1 HXCOMM Use
DEFHEADING() to define headings
in both help text and rST
.
2 HXCOMM Text between SRST and ERST is copied to the rST version and
3 HXCOMM discarded from C version
.
4 HXCOMM
DEF(option
, HAS_ARG
/0, opt_enum
, opt_help
, arch_mask
) is used to
5 HXCOMM construct option structures
, enums and help message
for specified
7 HXCOMM HXCOMM can be used
for comments
, discarded from both rST and C
.
9 DEFHEADING(Standard options
:)
11 DEF("help", 0, QEMU_OPTION_h
,
12 "-h or -help display this help and exit\n", QEMU_ARCH_ALL
)
18 DEF("version", 0, QEMU_OPTION_version
,
19 "-version display version information and exit\n", QEMU_ARCH_ALL
)
22 Display version information and exit
25 DEF("machine", HAS_ARG
, QEMU_OPTION_machine
, \
26 "-machine [type=]name[,prop[=value][,...]]\n"
27 " selects emulated machine ('-machine help' for list)\n"
28 " property accel=accel1[:accel2[:...]] selects accelerator\n"
29 " supported accelerators are kvm, xen, hax, hvf, whpx or tcg (default: tcg)\n"
30 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
31 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
32 " mem-merge=on|off controls memory merge support (default: on)\n"
33 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
34 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
35 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
36 " nvdimm=on|off controls NVDIMM support (default=off)\n"
37 " memory-encryption=@var{} memory encryption object to use (default=none)\n"
38 " hmat=on|off controls ACPI HMAT support (default=off)\n",
41 ``
-machine
[type
=]name
[,prop
=value
[,...]]``
42 Select the emulated machine by name
. Use ``
-machine help`` to list
45 For architectures which aim to support live migration compatibility
46 across releases
, each release will introduce a
new versioned machine
47 type
. For example
, the
2.8.0 release introduced machine types
48 "pc-i440fx-2.8" and
"pc-q35-2.8" for the x86\_64
/i686 architectures
.
50 To allow live migration of guests from QEMU version
2.8.0, to QEMU
51 version
2.9.0, the
2.9.0 version must support the
"pc-i440fx-2.8"
52 and
"pc-q35-2.8" machines too
. To allow users live migrating VMs to
53 skip multiple intermediate releases when upgrading
, new releases of
54 QEMU will support machine types from many previous versions
.
56 Supported machine properties are
:
58 ``accel
=accels1
[:accels2
[:...]]``
59 This is used to enable an accelerator
. Depending on the target
60 architecture
, kvm
, xen
, hax
, hvf
, whpx or tcg can be available
.
61 By
default, tcg is used
. If there is more than one accelerator
62 specified
, the next one is used
if the previous one fails to
65 ``vmport
=on|off|auto``
66 Enables emulation of VMWare IO port
, for vmmouse etc
. auto says
67 to select the value based on accel
. For accel
=xen the
default is
68 off otherwise the
default is on
.
70 ``dump
-guest
-core
=on|off``
71 Include guest memory
in a core dump
. The
default is on
.
74 Enables or disables memory merge support
. This feature
, when
75 supported by the host
, de
-duplicates identical memory pages
76 among VMs
instances (enabled by
default).
78 ``aes
-key
-wrap
=on|off``
79 Enables or disables AES key wrapping support on s390
-ccw hosts
.
80 This feature controls whether AES wrapping keys will be created
81 to allow execution of AES cryptographic functions
. The
default
84 ``dea
-key
-wrap
=on|off``
85 Enables or disables DEA key wrapping support on s390
-ccw hosts
.
86 This feature controls whether DEA wrapping keys will be created
87 to allow execution of DEA cryptographic functions
. The
default
91 Enables or disables NVDIMM support
. The
default is off
.
93 ``memory
-encryption
=``
94 Memory encryption object to use
. The
default is none
.
97 Enables or disables ACPI Heterogeneous Memory Attribute Table
98 (HMAT
) support
. The
default is off
.
101 HXCOMM Deprecated by
-machine
102 DEF("M", HAS_ARG
, QEMU_OPTION_M
, "", QEMU_ARCH_ALL
)
104 DEF("cpu", HAS_ARG
, QEMU_OPTION_cpu
,
105 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL
)
108 Select CPU
model (``
-cpu help``
for list and additional feature
112 DEF("accel", HAS_ARG
, QEMU_OPTION_accel
,
113 "-accel [accel=]accelerator[,prop[=value][,...]]\n"
114 " select accelerator (kvm, xen, hax, hvf, whpx or tcg; use 'help' for a list)\n"
115 " igd-passthru=on|off (enable Xen integrated Intel graphics passthrough, default=off)\n"
116 " kernel-irqchip=on|off|split controls accelerated irqchip support (default=on)\n"
117 " kvm-shadow-mem=size of KVM shadow MMU in bytes\n"
118 " split-wx=on|off (enable TCG split w^x mapping)\n"
119 " tb-size=n (TCG translation block cache size)\n"
120 " thread=single|multi (enable multi-threaded TCG)\n", QEMU_ARCH_ALL
)
122 ``
-accel name
[,prop
=value
[,...]]``
123 This is used to enable an accelerator
. Depending on the target
124 architecture
, kvm
, xen
, hax
, hvf
, whpx or tcg can be available
. By
125 default, tcg is used
. If there is more than one accelerator
126 specified
, the next one is used
if the previous one fails to
129 ``igd
-passthru
=on|off``
130 When Xen is
in use
, this option controls whether Intel
131 integrated graphics devices can be passed through to the guest
134 ``kernel
-irqchip
=on|off|split``
135 Controls KVM
in-kernel irqchip support
. The
default is full
136 acceleration of the interrupt controllers
. On x86
, split irqchip
137 reduces the kernel attack surface
, at a performance cost
for
138 non
-MSI interrupts
. Disabling the
in-kernel irqchip completely
139 is not recommended except
for debugging purposes
.
141 ``kvm
-shadow
-mem
=size``
142 Defines the size of the KVM shadow MMU
.
145 Controls the use of split w^x mapping
for the TCG code generation
146 buffer
. Some operating systems require
this to be enabled
, and
in
147 such a
case this will
default on
. On other operating systems
, this
148 will
default off
, but one may enable
this for testing or debugging
.
151 Controls the
size (in MiB
) of the TCG translation block cache
.
153 ``thread
=single|multi``
154 Controls number of TCG threads
. When the TCG is multi
-threaded
155 there will be one thread per vCPU therefor taking advantage of
156 additional host cores
. The
default is to enable multi
-threading
157 where both the back
-end and front
-ends support it and no
158 incompatible TCG features have been
enabled (e
.g
.
162 DEF("smp", HAS_ARG
, QEMU_OPTION_smp
,
163 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,dies=dies][,sockets=sockets]\n"
164 " set the number of CPUs to 'n' [default=1]\n"
165 " maxcpus= maximum number of total cpus, including\n"
166 " offline CPUs for hotplug, etc\n"
167 " cores= number of CPU cores on one socket (for PC, it's on one die)\n"
168 " threads= number of threads on one CPU core\n"
169 " dies= number of CPU dies on one socket (for PC only)\n"
170 " sockets= number of discrete sockets in the system\n",
173 ``
-smp
[cpus
=]n
[,cores
=cores
][,threads
=threads
][,dies
=dies
][,sockets
=sockets
][,maxcpus
=maxcpus
]``
174 Simulate an SMP system with n CPUs
. On the PC target
, up to
255 CPUs
175 are supported
. On Sparc32 target
, Linux limits the number of usable
176 CPUs to
4. For the PC target
, the number of cores per die
, the
177 number of threads per cores
, the number of dies per packages and the
178 total number of sockets can be specified
. Missing values will be
179 computed
. If any on the three values is given
, the total number of
180 CPUs n can be omitted
. maxcpus specifies the maximum number of
184 DEF("numa", HAS_ARG
, QEMU_OPTION_numa
,
185 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n"
186 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n"
187 "-numa dist,src=source,dst=destination,val=distance\n"
188 "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n"
189 "-numa hmat-lb,initiator=node,target=node,hierarchy=memory|first-level|second-level|third-level,data-type=access-latency|read-latency|write-latency[,latency=lat][,bandwidth=bw]\n"
190 "-numa hmat-cache,node-id=node,size=size,level=level[,associativity=none|direct|complex][,policy=none|write-back|write-through][,line=size]\n",
193 ``
-numa node
[,mem
=size
][,cpus
=firstcpu
[-lastcpu
]][,nodeid
=node
][,initiator
=initiator
]``
195 ``
-numa node
[,memdev
=id
][,cpus
=firstcpu
[-lastcpu
]][,nodeid
=node
][,initiator
=initiator
]``
197 ``
-numa dist
,src
=source
,dst
=destination
,val
=distance``
199 ``
-numa cpu
,node
-id
=node
[,socket
-id
=x
][,core
-id
=y
][,thread
-id
=z
]``
201 ``
-numa hmat
-lb
,initiator
=node
,target
=node
,hierarchy
=hierarchy
,data
-type
=tpye
[,latency
=lat
][,bandwidth
=bw
]``
203 ``
-numa hmat
-cache
,node
-id
=node
,size
=size
,level
=level
[,associativity
=str
][,policy
=str
][,line
=size
]``
204 Define a NUMA node and assign RAM and VCPUs to it
. Set the NUMA
205 distance from a source node to a destination node
. Set the ACPI
206 Heterogeneous Memory Attributes
for the given nodes
.
208 Legacy VCPU assignment uses
'\ ``cpus``\ ' option where firstcpu and
209 lastcpu are CPU indexes
. Each
'\ ``cpus``\ ' option represent a
210 contiguous range of CPU
indexes (or a single VCPU
if lastcpu is
211 omitted
). A non
-contiguous set of VCPUs can be represented by
212 providing multiple
'\ ``cpus``\ ' options
. If
'\ ``cpus``\ ' is
213 omitted on all nodes
, VCPUs are automatically split between them
.
215 For example
, the following option assigns VCPUs
0, 1, 2 and
5 to a
220 -numa node
,cpus
=0-2,cpus
=5
222 '\ ``cpu``\ ' option is a
new alternative to
'\ ``cpus``\ ' option
223 which uses
'\ ``socket-id|core-id|thread-id``\ ' properties to
224 assign CPU objects to a node
using topology layout properties of
225 CPU
. The set of properties is machine specific
, and depends on used
226 machine type
/'\ ``smp``\ ' options
. It could be queried with
227 '\ ``hotpluggable-cpus``\ ' monitor command
. '\ ``node-id``\ '
228 property specifies node to which CPU object will be assigned
, it
's
229 required for node to be declared with '\ ``node``\
' option before
230 it's used with
'\ ``cpu``\ ' option
.
237 -smp
1,sockets
=2,maxcpus
=2 \
238 -numa node
,nodeid
=0 -numa node
,nodeid
=1 \
239 -numa cpu
,node
-id
=0,socket
-id
=0 -numa cpu
,node
-id
=1,socket
-id
=1
241 Legacy
'\ ``mem``\ ' assigns a given RAM amount to a
node (not supported
242 for 5.1 and newer machine types
). '\ ``memdev``\ ' assigns RAM from
243 a given memory backend device to a node
. If
'\ ``mem``\ ' and
244 '\ ``memdev``\ ' are omitted
in all nodes
, RAM is split equally between them
.
247 '\ ``mem``\ ' and
'\ ``memdev``\ ' are mutually exclusive
.
248 Furthermore
, if one node uses
'\ ``memdev``\ ', all of them have to
251 '\ ``initiator``\ ' is an additional option that points to an
252 initiator NUMA node that has best
performance (the lowest latency or
253 largest bandwidth
) to
this NUMA node
. Note that
this option can be
254 set only when the machine property
'hmat' is set to
'on'.
256 Following example creates a machine with
2 NUMA nodes
, node
0 has
257 CPU
. node
1 has only memory
, and its initiator is node
0. Note that
258 because node
0 has CPU
, by
default the initiator of node
0 is itself
264 -m
2G
,slots
=2,maxmem
=4G \
265 -object memory
-backend
-ram
,size
=1G
,id
=m0 \
266 -object memory
-backend
-ram
,size
=1G
,id
=m1 \
267 -numa node
,nodeid
=0,memdev
=m0 \
268 -numa node
,nodeid
=1,memdev
=m1
,initiator
=0 \
269 -smp
2,sockets
=2,maxcpus
=2 \
270 -numa cpu
,node
-id
=0,socket
-id
=0 \
271 -numa cpu
,node
-id
=0,socket
-id
=1
273 source and destination are NUMA node IDs
. distance is the NUMA
274 distance from source to destination
. The distance from a node to
275 itself is always
10. If any pair of nodes is given a distance
, then
276 all pairs must be given distances
. Although
, when distances are only
277 given
in one direction
for each pair of nodes
, then the distances
in
278 the opposite directions are assumed to be the same
. If
, however
, an
279 asymmetrical pair of distances is given
for even one node pair
, then
280 all node pairs must be provided distance values
for both directions
,
281 even when they are symmetrical
. When a node is unreachable from
282 another node
, set the pair
's distance to 255.
284 Note that the -``numa`` option doesn't allocate any of the specified
285 resources
, it just assigns existing resources to NUMA nodes
. This
286 means that one still has to use the ``
-m``
, ``
-smp`` options to
287 allocate RAM and VCPUs respectively
.
289 Use
'\ ``hmat-lb``\ ' to set System Locality Latency and Bandwidth
290 Information between initiator and target NUMA nodes
in ACPI
291 Heterogeneous Attribute Memory
Table (HMAT
). Initiator NUMA node can
292 create memory requests
, usually it has one or more processors
.
293 Target NUMA node contains addressable memory
.
295 In
'\ ``hmat-lb``\ ' option
, node are NUMA node IDs
. hierarchy is
296 the memory hierarchy of the target NUMA node
: if hierarchy is
297 'memory', the structure represents the memory performance
; if
298 hierarchy is
'first-level\|second-level\|third-level', this
299 structure represents aggregated performance of memory side caches
300 for each domain
. type of
'data-type' is type of data represented by
301 this structure instance
: if 'hierarchy' is
'memory', 'data-type' is
302 'access\|read\|write' latency or
'access\|read\|write' bandwidth of
303 the target memory
; if 'hierarchy' is
304 'first-level\|second-level\|third-level', 'data-type' is
305 'access\|read\|write' hit latency or
'access\|read\|write' hit
306 bandwidth of the target memory side cache
.
308 lat is latency value
in nanoseconds
. bw is bandwidth value
, the
309 possible value and units are NUM
[M\|G\|T
], mean that the bandwidth
310 value are NUM byte per
second (or MB
/s
, GB
/s or TB
/s depending on
311 used suffix
). Note that
if latency or bandwidth value is
0, means
312 the corresponding latency or bandwidth information is not provided
.
314 In
'\ ``hmat-cache``\ ' option
, node
-id is the NUMA
-id of the memory
315 belongs
. size is the size of memory side cache
in bytes
. level is
316 the cache level described
in this structure
, note that the cache
317 level
0 should not be used with
'\ ``hmat-cache``\ ' option
.
318 associativity is the cache associativity
, the possible value is
319 'none/direct(direct-mapped)/complex(complex cache indexing)'. policy
320 is the write policy
. line is the cache Line size
in bytes
.
322 For example
, the following options describe
2 NUMA nodes
. Node
0 has
323 2 cpus and a ram
, node
1 has only a ram
. The processors
in node
0
324 access memory
in node
0 with access
-latency
5 nanoseconds
,
325 access
-bandwidth is
200 MB
/s
; The processors
in NUMA node
0 access
326 memory
in NUMA node
1 with access
-latency
10 nanoseconds
,
327 access
-bandwidth is
100 MB
/s
. And
for memory side cache information
,
328 NUMA node
0 and
1 both have
1 level memory cache
, size is
10KB
,
329 policy is write
-back
, the cache Line size is
8 bytes
:
335 -object memory
-backend
-ram
,size
=1G
,id
=m0 \
336 -object memory
-backend
-ram
,size
=1G
,id
=m1 \
338 -numa node
,nodeid
=0,memdev
=m0 \
339 -numa node
,nodeid
=1,memdev
=m1
,initiator
=0 \
340 -numa cpu
,node
-id
=0,socket
-id
=0 \
341 -numa cpu
,node
-id
=0,socket
-id
=1 \
342 -numa hmat
-lb
,initiator
=0,target
=0,hierarchy
=memory
,data
-type
=access
-latency
,latency
=5 \
343 -numa hmat
-lb
,initiator
=0,target
=0,hierarchy
=memory
,data
-type
=access
-bandwidth
,bandwidth
=200M \
344 -numa hmat
-lb
,initiator
=0,target
=1,hierarchy
=memory
,data
-type
=access
-latency
,latency
=10 \
345 -numa hmat
-lb
,initiator
=0,target
=1,hierarchy
=memory
,data
-type
=access
-bandwidth
,bandwidth
=100M \
346 -numa hmat
-cache
,node
-id
=0,size
=10K
,level
=1,associativity
=direct
,policy
=write
-back
,line
=8 \
347 -numa hmat
-cache
,node
-id
=1,size
=10K
,level
=1,associativity
=direct
,policy
=write
-back
,line
=8
350 DEF("add-fd", HAS_ARG
, QEMU_OPTION_add_fd
,
351 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
352 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL
)
354 ``
-add
-fd fd
=fd
,set
=set
[,opaque
=opaque
]``
355 Add a file descriptor to an fd set
. Valid options are
:
358 This option defines the file descriptor of which a duplicate is
359 added to fd set
. The file descriptor cannot be stdin
, stdout
, or
363 This option defines the ID of the fd set to add the file
367 This option defines a free
-form string that can be used to
370 You can open an image
using pre
-opened file descriptors from an fd
376 -add
-fd fd
=3,set
=2,opaque
="rdwr:/path/to/file" \\
377 -add
-fd fd
=4,set
=2,opaque
="rdonly:/path/to/file" \\
378 -drive file
=/dev
/fdset
/2,index
=0,media
=disk
381 DEF("set", HAS_ARG
, QEMU_OPTION_set
,
382 "-set group.id.arg=value\n"
383 " set <arg> parameter for item <id> of type <group>\n"
384 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL
)
386 ``
-set group
.id
.arg
=value``
387 Set parameter arg
for item id of type group
390 DEF("global", HAS_ARG
, QEMU_OPTION_global
,
391 "-global driver.property=value\n"
392 "-global driver=driver,property=property,value=value\n"
393 " set a global default for a driver property\n",
396 ``
-global driver
.prop
=value``
398 ``
-global driver
=driver
,property
=property
,value
=value``
399 Set
default value of driver
's property prop to value, e.g.:
403 |qemu_system_x86| -global ide-hd.physical_block_size=4096 disk-image.img
405 In particular, you can use this to set driver properties for devices
406 which are created automatically by the machine model. To create a
407 device which is not created automatically and set properties on it,
410 -global driver.prop=value is shorthand for -global
411 driver=driver,property=prop,value=value. The longhand syntax works
412 even when driver contains a dot.
415 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
416 "-boot [order=drives][,once=drives][,menu=on|off]\n"
417 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
418 " 'drives
': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
419 " 'sp_name
': the file's name that would be passed to bios as logo picture
, if menu
=on
\n"
420 " 'sp_time': the period that splash picture last
if menu
=on
, unit is ms
\n"
421 " 'rb_timeout': the timeout before guest reboot when boot failed
, unit is ms
\n",
424 ``-boot [order=drives][,once=drives][,menu=on|off][,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_timeout][,strict=on|off]``
425 Specify boot order drives as a string of drive letters. Valid drive
426 letters depend on the target architecture. The x86 PC uses: a, b
427 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p
428 (Etherboot from network adapter 1-4), hard disk boot is the default.
429 To apply a particular boot order only on the first startup, specify
430 it via ``once``. Note that the ``order`` or ``once`` parameter
431 should not be used together with the ``bootindex`` property of
432 devices, since the firmware implementations normally do not support
433 both at the same time.
435 Interactive boot menus/prompts can be enabled via ``menu=on`` as far
436 as firmware/BIOS supports them. The default is non-interactive boot.
438 A splash picture could be passed to bios, enabling user to show it
439 as logo, when option splash=sp\_name is given and menu=on, If
440 firmware/BIOS supports them. Currently Seabios for X86 system
441 support it. limitation: The splash file could be a jpeg file or a
442 BMP file in 24 BPP format(true color). The resolution should be
443 supported by the SVGA mode, so the recommended is 320x240, 640x480,
446 A timeout could be passed to bios, guest will pause for rb\_timeout
447 ms when boot failed, then reboot. If rb\_timeout is '-1', guest will
448 not reboot, qemu passes '-1' to bios by default. Currently Seabios
449 for X86 system support it.
451 Do strict boot via ``strict=on`` as far as firmware/BIOS supports
452 it. This only effects when boot priority is changed by bootindex
453 options. The default is non-strict boot.
457 # try to boot from network first, then from hard disk
458 |qemu_system_x86| -boot order=nc
459 # boot from CD-ROM first, switch back to default order after reboot
460 |qemu_system_x86| -boot once=d
461 # boot with a splash picture for 5 seconds.
462 |qemu_system_x86| -boot menu=on,splash=/root/boot.bmp,splash-time=5000
464 Note: The legacy format '-boot drives' is still supported but its
465 use is discouraged as it may be removed from future versions.
468 DEF("m
", HAS_ARG, QEMU_OPTION_m,
469 "-m
[size
=]megs
[,slots
=n
,maxmem
=size
]\n"
470 " configure guest RAM
\n"
471 " size
: initial amount of guest memory
\n"
472 " slots
: number of hotplug
slots (default: none
)\n"
473 " maxmem
: maximum amount of guest
memory (default: none
)\n"
474 "NOTE
: Some architectures might enforce a specific granularity
\n",
477 ``-m [size=]megs[,slots=n,maxmem=size]``
478 Sets guest startup RAM size to megs megabytes. Default is 128 MiB.
479 Optionally, a suffix of "M
" or "G
" can be used to signify a value in
480 megabytes or gigabytes respectively. Optional pair slots, maxmem
481 could be used to set amount of hotpluggable memory slots and maximum
482 amount of memory. Note that maxmem must be aligned to the page size.
