 CPUX86State *env = &cpu->env;
1627 struct kvm_debugregs dbgregs;
1628 int i, ret;
1630 if (!kvm_has_debugregs()) {
1631 return 0;
1634 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
1635 if (ret < 0) {
1636 return ret;
1638 for (i = 0; i < 4; i++) {
1639 env->dr[i] = dbgregs.db[i];
1641 env->dr[4] = env->dr[6] = dbgregs.dr6;
1642 env->dr[5] = env->dr[7] = dbgregs.dr7;
1644 return 0;
1647 int kvm_arch_put_registers(CPUState *cpu, int level)
1649 X86CPU *x86_cpu = X86_CPU(cpu);
1650 int ret;
1652 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
1654 ret = kvm_getput_regs(x86_cpu, 1);
1655 if (ret < 0) {
1656 return ret;
1658 ret = kvm_put_xsave(x86_cpu);
1659 if (ret < 0) {
1660 return ret;
1662 ret = kvm_put_xcrs(x86_cpu);
1663 if (ret < 0) {
1664 return ret;
1666 ret = kvm_put_sregs(x86_cpu);
1667 if (ret < 0) {
1668 return ret;
1670 /* must be before kvm_put_msrs */
1671 ret = kvm_inject_mce_oldstyle(x86_cpu);
1672 if (ret < 0) {
1673 return ret;
1675 ret = kvm_put_msrs(x86_cpu, level);
1676 if (ret < 0) {
1677 return ret;
1679 if (level >= KVM_PUT_RESET_STATE) {
1680 ret = kvm_put_mp_state(x86_cpu);
1681 if (ret < 0) {
1682 return ret;
1684 ret = kvm_put_apic(x86_cpu);
1685 if (ret < 0) {
1686 return ret;
1689 ret = kvm_put_vcpu_events(x86_cpu, level);
1690 if (ret < 0) {
1691 return ret;
1693 ret = kvm_put_debugregs(x86_cpu);
1694 if (ret < 0) {
1695 return ret;
1697 /* must be last */
1698 ret = kvm_guest_debug_workarounds(x86_cpu);
1699 if (ret < 0) {
1700 return ret;
1702 return 0;
1705 int kvm_arch_get_registers(CPUState *cs)
1707 X86CPU *cpu = X86_CPU(cs);
1708 int ret;
1710 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
1712 ret = kvm_getput_regs(cpu, 0);
1713 if (ret < 0) {
1714 return ret;
1716 ret = kvm_get_xsave(cpu);
1717 if (ret < 0) {
1718 return ret;
1720 ret = kvm_get_xcrs(cpu);
1721 if (ret < 0) {
1722 return ret;
1724 ret = kvm_get_sregs(cpu);
1725 if (ret < 0) {
1726 return ret;
1728 ret = kvm_get_msrs(cpu);
1729 if (ret < 0) {
1730 return ret;
1732 ret = kvm_get_mp_state(cpu);
1733 if (ret < 0) {
1734 return ret;
1736 ret = kvm_get_apic(cpu);
1737 if (ret < 0) {
1738 return ret;
1740 ret = kvm_get_vcpu_events(cpu);
1741 if (ret < 0) {
1742 return ret;
1744 ret = kvm_get_debugregs(cpu);
1745 if (ret < 0) {
1746 return ret;
1748 return 0;
1751 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1753 X86CPU *x86_cpu = X86_CPU(cpu);
1754 CPUX86State *env = &x86_cpu->env;
1755 int ret;
1757 /* Inject NMI */
1758 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1759 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1760 DPRINTF("injected NMI\n");
1761 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
1762 if (ret < 0) {
1763 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1764 strerror(-ret));
1768 if (!kvm_irqchip_in_kernel()) {
1769 /* Force the VCPU out of its inner loop to process any INIT requests
1770 * or pending TPR access reports. */
1771 if (env->interrupt_request &
1772 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1773 env->exit_request = 1;
1776 /* Try to inject an interrupt if the guest can accept it */
1777 if (run->ready_for_interrupt_injection &&
1778 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1779 (env->eflags & IF_MASK)) {
1780 int irq;
1782 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1783 irq = cpu_get_pic_interrupt(env);
1784 if (irq >= 0) {
1785 struct kvm_interrupt intr;
1787 intr.irq = irq;
1788 DPRINTF("injected interrupt %d\n", irq);
1789 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
1790 if (ret < 0) {
1791 fprintf(stderr,
1792 "KVM: injection failed, interrupt lost (%s)\n",
1793 strerror(-ret));
1798 /* If we have an interrupt but the guest is not ready to receive an
1799 * interrupt, request an interrupt window exit. This will
1800 * cause a return to userspace as soon as the guest is ready to
1801 * receive interrupts. */
1802 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1803 run->request_interrupt_window = 1;
1804 } else {