484 For example, the following command-line sets the guest startup RAM
485 size to 1GB, creates 3 slots to hotplug additional memory and sets
486 the maximum memory the guest can reach to 4GB:
490 |qemu_system| -m 1G,slots=3,maxmem=4G
492 If slots and maxmem are not specified, memory hotplug won't be
493 enabled and the guest startup RAM will never increase.
496 DEF("mem
-path
", HAS_ARG, QEMU_OPTION_mempath,
497 "-mem
-path FILE provide backing storage
for guest RAM
\n", QEMU_ARCH_ALL)
500 Allocate guest RAM from a temporarily created file in path.
503 DEF("mem
-prealloc
", 0, QEMU_OPTION_mem_prealloc,
504 "-mem
-prealloc preallocate guest
memory (use with
-mem
-path
)\n",
508 Preallocate memory when using -mem-path.
511 DEF("k
", HAS_ARG, QEMU_OPTION_k,
512 "-k language use keyboard
layout (for example
'fr' for French
)\n",
516 Use keyboard layout language (for example ``fr`` for French). This
517 option is only needed where it is not easy to get raw PC keycodes
518 (e.g. on Macs, with some X11 servers or with a VNC or curses
519 display). You don't normally need to use it on PC/Linux or
522 The available layouts are:
526 ar de-ch es fo fr-ca hu ja mk no pt-br sv
527 da en-gb et fr fr-ch is lt nl pl ru th
528 de en-us fi fr-be hr it lv nl-be pt sl tr
530 The default is ``en-us``.
534 HXCOMM Deprecated by -audiodev
535 DEF("audio
-help
", 0, QEMU_OPTION_audio_help,
536 "-audio
-help show
-audiodev equivalent of the currently specified audio settings
\n",
540 Will show the -audiodev equivalent of the currently specified
541 (deprecated) environment variables.
544 DEF("audiodev
", HAS_ARG, QEMU_OPTION_audiodev,
545 "-audiodev
[driver
=]driver
,id
=id
[,prop
[=value
][,...]]\n"
546 " specifies the audio backend to use
\n"
547 " id
= identifier of the backend
\n"
548 " timer
-period
= timer period
in microseconds
\n"
549 " in|out
.mixing
-engine
= use mixing engine to mix streams inside QEMU
\n"
550 " in|out
.fixed
-settings
= use fixed settings
for host audio
\n"
551 " in|out
.frequency
= frequency to use with fixed settings
\n"
552 " in|out
.channels
= number of channels to use with fixed settings
\n"
553 " in|out
.format
= sample format to use with fixed settings
\n"
554 " valid values
: s8
, s16
, s32
, u8
, u16
, u32
, f32
\n"
555 " in|out
.voices
= number of voices to use
\n"
556 " in|out
.buffer
-length
= length of buffer
in microseconds
\n"
557 "-audiodev none
,id
=id
,[,prop
[=value
][,...]]\n"
558 " dummy driver that discards all output
\n"
559 #ifdef CONFIG_AUDIO_ALSA
560 "-audiodev alsa
,id
=id
[,prop
[=value
][,...]]\n"
561 " in|out
.dev
= name of the audio device to use
\n"
562 " in|out
.period
-length
= length of period
in microseconds
\n"
563 " in|out
.try-poll
= attempt to use poll mode
\n"
564 " threshold
= threshold (in microseconds
) when playback starts
\n"
566 #ifdef CONFIG_AUDIO_COREAUDIO
567 "-audiodev coreaudio
,id
=id
[,prop
[=value
][,...]]\n"
568 " in|out
.buffer
-count
= number of buffers
\n"
570 #ifdef CONFIG_AUDIO_DSOUND
571 "-audiodev dsound
,id
=id
[,prop
[=value
][,...]]\n"
572 " latency
= add extra latency to playback
in microseconds
\n"
574 #ifdef CONFIG_AUDIO_OSS
575 "-audiodev oss
,id
=id
[,prop
[=value
][,...]]\n"
576 " in|out
.dev
= path of the audio device to use
\n"
577 " in|out
.buffer
-count
= number of buffers
\n"
578 " in|out
.try-poll
= attempt to use poll mode
\n"
579 " try-mmap
= try using memory mapped access
\n"
580 " exclusive
= open device
in exclusive mode
\n"
581 " dsp
-policy
= set timing
policy (0..10), -1 to use fragment mode
\n"
583 #ifdef CONFIG_AUDIO_PA
584 "-audiodev pa
,id
=id
[,prop
[=value
][,...]]\n"
585 " server
= PulseAudio server address
\n"
586 " in|out
.name
= source
/sink device name
\n"
587 " in|out
.latency
= desired latency
in microseconds
\n"
589 #ifdef CONFIG_AUDIO_SDL
590 "-audiodev sdl
,id
=id
[,prop
[=value
][,...]]\n"
591 " in|out
.buffer
-count
= number of buffers
\n"
594 "-audiodev spice
,id
=id
[,prop
[=value
][,...]]\n"
596 "-audiodev wav
,id
=id
[,prop
[=value
][,...]]\n"
597 " path
= path of wav file to record
\n",
600 ``-audiodev [driver=]driver,id=id[,prop[=value][,...]]``
601 Adds a new audio backend driver identified by id. There are global
602 and driver specific properties. Some values can be set differently
603 for input and output, they're marked with ``in|out.``. You can set
604 the input's property with ``in.prop`` and the output's property with
605 ``out.prop``. For example:
609 -audiodev alsa,id=example,in.frequency=44110,out.frequency=8000
610 -audiodev alsa,id=example,out.channels=1 # leaves in.channels unspecified
612 NOTE: parameter validation is known to be incomplete, in many cases
613 specifying an invalid option causes QEMU to print an error message
614 and continue emulation without sound.
616 Valid global options are:
619 Identifies the audio backend.
621 ``timer-period=period``
622 Sets the timer period used by the audio subsystem in
623 microseconds. Default is 10000 (10 ms).
625 ``in|out.mixing-engine=on|off``
626 Use QEMU's mixing engine to mix all streams inside QEMU and
627 convert audio formats when not supported by the backend. When
628 off, fixed-settings must be off too. Note that disabling this
629 option means that the selected backend must support multiple
630 streams and the audio formats used by the virtual cards,
631 otherwise you'll get no sound. It's not recommended to disable
632 this option unless you want to use 5.1 or 7.1 audio, as mixing
633 engine only supports mono and stereo audio. Default is on.
635 ``in|out.fixed-settings=on|off``
636 Use fixed settings for host audio. When off, it will change
637 based on how the guest opens the sound card. In this case you
638 must not specify frequency, channels or format. Default is on.
640 ``in|out.frequency=frequency``
641 Specify the frequency to use when using fixed-settings. Default
644 ``in|out.channels=channels``
645 Specify the number of channels to use when using fixed-settings.
646 Default is 2 (stereo).
648 ``in|out.format=format``
649 Specify the sample format to use when using fixed-settings.
650 Valid values are: ``s8``, ``s16``, ``s32``, ``u8``, ``u16``,
651 ``u32``, ``f32``. Default is ``s16``.
653 ``in|out.voices=voices``
654 Specify the number of voices to use. Default is 1.
656 ``in|out.buffer-length=usecs``
657 Sets the size of the buffer in microseconds.
659 ``-audiodev none,id=id[,prop[=value][,...]]``
660 Creates a dummy backend that discards all outputs. This backend has
661 no backend specific properties.
663 ``-audiodev alsa,id=id[,prop[=value][,...]]``
664 Creates backend using the ALSA. This backend is only available on
667 ALSA specific options are:
669 ``in|out.dev=device``
670 Specify the ALSA device to use for input and/or output. Default
673 ``in|out.period-length=usecs``
674 Sets the period length in microseconds.
676 ``in|out.try-poll=on|off``
677 Attempt to use poll mode with the device. Default is on.
679 ``threshold=threshold``
680 Threshold (in microseconds) when playback starts. Default is 0.
682 ``-audiodev coreaudio,id=id[,prop[=value][,...]]``
683 Creates a backend using Apple's Core Audio. This backend is only
684 available on Mac OS and only supports playback.
686 Core Audio specific options are:
688 ``in|out.buffer-count=count``
689 Sets the count of the buffers.
691 ``-audiodev dsound,id=id[,prop[=value][,...]]``
692 Creates a backend using Microsoft's DirectSound. This backend is
693 only available on Windows and only supports playback.
695 DirectSound specific options are:
698 Add extra usecs microseconds latency to playback. Default is
701 ``-audiodev oss,id=id[,prop[=value][,...]]``
702 Creates a backend using OSS. This backend is available on most
705 OSS specific options are:
707 ``in|out.dev=device``
708 Specify the file name of the OSS device to use. Default is
711 ``in|out.buffer-count=count``
712 Sets the count of the buffers.
714 ``in|out.try-poll=on|of``
715 Attempt to use poll mode with the device. Default is on.
718 Try using memory mapped device access. Default is off.
721 Open the device in exclusive mode (vmix won't work in this
722 case). Default is off.
724 ``dsp-policy=policy``
725 Sets the timing policy (between 0 and 10, where smaller number
726 means smaller latency but higher CPU usage). Use -1 to use
727 buffer sizes specified by ``buffer`` and ``buffer-count``. This
728 option is ignored if you do not have OSS 4. Default is 5.
730 ``-audiodev pa,id=id[,prop[=value][,...]]``
731 Creates a backend using PulseAudio. This backend is available on
734 PulseAudio specific options are:
737 Sets the PulseAudio server to connect to.
740 Use the specified source/sink for recording/playback.
742 ``in|out.latency=usecs``
743 Desired latency in microseconds. The PulseAudio server will try
744 to honor this value but actual latencies may be lower or higher.
746 ``-audiodev sdl,id=id[,prop[=value][,...]]``
747 Creates a backend using SDL. This backend is available on most
748 systems, but you should use your platform's native backend if
751 SDL specific options are:
753 ``in|out.buffer-count=count``
754 Sets the count of the buffers.
756 ``-audiodev spice,id=id[,prop[=value][,...]]``
757 Creates a backend that sends audio through SPICE. This backend
758 requires ``-spice`` and automatically selected in that case, so
759 usually you can ignore this option. This backend has no backend
762 ``-audiodev wav,id=id[,prop[=value][,...]]``
763 Creates a backend that writes audio to a WAV file.
765 Backend specific options are:
768 Write recorded audio into the specified file. Default is
772 DEF("soundhw
", HAS_ARG, QEMU_OPTION_soundhw,
773 "-soundhw c1
,... enable audio support
\n"
774 " and only specified sound
cards (comma separated list
)\n"
775 " use
'-soundhw help' to get the list of supported cards
\n"
776 " use
'-soundhw all' to enable all of them
\n", QEMU_ARCH_ALL)
778 ``-soundhw card1[,card2,...] or -soundhw all``
779 Enable audio and selected sound hardware. Use 'help' to print all
780 available sound hardware. For example:
784 |qemu_system_x86| -soundhw sb16,adlib disk.img
785 |qemu_system_x86| -soundhw es1370 disk.img
786 |qemu_system_x86| -soundhw ac97 disk.img
787 |qemu_system_x86| -soundhw hda disk.img
788 |qemu_system_x86| -soundhw all disk.img
789 |qemu_system_x86| -soundhw help
791 Note that Linux's i810\_audio OSS kernel (for AC97) module might
792 require manually specifying clocking.
796 modprobe i810_audio clocking=48000
799 DEF("device
", HAS_ARG, QEMU_OPTION_device,
800 "-device driver
[,prop
[=value
][,...]]\n"
801 " add
device (based on driver
)\n"
802 " prop
=value
,... sets driver properties
\n"
803 " use
'-device help' to print all possible drivers
\n"
804 " use
'-device driver,help' to print all possible properties
\n",
807 ``-device driver[,prop[=value][,...]]``
808 Add device driver. prop=value sets driver properties. Valid
809 properties depend on the driver. To get help on possible drivers and
810 properties, use ``-device help`` and ``-device driver,help``.
814 ``-device ipmi-bmc-sim,id=id[,prop[=value][,...]]``
815 Add an IPMI BMC. This is a simulation of a hardware management
816 interface processor that normally sits on a system. It provides a
817 watchdog and the ability to reset and power control the system. You
818 need to connect this to an IPMI interface to make it useful
820 The IPMI slave address to use for the BMC. The default is 0x20. This
821 address is the BMC's address on the I2C network of management
822 controllers. If you don't know what this means, it is safe to ignore
826 The BMC id for interfaces to use this device.
829 Define slave address to use for the BMC. The default is 0x20.
832 file containing raw Sensor Data Records (SDR) data. The default
836 size of a Field Replaceable Unit (FRU) area. The default is
840 file containing raw Field Replaceable Unit (FRU) inventory data.
844 value for the GUID for the BMC, in standard UUID format. If this
845 is set, get "Get GUID
" command to the BMC will return it.
846 Otherwise "Get GUID
" will return an error.
848 ``-device ipmi-bmc-extern,id=id,chardev=id[,slave_addr=val]``
849 Add a connection to an external IPMI BMC simulator. Instead of
850 locally emulating the BMC like the above item, instead connect to an
851 external entity that provides the IPMI services.
853 A connection is made to an external BMC simulator. If you do this,
854 it is strongly recommended that you use the "reconnect
=" chardev
855 option to reconnect to the simulator if the connection is lost. Note
856 that if this is not used carefully, it can be a security issue, as
857 the interface has the ability to send resets, NMIs, and power off
858 the VM. It's best if QEMU makes a connection to an external
859 simulator running on a secure port on localhost, so neither the
860 simulator nor QEMU is exposed to any outside network.
862 See the "lanserv
/README
.vm
" file in the OpenIPMI library for more
863 details on the external interface.
865 ``-device isa-ipmi-kcs,bmc=id[,ioport=val][,irq=val]``
866 Add a KCS IPMI interafce on the ISA bus. This also adds a
867 corresponding ACPI and SMBIOS entries, if appropriate.
870 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern
874 Define the I/O address of the interface. The default is 0xca0
878 Define the interrupt to use. The default is 5. To disable
879 interrupts, set this to 0.
881 ``-device isa-ipmi-bt,bmc=id[,ioport=val][,irq=val]``
882 Like the KCS interface, but defines a BT interface. The default port
883 is 0xe4 and the default interrupt is 5.
885 ``-device pci-ipmi-kcs,bmc=id``
886 Add a KCS IPMI interafce on the PCI bus.
889 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
891 ``-device pci-ipmi-bt,bmc=id``
892 Like the KCS interface, but defines a BT interface on the PCI bus.
895 DEF("name
", HAS_ARG, QEMU_OPTION_name,
896 "-name string1
[,process
=string2
][,debug
-threads
=on|off
]\n"
897 " set the name of the guest
\n"
898 " string1 sets the window title and string2 the process name
\n"
899 " When debug
-threads is enabled
, individual threads are given a separate name
\n"
900 " NOTE
: The thread names are
for debugging and not a stable API
.\n",
904 Sets the name of the guest. This name will be displayed in the SDL
905 window caption. The name will also be used for the VNC server. Also
906 optionally set the top visible process name in Linux. Naming of
907 individual threads can also be enabled on Linux to aid debugging.
910 DEF("uuid
", HAS_ARG, QEMU_OPTION_uuid,
911 "-uuid
%08x
-%04x
-%04x
-%04x
-%012x
\n"
912 " specify machine UUID
\n", QEMU_ARCH_ALL)
920 DEFHEADING(Block device options:)
922 DEF("fda
", HAS_ARG, QEMU_OPTION_fda,
923 "-fda
/-fdb file use
'file' as floppy disk
0/1 image
\n", QEMU_ARCH_ALL)
924 DEF("fdb
", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
929 Use file as floppy disk 0/1 image (see the :ref:`disk images` chapter in
930 the System Emulation Users Guide).
933 DEF("hda
", HAS_ARG, QEMU_OPTION_hda,
934 "-hda
/-hdb file use
'file' as IDE hard disk
0/1 image
\n", QEMU_ARCH_ALL)
935 DEF("hdb
", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
936 DEF("hdc
", HAS_ARG, QEMU_OPTION_hdc,
937 "-hdc
/-hdd file use
'file' as IDE hard disk
2/3 image
\n", QEMU_ARCH_ALL)
938 DEF("hdd
", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
947 Use file as hard disk 0, 1, 2 or 3 image (see the :ref:`disk images`
948 chapter in the System Emulation Users Guide).
951 DEF("cdrom
", HAS_ARG, QEMU_OPTION_cdrom,
952 "-cdrom file use
'file' as IDE cdrom
image (cdrom is ide1 master
)\n",
956 Use file as CD-ROM image (you cannot use ``-hdc`` and ``-cdrom`` at
957 the same time). You can use the host CD-ROM by using ``/dev/cdrom``
961 DEF("blockdev
", HAS_ARG, QEMU_OPTION_blockdev,
962 "-blockdev
[driver
=]driver
[,node
-name
=N
][,discard
=ignore|unmap
]\n"
963 " [,cache
.direct
=on|off
][,cache
.no
-flush
=on|off
]\n"
964 " [,read
-only
=on|off
][,auto
-read
-only
=on|off
]\n"
965 " [,force
-share
=on|off
][,detect
-zeroes
=on|off|unmap
]\n"
966 " [,driver specific parameters
...]\n"
967 " configure a block backend
\n", QEMU_ARCH_ALL)
969 ``-blockdev option[,option[,option[,...]]]``
970 Define a new block driver node. Some of the options apply to all
971 block drivers, other options are only accepted for a specific block
972 driver. See below for a list of generic options and options for the
973 most common block drivers.
975 Options that expect a reference to another node (e.g. ``file``) can
976 be given in two ways. Either you specify the node name of an already
977 existing node (file=node-name), or you define a new node inline,
978 adding options for the referenced node after a dot
979 (file.filename=path,file.aio=native).
981 A block driver node created with ``-blockdev`` can be used for a
982 guest device by specifying its node name for the ``drive`` property
983 in a ``-device`` argument that defines a block device.
985 ``Valid options for any block driver node:``
987 Specifies the block driver to use for the given node.
990 This defines the name of the block driver node by which it
991 will be referenced later. The name must be unique, i.e. it
992 must not match the name of a different block driver node, or
993 (if you use ``-drive`` as well) the ID of a drive.
995 If no node name is specified, it is automatically generated.
996 The generated node name is not intended to be predictable
997 and changes between QEMU invocations. For the top level, an
998 explicit node name must be specified.
1001 Open the node read-only. Guest write attempts will fail.
1003 Note that some block drivers support only read-only access,
1004 either generally or in certain configurations. In this case,
1005 the default value ``read-only=off`` does not work and the
1006 option must be specified explicitly.
1009 If ``auto-read-only=on`` is set, QEMU may fall back to
1010 read-only usage even when ``read-only=off`` is requested, or
1011 even switch between modes as needed, e.g. depending on
1012 whether the image file is writable or whether a writing user
1013 is attached to the node.
1016 Override the image locking system of QEMU by forcing the
1017 node to utilize weaker shared access for permissions where
1018 it would normally request exclusive access. When there is
1019 the potential for multiple instances to have the same file
1020 open (whether this invocation of QEMU is the first or the
1021 second instance), both instances must permit shared access
1022 for the second instance to succeed at opening the file.
1024 Enabling ``force-share=on`` requires ``read-only=on``.
1027 The host page cache can be avoided with ``cache.direct=on``.
1028 This will attempt to do disk IO directly to the guest's
1029 memory. QEMU may still perform an internal copy of the data.
1032 In case you don't care about data integrity over host
1033 failures, you can use ``cache.no-flush=on``. This option
1034 tells QEMU that it never needs to write any data to the disk
1035 but can instead keep things in cache. If anything goes
1036 wrong, like your host losing power, the disk storage getting
1037 disconnected accidentally, etc. your image will most
1038 probably be rendered unusable.
1041 discard is one of "ignore
" (or "off
") or "unmap
" (or "on
")
1042 and controls whether ``discard`` (also known as ``trim`` or
1043 ``unmap``) requests are ignored or passed to the filesystem.
1044 Some machine types may not support discard requests.
1046 ``detect-zeroes=detect-zeroes``
1047 detect-zeroes is "off
", "on
" or "unmap
" and enables the
1048 automatic conversion of plain zero writes by the OS to
1049 driver specific optimized zero write commands. You may even
1050 choose "unmap
" if discard is set to "unmap
" to allow a zero
1051 write to be converted to an ``unmap`` operation.
1053 ``Driver-specific options for file``
1054 This is the protocol-level block driver for accessing regular
1058 The path to the image file in the local filesystem
1061 Specifies the AIO backend (threads/native/io_uring,
1065 Specifies whether the image file is protected with Linux OFD
1066 / POSIX locks. The default is to use the Linux Open File
1067 Descriptor API if available, otherwise no lock is applied.
1068 (auto/on/off, default: auto)
1074 -blockdev driver=file,node-name=disk,filename=disk.img
1076 ``Driver-specific options for raw``
1077 This is the image format block driver for raw images. It is
1078 usually stacked on top of a protocol level block driver such as
1082 Reference to or definition of the data source block driver
1083 node (e.g. a ``file`` driver node)
1089 -blockdev driver=file,node-name=disk_file,filename=disk.img
1090 -blockdev driver=raw,node-name=disk,file=disk_file
1096 -blockdev driver=raw,node-name=disk,file.driver=file,file.filename=disk.img
1098 ``Driver-specific options for qcow2``
1099 This is the image format block driver for qcow2 images. It is
1100 usually stacked on top of a protocol level block driver such as
1104 Reference to or definition of the data source block driver
1105 node (e.g. a ``file`` driver node)
1108 Reference to or definition of the backing file block device
1109 (default is taken from the image file). It is allowed to
1110 pass ``null`` here in order to disable the default backing
1114 Whether to enable the lazy refcounts feature (on/off;
1115 default is taken from the image file)
1118 The maximum total size of the L2 table and refcount block
1119 caches in bytes (default: the sum of l2-cache-size and
1120 refcount-cache-size)
1123 The maximum size of the L2 table cache in bytes (default: if
1124 cache-size is not specified - 32M on Linux platforms, and 8M
1125 on non-Linux platforms; otherwise, as large as possible
1126 within the cache-size, while permitting the requested or the
1127 minimal refcount cache size)
1129 ``refcount-cache-size``
1130 The maximum size of the refcount block cache in bytes
1131 (default: 4 times the cluster size; or if cache-size is
1132 specified, the part of it which is not used for the L2
1135 ``cache-clean-interval``
1136 Clean unused entries in the L2 and refcount caches. The
1137 interval is in seconds. The default value is 600 on
1138 supporting platforms, and 0 on other platforms. Setting it
1139 to 0 disables this feature.
1141 ``pass-discard-request``
1142 Whether discard requests to the qcow2 device should be
1143 forwarded to the data source (on/off; default: on if
1144 discard=unmap is specified, off otherwise)
1146 ``pass-discard-snapshot``
1147 Whether discard requests for the data source should be
1148 issued when a snapshot operation (e.g. deleting a snapshot)
1149 frees clusters in the qcow2 file (on/off; default: on)
1151 ``pass-discard-other``
1152 Whether discard requests for the data source should be
1153 issued on other occasions where a cluster gets freed
1154 (on/off; default: off)
1157 Which overlap checks to perform for writes to the image
1158 (none/constant/cached/all; default: cached). For details or
1159 finer granularity control refer to the QAPI documentation of
1166 -blockdev driver=file,node-name=my_file,filename=/tmp/disk.qcow2
1167 -blockdev driver=qcow2,node-name=hda,file=my_file,overlap-check=none,cache-size=16777216
1173 -blockdev driver=qcow2,node-name=disk,file.driver=http,file.filename=http://example.com/image.qcow2
1175 ``Driver-specific options for other drivers``
1176 Please refer to the QAPI documentation of the ``blockdev-add``
1180 DEF("drive
", HAS_ARG, QEMU_OPTION_drive,
1181 "-drive
[file
=file
][,if=type
][,bus
=n
][,unit
=m
][,media
=d
][,index
=i
]\n"
1182 " [,cache
=writethrough|writeback|none|directsync|unsafe
][,format
=f
]\n"
1183 " [,snapshot
=on|off
][,rerror
=ignore|stop|report
]\n"
1184 " [,werror
=ignore|stop|report|enospc
][,id
=name
]\n"
1185 " [,aio
=threads|native|io_uring
]\n"
1186 " [,readonly
=on|off
][,copy
-on
-read
=on|off
]\n"
1187 " [,discard
=ignore|unmap
][,detect
-zeroes
=on|off|unmap
]\n"
1188 " [[,bps
=b
]|
[[,bps_rd
=r
][,bps_wr
=w
]]]\n"
1189 " [[,iops
=i
]|
[[,iops_rd
=r
][,iops_wr
=w
]]]\n"
1190 " [[,bps_max
=bm
]|
[[,bps_rd_max
=rm
][,bps_wr_max
=wm
]]]\n"
1191 " [[,iops_max
=im
]|
[[,iops_rd_max
=irm
][,iops_wr_max
=iwm
]]]\n"
1192 " [[,iops_size
=is
]]\n"
1194 " use
'file' as a drive image
\n", QEMU_ARCH_ALL)
1196 ``-drive option[,option[,option[,...]]]``
1197 Define a new drive. This includes creating a block driver node (the
1198 backend) as well as a guest device, and is mostly a shortcut for
1199 defining the corresponding ``-blockdev`` and ``-device`` options.
1201 ``-drive`` accepts all options that are accepted by ``-blockdev``.
1202 In addition, it knows the following options:
1205 This option defines which disk image (see the :ref:`disk images`
1206 chapter in the System Emulation Users Guide) to use with this drive.
1207 If the filename contains comma, you must double it (for instance,
1208 "file
=my
,,file
" to use file "my
,file
").
1210 Special files such as iSCSI devices can be specified using
1211 protocol specific URLs. See the section for "Device URL Syntax
"
1212 for more information.
1215 This option defines on which type on interface the drive is
1216 connected. Available types are: ide, scsi, sd, mtd, floppy,
1217 pflash, virtio, none.
1219 ``bus=bus,unit=unit``
1220 These options define where is connected the drive by defining
1221 the bus number and the unit id.
1224 This option defines where is connected the drive by using an
1225 index in the list of available connectors of a given interface
1229 This option defines the type of the media: disk or cdrom.
1231 ``snapshot=snapshot``
1232 snapshot is "on
" or "off
" and controls snapshot mode for the
1233 given drive (see ``-snapshot``).
1236 cache is "none
", "writeback
", "unsafe
", "directsync
" or
1237 "writethrough
" and controls how the host cache is used to access
1238 block data. This is a shortcut that sets the ``cache.direct``
1239 and ``cache.no-flush`` options (as in ``-blockdev``), and
1240 additionally ``cache.writeback``, which provides a default for
1241 the ``write-cache`` option of block guest devices (as in
1242 ``-device``). The modes correspond to the following settings:
1244 ============= =============== ============ ==============
1245 \ cache.writeback cache.direct cache.no-flush
1246 ============= =============== ============ ==============
1247 writeback on off off
1249 writethrough off off off
1250 directsync off on off
1252 ============= =============== ============ ==============
1254 The default mode is ``cache=writeback``.
1257 aio is "threads
", "native
", or "io_uring
" and selects between pthread
1258 based disk I/O, native Linux AIO, or Linux io_uring API.
1261 Specify which disk format will be used rather than detecting the
1262 format. Can be used to specify format=raw to avoid interpreting
1263 an untrusted format header.
1265 ``werror=action,rerror=action``
1266 Specify which action to take on write and read errors. Valid
1267 actions are: "ignore
" (ignore the error and try to continue),
1268 "stop
" (pause QEMU), "report
" (report the error to the guest),
1269 "enospc
" (pause QEMU only if the host disk is full; report the
1270 error to the guest otherwise). The default setting is
1271 ``werror=enospc`` and ``rerror=report``.
1273 ``copy-on-read=copy-on-read``
1274 copy-on-read is "on
" or "off
" and enables whether to copy read
1275 backing file sectors into the image file.
1277 ``bps=b,bps_rd=r,bps_wr=w``
1278 Specify bandwidth throttling limits in bytes per second, either
1279 for all request types or for reads or writes only. Small values
1280 can lead to timeouts or hangs inside the guest. A safe minimum
1281 for disks is 2 MB/s.
1283 ``bps_max=bm,bps_rd_max=rm,bps_wr_max=wm``
1284 Specify bursts in bytes per second, either for all request types
1285 or for reads or writes only. Bursts allow the guest I/O to spike
1286 above the limit temporarily.
1288 ``iops=i,iops_rd=r,iops_wr=w``
1289 Specify request rate limits in requests per second, either for
1290 all request types or for reads or writes only.
1292 ``iops_max=bm,iops_rd_max=rm,iops_wr_max=wm``
1293 Specify bursts in requests per second, either for all request
1294 types or for reads or writes only. Bursts allow the guest I/O to
1295 spike above the limit temporarily.
1298 Let every is bytes of a request count as a new request for iops
1299 throttling purposes. Use this option to prevent guests from
1300 circumventing iops limits by sending fewer but larger requests.
1303 Join a throttling quota group with given name g. All drives that
1304 are members of the same group are accounted for together. Use
1305 this option to prevent guests from circumventing throttling
1306 limits by using many small disks instead of a single larger
1309 By default, the ``cache.writeback=on`` mode is used. It will report
1310 data writes as completed as soon as the data is present in the host
1311 page cache. This is safe as long as your guest OS makes sure to
1312 correctly flush disk caches where needed. If your guest OS does not
1313 handle volatile disk write caches correctly and your host crashes or
1314 loses power, then the guest may experience data corruption.
1316 For such guests, you should consider using ``cache.writeback=off``.
1317 This means that the host page cache will be used to read and write
1318 data, but write notification will be sent to the guest only after
1319 QEMU has made sure to flush each write to the disk. Be aware that
1320 this has a major impact on performance.
1322 When using the ``-snapshot`` option, unsafe caching is always used.
1324 Copy-on-read avoids accessing the same backing file sectors
1325 repeatedly and is useful when the backing file is over a slow
1326 network. By default copy-on-read is off.
1328 Instead of ``-cdrom`` you can use:
1332 |qemu_system| -drive file=file,index=2,media=cdrom
1334 Instead of ``-hda``, ``-hdb``, ``-hdc``, ``-hdd``, you can use:
1338 |qemu_system| -drive file=file,index=0,media=disk
1339 |qemu_system| -drive file=file,index=1,media=disk
1340 |qemu_system| -drive file=file,index=2,media=disk
1341 |qemu_system| -drive file=file,index=3,media=disk
1343 You can open an image using pre-opened file descriptors from an fd
1349 -add-fd fd=3,set=2,opaque="rdwr
:/path
/to
/file
" \\
1350 -add-fd fd=4,set=2,opaque="rdonly
:/path
/to
/file
" \\
1351 -drive file=/dev/fdset/2,index=0,media=disk
1353 You can connect a CDROM to the slave of ide0:
1357 |qemu_system_x86| -drive file=file,if=ide,index=1,media=cdrom
1359 If you don't specify the "file
=" argument, you define an empty
1364 |qemu_system_x86| -drive if=ide,index=1,media=cdrom
1366 Instead of ``-fda``, ``-fdb``, you can use:
1370 |qemu_system_x86| -drive file=file,index=0,if=floppy
1371 |qemu_system_x86| -drive file=file,index=1,if=floppy
1373 By default, interface is "ide
" and index is automatically
1378 |qemu_system_x86| -drive file=a -drive file=b"
1380 is interpreted like
:
1384 |qemu_system_x86|
-hda a
-hdb b
1387 DEF("mtdblock", HAS_ARG
, QEMU_OPTION_mtdblock
,
1388 "-mtdblock file use 'file' as on-board Flash memory image\n",
1392 Use file as on
-board Flash memory image
.
1395 DEF("sd", HAS_ARG
, QEMU_OPTION_sd
,
1396 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL
)
1399 Use file as SecureDigital card image
.
1402 DEF("pflash", HAS_ARG
, QEMU_OPTION_pflash
,
1403 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL
)
1406 Use file as a parallel flash image
.
1409 DEF("snapshot", 0, QEMU_OPTION_snapshot
,
1410 "-snapshot write to temporary files instead of disk image files\n",
1414 Write to temporary files instead of disk image files
. In
this case,
1415 the raw disk image you use is not written back
. You can however
1416 force the write back by pressing C
-a
s (see the
:ref
:`disk images`
1417 chapter
in the System Emulation Users Guide
).
1420 DEF("fsdev", HAS_ARG
, QEMU_OPTION_fsdev
,
1421 "-fsdev local,id=id,path=path,security_model=mapped-xattr|mapped-file|passthrough|none\n"
1422 " [,writeout=immediate][,readonly=on][,fmode=fmode][,dmode=dmode]\n"
1423 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n"
1424 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n"
1425 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n"
1426 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n"
1427 " [[,throttling.iops-size=is]]\n"
1428 "-fsdev proxy,id=id,socket=socket[,writeout=immediate][,readonly=on]\n"
1429 "-fsdev proxy,id=id,sock_fd=sock_fd[,writeout=immediate][,readonly=on]\n"
1430 "-fsdev synth,id=id\n",
1434 ``
-fsdev local
,id
=id
,path
=path
,security_model
=security_model
[,writeout
=writeout
][,readonly
=on
][,fmode
=fmode
][,dmode
=dmode
] [,throttling
.option
=value
[,throttling
.option
=value
[,...]]]``
1436 ``
-fsdev proxy
,id
=id
,socket
=socket
[,writeout
=writeout
][,readonly
=on
]``
1438 ``
-fsdev proxy
,id
=id
,sock_fd
=sock_fd
[,writeout
=writeout
][,readonly
=on
]``
1440 ``
-fsdev synth
,id
=id
[,readonly
=on
]``
1441 Define a
new file system device
. Valid options are
:
1444 Accesses to the filesystem are done by QEMU
.
1447 Accesses to the filesystem are done by virtfs
-proxy
-helper(1).
1450 Synthetic filesystem
, only used by QTests
.
1453 Specifies identifier
for this device
.
1456 Specifies the export path
for the file system device
. Files
1457 under
this path will be available to the
9p client on the guest
.
1459 ``security_model
=security_model``
1460 Specifies the security model to be used
for this export path
.
1461 Supported security models are
"passthrough", "mapped-xattr",
1462 "mapped-file" and
"none". In
"passthrough" security model
, files
1463 are stored
using the same credentials as they are created on the
1464 guest
. This requires QEMU to run as root
. In
"mapped-xattr"
1465 security model
, some of the file attributes like uid
, gid
, mode
1466 bits and link target are stored as file attributes
. For
1467 "mapped-file" these attributes are stored
in the hidden
1468 .virtfs\_metadata directory
. Directories exported by
this
1469 security model cannot interact with other unix tools
. "none"
1470 security model is same as passthrough except the sever won
't
1471 report failures if it fails to set file attributes like
1472 ownership. Security model is mandatory only for local fsdriver.
1473 Other fsdrivers (like proxy) don't take security model as a
1476 ``writeout
=writeout``
1477 This is an optional argument
. The only supported value is
1478 "immediate". This means that host page cache will be used to
1479 read and write data but write notification will be sent to the
1480 guest only when the data has been reported as written by the
1484 Enables exporting
9p share as a readonly mount
for guests
. By
1485 default read
-write access is given
.
1488 Enables proxy filesystem driver to use passed socket file
for
1489 communicating with virtfs
-proxy
-helper(1).
1492 Enables proxy filesystem driver to use passed socket descriptor
1493 for communicating with virtfs
-proxy
-helper(1). Usually a helper
1494 like libvirt will create socketpair and pass one of the fds as
1498 Specifies the
default mode
for newly created files on the host
.
1499 Works only with security models
"mapped-xattr" and
1503 Specifies the
default mode
for newly created directories on the
1504 host
. Works only with security models
"mapped-xattr" and
1507 ``throttling
.bps
-total
=b
,throttling
.bps
-read
=r
,throttling
.bps
-write
=w``
1508 Specify bandwidth throttling limits
in bytes per second
, either
1509 for all request types or
for reads or writes only
.
1511 ``throttling
.bps
-total
-max
=bm
,bps
-read
-max
=rm
,bps
-write
-max
=wm``
1512 Specify bursts
in bytes per second
, either
for all request types
1513 or
for reads or writes only
. Bursts allow the guest I
/O to spike
1514 above the limit temporarily
.
1516 ``throttling
.iops
-total
=i
,throttling
.iops
-read
=r
, throttling
.iops
-write
=w``
1517 Specify request rate limits
in requests per second
, either
for
1518 all request types or
for reads or writes only
.
1520 ``throttling
.iops
-total
-max
=im
,throttling
.iops
-read
-max
=irm
, throttling
.iops
-write
-max
=iwm``
1521 Specify bursts
in requests per second
, either
for all request
1522 types or
for reads or writes only
. Bursts allow the guest I
/O to
1523 spike above the limit temporarily
.
1525 ``throttling
.iops
-size
=is``
1526 Let every is bytes of a request count as a
new request
for iops
1527 throttling purposes
.
1529 -fsdev option is used along with
-device driver
"virtio-9p-...".
1531 ``
-device virtio
-9p
-type
,fsdev
=id
,mount_tag
=mount_tag``
1532 Options
for virtio
-9p
-... driver are
:
1535 Specifies the variant to be used
. Supported values are
"pci",
1536 "ccw" or
"device", depending on the machine type
.
1539 Specifies the id value specified along with
-fsdev option
.
1541 ``mount_tag
=mount_tag``
1542 Specifies the tag name to be used by the guest to mount
this
1546 DEF("virtfs", HAS_ARG
, QEMU_OPTION_virtfs
,
1547 "-virtfs local,path=path,mount_tag=tag,security_model=mapped-xattr|mapped-file|passthrough|none\n"
1548 " [,id=id][,writeout=immediate][,readonly=on][,fmode=fmode][,dmode=dmode][,multidevs=remap|forbid|warn]\n"
1549 "-virtfs proxy,mount_tag=tag,socket=socket[,id=id][,writeout=immediate][,readonly=on]\n"
1550 "-virtfs proxy,mount_tag=tag,sock_fd=sock_fd[,id=id][,writeout=immediate][,readonly=on]\n"
1551 "-virtfs synth,mount_tag=tag[,id=id][,readonly=on]\n",
1555 ``
-virtfs local
,path
=path
,mount_tag
=mount_tag
,security_model
=security_model
[,writeout
=writeout
][,readonly
=on
] [,fmode
=fmode
][,dmode
=dmode
][,multidevs
=multidevs
]``
1557 ``
-virtfs proxy
,socket
=socket
,mount_tag
=mount_tag
[,writeout
=writeout
][,readonly
=on
]``
1559 ``
-virtfs proxy
,sock_fd
=sock_fd
,mount_tag
=mount_tag
[,writeout
=writeout
][,readonly
=on
]``
1561 ``
-virtfs synth
,mount_tag
=mount_tag``
1562 Define a
new virtual filesystem device and expose it to the guest
using
1563 a virtio
-9p
-device (a
.k
.a
. 9pfs
), which essentially means that a certain
1564 directory on host is made directly accessible by guest as a pass
-through
1565 file system by
using the
9P network protocol
for communication between
1566 host and guests
, if desired even accessible
, shared by several guests
1569 Note that ``
-virtfs`` is actually just a convenience shortcut
for its
1570 generalized form ``
-fsdev
-device virtio
-9p
-pci``
.
1572 The general form of pass
-through file system options are
:
1575 Accesses to the filesystem are done by QEMU
.
1578 Accesses to the filesystem are done by virtfs
-proxy
-helper(1).
1581 Synthetic filesystem
, only used by QTests
.
1584 Specifies identifier
for the filesystem device
1587 Specifies the export path
for the file system device
. Files
1588 under
this path will be available to the
9p client on the guest
.
1590 ``security_model
=security_model``
1591 Specifies the security model to be used
for this export path
.
1592 Supported security models are
"passthrough", "mapped-xattr",
1593 "mapped-file" and
"none". In
"passthrough" security model
, files
1594 are stored
using the same credentials as they are created on the
1595 guest
. This requires QEMU to run as root
. In
"mapped-xattr"
1596 security model
, some of the file attributes like uid
, gid
, mode
1597 bits and link target are stored as file attributes
. For
1598 "mapped-file" these attributes are stored
in the hidden
1599 .virtfs\_metadata directory
. Directories exported by
this
1600 security model cannot interact with other unix tools
. "none"
1601 security model is same as passthrough except the sever won
't
1602 report failures if it fails to set file attributes like
1603 ownership. Security model is mandatory only for local fsdriver.
1604 Other fsdrivers (like proxy) don't take security model as a
1607 ``writeout
=writeout``
1608 This is an optional argument
. The only supported value is
1609 "immediate". This means that host page cache will be used to
1610 read and write data but write notification will be sent to the
1611 guest only when the data has been reported as written by the
1615 Enables exporting
9p share as a readonly mount
for guests
. By
1616 default read
-write access is given
.
1619 Enables proxy filesystem driver to use passed socket file
for
1620 communicating with virtfs
-proxy
-helper(1). Usually a helper like
1621 libvirt will create socketpair and pass one of the fds as
1625 Enables proxy filesystem driver to use passed
'sock\_fd' as the
1626 socket descriptor
for interfacing with virtfs
-proxy
-helper(1).
1629 Specifies the
default mode
for newly created files on the host
.
1630 Works only with security models
"mapped-xattr" and
1634 Specifies the
default mode
for newly created directories on the
1635 host
. Works only with security models
"mapped-xattr" and
1638 ``mount_tag
=mount_tag``
1639 Specifies the tag name to be used by the guest to mount
this
1642 ``multidevs
=multidevs``
1643 Specifies how to deal with multiple devices being shared with a
1644 9p export
. Supported behaviours are either
"remap", "forbid" or
1645 "warn". The latter is the
default behaviour on which virtfs
9p
1646 expects only one device to be shared with the same export
, and
1647 if more than one device is shared and accessed via the same
9p
1648 export then only a warning message is
logged (once
) by qemu on
1649 host side
. In order to avoid file ID collisions on guest you
1650 should either create a separate virtfs export
for each device to
1651 be shared with
guests (recommended way
) or you might use
"remap"
1652 instead which allows you to share multiple devices with only one
1653 export instead
, which is achieved by remapping the original
1654 inode numbers from host to guest
in a way that would prevent
1655 such collisions
. Remapping inodes
in such use cases is required
1656 because the original device IDs from host are
never passed and
1657 exposed on guest
. Instead all files of an export shared with
1658 virtfs always share the same device id on guest
. So two files
1659 with identical inode numbers but from actually different devices
1660 on host would otherwise cause a file ID collision and hence
1661 potential misbehaviours on guest
. "forbid" on the other hand
1662 assumes like
"warn" that only one device is shared by the same
1663 export
, however it will not only log a warning message but also
1664 deny access to additional devices on guest
. Note though that
1665 "forbid" does currently not block all possible file access
1666 operations (e
.g
. readdir() would still
return entries from other
1670 DEF("iscsi", HAS_ARG
, QEMU_OPTION_iscsi
,
1671 "-iscsi [user=user][,password=password]\n"
1672 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
1673 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
1674 " [,timeout=timeout]\n"
1675 " iSCSI session parameters\n", QEMU_ARCH_ALL
)
1679 Configure iSCSI session parameters
.