1805 run->request_interrupt_window = 0;
1808 DPRINTF("setting tpr\n");
1809 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1813 void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
1815 X86CPU *x86_cpu = X86_CPU(cpu);
1816 CPUX86State *env = &x86_cpu->env;
1818 if (run->if_flag) {
1819 env->eflags |= IF_MASK;
1820 } else {
1821 env->eflags &= ~IF_MASK;
1823 cpu_set_apic_tpr(env->apic_state, run->cr8);
1824 cpu_set_apic_base(env->apic_state, run->apic_base);
1827 int kvm_arch_process_async_events(CPUState *cs)
1829 X86CPU *cpu = X86_CPU(cs);
1830 CPUX86State *env = &cpu->env;
1832 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1833 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1834 assert(env->mcg_cap);
1836 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1838 kvm_cpu_synchronize_state(env);
1840 if (env->exception_injected == EXCP08_DBLE) {
1841 /* this means triple fault */
1842 qemu_system_reset_request();
1843 env->exit_request = 1;
1844 return 0;
1846 env->exception_injected = EXCP12_MCHK;
1847 env->has_error_code = 0;
1849 env->halted = 0;
1850 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1851 env->mp_state = KVM_MP_STATE_RUNNABLE;
1855 if (kvm_irqchip_in_kernel()) {
1856 return 0;
1859 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1860 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1861 apic_poll_irq(env->apic_state);
1863 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1864 (env->eflags & IF_MASK)) ||
1865 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1866 env->halted = 0;
1868 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1869 kvm_cpu_synchronize_state(env);
1870 do_cpu_init(cpu);
1872 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1873 kvm_cpu_synchronize_state(env);
1874 do_cpu_sipi(cpu);
1876 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1877 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1878 kvm_cpu_synchronize_state(env);
1879 apic_handle_tpr_access_report(env->apic_state, env->eip,
1880 env->tpr_access_type);
1883 return env->halted;
1886 static int kvm_handle_halt(X86CPU *cpu)
1888 CPUX86State *env = &cpu->env;
1890 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1891 (env->eflags & IF_MASK)) &&
1892 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1893 env->halted = 1;
1894 return EXCP_HLT;
1897 return 0;
1900 static int kvm_handle_tpr_access(X86CPU *cpu)
1902 CPUX86State *env = &cpu->env;
1903 CPUState *cs = CPU(cpu);
1904 struct kvm_run *run = cs->kvm_run;
1906 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1907 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1908 : TPR_ACCESS_READ);
1909 return 1;
1912 int kvm_arch_insert_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
1914 CPUX86State *env = &X86_CPU(cpu)->env;
1915 static const uint8_t int3 = 0xcc;
1917 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1918 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1919 return -EINVAL;
1921 return 0;
1924 int kvm_arch_remove_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
1926 CPUX86State *env = &X86_CPU(cpu)->env;
1927 uint8_t int3;
1929 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1930 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1931 return -EINVAL;
1933 return 0;
1936 static struct {
1937 target_ulong addr;
1938 int len;
1939 int type;
1940 } hw_breakpoint[4];
1942 static int nb_hw_breakpoint;
1944 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1946 int n;
1948 for (n = 0; n < nb_hw_breakpoint; n++) {
1949 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1950 (hw_breakpoint[n].len == len || len == -1)) {
1951 return n;
1954 return -1;
1957 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1958 target_ulong len, int type)
1960 switch (type) {
1961 case GDB_BREAKPOINT_HW:
1962 len = 1;
1963 break;
1964 case GDB_WATCHPOINT_WRITE:
1965 case GDB_WATCHPOINT_ACCESS:
1966 switch (len) {
1967 case 1:
1968 break;
1969 case 2:
1970 case 4:
1971 case 8:
1972 if (addr & (len - 1)) {