1684 DEFHEADING(USB options
:)
1686 DEF("usb", 0, QEMU_OPTION_usb
,
1687 "-usb enable on-board USB host controller (if not enabled by default)\n",
1691 Enable USB emulation on machine types with an on
-board USB host
1692 controller (if not enabled by
default). Note that on
-board USB host
1693 controllers may not support USB
3.0. In
this case
1694 ``
-device qemu
-xhci`` can be used instead on machines with PCI
.
1697 DEF("usbdevice", HAS_ARG
, QEMU_OPTION_usbdevice
,
1698 "-usbdevice name add the host or guest USB device 'name'\n",
1701 ``
-usbdevice devname``
1702 Add the USB device devname
. Note that
this option is deprecated
,
1703 please use ``
-device usb
-...`` instead
. See the chapter about
1704 :ref
:`Connecting USB devices`
in the System Emulation Users Guide
.
1707 Virtual Mouse
. This will
override the PS
/2 mouse emulation when
1711 Pointer device that uses absolute
coordinates (like a
1712 touchscreen
). This means QEMU is able to report the mouse
1713 position without having to grab the mouse
. Also overrides the
1714 PS
/2 mouse emulation when activated
.
1717 Braille device
. This will use BrlAPI to display the braille
1718 output on a real or fake device
.
1723 DEFHEADING(Display options
:)
1725 DEF("display", HAS_ARG
, QEMU_OPTION_display
,
1726 #
if defined(CONFIG_SPICE
)
1727 "-display spice-app[,gl=on|off]\n"
1729 #
if defined(CONFIG_SDL
)
1730 "-display sdl[,alt_grab=on|off][,ctrl_grab=on|off]\n"
1731 " [,window_close=on|off][,gl=on|core|es|off]\n"
1733 #
if defined(CONFIG_GTK
)
1734 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n"
1736 #
if defined(CONFIG_VNC
)
1737 "-display vnc=<display>[,<optargs>]\n"
1739 #
if defined(CONFIG_CURSES
)
1740 "-display curses[,charset=<encoding>]\n"
1742 #
if defined(CONFIG_OPENGL
)
1743 "-display egl-headless[,rendernode=<file>]\n"
1746 " select display backend type\n"
1747 " The default display is equivalent to\n "
1748 #
if defined(CONFIG_GTK
)
1749 "\"-display gtk\"\n"
1750 #elif
defined(CONFIG_SDL
)
1751 "\"-display sdl\"\n"
1752 #elif
defined(CONFIG_COCOA
)
1753 "\"-display cocoa\"\n"
1754 #elif
defined(CONFIG_VNC
)
1755 "\"-vnc localhost:0,to=99,id=default\"\n"
1757 "\"-display none\"\n"
1762 Select type of display to use
. This option is a replacement
for the
1763 old style
-sdl
/-curses
/... options
. Use ``
-display help`` to list
1764 the available display types
. Valid values
for type are
1767 Display video output via
SDL (usually
in a separate graphics
1768 window
; see the SDL documentation
for other possibilities
).
1771 Display video output via curses
. For graphics device models
1772 which support a text mode
, QEMU can display
this output
using a
1773 curses
/ncurses
interface. Nothing is displayed when the graphics
1774 device is
in graphical mode or
if the graphics device does not
1775 support a text mode
. Generally only the VGA device models
1776 support text mode
. The font charset used by the guest can be
1777 specified with the ``charset`` option
, for example
1778 ``charset
=CP850``
for IBM CP850 encoding
. The
default is
1782 Do not display video output
. The guest will still see an
1783 emulated graphics card
, but its output will not be displayed to
1784 the QEMU user
. This option differs from the
-nographic option
in
1785 that it only affects what is done with video output
; -nographic
1786 also changes the destination of the serial and parallel port
1790 Display video output
in a GTK window
. This
interface provides
1791 drop
-down menus and other UI elements to configure and control
1792 the VM during runtime
.
1795 Start a VNC server on display
<arg
>
1798 Offload all OpenGL operations to a local DRI device
. For any
1799 graphical display
, this display needs to be paired with either
1800 VNC or SPICE displays
.
1803 Start QEMU as a Spice server and launch the
default Spice client
1804 application
. The Spice server will redirect the serial consoles
1805 and QEMU monitors
. (Since
4.0)
1808 DEF("nographic", 0, QEMU_OPTION_nographic
,
1809 "-nographic disable graphical output and redirect serial I/Os to console\n",
1813 Normally
, if QEMU is compiled with graphical window support
, it
1814 displays output such as guest graphics
, guest console
, and the QEMU
1815 monitor
in a window
. With
this option
, you can totally disable
1816 graphical output so that QEMU is a simple command line application
.
1817 The emulated serial port is redirected on the console and muxed with
1818 the
monitor (unless redirected elsewhere explicitly
). Therefore
, you
1819 can still use QEMU to debug a Linux kernel with a serial console
.
1820 Use C
-a h
for help on switching between the console and monitor
.
1823 DEF("curses", 0, QEMU_OPTION_curses
,
1824 "-curses shorthand for -display curses\n",
1828 Normally
, if QEMU is compiled with graphical window support
, it
1829 displays output such as guest graphics
, guest console
, and the QEMU
1830 monitor
in a window
. With
this option
, QEMU can display the VGA
1831 output when
in text mode
using a curses
/ncurses
interface. Nothing
1832 is displayed
in graphical mode
.
1835 DEF("alt-grab", 0, QEMU_OPTION_alt_grab
,
1836 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1840 Use Ctrl
-Alt
-Shift to grab
mouse (instead of Ctrl
-Alt
). Note that
1841 this also affects the special
keys (for fullscreen
, monitor
-mode
1845 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab
,
1846 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1850 Use Right
-Ctrl to grab
mouse (instead of Ctrl
-Alt
). Note that
this
1851 also affects the special
keys (for fullscreen
, monitor
-mode
1855 DEF("no-quit", 0, QEMU_OPTION_no_quit
,
1856 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL
)
1859 Disable SDL window close capability
.
1862 DEF("sdl", 0, QEMU_OPTION_sdl
,
1863 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL
)
1869 DEF("spice", HAS_ARG
, QEMU_OPTION_spice
,
1870 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1871 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1872 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1873 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1874 " [,tls-ciphers=<list>]\n"
1875 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1876 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1877 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1878 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1879 " [,jpeg-wan-compression=[auto|never|always]]\n"
1880 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1881 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1882 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1883 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1884 " [,gl=[on|off]][,rendernode=<file>]\n"
1886 " at least one of {port, tls-port} is mandatory\n",
1889 ``
-spice option
[,option
[,...]]``
1890 Enable the spice remote desktop protocol
. Valid options are
1893 Set the TCP port spice is listening on
for plaintext channels
.
1896 Set the IP address spice is listening on
. Default is any
1899 ``ipv4``
; \ ``ipv6``
; \ ``unix``
1900 Force
using the specified IP version
.
1902 ``password
=<secret
>``
1903 Set the password you need to authenticate
.
1906 Require that the client use SASL to authenticate with the spice
.
1907 The exact choice of authentication method used is controlled
1908 from the system
/ user
's SASL configuration file for the 'qemu
'
1909 service. This is typically found in /etc/sasl2/qemu.conf. If
1910 running QEMU as an unprivileged user, an environment variable
1911 SASL\_CONF\_PATH can be used to make it search alternate
1912 locations for the service config. While some SASL auth methods
1913 can also provide data encryption (eg GSSAPI), it is recommended
1914 that SASL always be combined with the 'tls
' and 'x509
' settings
1915 to enable use of SSL and server certificates. This ensures a
1916 data encryption preventing compromise of authentication
1919 ``disable-ticketing``
1920 Allow client connects without authentication.
1922 ``disable-copy-paste``
1923 Disable copy paste between the client and the guest.
1925 ``disable-agent-file-xfer``
1926 Disable spice-vdagent based file-xfer between the client and the
1930 Set the TCP port spice is listening on for encrypted channels.
1933 Set the x509 file directory. Expects same filenames as -vnc
1936 ``x509-key-file=<file>``; \ ``x509-key-password=<file>``; \ ``x509-cert-file=<file>``; \ ``x509-cacert-file=<file>``; \ ``x509-dh-key-file=<file>``
1937 The x509 file names can also be configured individually.
1939 ``tls-ciphers=<list>``
1940 Specify which ciphers to use.
1942 ``tls-channel=[main|display|cursor|inputs|record|playback]``; \ ``plaintext-channel=[main|display|cursor|inputs|record|playback]``
1943 Force specific channel to be used with or without TLS
1944 encryption. The options can be specified multiple times to
1945 configure multiple channels. The special name "default" can be
1946 used to set the default mode. For channels which are not
1947 explicitly forced into one mode the spice client is allowed to
1948 pick tls/plaintext as he pleases.
1950 ``image-compression=[auto_glz|auto_lz|quic|glz|lz|off]``
1951 Configure image compression (lossless). Default is auto\_glz.
1953 ``jpeg-wan-compression=[auto|never|always]``; \ ``zlib-glz-wan-compression=[auto|never|always]``
1954 Configure wan image compression (lossy for slow links). Default
1957 ``streaming-video=[off|all|filter]``
1958 Configure video stream detection. Default is off.
1960 ``agent-mouse=[on|off]``
1961 Enable/disable passing mouse events via vdagent. Default is on.
1963 ``playback-compression=[on|off]``
1964 Enable/disable audio stream compression (using celt 0.5.1).
1967 ``seamless-migration=[on|off]``
1968 Enable/disable spice seamless migration. Default is off.
1971 Enable/disable OpenGL context. Default is off.
1973 ``rendernode=<file>``
1974 DRM render node for OpenGL rendering. If not specified, it will
1975 pick the first available. (Since 2.9)
1978 DEF("portrait", 0, QEMU_OPTION_portrait,
1979 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1983 Rotate graphical output 90 deg left (only PXA LCD).
1986 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1987 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1991 Rotate graphical output some deg left (only PXA LCD).
1994 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1995 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1996 " select video card type\n", QEMU_ARCH_ALL)
1999 Select type of VGA card to emulate. Valid values for type are
2002 Cirrus Logic GD5446 Video card. All Windows versions starting
2003 from Windows 95 should recognize and use this graphic card. For
2004 optimal performances, use 16 bit color depth in the guest and
2005 the host OS. (This card was the default before QEMU 2.2)
2008 Standard VGA card with Bochs VBE extensions. If your guest OS
2009 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if
2010 you want to use high resolution modes (>= 1280x1024x16) then you
2011 should use this option. (This card is the default since QEMU
2015 VMWare SVGA-II compatible adapter. Use it if you have
2016 sufficiently recent XFree86/XOrg server or Windows guest with a
2017 driver for this card.
2020 QXL paravirtual graphic card. It is VGA compatible (including
2021 VESA 2.0 VBE support). Works best with qxl guest drivers
2022 installed though. Recommended choice when using the spice
2026 (sun4m only) Sun TCX framebuffer. This is the default
2027 framebuffer for sun4m machines and offers both 8-bit and 24-bit
2028 colour depths at a fixed resolution of 1024x768.
2031 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit
2032 framebuffer for sun4m machines available in both 1024x768
2033 (OpenBIOS) and 1152x900 (OBP) resolutions aimed at people
2034 wishing to run older Solaris versions.
2043 DEF("full-screen", 0, QEMU_OPTION_full_screen,
2044 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
2047 Start in full screen.
2050 DEF("g", HAS_ARG, QEMU_OPTION_g ,
2051 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
2052 QEMU_ARCH_PPC | QEMU_ARCH_SPARC | QEMU_ARCH_M68K)
2054 ``-g`` *width*\ ``x``\ *height*\ ``[x``\ *depth*\ ``]``
2055 Set the initial graphical resolution and depth (PPC, SPARC only).
2057 For PPC the default is 800x600x32.
2059 For SPARC with the TCX graphics device, the default is 1024x768x8
2060 with the option of 1024x768x24. For cgthree, the default is
2061 1024x768x8 with the option of 1152x900x8 for people who wish to use
2065 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
2066 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
2068 ``-vnc display[,option[,option[,...]]]``
2069 Normally, if QEMU is compiled with graphical window support, it
2070 displays output such as guest graphics, guest console, and the QEMU
2071 monitor in a window. With this option, you can have QEMU listen on
2072 VNC display display and redirect the VGA display over the VNC
2073 session. It is very useful to enable the usb tablet device when
2074 using this option (option ``-device usb-tablet``). When using the
2075 VNC display, you must use the ``-k`` parameter to set the keyboard
2076 layout if you are not using en-us. Valid syntax for the display is
2079 With this option, QEMU will try next available VNC displays,
2080 until the number L, if the origianlly defined "-vnc display" is
2081 not available, e.g. port 5900+display is already used by another
2082 application. By default, to=0.
2085 TCP connections will only be allowed from host on display d. By
2086 convention the TCP port is 5900+d. Optionally, host can be
2087 omitted in which case the server will accept connections from
2091 Connections will be allowed over UNIX domain sockets where path
2092 is the location of a unix socket to listen for connections on.
2095 VNC is initialized but not started. The monitor ``change``
2096 command can be used to later start the VNC server.
2098 Following the display value there may be one or more option flags
2099 separated by commas. Valid options are
2102 Connect to a listening VNC client via a "reverse" connection.
2103 The client is specified by the display. For reverse network
2104 connections (host:d,``reverse``), the d argument is a TCP port
2105 number, not a display number.
2108 Opens an additional TCP listening port dedicated to VNC
2109 Websocket connections. If a bare websocket option is given, the
2110 Websocket port is 5700+display. An alternative port can be
2111 specified with the syntax ``websocket``\ =port.
2113 If host is specified connections will only be allowed from this
2114 host. It is possible to control the websocket listen address
2115 independently, using the syntax ``websocket``\ =host:port.
2117 If no TLS credentials are provided, the websocket connection
2118 runs in unencrypted mode. If TLS credentials are provided, the
2119 websocket connection requires encrypted client connections.
2122 Require that password based authentication is used for client
2125 The password must be set separately using the ``set_password``
2126 command in the :ref:`QEMU monitor`. The
2127 syntax to change your password is:
2128 ``set_password <protocol> <password>`` where <protocol> could be
2129 either "vnc" or "spice".
2131 If you would like to change <protocol> password expiration, you
2132 should use ``expire_password <protocol> <expiration-time>``
2133 where expiration time could be one of the following options:
2134 now, never, +seconds or UNIX time of expiration, e.g. +60 to
2135 make password expire in 60 seconds, or 1335196800 to make
2136 password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for
2137 this date and time).
2139 You can also use keywords "now" or "never" for the expiration
2140 time to allow <protocol> password to expire immediately or never
2144 Provides the ID of a set of TLS credentials to use to secure the
2145 VNC server. They will apply to both the normal VNC server socket
2146 and the websocket socket (if enabled). Setting TLS credentials
2147 will cause the VNC server socket to enable the VeNCrypt auth
2148 mechanism. The credentials should have been previously created
2149 using the ``-object tls-creds`` argument.
2152 Provides the ID of the QAuthZ authorization object against which
2153 the client's x509 distinguished name will validated
. This object
2154 is only resolved at time of use
, so can be deleted and recreated
2155 on the fly
while the VNC server is active
. If missing
, it will
2156 default to denying access
.
2159 Require that the client use SASL to authenticate with the VNC
2160 server
. The exact choice of authentication method used is
2161 controlled from the system
/ user
's SASL configuration file for
2162 the 'qemu
' service. This is typically found in
2163 /etc/sasl2/qemu.conf. If running QEMU as an unprivileged user,
2164 an environment variable SASL\_CONF\_PATH can be used to make it
2165 search alternate locations for the service config. While some
2166 SASL auth methods can also provide data encryption (eg GSSAPI),
2167 it is recommended that SASL always be combined with the 'tls
'
2168 and 'x509
' settings to enable use of SSL and server
2169 certificates. This ensures a data encryption preventing
2170 compromise of authentication credentials. See the
2171 :ref:`VNC security` section in the System Emulation Users Guide
2172 for details on using SASL authentication.
2175 Provides the ID of the QAuthZ authorization object against which
2176 the client's SASL username will validated
. This object is only
2177 resolved at time of use
, so can be deleted and recreated on the
2178 fly
while the VNC server is active
. If missing
, it will
default
2182 Legacy method
for enabling authorization of clients against the
2183 x509 distinguished name and SASL username
. It results
in the
2184 creation of two ``authz
-list`` objects with IDs of
2185 ``vnc
.username`` and ``vnc
.x509dname``
. The rules
for these
2186 objects must be configured with the HMP ACL commands
.
2188 This option is deprecated and should no longer be used
. The
new
2189 ``sasl
-authz`` and ``tls
-authz`` options are a replacement
.
2192 Enable lossy compression
methods (gradient
, JPEG
, ...). If
this
2193 option is set
, VNC client may receive lossy framebuffer updates
2194 depending on its encoding settings
. Enabling
this option can
2195 save a lot of bandwidth at the expense of quality
.
2198 Disable adaptive encodings
. Adaptive encodings are enabled by
2199 default. An adaptive encoding will
try to detect frequently
2200 updated screen regions
, and send updates
in these regions
using
2201 a lossy
encoding (like JPEG
). This can be really helpful to save
2202 bandwidth when playing videos
. Disabling adaptive encodings
2203 restores the original
static behavior of encodings like Tight
.
2205 ``share
=[allow
-exclusive|force
-shared|ignore
]``
2206 Set display sharing policy
. 'allow-exclusive' allows clients to
2207 ask
for exclusive access
. As suggested by the rfb spec
this is
2208 implemented by dropping other connections
. Connecting multiple
2209 clients
in parallel requires all clients asking
for a shared
2210 session (vncviewer
: -shared
switch). This is the
default.
2211 'force-shared' disables exclusive client access
. Useful
for
2212 shared desktop sessions
, where you don
't want someone forgetting
2213 specify -shared disconnect everybody else. 'ignore
' completely
2214 ignores the shared flag and allows everybody connect
2215 unconditionally. Doesn't conform to the rfb spec but is
2216 traditional QEMU behavior
.
2219 Set keyboard delay
, for key down and key up events
, in
2220 milliseconds
. Default is
10. Keyboards are low
-bandwidth
2221 devices
, so
this slowdown can help the device and guest to keep
2222 up and not lose events
in case events are arriving
in bulk
.
2223 Possible causes
for the latter are flaky network connections
, or
2224 scripts
for automated testing
.
2226 ``audiodev
=audiodev``
2227 Use the specified audiodev when the VNC client requests audio
2228 transmission
. When not
using an
-audiodev argument
, this option
2229 must be omitted
, otherwise is must be present and specify a
2233 Permit the remote client to issue shutdown
, reboot or reset power
2237 ARCHHEADING(, QEMU_ARCH_I386
)
2239 ARCHHEADING(i386 target only
:, QEMU_ARCH_I386
)
2241 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack
,
2242 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
2246 Use it when installing Windows
2000 to avoid a disk full bug
. After
2247 Windows
2000 is installed
, you no longer need
this option (this
2248 option slows down the IDE transfers
).
2251 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk
,
2252 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
2256 Disable boot signature checking
for floppy disks
in BIOS
. May be
2257 needed to boot from old floppy disks
.
2260 DEF("no-acpi", 0, QEMU_OPTION_no_acpi
,
2261 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM
)
2264 Disable
ACPI (Advanced Configuration and Power Interface
) support
.
2265 Use it
if your guest OS complains about ACPI
problems (PC target
2269 DEF("no-hpet", 0, QEMU_OPTION_no_hpet
,
2270 "-no-hpet disable HPET\n", QEMU_ARCH_I386
)
2273 Disable HPET support
.
2276 DEF("acpitable", HAS_ARG
, QEMU_OPTION_acpitable
,
2277 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
2278 " ACPI table description\n", QEMU_ARCH_I386
)
2280 ``
-acpitable
[sig
=str
][,rev
=n
][,oem_id
=str
][,oem_table_id
=str
][,oem_rev
=n
] [,asl_compiler_id
=str
][,asl_compiler_rev
=n
][,data
=file1
[:file2
]...]``
2281 Add ACPI table with specified header fields and context from
2282 specified files
. For file
=, take whole ACPI table from the specified
2283 files
, including all ACPI
headers (possible overridden by other
2284 options
). For data
=, only data portion of the table is used
, all
2285 header information is specified
in the command line
. If a SLIC table
2286 is supplied to QEMU
, then the SLIC
's oem\_id and oem\_table\_id
2287 fields will override the same in the RSDT and the FADT (a.k.a.
2288 FACP), in order to ensure the field matches required by the
2289 Microsoft SLIC spec and the ACPI spec.
2292 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
2293 "-smbios file=binary\n"
2294 " load SMBIOS entry from binary file\n"
2295 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
2297 " specify SMBIOS type 0 fields\n"
2298 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
2299 " [,uuid=uuid][,sku=str][,family=str]\n"
2300 " specify SMBIOS type 1 fields\n"
2301 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
2302 " [,asset=str][,location=str]\n"
2303 " specify SMBIOS type 2 fields\n"
2304 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
2306 " specify SMBIOS type 3 fields\n"
2307 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
2308 " [,asset=str][,part=str][,max-speed=%d][,current-speed=%d]\n"
2309 " specify SMBIOS type 4 fields\n"
2310 "-smbios type=11[,value=str][,path=filename]\n"
2311 " specify SMBIOS type 11 fields\n"
2312 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
2313 " [,asset=str][,part=str][,speed=%d]\n"
2314 " specify SMBIOS type 17 fields\n",
2315 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
2317 ``-smbios file=binary``
2318 Load SMBIOS entry from binary file.
2320 ``-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d][,uefi=on|off]``
2321 Specify SMBIOS type 0 fields
2323 ``-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str][,uuid=uuid][,sku=str][,family=str]``
2324 Specify SMBIOS type 1 fields
2326 ``-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str][,asset=str][,location=str]``
2327 Specify SMBIOS type 2 fields
2329 ``-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str][,sku=str]``
2330 Specify SMBIOS type 3 fields
2332 ``-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str][,asset=str][,part=str]``
2333 Specify SMBIOS type 4 fields
2335 ``-smbios type=11[,value=str][,path=filename]``
2336 Specify SMBIOS type 11 fields
2338 This argument can be repeated multiple times, and values are added in the order they are parsed.
2339 Applications intending to use OEM strings data are encouraged to use their application name as
2340 a prefix for the value string. This facilitates passing information for multiple applications
2343 The ``value=str`` syntax provides the string data inline, while the ``path=filename`` syntax
2344 loads data from a file on disk. Note that the file is not permitted to contain any NUL bytes.
2346 Both the ``value`` and ``path`` options can be repeated multiple times and will be added to
2347 the SMBIOS table in the order in which they appear.
2349 Note that on the x86 architecture, the total size of all SMBIOS tables is limited to 65535
2350 bytes. Thus the OEM strings data is not suitable for passing large amounts of data into the
2351 guest. Instead it should be used as a indicator to inform the guest where to locate the real
2352 data set, for example, by specifying the serial ID of a block device.
2354 An example passing three strings is
2358 -smbios type=11,value=cloud-init:ds=nocloud-net;s=http://10.10.0.1:8000/,\\
2359 value=anaconda:method=http://dl.fedoraproject.org/pub/fedora/linux/releases/25/x86_64/os,\\
2360 path=/some/file/with/oemstringsdata.txt
2362 In the guest OS this is visible with the ``dmidecode`` command
2367 Handle 0x0E00, DMI type 11, 5 bytes
2369 String 1: cloud-init:ds=nocloud-net;s=http://10.10.0.1:8000/
2370 String 2: anaconda:method=http://dl.fedoraproject.org/pub/fedora/linux/releases/25/x86_64/os
2371 String 3: myapp:some extra data
2374 ``-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str][,asset=str][,part=str][,speed=%d]``
2375 Specify SMBIOS type 17 fields
2380 DEFHEADING(Network options:)
2382 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
2384 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
2385 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
2386 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
2387 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,domainname=domain]\n"
2388 " [,tftp=dir][,tftp-server-name=name][,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
2390 "[,smb=dir[,smbserver=addr]]\n"
2392 " configure a user mode network backend with ID 'str
',\n"
2393 " its DHCP server and optional services\n"
2396 "-netdev tap,id=str,ifname=name\n"
2397 " configure a host TAP network backend with ID 'str
'\n"
2399 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
2400 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
2401 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
2403 " configure a host TAP network backend with ID 'str
'\n"
2404 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
2405 " use network scripts 'file
' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
2406 " to configure it and 'dfile
' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
2407 " to deconfigure it\n"
2408 " use '[down
]script
=no
' to disable script execution\n"
2409 " use network helper 'helper
' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
2411 " use 'fd
=h
' to connect to an already opened TAP interface\n"
2412 " use 'fds
=x
:y
:...:z
' to connect to already opened multiqueue capable TAP interfaces\n"
2413 " use 'sndbuf
=nbytes
' to limit the size of the send buffer (the\n"
2414 " default is disabled 'sndbuf
=0' to enable flow control set 'sndbuf
=1048576')\n"
2415 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
2416 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
2417 " use vhost=on to enable experimental in kernel accelerator\n"
2418 " (only has effect for virtio guests which use MSIX)\n"
2419 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
2420 " use 'vhostfd
=h
' to connect to an already opened vhost net device\n"
2421 " use 'vhostfds
=x
:y
:...:z to connect to multiple already opened vhost net devices
\n"
2422 " use
'queues=n' to specify the number of queues to be created
for multiqueue TAP
\n"
2423 " use
'poll-us=n' to speciy the maximum number of microseconds that could be
\n"
2424 " spent on busy polling
for vhost net
\n"
2425 "-netdev bridge
,id
=str
[,br
=bridge
][,helper
=helper
]\n"
2426 " configure a host TAP network backend with ID
'str' that is
\n"
2427 " connected to a
bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
2428 " using the program
'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
2431 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
2432 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
2433 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
2434 " [,rxcookie=rxcookie][,offset=offset]\n"
2435 " configure a network backend with ID 'str
' connected to\n"
2436 " an Ethernet over L2TPv3 pseudowire.\n"
2437 " Linux kernel 3.3+ as well as most routers can talk\n"
2438 " L2TPv3. This transport allows connecting a VM to a VM,\n"
2439 " VM to a router and even VM to Host. It is a nearly-universal\n"
2440 " standard (RFC3931). Note - this implementation uses static\n"
2441 " pre-configured tunnels (same as the Linux kernel).\n"
2442 " use 'src
=' to specify source address\n"
2443 " use 'dst
=' to specify destination address\n"
2444 " use 'udp
=on
' to specify udp encapsulation\n"
2445 " use 'srcport
=' to specify source udp port\n"
2446 " use 'dstport
=' to specify destination udp port\n"
2447 " use 'ipv6
=on
' to force v6\n"
2448 " L2TPv3 uses cookies to prevent misconfiguration as\n"
2449 " well as a weak security measure\n"
2450 " use 'rxcookie
=0x012345678' to specify a rxcookie\n"
2451 " use 'txcookie
=0x012345678' to specify a txcookie\n"
2452 " use 'cookie64
=on
' to set cookie size to 64 bit, otherwise 32\n"
2453 " use 'counter
=off
' to force a 'cut
-down
' L2TPv3 with no counter\n"
2454 " use 'pincounter
=on
' to work around broken counter handling in peer\n"
2455 " use 'offset
=X
' to add an extra offset between header and data\n"
2457 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
2458 " configure a network backend to connect to another network\n"
2459 " using a socket connection\n"
2460 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
2461 " configure a network backend to connect to a multicast maddr and port\n"
2462 " use 'localaddr
=addr
' to specify the host address to send packets from\n"
2463 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
2464 " configure a network backend to connect to another network\n"
2465 " using an UDP tunnel\n"
2467 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
2468 " configure a network backend to connect to port 'n
' of a vde switch\n"
2469 " running on host and listening for incoming connections on 'socketpath
'.\n"
2470 " Use group 'groupname
' and mode 'octalmode
' to change default\n"
2471 " ownership and permissions for communication port.\n"
2473 #ifdef CONFIG_NETMAP
2474 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
2475 " attach to the existing netmap-enabled network interface 'name
', or to a\n"
2476 " VALE port (created on the fly) called 'name
' ('nmname
' is name of the \n"
2477 " netmap device, defaults to '/dev
/netmap
')\n"
2480 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
2481 " configure a vhost-user network, backed by a chardev 'dev
'\n"
2484 "-netdev vhost-vdpa,id=str,vhostdev=/path/to/dev\n"
2485 " configure a vhost-vdpa network,Establish a vhost-vdpa netdev\n"
2487 "-netdev hubport,id=str,hubid=n[,netdev=nd]\n"
2488 " configure a hub port on the hub with ID 'n
'\n", QEMU_ARCH_ALL)
2489 DEF("nic", HAS_ARG, QEMU_OPTION_nic,
2500 #ifdef CONFIG_NETMAP
2506 "socket][,option][,...][mac=macaddr]\n"
2507 " initialize an on-board / default host NIC (using MAC address\n"
2508 " macaddr) and connect it to the given host network backend\n"
2509 "-nic none use it alone to have zero network devices (the default is to\n"
2510 " provided a 'user
' network connection)\n",
2512 DEF("net", HAS_ARG, QEMU_OPTION_net,
2513 "-net nic[,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
2514 " configure or create an on-board (or machine default) NIC and\n"
2515 " connect it to hub 0 (please use -nic unless you need a hub)\n"
2525 #ifdef CONFIG_NETMAP
2528 "socket][,option][,option][,...]\n"
2529 " old way to initialize a host network interface\n"
2530 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
2532 ``-nic [tap|bridge|user|l2tpv3|vde|netmap|vhost-user|socket][,...][,mac=macaddr][,model=mn]``
2533 This option is a shortcut for configuring both the on-board
2534 (default) guest NIC hardware and the host network backend in one go.
2535 The host backend options are the same as with the corresponding
2536 ``-netdev`` options below. The guest NIC model can be set with
2537 ``model=modelname``. Use ``model=help`` to list the available device
2538 types. The hardware MAC address can be set with ``mac=macaddr``.
2540 The following two example do exactly the same, to show how ``-nic``
2541 can be used to shorten the command line length:
2545 |qemu_system| -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32
2546 |qemu_system| -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32
2549 Indicate that no network devices should be configured. It is used to
2550 override the default configuration (default NIC with "user" host
2551 network backend) which is activated if no other networking options
2554 ``-netdev user,id=id[,option][,option][,...]``
2555 Configure user mode host network backend which requires no
2556 administrator privilege to run. Valid options are:
2559 Assign symbolic name for use in monitor commands.
2561 ``ipv4=on|off and ipv6=on|off``
2562 Specify that either IPv4 or IPv6 must be enabled. If neither is
2563 specified both protocols are enabled.
2566 Set IP network address the guest will see. Optionally specify
2567 the netmask, either in the form a.b.c.d or as number of valid
2568 top-most bits. Default is 10.0.2.0/24.
2571 Specify the guest-visible address of the host. Default is the
2572 2nd IP in the guest network, i.e. x.x.x.2.
2574 ``ipv6-net=addr[/int]``
2575 Set IPv6 network address the guest will see (default is
2576 fec0::/64). The network prefix is given in the usual hexadecimal
2577 IPv6 address notation. The prefix size is optional, and is given
2578 as the number of valid top-most bits (default is 64).
2581 Specify the guest-visible IPv6 address of the host. Default is
2582 the 2nd IPv6 in the guest network, i.e. xxxx::2.
2585 If this option is enabled, the guest will be isolated, i.e. it
2586 will not be able to contact the host and no guest IP packets
2587 will be routed over the host to the outside. This option does
2588 not affect any explicitly set forwarding rules.
2591 Specifies the client hostname reported by the built-in DHCP
2595 Specify the first of the 16 IPs the built-in DHCP server can
2596 assign. Default is the 15th to 31st IP in the guest network,
2597 i.e. x.x.x.15 to x.x.x.31.
2600 Specify the guest-visible address of the virtual nameserver. The
2601 address must be different from the host address. Default is the
2602 3rd IP in the guest network, i.e. x.x.x.3.
2605 Specify the guest-visible address of the IPv6 virtual
2606 nameserver. The address must be different from the host address.
2607 Default is the 3rd IP in the guest network, i.e. xxxx::3.
2609 ``dnssearch=domain``
2610 Provides an entry for the domain-search list sent by the
2611 built-in DHCP server. More than one domain suffix can be
2612 transmitted by specifying this option multiple times. If
2613 supported, this will cause the guest to automatically try to
2614 append the given domain suffix(es) in case a domain name can not
2621 |qemu_system| -nic user,dnssearch=mgmt.example.org,dnssearch=example.org
2623 ``domainname=domain``
2624 Specifies the client domain name reported by the built-in DHCP
2628 When using the user mode network stack, activate a built-in TFTP
2629 server. The files in dir will be exposed as the root of a TFTP
2630 server. The TFTP client on the guest must be configured in
2631 binary mode (use the command ``bin`` of the Unix TFTP client).
2633 ``tftp-server-name=name``
2634 In BOOTP reply, broadcast name as the "TFTP server name"
2635 (RFC2132 option 66). This can be used to advise the guest to
2636 load boot files or configurations from a different server than
2640 When using the user mode network stack, broadcast file as the
2641 BOOTP filename. In conjunction with ``tftp``, this can be used
2642 to network boot a guest from a local directory.
2644 Example (using pxelinux):
2648 |qemu_system| -hda linux.img -boot n -device e1000,netdev=n1 \\
2649 -netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
2651 ``smb=dir[,smbserver=addr]``
2652 When using the user mode network stack, activate a built-in SMB
2653 server so that Windows OSes can access to the host files in
2654 ``dir`` transparently. The IP address of the SMB server can be
2655 set to addr. By default the 4th IP in the guest network is used,
2658 In the guest Windows OS, the line:
2664 must be added in the file ``C:\WINDOWS\LMHOSTS`` (for windows
2665 9x/Me) or ``C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS`` (Windows
2668 Then ``dir`` can be accessed in ``\\smbserver\qemu``.
2670 Note that a SAMBA server must be installed on the host OS.
2672 ``hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport``
2673 Redirect incoming TCP or UDP connections to the host port
2674 hostport to the guest IP address guestaddr on guest port
2675 guestport. If guestaddr is not specified, its value is x.x.x.15
2676 (default first address given by the built-in DHCP server). By
2677 specifying hostaddr, the rule can be bound to a specific host
2678 interface. If no connection type is set, TCP is used. This
2679 option can be given multiple times.
2681 For example, to redirect host X11 connection from screen 1 to
2682 guest screen 0, use the following:
2687 |qemu_system| -nic user,hostfwd=tcp:127.0.0.1:6001-:6000
2688 # this host xterm should open in the guest X11 server
2691 To redirect telnet connections from host port 5555 to telnet
2692 port on the guest, use the following:
2697 |qemu_system| -nic user,hostfwd=tcp::5555-:23
2698 telnet localhost 5555
2700 Then when you use on the host ``telnet localhost 5555``, you
2701 connect to the guest telnet server.
2703 ``guestfwd=[tcp]:server:port-dev``; \ ``guestfwd=[tcp]:server:port-cmd:command``
2704 Forward guest TCP connections to the IP address server on port
2705 port to the character device dev or to a program executed by
2706 cmd:command which gets spawned for each connection. This option
2707 can be given multiple times.
2709 You can either use a chardev directly and have that one used
2710 throughout QEMU's lifetime
, like
in the following example
:
2714 # open
10.10.1.1:4321 on bootup
, connect
10.0.2.100:1234 to it whenever
2715 # the guest accesses it
2716 |qemu_system|
-nic user
,guestfwd
=tcp
:10.0.2.100:1234-tcp
:10.10.1.1:4321
2718 Or you can execute a command on every TCP connection established
2719 by the guest
, so that QEMU behaves similar to an inetd process
2720 for that virtual server
:
2724 # call
"netcat 10.10.1.1 4321" on every TCP connection to
10.0.2.100:1234
2725 # and connect the TCP stream to its stdin
/stdout
2726 |qemu_system|
-nic
'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
2728 ``
-netdev tap
,id
=id
[,fd
=h
][,ifname
=name
][,script
=file
][,downscript
=dfile
][,br
=bridge
][,helper
=helper
]``
2729 Configure a host TAP network backend with ID id
.
2731 Use the network script file to configure it and the network script
2732 dfile to deconfigure it
. If name is not provided
, the OS
2733 automatically provides one
. The
default network configure script is
2734 ``
/etc
/qemu
-ifup`` and the
default network deconfigure script is
2735 ``
/etc
/qemu
-ifdown``
. Use ``script
=no`` or ``downscript
=no`` to
2736 disable script execution
.
2738 If running QEMU as an unprivileged user
, use the network helper
2739 to configure the TAP
interface and attach it to the bridge
.
2740 The
default network helper executable is
2741 ``
/path
/to
/qemu
-bridge
-helper`` and the
default bridge device is
2744 ``fd``\
=h can be used to specify the handle of an already opened
2751 #launch a QEMU instance with the
default network script
2752 |qemu_system| linux
.img
-nic tap
2756 #launch a QEMU instance with two NICs
, each one connected
2758 |qemu_system| linux
.img
\\
2759 -netdev tap
,id
=nd0
,ifname
=tap0
-device e1000
,netdev
=nd0
\\
2760 -netdev tap
,id
=nd1
,ifname
=tap1
-device rtl8139
,netdev
=nd1
2764 #launch a QEMU instance with the
default network helper to
2765 #connect a TAP device to bridge br0
2766 |qemu_system| linux
.img
-device virtio
-net
-pci
,netdev
=n1
\\
2767 -netdev tap
,id
=n1
,"helper=/path/to/qemu-bridge-helper"
2769 ``
-netdev bridge
,id
=id
[,br
=bridge
][,helper
=helper
]``
2770 Connect a host TAP network
interface to a host bridge device
.
2772 Use the network helper helper to configure the TAP
interface and
2773 attach it to the bridge
. The
default network helper executable is
2774 ``
/path
/to
/qemu
-bridge
-helper`` and the
default bridge device is
2781 #launch a QEMU instance with the
default network helper to
2782 #connect a TAP device to bridge br0
2783 |qemu_system| linux
.img
-netdev bridge
,id
=n1
-device virtio
-net
,netdev
=n1
2787 #launch a QEMU instance with the
default network helper to
2788 #connect a TAP device to bridge qemubr0
2789 |qemu_system| linux
.img
-netdev bridge
,br
=qemubr0
,id
=n1
-device virtio
-net
,netdev
=n1
2791 ``
-netdev socket
,id
=id
[,fd
=h
][,listen
=[host
]:port
][,connect
=host
:port
]``
2792 This host network backend can be used to connect the guest
's network
2793 to another QEMU virtual machine using a TCP socket connection. If
2794 ``listen`` is specified, QEMU waits for incoming connections on port
2795 (host is optional). ``connect`` is used to connect to another QEMU
2796 instance using the ``listen`` option. ``fd``\ =h specifies an
2797 already opened TCP socket.
2803 # launch a first QEMU instance
2804 |qemu_system| linux.img \\
2805 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \\
2806 -netdev socket,id=n1,listen=:1234
2807 # connect the network of this instance to the network of the first instance
2808 |qemu_system| linux.img \\
2809 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \\
2810 -netdev socket,id=n2,connect=127.0.0.1:1234
2812 ``-netdev socket,id=id[,fd=h][,mcast=maddr:port[,localaddr=addr]]``
2813 Configure a socket host network backend to share the guest's network
2814 traffic with another QEMU virtual machines
using a UDP multicast
2815 socket
, effectively making a bus
for every QEMU with same multicast
2816 address maddr and port
. NOTES
:
2818 1. Several QEMU can be running on different hosts and share same bus
2819 (assuming correct multicast setup
for these hosts
).
2821 2. mcast support is compatible with User Mode
Linux (argument
2822 ``ethN
=mcast``
), see http
://user-mode-linux.sf.net.
2824 3. Use ``fd
=h`` to specify an already opened UDP multicast socket
.
2830 # launch one QEMU instance
2831 |qemu_system| linux
.img
\\
2832 -device e1000
,netdev
=n1
,mac
=52:54:00:12:34:56 \\
2833 -netdev socket
,id
=n1
,mcast
=230.0.0.1:1234
2834 # launch another QEMU instance on same
"bus"
2835 |qemu_system| linux
.img
\\
2836 -device e1000
,netdev
=n2
,mac
=52:54:00:12:34:57 \\
2837 -netdev socket
,id
=n2
,mcast
=230.0.0.1:1234
2838 # launch yet another QEMU instance on same
"bus"
2839 |qemu_system| linux
.img
\\
2840 -device e1000
,netdev
=n3
,mac
=52:54:00:12:34:58 \\
2841 -netdev socket
,id
=n3
,mcast
=230.0.0.1:1234
2843 Example (User Mode Linux compat
.):
2847 # launch QEMU
instance (note mcast address selected is UML
's default)
2848 |qemu_system| linux.img \\
2849 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \\
2850 -netdev socket,id=n1,mcast=239.192.168.1:1102
2852 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2854 Example (send packets from host's
1.2.3.4):
2858 |qemu_system| linux
.img
\\
2859 -device e1000
,netdev
=n1
,mac
=52:54:00:12:34:56 \\
2860 -netdev socket
,id
=n1
,mcast
=239.192.168.1:1102,localaddr
=1.2.3.4
2862 ``
-netdev l2tpv3
,id
=id
,src
=srcaddr
,dst
=dstaddr
[,srcport
=srcport
][,dstport
=dstport
],txsession
=txsession
[,rxsession
=rxsession
][,ipv6
][,udp
][,cookie64
][,counter
][,pincounter
][,txcookie
=txcookie
][,rxcookie
=rxcookie
][,offset
=offset
]``
2863 Configure a L2TPv3 pseudowire host network backend
. L2TPv3 (RFC3931
)
2864 is a popular protocol to transport
Ethernet (and other Layer
2) data
2865 frames between two systems
. It is present
in routers
, firewalls and
2866 the Linux
kernel (from version
3.3 onwards
).
2868 This transport allows a VM to communicate to another VM
, router or
2872 source
address (mandatory
)
2875 destination
address (mandatory
)
2878 select udp
encapsulation (default is ip
).
2884 destination udp port
.
2887 force v6
, otherwise defaults to v4
.
2889 ``rxcookie
=rxcookie``
; \ ``txcookie
=txcookie``
2890 Cookies are a weak form of security
in the l2tpv3 specification
.
2891 Their
function is mostly to prevent misconfiguration
. By
default
2895 Set cookie size to
64 bit instead of the
default 32
2898 Force a
'cut-down' L2TPv3 with no counter as
in
2899 draft
-mkonstan
-l2tpext
-keyed
-ipv6
-tunnel
-00
2902 Work around broken counter handling
in peer
. This may also help
2903 on networks which have packet reorder
.
2906 Add an extra offset between header and data
2908 For example
, to attach a VM running on host
4.3.2.1 via L2TPv3 to
2909 the bridge br
-lan on the remote Linux host
1.2.3.4:
2913 # Setup tunnel on linux host
using raw ip as encapsulation
2915 ip l2tp add tunnel remote
4.3.2.1 local
1.2.3.4 tunnel_id
1 peer_tunnel_id
1 \\
2916 encap udp udp_sport
16384 udp_dport
16384
2917 ip l2tp add session tunnel_id
1 name vmtunnel0 session_id
\\
2918 0xFFFFFFFF peer_session_id
0xFFFFFFFF
2919 ifconfig vmtunnel0 mtu
1500
2920 ifconfig vmtunnel0 up
2921 brctl addif br
-lan vmtunnel0
2925 # launch QEMU instance
- if your network has reorder or is very lossy add
,pincounter
2927 |qemu_system| linux
.img
-device e1000
,netdev
=n1
\\
2928 -netdev l2tpv3
,id
=n1
,src
=4.2.3.1,dst
=1.2.3.4,udp
,srcport
=16384,dstport
=16384,rxsession
=0xffffffff,txsession
=0xffffffff,counter
2930 ``
-netdev vde
,id
=id
[,sock
=socketpath
][,port
=n
][,group
=groupname
][,mode
=octalmode
]``
2931 Configure VDE backend to connect to PORT n of a vde
switch running
2932 on host and listening
for incoming connections on socketpath
. Use
2933 GROUP groupname and MODE octalmode to change
default ownership and
2934 permissions
for communication port
. This option is only available
if
2935 QEMU has been compiled with vde support enabled
.