1973 return -EINVAL;
1975 break;
1976 default:
1977 return -EINVAL;
1979 break;
1980 default:
1981 return -ENOSYS;
1984 if (nb_hw_breakpoint == 4) {
1985 return -ENOBUFS;
1987 if (find_hw_breakpoint(addr, len, type) >= 0) {
1988 return -EEXIST;
1990 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1991 hw_breakpoint[nb_hw_breakpoint].len = len;
1992 hw_breakpoint[nb_hw_breakpoint].type = type;
1993 nb_hw_breakpoint++;
1995 return 0;
1998 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1999 target_ulong len, int type)
2001 int n;
2003 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
2004 if (n < 0) {
2005 return -ENOENT;
2007 nb_hw_breakpoint--;
2008 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2010 return 0;
2013 void kvm_arch_remove_all_hw_breakpoints(void)
2015 nb_hw_breakpoint = 0;
2018 static CPUWatchpoint hw_watchpoint;
2020 static int kvm_handle_debug(X86CPU *cpu,
2021 struct kvm_debug_exit_arch *arch_info)
2023 CPUX86State *env = &cpu->env;
2024 int ret = 0;
2025 int n;
2027 if (arch_info->exception == 1) {
2028 if (arch_info->dr6 & (1 << 14)) {
2029 if (env->singlestep_enabled) {
2030 ret = EXCP_DEBUG;
2032 } else {
2033 for (n = 0; n < 4; n++) {
2034 if (arch_info->dr6 & (1 << n)) {
2035 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2036 case 0x0:
2037 ret = EXCP_DEBUG;
2038 break;
2039 case 0x1:
2040 ret = EXCP_DEBUG;
2041 env->watchpoint_hit = &hw_watchpoint;
2042 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2043 hw_watchpoint.flags = BP_MEM_WRITE;
2044 break;
2045 case 0x3:
2046 ret = EXCP_DEBUG;
2047 env->watchpoint_hit = &hw_watchpoint;
2048 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2049 hw_watchpoint.flags = BP_MEM_ACCESS;
2050 break;
2055 } else if (kvm_find_sw_breakpoint(CPU(cpu), arch_info->pc)) {
2056 ret = EXCP_DEBUG;
2058 if (ret == 0) {
2059 cpu_synchronize_state(env);
2060 assert(env->exception_injected == -1);
2062 /* pass to guest */
2063 env->exception_injected = arch_info->exception;
2064 env->has_error_code = 0;
2067 return ret;
2070 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
2072 const uint8_t type_code[] = {
2073 [GDB_BREAKPOINT_HW] = 0x0,
2074 [GDB_WATCHPOINT_WRITE] = 0x1,
2075 [GDB_WATCHPOINT_ACCESS] = 0x3
2077 const uint8_t len_code[] = {
2078 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2080 int n;
2082 if (kvm_sw_breakpoints_active(cpu)) {
2083 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2085 if (nb_hw_breakpoint > 0) {
2086 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2087 dbg->arch.debugreg[7] = 0x0600;
2088 for (n = 0; n < nb_hw_breakpoint; n++) {
2089 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2090 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2091 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2092 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2097 static bool host_supports_vmx(void)
2099 uint32_t ecx, unused;
2101 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2102 return ecx & CPUID_EXT_VMX;
2105 #define VMX_INVALID_GUEST_STATE 0x80000021
2107 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2109 X86CPU *cpu = X86_CPU(cs);
2110 uint64_t code;
2111 int ret;
2113 switch (run->exit_reason) {
2114 case KVM_EXIT_HLT:
2115 DPRINTF("handle_hlt\n");
2116 ret = kvm_handle_halt(cpu);
2117 break;
2118 case KVM_EXIT_SET_TPR:
2119 ret = 0;
2120 break;
2121 case KVM_EXIT_TPR_ACCESS:
2122 ret = kvm_handle_tpr_access(cpu);
2123 break;
2124 case KVM_EXIT_FAIL_ENTRY:
2125 code = run->fail_entry.hardware_entry_failure_reason;
2126 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2127 code);
2128 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2129 fprintf(stderr,
2130 "\nIf you're running a guest on an Intel machine without "
2131 "unrestricted mode\n"
2132 "support, the failure can be most likely due to the guest "
2133 "entering an invalid\n"
2134 "state for Intel VT. For example, the guest maybe running "
2135 "in big real mode\n"
2136 "which is not supported on less recent Intel processors."