2942 vde_switch
-F
-sock
/tmp
/myswitch
2943 # launch QEMU instance
2944 |qemu_system| linux
.img
-nic vde
,sock
=/tmp
/myswitch
2946 ``
-netdev vhost
-user
,chardev
=id
[,vhostforce
=on|off
][,queues
=n
]``
2947 Establish a vhost
-user netdev
, backed by a chardev id
. The chardev
2948 should be a unix domain socket backed one
. The vhost
-user uses a
2949 specifically defined protocol to pass vhost ioctl replacement
2950 messages to an application on the other end of the socket
. On
2951 non
-MSIX guests
, the feature can be forced with vhostforce
. Use
2952 'queues=n' to specify the number of queues to be created
for
2953 multiqueue vhost
-user
.
2959 qemu
-m
512 -object memory
-backend
-file
,id
=mem
,size
=512M
,mem
-path
=/hugetlbfs
,share
=on \
2960 -numa node
,memdev
=mem \
2961 -chardev socket
,id
=chr0
,path
=/path
/to
/socket \
2962 -netdev type
=vhost
-user
,id
=net0
,chardev
=chr0 \
2963 -device virtio
-net
-pci
,netdev
=net0
2965 ``
-netdev vhost
-vdpa
,vhostdev
=/path
/to
/dev``
2966 Establish a vhost
-vdpa netdev
.
2968 vDPA device is a device that uses a datapath which complies with
2969 the virtio specifications with a vendor specific control path
.
2970 vDPA devices can be both physically located on the hardware or
2971 emulated by software
.
2973 ``
-netdev hubport
,id
=id
,hubid
=hubid
[,netdev
=nd
]``
2974 Create a hub port on the emulated hub with ID hubid
.
2976 The hubport netdev lets you connect a NIC to a QEMU emulated hub
2977 instead of a single netdev
. Alternatively
, you can also connect the
2978 hubport to another netdev with ID nd by
using the ``netdev
=nd``
2981 ``
-net nic
[,netdev
=nd
][,macaddr
=mac
][,model
=type
] [,name
=name
][,addr
=addr
][,vectors
=v
]``
2982 Legacy option to configure or create an on
-board (or machine
2983 default) Network Interface
Card(NIC
) and connect it either to the
2984 emulated hub with ID
0 (i
.e
. the
default hub
), or to the netdev nd
.
2985 If model is omitted
, then the
default NIC model associated with the
2986 machine type is used
. Note that the
default NIC model may change
in
2987 future QEMU releases
, so it is highly recommended to always specify
2988 a model
. Optionally
, the MAC address can be changed to mac
, the
2989 device address set to
addr (PCI cards only
), and a name can be
2990 assigned
for use
in monitor commands
. Optionally
, for PCI cards
, you
2991 can specify the number v of MSI
-X vectors that the card should have
;
2992 this option currently only affects virtio cards
; set v
= 0 to
2993 disable MSI
-X
. If no ``
-net`` option is specified
, a single NIC is
2994 created
. QEMU can emulate several different models of network card
.
2995 Use ``
-net nic
,model
=help``
for a list of available devices
for your
2998 ``
-net user|tap|bridge|socket|l2tpv3|vde
[,...][,name
=name
]``
2999 Configure a host network
backend (with the options corresponding to
3000 the same ``
-netdev`` option
) and connect it to the emulated hub
0
3001 (the
default hub
). Use name to specify the name of the hub port
.
3006 DEFHEADING(Character device options
:)
3008 DEF("chardev", HAS_ARG
, QEMU_OPTION_chardev
,
3010 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3011 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
3012 " [,server][,nowait][,telnet][,websocket][,reconnect=seconds][,mux=on|off]\n"
3013 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID][,tls-authz=ID] (tcp)\n"
3014 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,websocket][,reconnect=seconds]\n"
3015 " [,mux=on|off][,logfile=PATH][,logappend=on|off][,abstract=on|off][,tight=on|off] (unix)\n"
3016 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
3017 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
3018 " [,logfile=PATH][,logappend=on|off]\n"
3019 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3020 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
3021 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3022 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
3023 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3024 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3026 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3027 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3029 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3030 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
3032 #ifdef CONFIG_BRLAPI
3033 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3035 #
if defined(__linux__
) ||
defined(__sun__
) ||
defined(__FreeBSD__
) \
3036 ||
defined(__NetBSD__
) ||
defined(__OpenBSD__
) ||
defined(__DragonFly__
)
3037 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3038 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3040 #
if defined(__linux__
) ||
defined(__FreeBSD__
) ||
defined(__DragonFly__
)
3041 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3042 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3044 #
if defined(CONFIG_SPICE
)
3045 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
3046 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
3052 The general form of a character device option is
:
3054 ``
-chardev backend
,id
=id
[,mux
=on|off
][,options
]``
3055 Backend is one of
: ``
null``
, ``socket``
, ``udp``
, ``msmouse``
,
3056 ``vc``
, ``ringbuf``
, ``file``
, ``pipe``
, ``console``
, ``serial``
,
3057 ``pty``
, ``stdio``
, ``braille``
, ``tty``
, ``parallel``
, ``parport``
,
3058 ``spicevmc``
, ``spiceport``
. The specific backend will determine the
3061 Use ``
-chardev help`` to print all available chardev backend types
.
3063 All devices must have an id
, which can be any string up to
127
3064 characters long
. It is used to uniquely identify
this device
in
3065 other command line directives
.
3067 A character device may be used
in multiplexing mode by multiple
3068 front
-ends
. Specify ``mux
=on`` to enable
this mode
. A multiplexer is
3069 a
"1:N" device
, and
here the
"1" end is your specified chardev
3070 backend
, and the
"N" end is the various parts of QEMU that can talk
3071 to a chardev
. If you create a chardev with ``id
=myid`` and
3072 ``mux
=on``
, QEMU will create a multiplexer with your specified ID
,
3073 and you can then configure multiple front ends to use that chardev
3074 ID
for their input
/output
. Up to four different front ends can be
3075 connected to a single multiplexed chardev
. (Without multiplexing
3076 enabled
, a chardev can only be used by a single front end
.) For
3077 instance you could use
this to allow a single stdio chardev to be
3078 used by two serial ports and the QEMU monitor
:
3082 -chardev stdio
,mux
=on
,id
=char0 \
3083 -mon chardev
=char0
,mode
=readline \
3084 -serial chardev
:char0 \
3085 -serial chardev
:char0
3087 You can have more than one multiplexer
in a system configuration
;
3088 for instance you could have a TCP port multiplexed between UART
0
3089 and UART
1, and stdio multiplexed between the QEMU monitor and a
3094 -chardev stdio
,mux
=on
,id
=char0 \
3095 -mon chardev
=char0
,mode
=readline \
3096 -parallel chardev
:char0 \
3097 -chardev tcp
,...,mux
=on
,id
=char1 \
3098 -serial chardev
:char1 \
3099 -serial chardev
:char1
3101 When you
're using a multiplexed character device, some escape
3102 sequences are interpreted in the input. See the chapter about
3103 :ref:`keys in the character backend multiplexer` in the
3104 System Emulation Users Guide for more details.
3106 Note that some other command line options may implicitly create
3107 multiplexed character backends; for instance ``-serial mon:stdio``
3108 creates a multiplexed stdio backend connected to the serial port and
3109 the QEMU monitor, and ``-nographic`` also multiplexes the console
3110 and the monitor to stdio.
3112 There is currently no support for multiplexing in the other
3113 direction (where a single QEMU front end takes input and output from
3116 Every backend supports the ``logfile`` option, which supplies the
3117 path to a file to record all data transmitted via the backend. The
3118 ``logappend`` option controls whether the log file will be truncated
3119 or appended to when opened.
3121 The available backends are:
3123 ``-chardev null,id=id``
3124 A void device. This device will not emit any data, and will drop any
3125 data it receives. The null backend does not take any options.
3127 ``-chardev socket,id=id[,TCP options or unix options][,server][,nowait][,telnet][,websocket][,reconnect=seconds][,tls-creds=id][,tls-authz=id]``
3128 Create a two-way stream socket, which can be either a TCP or a unix
3129 socket. A unix socket will be created if ``path`` is specified.
3130 Behaviour is undefined if TCP options are specified for a unix
3133 ``server`` specifies that the socket shall be a listening socket.
3135 ``nowait`` specifies that QEMU should not block waiting for a client
3136 to connect to a listening socket.
3138 ``telnet`` specifies that traffic on the socket should interpret
3139 telnet escape sequences.
3141 ``websocket`` specifies that the socket uses WebSocket protocol for
3144 ``reconnect`` sets the timeout for reconnecting on non-server
3145 sockets when the remote end goes away. qemu will delay this many
3146 seconds and then attempt to reconnect. Zero disables reconnecting,
3149 ``tls-creds`` requests enablement of the TLS protocol for
3150 encryption, and specifies the id of the TLS credentials to use for
3151 the handshake. The credentials must be previously created with the
3152 ``-object tls-creds`` argument.
3154 ``tls-auth`` provides the ID of the QAuthZ authorization object
3155 against which the client's x509 distinguished name will be
3156 validated
. This object is only resolved at time of use
, so can be
3157 deleted and recreated on the fly
while the chardev server is active
.
3158 If missing
, it will
default to denying access
.
3160 TCP and unix socket options are given below
:
3162 ``TCP options
: port
=port
[,host
=host
][,to
=to
][,ipv4
][,ipv6
][,nodelay
]``
3163 ``host``
for a listening socket specifies the local address to
3164 be bound
. For a connecting socket species the remote host to
3165 connect to
. ``host`` is optional
for listening sockets
. If not
3166 specified it defaults to ``
0.0.0.0``
.
3168 ``port``
for a listening socket specifies the local port to be
3169 bound
. For a connecting socket specifies the port on the remote
3170 host to connect to
. ``port`` can be given as either a port
3171 number or a service name
. ``port`` is required
.
3173 ``to`` is only relevant to listening sockets
. If it is
3174 specified
, and ``port`` cannot be bound
, QEMU will attempt to
3175 bind to subsequent ports up to and including ``to`` until it
3176 succeeds
. ``to`` must be specified as a port number
.
3178 ``ipv4`` and ``ipv6`` specify that either IPv4 or IPv6 must be
3179 used
. If neither is specified the socket may use either
3182 ``nodelay`` disables the Nagle algorithm
.
3184 ``unix options
: path
=path
[,abstract
=on|off
][,tight
=on|off
]``
3185 ``path`` specifies the local path of the unix socket
. ``path``
3187 ``abstract`` specifies the use of the abstract socket namespace
,
3188 rather than the filesystem
. Optional
, defaults to
false.
3189 ``tight`` sets the socket length of abstract sockets to their minimum
,
3190 rather than the full sun_path length
. Optional
, defaults to
true.
3192 ``
-chardev udp
,id
=id
[,host
=host
],port
=port
[,localaddr
=localaddr
][,localport
=localport
][,ipv4
][,ipv6
]``
3193 Sends all traffic from the guest to a remote host over UDP
.
3195 ``host`` specifies the remote host to connect to
. If not specified
3196 it defaults to ``localhost``
.
3198 ``port`` specifies the port on the remote host to connect to
.
3199 ``port`` is required
.
3201 ``localaddr`` specifies the local address to bind to
. If not
3202 specified it defaults to ``
0.0.0.0``
.
3204 ``localport`` specifies the local port to bind to
. If not specified
3205 any available local port will be used
.
3207 ``ipv4`` and ``ipv6`` specify that either IPv4 or IPv6 must be used
.
3208 If neither is specified the device may use either protocol
.
3210 ``
-chardev msmouse
,id
=id``
3211 Forward QEMU
's emulated msmouse events to the guest. ``msmouse``
3212 does not take any options.
3214 ``-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]``
3215 Connect to a QEMU text console. ``vc`` may optionally be given a
3218 ``width`` and ``height`` specify the width and height respectively
3219 of the console, in pixels.
3221 ``cols`` and ``rows`` specify that the console be sized to fit a
3222 text console with the given dimensions.
3224 ``-chardev ringbuf,id=id[,size=size]``
3225 Create a ring buffer with fixed size ``size``. size must be a power
3226 of two and defaults to ``64K``.
3228 ``-chardev file,id=id,path=path``
3229 Log all traffic received from the guest to a file.
3231 ``path`` specifies the path of the file to be opened. This file will
3232 be created if it does not already exist, and overwritten if it does.
3233 ``path`` is required.
3235 ``-chardev pipe,id=id,path=path``
3236 Create a two-way connection to the guest. The behaviour differs
3237 slightly between Windows hosts and other hosts:
3239 On Windows, a single duplex pipe will be created at
3242 On other hosts, 2 pipes will be created called ``path.in`` and
3243 ``path.out``. Data written to ``path.in`` will be received by the
3244 guest. Data written by the guest can be read from ``path.out``. QEMU
3245 will not create these fifos, and requires them to be present.
3247 ``path`` forms part of the pipe path as described above. ``path`` is
3250 ``-chardev console,id=id``
3251 Send traffic from the guest to QEMU's standard output
. ``console``
3252 does not take any options
.
3254 ``console`` is only available on Windows hosts
.
3256 ``
-chardev serial
,id
=id
,path
=path``
3257 Send traffic from the guest to a serial device on the host
.
3259 On Unix hosts serial will actually accept any tty device
, not only
3262 ``path`` specifies the name of the serial device to open
.
3264 ``
-chardev pty
,id
=id``
3265 Create a
new pseudo
-terminal on the host and connect to it
. ``pty``
3266 does not take any options
.
3268 ``pty`` is not available on Windows hosts
.
3270 ``
-chardev stdio
,id
=id
[,signal
=on|off
]``
3271 Connect to standard input and standard output of the QEMU process
.
3273 ``signal`` controls
if signals are enabled on the terminal
, that
3274 includes exiting QEMU with the key sequence Control
-c
. This option
3275 is enabled by
default, use ``signal
=off`` to disable it
.
3277 ``
-chardev braille
,id
=id``
3278 Connect to a local BrlAPI server
. ``braille`` does not take any
3281 ``
-chardev tty
,id
=id
,path
=path``
3282 ``tty`` is only available on Linux
, Sun
, FreeBSD
, NetBSD
, OpenBSD
3283 and DragonFlyBSD hosts
. It is an alias
for ``serial``
.
3285 ``path`` specifies the path to the tty
. ``path`` is required
.
3287 ``
-chardev parallel
,id
=id
,path
=path``
3289 ``
-chardev parport
,id
=id
,path
=path``
3290 ``parallel`` is only available on Linux
, FreeBSD and DragonFlyBSD
3293 Connect to a local parallel port
.
3295 ``path`` specifies the path to the parallel port device
. ``path`` is
3298 ``
-chardev spicevmc
,id
=id
,debug
=debug
,name
=name``
3299 ``spicevmc`` is only available when spice support is built
in.
3301 ``debug`` debug level
for spicevmc
3303 ``name`` name of spice channel to connect to
3305 Connect to a spice virtual machine channel
, such as vdiport
.
3307 ``
-chardev spiceport
,id
=id
,debug
=debug
,name
=name``
3308 ``spiceport`` is only available when spice support is built
in.
3310 ``debug`` debug level
for spicevmc
3312 ``name`` name of spice port to connect to
3314 Connect to a spice port
, allowing a Spice client to handle the
3315 traffic identified by a
name (preferably a fqdn
).
3321 DEFHEADING(TPM device options
:)
3323 DEF("tpmdev", HAS_ARG
, QEMU_OPTION_tpmdev
, \
3324 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
3325 " use path to provide path to a character device; default is /dev/tpm0\n"
3326 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
3327 " not provided it will be searched for in /sys/class/misc/tpm?/device\n"
3328 "-tpmdev emulator,id=id,chardev=dev\n"
3329 " configure the TPM device using chardev backend\n",
3332 The general form of a TPM device option is
:
3334 ``
-tpmdev backend
,id
=id
[,options
]``
3335 The specific backend type will determine the applicable options
. The
3336 ``
-tpmdev`` option creates the TPM backend and requires a
3337 ``
-device`` option that specifies the TPM frontend
interface model
.
3339 Use ``
-tpmdev help`` to print all available TPM backend types
.
3341 The available backends are
:
3343 ``
-tpmdev passthrough
,id
=id
,path
=path
,cancel
-path
=cancel
-path``
3344 (Linux
-host only
) Enable access to the host
's TPM using the
3347 ``path`` specifies the path to the host's TPM device
, i
.e
., on a
3348 Linux host
this would be ``
/dev
/tpm0``
. ``path`` is optional and by
3349 default ``
/dev
/tpm0`` is used
.
3351 ``cancel
-path`` specifies the path to the host TPM device
's sysfs
3352 entry allowing for cancellation of an ongoing TPM command.
3353 ``cancel-path`` is optional and by default QEMU will search for the
3356 Some notes about using the host's TPM with the passthrough driver
:
3358 The TPM device accessed by the passthrough driver must not be used
3359 by any other application on the host
.
3361 Since the host
's firmware (BIOS/UEFI) has already initialized the
3362 TPM, the VM's
firmware (BIOS
/UEFI
) will not be able to initialize
3363 the TPM again and may therefore not show a TPM
-specific menu that
3364 would otherwise allow the user to configure the TPM
, e
.g
., allow the
3365 user to enable
/disable or activate
/deactivate the TPM
. Further
, if
3366 TPM ownership is released from within a VM then the host
's TPM will
3367 get disabled and deactivated. To enable and activate the TPM again
3368 afterwards, the host has to be rebooted and the user is required to
3369 enter the firmware's menu to enable and activate the TPM
. If the TPM
3370 is left disabled and
/or deactivated most TPM commands will fail
.
3372 To create a passthrough TPM use the following two options
:
3376 -tpmdev passthrough
,id
=tpm0
-device tpm
-tis
,tpmdev
=tpm0
3378 Note that the ``
-tpmdev`` id is ``tpm0`` and is referenced by
3379 ``tpmdev
=tpm0``
in the device option
.
3381 ``
-tpmdev emulator
,id
=id
,chardev
=dev``
3382 (Linux
-host only
) Enable access to a TPM emulator
using Unix domain
3383 socket based chardev backend
.
3385 ``chardev`` specifies the unique ID of a character device backend
3386 that provides connection to the software TPM server
.
3388 To create a TPM emulator backend device with chardev socket backend
:
3392 -chardev socket
,id
=chrtpm
,path
=/tmp
/swtpm
-sock
-tpmdev emulator
,id
=tpm0
,chardev
=chrtpm
-device tpm
-tis
,tpmdev
=tpm0
3399 DEFHEADING(Linux
/Multiboot boot specific
:)
3401 When
using these options
, you can use a given Linux or Multiboot kernel
3402 without installing it
in the disk image
. It can be useful
for easier
3403 testing of various kernels
.
3408 DEF("kernel", HAS_ARG
, QEMU_OPTION_kernel
, \
3409 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL
)
3412 Use bzImage as kernel image
. The kernel can be either a Linux kernel
3413 or
in multiboot format
.
3416 DEF("append", HAS_ARG
, QEMU_OPTION_append
, \
3417 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL
)
3420 Use cmdline as kernel command line
3423 DEF("initrd", HAS_ARG
, QEMU_OPTION_initrd
, \
3424 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL
)
3427 Use file as initial ram disk
.
3429 ``
-initrd
"file1 arg=foo,file2"``
3430 This syntax is only available with multiboot
.
3432 Use file1 and file2 as modules and pass arg
=foo as parameter to the
3436 DEF("dtb", HAS_ARG
, QEMU_OPTION_dtb
, \
3437 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL
)
3440 Use file as a device tree
binary (dtb
) image and pass it to the
3446 DEFHEADING(Debug
/Expert options
:)
3448 DEF("fw_cfg", HAS_ARG
, QEMU_OPTION_fwcfg
,
3449 "-fw_cfg [name=]<name>,file=<file>\n"
3450 " add named fw_cfg entry with contents from file\n"
3451 "-fw_cfg [name=]<name>,string=<str>\n"
3452 " add named fw_cfg entry with contents from string\n",
3455 ``
-fw_cfg
[name
=]name
,file
=file``
3456 Add named fw\_cfg entry with contents from file file
.
3458 ``
-fw_cfg
[name
=]name
,string
=str``
3459 Add named fw\_cfg entry with contents from string str
.
3461 The terminating NUL character of the contents of str will not be
3462 included as part of the fw\_cfg item data
. To insert contents with
3463 embedded NUL characters
, you have to use the file parameter
.
3465 The fw\_cfg entries are passed by QEMU through to the guest
.
3471 -fw_cfg name
=opt
/com
.mycompany
/blob
,file
=./my_blob
.bin
3473 creates an fw\_cfg entry named opt
/com
.mycompany
/blob with contents
3474 from
./my\_blob
.bin
.
3477 DEF("serial", HAS_ARG
, QEMU_OPTION_serial
, \
3478 "-serial dev redirect the serial port to char device 'dev'\n",
3482 Redirect the virtual serial port to host character device dev
. The
3483 default device is ``vc``
in graphical mode and ``stdio``
in non
3486 This option can be used several times to simulate up to
4 serial
3489 Use ``
-serial none`` to disable all serial ports
.
3491 Available character devices are
:
3494 Virtual console
. Optionally
, a width and height can be given
in
3501 It is also possible to specify width or height
in characters
:
3508 [Linux only
] Pseudo
TTY (a
new PTY is automatically allocated
)
3511 No device is allocated
.
3517 Use a named character device defined with the ``
-chardev``
3521 [Linux only
] Use host tty
, e
.g
. ``
/dev
/ttyS0``
. The host serial
3522 port parameters are set according to the emulated ones
.
3525 [Linux only
, parallel port only
] Use host parallel port N
.
3526 Currently SPP and EPP parallel port features can be used
.
3529 Write output to filename
. No character can be read
.
3532 [Unix only
] standard input
/output
3538 [Windows only
] Use host serial port n
3540 ``udp
:[remote_host
]:remote_port
[@
[src_ip
]:src_port
]``
3541 This
implements UDP Net Console
. When remote\_host or src\_ip
3542 are not specified they
default to ``
0.0.0.0``
. When not
using a
3543 specified src\_port a random port is automatically chosen
.
3545 If you just want a simple readonly console you can use
3546 ``netcat`` or ``nc``
, by starting QEMU with
:
3547 ``
-serial udp
::4555`` and nc as
: ``nc
-u
-l
-p
4555``
. Any time
3548 QEMU writes something to that port it will appear
in the
3551 If you plan to send characters back via netconsole or you want
3552 to stop and start QEMU a lot of times
, you should have QEMU use
3553 the same source port each time by
using something like ``
-serial
3554 udp
::4555@
:4556`` to QEMU
. Another approach is to use a patched
3555 version of netcat which can listen to a TCP port and send and
3556 receive characters via udp
. If you have a patched version of
3557 netcat which activates telnet remote echo and single char
3558 transfer
, then you can use the following options to set up a
3559 netcat redirector to allow telnet on port
5555 to access the
3563 -serial udp
::4555@
:4556
3566 -u
-P
4555 -L
0.0.0.0:4556 -t
-p
5555 -I
-T
3571 ``tcp
:[host
]:port
[,server
][,nowait
][,nodelay
][,reconnect
=seconds
]``
3572 The TCP Net Console has two modes of operation
. It can send the
3573 serial I
/O to a location or wait
for a connection from a
3574 location
. By
default the TCP Net Console is sent to host at the
3575 port
. If you use the server option QEMU will wait
for a client
3576 socket application to connect to the port before continuing
,
3577 unless the ``nowait`` option was specified
. The ``nodelay``
3578 option disables the Nagle buffering algorithm
. The ``reconnect``
3579 option only applies
if noserver is set
, if the connection goes
3580 down it will attempt to reconnect at the given interval
. If host
3581 is omitted
, 0.0.0.0 is assumed
. Only one TCP connection at a
3582 time is accepted
. You can use ``telnet`` to connect to the
3583 corresponding character device
.
3585 ``Example to send tcp console to
192.168.0.2 port
4444``
3586 -serial tcp
:192.168.0.2:4444
3588 ``Example to listen and wait on port
4444 for connection``
3589 -serial tcp
::4444,server
3591 ``Example to not wait and listen on ip
192.168.0.100 port
4444``
3592 -serial tcp
:192.168.0.100:4444,server
,nowait
3594 ``telnet
:host
:port
[,server
][,nowait
][,nodelay
]``
3595 The telnet protocol is used instead of raw tcp sockets
. The
3596 options work the same as
if you had specified ``
-serial tcp``
.
3597 The difference is that the port acts like a telnet server or
3598 client
using telnet option negotiation
. This will also allow you
3599 to send the MAGIC\_SYSRQ sequence
if you use a telnet that
3600 supports sending the
break sequence
. Typically
in unix telnet
3601 you
do it with Control
-] and then type
"send break" followed by
3602 pressing the enter key
.
3604 ``websocket
:host
:port
,server
[,nowait
][,nodelay
]``
3605 The WebSocket protocol is used instead of raw tcp socket
. The
3606 port acts as a WebSocket server
. Client mode is not supported
.
3608 ``unix
:path
[,server
][,nowait
][,reconnect
=seconds
]``
3609 A unix domain socket is used instead of a tcp socket
. The option
3610 works the same as
if you had specified ``
-serial tcp`` except
3611 the unix domain socket path is used
for connections
.
3614 This is a special option to allow the monitor to be multiplexed
3615 onto another serial port
. The monitor is accessed with key
3616 sequence of Control
-a and then pressing c
. dev\_string should be
3617 any one of the serial devices specified above
. An example to
3618 multiplex the monitor onto a telnet server listening on port
3621 ``
-serial mon
:telnet
::4444,server
,nowait``
3623 When the monitor is multiplexed to stdio
in this way
, Ctrl
+C
3624 will not terminate QEMU any more but will be passed to the guest
3628 Braille device
. This will use BrlAPI to display the braille
3629 output on a real or fake device
.
3632 Three button serial mouse
. Configure the guest to use Microsoft
3636 DEF("parallel", HAS_ARG
, QEMU_OPTION_parallel
, \
3637 "-parallel dev redirect the parallel port to char device 'dev'\n",
3641 Redirect the virtual parallel port to host device
dev (same devices
3642 as the serial port
). On Linux hosts
, ``
/dev
/parportN`` can be used
3643 to use hardware devices connected on the corresponding host parallel
3646 This option can be used several times to simulate up to
3 parallel
3649 Use ``
-parallel none`` to disable all parallel ports
.
3652 DEF("monitor", HAS_ARG
, QEMU_OPTION_monitor
, \
3653 "-monitor dev redirect the monitor to char device 'dev'\n",
3657 Redirect the monitor to host device
dev (same devices as the serial
3658 port
). The
default device is ``vc``
in graphical mode and ``stdio``
3659 in non graphical mode
. Use ``
-monitor none`` to disable the
default
3662 DEF("qmp", HAS_ARG
, QEMU_OPTION_qmp
, \
3663 "-qmp dev like -monitor but opens in 'control' mode\n",
3667 Like
-monitor but opens
in 'control' mode
.
3669 DEF("qmp-pretty", HAS_ARG
, QEMU_OPTION_qmp_pretty
, \
3670 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3674 Like
-qmp but uses pretty JSON formatting
.
3677 DEF("mon", HAS_ARG
, QEMU_OPTION_mon
, \
3678 "-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]\n", QEMU_ARCH_ALL
)
3680 ``
-mon
[chardev
=]name
[,mode
=readline|control
][,pretty
[=on|off
]]``
3681 Setup monitor on chardev name
. ``pretty`` turns on JSON pretty
3682 printing easing human reading and debugging
.
3685 DEF("debugcon", HAS_ARG
, QEMU_OPTION_debugcon
, \
3686 "-debugcon dev redirect the debug console to char device 'dev'\n",
3690 Redirect the debug console to host device
dev (same devices as the
3691 serial port
). The debug console is an I
/O port which is typically
3692 port
0xe9; writing to that I
/O port sends output to
this device
. The
3693 default device is ``vc``
in graphical mode and ``stdio``
in non
3697 DEF("pidfile", HAS_ARG
, QEMU_OPTION_pidfile
, \
3698 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL
)
3701 Store the QEMU process PID
in file
. It is useful
if you launch QEMU
3705 DEF("singlestep", 0, QEMU_OPTION_singlestep
, \
3706 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL
)
3709 Run the emulation
in single step mode
.
3712 DEF("preconfig", 0, QEMU_OPTION_preconfig
, \
3713 "--preconfig pause QEMU before machine is initialized (experimental)\n",
3717 Pause QEMU
for interactive configuration before the machine is
3718 created
, which allows querying and configuring properties that will
3719 affect machine initialization
. Use QMP command
'x-exit-preconfig' to
3720 exit the preconfig state and move to the next
state (i
.e
. run guest
3721 if -S isn
't used or pause the second time if -S is used). This
3722 option is experimental.
3725 DEF("S", 0, QEMU_OPTION_S, \
3726 "-S freeze CPU at startup (use 'c
' to start execution)\n",
3730 Do not start CPU at startup (you must type 'c
' in the monitor).
3733 DEF("overcommit", HAS_ARG, QEMU_OPTION_overcommit,
3734 "-overcommit [mem-lock=on|off][cpu-pm=on|off]\n"
3735 " run qemu with overcommit hints\n"
3736 " mem-lock=on|off controls memory lock support (default: off)\n"
3737 " cpu-pm=on|off controls cpu power management (default: off)\n",
3740 ``-overcommit mem-lock=on|off``
3742 ``-overcommit cpu-pm=on|off``
3743 Run qemu with hints about host resource overcommit. The default is
3744 to assume that host overcommits all resources.
3746 Locking qemu and guest memory can be enabled via ``mem-lock=on``
3747 (disabled by default). This works when host memory is not
3748 overcommitted and reduces the worst-case latency for guest.
3750 Guest ability to manage power state of host cpus (increasing latency
3751 for other processes on the same host cpu, but decreasing latency for
3752 guest) can be enabled via ``cpu-pm=on`` (disabled by default). This
3753 works best when host CPU is not overcommitted. When used, host
3754 estimates of CPU cycle and power utilization will be incorrect, not
3755 taking into account guest idle time.
3758 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3759 "-gdb dev accept gdb connection on 'dev
'. (QEMU defaults to starting\n"
3760 " the guest without waiting for gdb to connect; use -S too\n"
3761 " if you want it to not start execution.)\n",
3765 Accept a gdb connection on device dev (see the :ref:`GDB usage` chapter
3766 in the System Emulation Users Guide). Note that this option does not pause QEMU
3767 execution -- if you want QEMU to not start the guest until you
3768 connect with gdb and issue a ``continue`` command, you will need to
3769 also pass the ``-S`` option to QEMU.
3771 The most usual configuration is to listen on a local TCP socket::
3775 but you can specify other backends; UDP, pseudo TTY, or even stdio
3776 are all reasonable use cases. For example, a stdio connection
3777 allows you to start QEMU from within gdb and establish the
3778 connection via a pipe:
3782 (gdb) target remote | exec |qemu_system| -gdb stdio ...
3785 DEF("s", 0, QEMU_OPTION_s, \
3786 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3790 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3791 (see the :ref:`GDB usage` chapter in the System Emulation Users Guide).
3794 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3795 "-d item1,... enable logging of specified items (use '-d help
' for a list of log items)\n",
3799 Enable logging of specified items. Use '-d help
' for a list of log
3803 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3804 "-D logfile output log to logfile (default stderr)\n",
3808 Output log in logfile instead of to stderr
3811 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3812 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3815 ``-dfilter range1[,...]``
3816 Filter debug output to that relevant to a range of target addresses.
3817 The filter spec can be either start+size, start-size or start..end
3818 where start end and size are the addresses and sizes required. For
3823 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3825 Will dump output for any code in the 0x1000 sized block starting at
3826 0x8000 and the 0x200 sized block starting at 0xffffffc000080000 and
3827 another 0x1000 sized block starting at 0xffffffc00005f000.
3830 DEF("seed", HAS_ARG, QEMU_OPTION_seed, \
3831 "-seed number seed the pseudo-random number generator\n",
3835 Force the guest to use a deterministic pseudo-random number
3836 generator, seeded with number. This does not affect crypto routines
3840 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3841 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3845 Set the directory for the BIOS, VGA BIOS and keymaps.
3847 To list all the data directories, use ``-L help``.
3850 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3851 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3854 Set the filename for the BIOS.
3857 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3858 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3861 Enable KVM full virtualization support. This option is only
3862 available if KVM support is enabled when compiling.
3865 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3866 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3867 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3868 "-xen-attach attach to existing xen domain\n"
3869 " libxl will use this when starting QEMU\n",
3871 DEF("xen-domid-restrict", 0, QEMU_OPTION_xen_domid_restrict,
3872 "-xen-domid-restrict restrict set of available xen operations\n"
3873 " to specified domain id. (Does not affect\n"
3874 " xenpv machine type).\n",
3878 Specify xen guest domain id (XEN only).
3881 Attach to existing xen domain. libxl will use this when starting
3882 QEMU (XEN only). Restrict set of available xen operations to
3883 specified domain id (XEN only).
3886 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3887 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3890 Exit instead of rebooting.
3893 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3894 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3897 Don't exit QEMU on guest shutdown
, but instead only stop the
3898 emulation
. This allows
for instance switching to monitor to commit
3899 changes to the disk image
.
3902 DEF("action", HAS_ARG
, QEMU_OPTION_action
,
3903 "-action reboot=reset|shutdown\n"
3904 " action when guest reboots [default=reset]\n"
3905 "-action shutdown=poweroff|pause\n"
3906 " action when guest shuts down [default=poweroff]\n"
3907 "-action panic=pause|shutdown|none\n"
3908 " action when guest panics [default=shutdown]\n"
3909 "-action watchdog=reset|shutdown|poweroff|inject-nmi|pause|debug|none\n"
3910 " action when watchdog fires [default=reset]\n",
3913 ``
-action event
=action``
3914 The action parameter serves to modify QEMU
's default behavior when
3915 certain guest events occur. It provides a generic method for specifying the
3916 same behaviors that are modified by the ``-no-reboot`` and ``-no-shutdown``
3921 ``-action panic=none``
3922 ``-action reboot=shutdown,shutdown=pause``
3923 ``-watchdog i6300esb -action watchdog=pause``
3927 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3928 "-loadvm [tag|id]\n" \
3929 " start right away with a saved state (loadvm in monitor)\n",
3933 Start right away with a saved state (``loadvm`` in monitor)
3937 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3938 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3942 Daemonize the QEMU process after initialization. QEMU will not
3943 detach from standard IO until it is ready to receive connections on
3944 any of its devices. This option is a useful way for external
3945 programs to launch QEMU without having to cope with initialization
3949 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3950 "-option-rom rom load a file, rom, into the option ROM space\n",
3953 ``-option-rom file``
3954 Load the contents of file as an option ROM. This option is useful to
3955 load things like EtherBoot.
3958 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3959 "-rtc [base=utc|localtime|<datetime>][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3960 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3964 ``-rtc [base=utc|localtime|datetime][,clock=host|rt|vm][,driftfix=none|slew]``
3965 Specify ``base`` as ``utc`` or ``localtime`` to let the RTC start at
3966 the current UTC or local time, respectively. ``localtime`` is
3967 required for correct date in MS-DOS or Windows. To start at a
3968 specific point in time, provide datetime in the format
3969 ``2006-06-17T16:01:21`` or ``2006-06-17``. The default base is UTC.
3971 By default the RTC is driven by the host system time. This allows
3972 using of the RTC as accurate reference clock inside the guest,
3973 specifically if the host time is smoothly following an accurate
3974 external reference clock, e.g. via NTP. If you want to isolate the
3975 guest time from the host, you can set ``clock`` to ``rt`` instead,
3976 which provides a host monotonic clock if host support it. To even
3977 prevent the RTC from progressing during suspension, you can set
3978 ``clock`` to ``vm`` (virtual clock). '\ ``clock
=vm``\
' is
3979 recommended especially in icount mode in order to preserve
3980 determinism; however, note that in icount mode the speed of the
3981 virtual clock is variable and can in general differ from the host
3984 Enable ``driftfix`` (i386 targets only) if you experience time drift
3985 problems, specifically with Windows' ACPI HAL
. This option will
try
3986 to figure out how many timer interrupts were not processed by the
3987 Windows guest and will re
-inject them
.
3990 DEF("icount", HAS_ARG
, QEMU_OPTION_icount
, \
3991 "-icount [shift=N|auto][,align=on|off][,sleep=on|off][,rr=record|replay,rrfile=<filename>[,rrsnapshot=<snapshot>]]\n" \
3992 " enable virtual instruction counter with 2^N clock ticks per\n" \
3993 " instruction, enable aligning the host and virtual clocks\n" \
3994 " or disable real time cpu sleeping, and optionally enable\n" \
3995 " record-and-replay mode\n", QEMU_ARCH_ALL
)
3997 ``
-icount
[shift
=N|auto
][,align
=on|off
][,sleep
=on|off
][,rr
=record|replay
,rrfile
=filename
[,rrsnapshot
=snapshot
]]``
3998 Enable virtual instruction counter
. The virtual cpu will execute one
3999 instruction every
2^N ns of virtual time
. If ``auto`` is specified
4000 then the virtual cpu speed will be automatically adjusted to keep
4001 virtual time within a few seconds of real time
.
4003 Note that
while this option can give deterministic behavior
, it does
4004 not provide cycle accurate emulation
. Modern CPUs contain
4005 superscalar out of order cores with complex cache hierarchies
. The
4006 number of instructions executed often has little or no correlation
4007 with actual performance
.
4009 When the virtual cpu is sleeping
, the virtual time will advance at
4010 default speed unless ``sleep
=on`` is specified
. With
4011 ``sleep
=on``
, the virtual time will jump to the next timer
4012 deadline instantly whenever the virtual cpu goes to sleep mode and
4013 will not advance
if no timer is enabled
. This behavior gives
4014 deterministic execution times from the guest point of view
.
4015 The
default if icount is enabled is ``sleep
=off``
.
4016 ``sleep
=on`` cannot be used together with either ``shift
=auto``
4019 ``align
=on`` will activate the delay algorithm which will
try to
4020 synchronise the host clock and the virtual clock
. The goal is to
4021 have a guest running at the real frequency imposed by the shift
4022 option
. Whenever the guest clock is behind the host clock and
if
4023 ``align
=on`` is specified then we print a message to the user to
4024 inform about the delay
. Currently
this option does not work when
4025 ``shift`` is ``auto``
. Note
: The sync algorithm will work
for those
4026 shift values
for which the guest clock runs ahead of the host clock
.
4027 Typically
this happens when the shift value is
high (how high
4028 depends on the host machine
). The
default if icount is enabled
4031 When the ``rr`` option is specified deterministic record
/replay is
4032 enabled
. The ``rrfile
=`` option must also be provided to
4033 specify the path to the replay log
. In record mode data is written
4034 to
this file
, and
in replay mode it is read back
.
4035 If the ``rrsnapshot`` option is given then it specifies a VM snapshot
4036 name
. In record mode
, a
new VM snapshot with the given name is created
4037 at the start of execution recording
. In replay mode
this option
4038 specifies the snapshot name used to load the initial VM state
.
4041 DEF("watchdog", HAS_ARG
, QEMU_OPTION_watchdog
, \
4042 "-watchdog model\n" \
4043 " enable virtual hardware watchdog [default=none]\n",
4047 Create a virtual hardware watchdog device
. Once
enabled (by a guest
4048 action
), the watchdog must be periodically polled by an agent inside
4049 the guest or
else the guest will be restarted
. Choose a model
for
4050 which your guest has drivers
.
4052 The model is the model of hardware watchdog to emulate
. Use
4053 ``
-watchdog help`` to list available hardware models
. Only one
4054 watchdog can be enabled
for a guest
.
4056 The following models may be available
:
4059 iBASE
700 is a very simple ISA watchdog with a single timer
.
4062 Intel
6300ESB I
/O controller hub is a much more featureful
4063 PCI
-based dual
-timer watchdog
.
4066 A virtual watchdog
for s390x backed by the diagnose
288
4067 hypercall (currently KVM only
).
4070 DEF("watchdog-action", HAS_ARG
, QEMU_OPTION_watchdog_action
, \
4071 "-watchdog-action reset|shutdown|poweroff|inject-nmi|pause|debug|none\n" \
4072 " action when watchdog fires [default=reset]\n",
4075 ``
-watchdog
-action action``
4076 The action controls what QEMU will
do when the watchdog timer
4077 expires
. The
default is ``reset``
(forcefully reset the guest
).
4078 Other possible actions are
: ``shutdown``
(attempt to gracefully
4079 shutdown the guest
), ``poweroff``
(forcefully poweroff the guest
),
4080 ``inject
-nmi``
(inject a NMI into the guest
), ``pause``
(pause the
4081 guest
), ``debug``
(print a debug message and
continue), or ``none``
4084 Note that the ``shutdown`` action requires that the guest responds
4085 to ACPI signals
, which it may not be able to
do in the sort of
4086 situations where the watchdog would have expired
, and thus
4087 ``
-watchdog
-action shutdown`` is not recommended
for production use
.
4091 ``
-watchdog i6300esb
-watchdog
-action pause``
; \ ``
-watchdog ib700``
4095 DEF("echr", HAS_ARG
, QEMU_OPTION_echr
, \
4096 "-echr chr set terminal escape character instead of ctrl-a\n",
4099 ``
-echr numeric_ascii_value``
4100 Change the escape character used
for switching to the monitor when
4101 using monitor and serial sharing
. The
default is ``
0x01`` when
using
4102 the ``
-nographic`` option
. ``
0x01`` is equal to pressing
4103 ``Control
-a``
. You can select a different character from the ascii
4104 control keys where
1 through
26 map to Control
-a through Control
-z
.
4105 For instance you could use the either of the following to change the
4106 escape character to Control
-t
.
4108 ``
-echr
0x14``
; \ ``
-echr
20``
4112 DEF("incoming", HAS_ARG
, QEMU_OPTION_incoming
, \
4113 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
4114 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
4115 "-incoming unix:socketpath\n" \
4116 " prepare for incoming migration, listen on\n" \
4117 " specified protocol and socket address\n" \
4118 "-incoming fd:fd\n" \
4119 "-incoming exec:cmdline\n" \
4120 " accept incoming migration on given file descriptor\n" \
4121 " or from given external command\n" \
4122 "-incoming defer\n" \
4123 " wait for the URI to be specified via migrate_incoming\n",
4126 ``
-incoming tcp
:[host
]:port
[,to
=maxport
][,ipv4
][,ipv6
]``
4128 ``
-incoming rdma
:host
:port
[,ipv4
][,ipv6
]``
4129 Prepare
for incoming migration
, listen on a given tcp port
.
4131 ``
-incoming unix
:socketpath``
4132 Prepare
for incoming migration
, listen on a given unix socket
.
4135 Accept incoming migration from a given filedescriptor
.
4137 ``
-incoming exec
:cmdline``
4138 Accept incoming migration as an output from specified external
4142 Wait
for the URI to be specified via migrate\_incoming
. The monitor
4143 can be used to change
settings (such as migration parameters
) prior
4144 to issuing the migrate\_incoming to allow the migration to begin
.
4147 DEF("only-migratable", 0, QEMU_OPTION_only_migratable
, \
4148 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL
)
4150 ``
-only
-migratable``
4151 Only allow migratable devices
. Devices will not be allowed to enter
4152 an unmigratable state
.