2137 "\n\n");
2139 ret = -1;
2140 break;
2141 case KVM_EXIT_EXCEPTION:
2142 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2143 run->ex.exception, run->ex.error_code);
2144 ret = -1;
2145 break;
2146 case KVM_EXIT_DEBUG:
2147 DPRINTF("kvm_exit_debug\n");
2148 ret = kvm_handle_debug(cpu, &run->debug.arch);
2149 break;
2150 default:
2151 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2152 ret = -1;
2153 break;
2156 return ret;
2159 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
2161 X86CPU *cpu = X86_CPU(cs);
2162 CPUX86State *env = &cpu->env;
2164 kvm_cpu_synchronize_state(env);
2165 return !(env->cr[0] & CR0_PE_MASK) ||
2166 ((env->segs[R_CS].selector & 3) != 3);
2169 void kvm_arch_init_irq_routing(KVMState *s)
2171 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2172 /* If kernel can't do irq routing, interrupt source
2173 * override 0->2 cannot be set up as required by HPET.
2174 * So we have to disable it.
2176 no_hpet = 1;
2178 /* We know at this point that we're using the in-kernel
2179 * irqchip, so we can use irqfds, and on x86 we know
2180 * we can use msi via irqfd and GSI routing.
2182 kvm_irqfds_allowed = true;
2183 kvm_msi_via_irqfd_allowed = true;
2184 kvm_gsi_routing_allowed = true;
2187 /* Classic KVM device assignment interface. Will remain x86 only. */
2188 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2189 uint32_t flags, uint32_t *dev_id)
2191 struct kvm_assigned_pci_dev dev_data = {
2192 .segnr = dev_addr->domain,
2193 .busnr = dev_addr->bus,
2194 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2195 .flags = flags,
2197 int ret;
2199 dev_data.assigned_dev_id =
2200 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2202 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2203 if (ret < 0) {
2204 return ret;
2207 *dev_id = dev_data.assigned_dev_id;
2209 return 0;
2212 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2214 struct kvm_assigned_pci_dev dev_data = {
2215 .assigned_dev_id = dev_id,
2218 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2221 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2222 uint32_t irq_type, uint32_t guest_irq)
2224 struct kvm_assigned_irq assigned_irq = {
2225 .assigned_dev_id = dev_id,
2226 .guest_irq = guest_irq,
2227 .flags = irq_type,
2230 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2231 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2232 } else {
2233 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2237 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2238 uint32_t guest_irq)
2240 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2241 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2243 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2246 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2248 struct kvm_assigned_pci_dev dev_data = {
2249 .assigned_dev_id = dev_id,
2250 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2253 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2256 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2257 uint32_t type)
2259 struct kvm_assigned_irq assigned_irq = {
2260 .assigned_dev_id = dev_id,
2261 .flags = type,
2264 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2267 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2269 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2270 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2273 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2275 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2276 KVM_DEV_IRQ_GUEST_MSI, virq);
2279 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2281 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2282 KVM_DEV_IRQ_HOST_MSI);
2285 bool kvm_device_msix_supported(KVMState *s)
2287 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2288 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2289 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2292 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2293 uint32_t nr_vectors)
2295 struct kvm_assigned_msix_nr msix_nr = {
2296 .assigned_dev_id = dev_id,
2297 .entry_nr = nr_vectors,
2300 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2303 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2304 int virq)
2306 struct kvm_assigned_msix_entry msix_entry = {
2307 .assigned_dev_id = dev_id,
2308 .gsi = virq,
2309 .entry = vector,
2312 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2315 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2317 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2318 KVM_DEV_IRQ_GUEST_MSIX, 0);
2321 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2323 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2324 KVM_DEV_IRQ_HOST_MSIX);