4155 DEF("nodefaults", 0, QEMU_OPTION_nodefaults
, \
4156 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL
)
4159 Don
't create default devices. Normally, QEMU sets the default
4160 devices like serial port, parallel port, virtual console, monitor
4161 device, VGA adapter, floppy and CD-ROM drive and others. The
4162 ``-nodefaults`` option will disable all those default devices.
4166 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
4167 "-chroot dir chroot to dir just before starting the VM\n",
4172 Immediately before starting guest execution, chroot to the specified
4173 directory. Especially useful in combination with -runas.
4177 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
4178 "-runas user change to user id user just before starting the VM\n" \
4179 " user can be numeric uid:gid instead\n",
4184 Immediately before starting guest execution, drop root privileges,
4185 switching to the specified user.
4188 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
4189 "-prom-env variable=value\n"
4190 " set OpenBIOS nvram variables\n",
4191 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
4193 ``-prom-env variable=value``
4194 Set OpenBIOS nvram variable to given value (PPC, SPARC only).
4198 qemu-system-sparc -prom-env 'auto
-boot?
=false' \
4199 -prom-env 'boot
-device
=sd(0,2,0):d
' -prom-env 'boot
-args
=linux single
'
4203 qemu-system-ppc -prom-env 'auto
-boot?
=false' \
4204 -prom-env 'boot
-device
=hd
:2,\yaboot
' \
4205 -prom-env 'boot
-args
=conf
=hd
:2,\yaboot
.conf
'
4207 DEF("semihosting", 0, QEMU_OPTION_semihosting,
4208 "-semihosting semihosting mode\n",
4209 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
4210 QEMU_ARCH_MIPS | QEMU_ARCH_NIOS2 | QEMU_ARCH_RISCV)
4213 Enable semihosting mode (ARM, M68K, Xtensa, MIPS, Nios II, RISC-V only).
4215 Note that this allows guest direct access to the host filesystem, so
4216 should only be used with a trusted guest OS.
4218 See the -semihosting-config option documentation for further
4219 information about the facilities this enables.
4221 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
4222 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]\n" \
4223 " semihosting configuration\n",
4224 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
4225 QEMU_ARCH_MIPS | QEMU_ARCH_NIOS2 | QEMU_ARCH_RISCV)
4227 ``-semihosting-config [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]``
4228 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS, Nios II, RISC-V
4231 Note that this allows guest direct access to the host filesystem, so
4232 should only be used with a trusted guest OS.
4234 On Arm this implements the standard semihosting API, version 2.0.
4236 On M68K this implements the "ColdFire GDB" interface used by
4239 Xtensa semihosting provides basic file IO calls, such as
4240 open/read/write/seek/select. Tensilica baremetal libc for ISS and
4241 linux platform "sim" use this interface.
4243 On RISC-V this implements the standard semihosting API, version 0.2.
4245 ``target=native|gdb|auto``
4246 Defines where the semihosting calls will be addressed, to QEMU
4247 (``native``) or to GDB (``gdb``). The default is ``auto``, which
4248 means ``gdb`` during debug sessions and ``native`` otherwise.
4251 Send the output to a chardev backend output for native or auto
4252 output when not in gdb
4254 ``arg=str1,arg=str2,...``
4255 Allows the user to pass input arguments, and can be used
4256 multiple times to build up a list. The old-style
4257 ``-kernel``/``-append`` method of passing a command line is
4258 still supported for backward compatibility. If both the
4259 ``--semihosting-config arg`` and the ``-kernel``/``-append`` are
4260 specified, the former is passed to semihosting as it always
4263 DEF("old-param", 0, QEMU_OPTION_old_param,
4264 "-old-param old param mode\n", QEMU_ARCH_ARM)
4267 Old param mode (ARM only).
4270 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
4271 "-sandbox on[,obsolete=allow|deny][,elevateprivileges=allow|deny|children]\n" \
4272 " [,spawn=allow|deny][,resourcecontrol=allow|deny]\n" \
4273 " Enable seccomp mode 2 system call filter (default 'off
').\n" \
4274 " use 'obsolete
' to allow obsolete system calls that are provided\n" \
4275 " by the kernel, but typically no longer used by modern\n" \
4276 " C library implementations.\n" \
4277 " use 'elevateprivileges
' to allow or deny QEMU process to elevate\n" \
4278 " its privileges by blacklisting all set*uid|gid system calls.\n" \
4279 " The value 'children
' will deny set*uid|gid system calls for\n" \
4280 " main QEMU process but will allow forks and execves to run unprivileged\n" \
4281 " use 'spawn
' to avoid QEMU to spawn new threads or processes by\n" \
4282 " blacklisting *fork and execve\n" \
4283 " use 'resourcecontrol
' to disable process affinity and schedular priority\n",
4286 ``-sandbox arg[,obsolete=string][,elevateprivileges=string][,spawn=string][,resourcecontrol=string]``
4287 Enable Seccomp mode 2 system call filter. 'on
' will enable syscall
4288 filtering and 'off
' will disable it. The default is 'off
'.
4291 Enable Obsolete system calls
4293 ``elevateprivileges=string``
4294 Disable set\*uid\|gid system calls
4297 Disable \*fork and execve
4299 ``resourcecontrol=string``
4300 Disable process affinity and schedular priority
4303 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
4304 "-readconfig <file>\n", QEMU_ARCH_ALL)
4306 ``-readconfig file``
4307 Read device configuration from file. This approach is useful when
4308 you want to spawn QEMU process with many command line options but
4309 you don't want to exceed the command line character limit
.
4311 DEF("writeconfig", HAS_ARG
, QEMU_OPTION_writeconfig
,
4312 "-writeconfig <file>\n"
4313 " read/write config file\n", QEMU_ARCH_ALL
)
4315 ``
-writeconfig file``
4316 Write device configuration to file
. The file can be either filename
4317 to save command line and device configuration into file or dash
4318 ``
-``
) character to print the output to stdout
. This can be later
4319 used as input file
for ``
-readconfig`` option
.
4322 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig
,
4324 " do not load default user-provided config files at startup\n",
4328 The ``
-no
-user
-config`` option makes QEMU not load any of the
4329 user
-provided config files on sysconfdir
.
4332 DEF("trace", HAS_ARG
, QEMU_OPTION_trace
,
4333 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
4334 " specify tracing options\n",
4337 ``
-trace [[enable
=]pattern
][,events
=file
][,file
=file
]``
4338 .. include
:: ../qemu
-option
-trace.rst
.inc
4341 DEF("plugin", HAS_ARG
, QEMU_OPTION_plugin
,
4342 "-plugin [file=]<file>[,arg=<string>]\n"
4346 ``
-plugin file
=file
[,arg
=string
]``
4350 Load the given plugin from a shared library file
.
4353 Argument string passed to the plugin
. (Can be given multiple
4358 DEF("qtest", HAS_ARG
, QEMU_OPTION_qtest
, "", QEMU_ARCH_ALL
)
4359 DEF("qtest-log", HAS_ARG
, QEMU_OPTION_qtest_log
, "", QEMU_ARCH_ALL
)
4362 DEF("enable-fips", 0, QEMU_OPTION_enablefips
,
4363 "-enable-fips enable FIPS 140-2 compliance\n",
4368 Enable FIPS
140-2 compliance mode
.
4371 DEF("msg", HAS_ARG
, QEMU_OPTION_msg
,
4372 "-msg [timestamp[=on|off]][,guest-name=[on|off]]\n"
4373 " control error message format\n"
4374 " timestamp=on enables timestamps (default: off)\n"
4375 " guest-name=on enables guest name prefix but only if\n"
4376 " -name guest option is set (default: off)\n",
4379 ``
-msg
[timestamp
[=on|off
]][,guest
-name
[=on|off
]]``
4380 Control error message format
.
4382 ``timestamp
=on|off``
4383 Prefix messages with a timestamp
. Default is off
.
4385 ``guest
-name
=on|off``
4386 Prefix messages with guest name but only
if -name guest option is set
4387 otherwise the option is ignored
. Default is off
.
4390 DEF("dump-vmstate", HAS_ARG
, QEMU_OPTION_dump_vmstate
,
4391 "-dump-vmstate <file>\n"
4392 " Output vmstate information in JSON format to file.\n"
4393 " Use the scripts/vmstate-static-checker.py file to\n"
4394 " check for possible regressions in migration code\n"
4395 " by comparing two such vmstate dumps.\n",
4398 ``
-dump
-vmstate file``
4399 Dump json
-encoded vmstate information
for current machine type to
4403 DEF("enable-sync-profile", 0, QEMU_OPTION_enable_sync_profile
,
4404 "-enable-sync-profile\n"
4405 " enable synchronization profiling\n",
4408 ``
-enable
-sync
-profile``
4409 Enable synchronization profiling
.
4414 DEFHEADING(Generic object creation
:)
4416 DEF("object", HAS_ARG
, QEMU_OPTION_object
,
4417 "-object TYPENAME[,PROP1=VALUE1,...]\n"
4418 " create a new object of type TYPENAME setting properties\n"
4419 " in the order they are specified. Note that the 'id'\n"
4420 " property must be set. These objects are placed in the\n"
4421 " '/objects' path.\n",
4424 ``
-object typename
[,prop1
=value1
,...]``
4425 Create a
new object of type typename setting properties
in the order
4426 they are specified
. Note that the
'id' property must be set
. These
4427 objects are placed
in the
'/objects' path
.
4429 ``
-object memory
-backend
-file
,id
=id
,size
=size
,mem
-path
=dir
,share
=on|off
,discard
-data
=on|off
,merge
=on|off
,dump
=on|off
,prealloc
=on|off
,host
-nodes
=host
-nodes
,policy
=default|preferred|bind|interleave
,align
=align
,readonly
=on|off``
4430 Creates a memory file backend object
, which can be used to back
4431 the guest RAM with huge pages
.
4433 The ``id`` parameter is a unique ID that will be used to
4434 reference
this memory region when configuring the ``
-numa``
4437 The ``size`` option provides the size of the memory region
, and
4438 accepts common suffixes
, eg ``
500M``
.
4440 The ``mem
-path`` provides the path to either a shared memory or
4441 huge page filesystem mount
.
4443 The ``share`` boolean option determines whether the memory
4444 region is marked as
private to QEMU
, or shared
. The latter
4445 allows a co
-operating external process to access the QEMU memory
4448 The ``share`` is also required
for pvrdma devices due to
4449 limitations
in the RDMA API provided by Linux
.
4451 Setting share
=on might affect the ability to configure NUMA
4452 bindings
for the memory backend under some circumstances
, see
4453 Documentation
/vm
/numa\_memory\_policy
.txt on the Linux kernel
4454 source tree
for additional details
.
4456 Setting the ``discard
-data`` boolean option to on indicates that
4457 file contents can be destroyed when QEMU exits
, to avoid
4458 unnecessarily flushing data to the backing file
. Note that
4459 ``discard
-data`` is only an optimization
, and QEMU might not
4460 discard file contents
if it aborts unexpectedly or is terminated
4463 The ``merge`` boolean option enables memory merge
, also known as
4464 MADV\_MERGEABLE
, so that Kernel Samepage Merging will consider
4465 the pages
for memory deduplication
.
4467 Setting the ``dump`` boolean option to off excludes the memory
4468 from core dumps
. This feature is also known as MADV\_DONTDUMP
.
4470 The ``prealloc`` boolean option enables memory preallocation
.
4472 The ``host
-nodes`` option binds the memory range to a list of
4475 The ``policy`` option sets the NUMA policy to one of the
4482 prefer the given host node list
for allocation
4485 restrict memory allocation to the given host node list
4488 interleave memory allocations across the given host node
4491 The ``align`` option specifies the base address alignment when
4492 QEMU
mmap(2) ``mem
-path``
, and accepts common suffixes
, eg
4493 ``
2M``
. Some backend store specified by ``mem
-path`` requires an
4494 alignment different than the
default one used by QEMU
, eg the
4495 device DAX
/dev
/dax0
.0 requires
2M alignment rather than
4K
. In
4496 such cases
, users can specify the required alignment via
this
4499 The ``pmem`` option specifies whether the backing file specified
4500 by ``mem
-path`` is
in host persistent memory that can be
4501 accessed
using the SNIA NVM programming
model (e
.g
. Intel
4502 NVDIMM
). If ``pmem`` is set to
'on', QEMU will take necessary
4503 operations to guarantee the persistence of its own writes to
4504 ``mem
-path``
(e
.g
. in vNVDIMM label emulation and live
4505 migration
). Also
, we will map the backend
-file with MAP\_SYNC
4506 flag
, which ensures the file metadata is
in sync
for
4507 ``mem
-path``
in case of host crash or a power failure
. MAP\_SYNC
4508 requires support from both the host
kernel (since Linux kernel
4509 4.15) and the filesystem of ``mem
-path`` mounted with DAX
4512 The ``readonly`` option specifies whether the backing file is opened
4513 read
-only or read
-write (default).
4515 ``
-object memory
-backend
-ram
,id
=id
,merge
=on|off
,dump
=on|off
,share
=on|off
,prealloc
=on|off
,size
=size
,host
-nodes
=host
-nodes
,policy
=default|preferred|bind|interleave``
4516 Creates a memory backend object
, which can be used to back the
4517 guest RAM
. Memory backend objects offer more control than the
4518 ``
-m`` option that is traditionally used to define guest RAM
.
4519 Please refer to ``memory
-backend
-file``
for a description of the
4522 ``
-object memory
-backend
-memfd
,id
=id
,merge
=on|off
,dump
=on|off
,share
=on|off
,prealloc
=on|off
,size
=size
,host
-nodes
=host
-nodes
,policy
=default|preferred|bind|interleave
,seal
=on|off
,hugetlb
=on|off
,hugetlbsize
=size``
4523 Creates an anonymous memory file backend object
, which allows
4524 QEMU to share the memory with an external
process (e
.g
. when
4525 using vhost
-user
). The memory is allocated with memfd and
4526 optional sealing
. (Linux only
)
4528 The ``seal`` option creates a sealed
-file
, that will block
4529 further resizing the
memory ('on' by
default).
4531 The ``hugetlb`` option specify the file to be created resides
in
4532 the hugetlbfs
filesystem (since Linux
4.14). Used
in conjunction
4533 with the ``hugetlb`` option
, the ``hugetlbsize`` option specify
4534 the hugetlb page size on systems that support multiple hugetlb
4535 page
sizes (it must be a power of
2 value supported by the
4538 In some versions of Linux
, the ``hugetlb`` option is
4539 incompatible with the ``seal``
option (requires at least Linux
4542 Please refer to ``memory
-backend
-file``
for a description of the
4545 The ``share`` boolean option is on by
default with memfd
.
4547 ``
-object rng
-builtin
,id
=id``
4548 Creates a random number generator backend which obtains entropy
4549 from QEMU builtin functions
. The ``id`` parameter is a unique ID
4550 that will be used to reference
this entropy backend from the
4551 ``virtio
-rng`` device
. By
default, the ``virtio
-rng`` device
4552 uses
this RNG backend
.
4554 ``
-object rng
-random
,id
=id
,filename
=/dev
/random``
4555 Creates a random number generator backend which obtains entropy
4556 from a device on the host
. The ``id`` parameter is a unique ID
4557 that will be used to reference
this entropy backend from the
4558 ``virtio
-rng`` device
. The ``filename`` parameter specifies
4559 which file to obtain entropy from and
if omitted defaults to
4562 ``
-object rng
-egd
,id
=id
,chardev
=chardevid``
4563 Creates a random number generator backend which obtains entropy
4564 from an external daemon running on the host
. The ``id``
4565 parameter is a unique ID that will be used to reference
this
4566 entropy backend from the ``virtio
-rng`` device
. The ``chardev``
4567 parameter is the unique ID of a character device backend that
4568 provides the connection to the RNG daemon
.
4570 ``
-object tls
-creds
-anon
,id
=id
,endpoint
=endpoint
,dir
=/path
/to
/cred
/dir
,verify
-peer
=on|off``
4571 Creates a TLS anonymous credentials object
, which can be used to
4572 provide TLS support on network backends
. The ``id`` parameter is
4573 a unique ID which network backends will use to access the
4574 credentials
. The ``endpoint`` is either ``server`` or ``client``
4575 depending on whether the QEMU network backend that uses the
4576 credentials will be acting as a client or as a server
. If
4577 ``verify
-peer`` is
enabled (the
default) then once the handshake
4578 is completed
, the peer credentials will be verified
, though
this
4579 is a no
-op
for anonymous credentials
.
4581 The dir parameter tells QEMU where to find the credential files
.
4582 For server endpoints
, this directory may contain a file
4583 dh
-params
.pem providing diffie
-hellman parameters to use
for the
4584 TLS server
. If the file is missing
, QEMU will generate a set of
4585 DH parameters at startup
. This is a computationally expensive
4586 operation that consumes random pool entropy
, so it is
4587 recommended that a persistent set of parameters be generated
4590 ``
-object tls
-creds
-psk
,id
=id
,endpoint
=endpoint
,dir
=/path
/to
/keys
/dir
[,username
=username
]``
4591 Creates a TLS Pre
-Shared
Keys (PSK
) credentials object
, which
4592 can be used to provide TLS support on network backends
. The
4593 ``id`` parameter is a unique ID which network backends will use
4594 to access the credentials
. The ``endpoint`` is either ``server``
4595 or ``client`` depending on whether the QEMU network backend that
4596 uses the credentials will be acting as a client or as a server
.
4597 For clients only
, ``username`` is the username which will be
4598 sent to the server
. If omitted it defaults to
"qemu".
4600 The dir parameter tells QEMU where to find the keys file
. It is
4601 called
"dir/keys.psk" and contains
"username:key" pairs
. This
4602 file can most easily be created
using the GnuTLS ``psktool``
4605 For server endpoints
, dir may also contain a file dh
-params
.pem
4606 providing diffie
-hellman parameters to use
for the TLS server
.
4607 If the file is missing
, QEMU will generate a set of DH
4608 parameters at startup
. This is a computationally expensive
4609 operation that consumes random pool entropy
, so it is
4610 recommended that a persistent set of parameters be generated up
4613 ``
-object tls
-creds
-x509
,id
=id
,endpoint
=endpoint
,dir
=/path
/to
/cred
/dir
,priority
=priority
,verify
-peer
=on|off
,passwordid
=id``
4614 Creates a TLS anonymous credentials object
, which can be used to
4615 provide TLS support on network backends
. The ``id`` parameter is
4616 a unique ID which network backends will use to access the
4617 credentials
. The ``endpoint`` is either ``server`` or ``client``
4618 depending on whether the QEMU network backend that uses the
4619 credentials will be acting as a client or as a server
. If
4620 ``verify
-peer`` is
enabled (the
default) then once the handshake
4621 is completed
, the peer credentials will be verified
. With x509
4622 certificates
, this implies that the clients must be provided
4623 with valid client certificates too
.
4625 The dir parameter tells QEMU where to find the credential files
.
4626 For server endpoints
, this directory may contain a file
4627 dh
-params
.pem providing diffie
-hellman parameters to use
for the
4628 TLS server
. If the file is missing
, QEMU will generate a set of
4629 DH parameters at startup
. This is a computationally expensive
4630 operation that consumes random pool entropy
, so it is
4631 recommended that a persistent set of parameters be generated
4634 For x509 certificate credentials the directory will contain
4635 further files providing the x509 certificates
. The certificates
4636 must be stored
in PEM format
, in filenames ca
-cert
.pem
,
4637 ca
-crl
.pem (optional
), server
-cert
.pem (only servers
),
4638 server
-key
.pem (only servers
), client
-cert
.pem (only clients
),
4639 and client
-key
.pem (only clients
).
4641 For the server
-key
.pem and client
-key
.pem files which contain
4642 sensitive
private keys
, it is possible to use an encrypted
4643 version by providing the passwordid parameter
. This provides the
4644 ID of a previously created ``secret`` object containing the
4645 password
for decryption
.
4647 The priority parameter allows to
override the global
default
4648 priority used by gnutls
. This can be useful
if the system
4649 administrator needs to use a weaker set of crypto priorities
for
4650 QEMU without potentially forcing the weakness onto all
4651 applications
. Or conversely
if one wants wants a stronger
4652 default for QEMU than
for all other applications
, they can
do
4653 this through
this parameter
. Its format is a gnutls priority
4654 string as described at
4655 https
://gnutls.org/manual/html_node/Priority-Strings.html.
4657 ``
-object tls
-cipher
-suites
,id
=id
,priority
=priority``
4658 Creates a TLS cipher suites object
, which can be used to control
4659 the TLS cipher
/protocol algorithms that applications are permitted
4662 The ``id`` parameter is a unique ID which frontends will use to
4663 access the ordered list of permitted TLS cipher suites from the
4666 The ``priority`` parameter allows to
override the global
default
4667 priority used by gnutls
. This can be useful
if the system
4668 administrator needs to use a weaker set of crypto priorities
for
4669 QEMU without potentially forcing the weakness onto all
4670 applications
. Or conversely
if one wants wants a stronger
4671 default for QEMU than
for all other applications
, they can
do
4672 this through
this parameter
. Its format is a gnutls priority
4673 string as described at
4674 https
://gnutls.org/manual/html_node/Priority-Strings.html.
4676 An example of use of
this object is to control UEFI HTTPS Boot
.
4677 The tls
-cipher
-suites object exposes the ordered list of permitted
4678 TLS cipher suites from the host side to the guest firmware
, via
4679 fw_cfg
. The list is represented as an array of IANA_TLS_CIPHER
4680 objects
. The firmware uses the IANA_TLS_CIPHER array
for configuring
4683 In the following example
, the priority at which the host
-side policy
4684 is retrieved is given by the ``priority`` property
.
4685 Given that QEMU uses GNUTLS
, ``priority
=@SYSTEM`` may be used to
4686 refer to
/etc
/crypto
-policies
/back
-ends
/gnutls
.config
.
4691 -object tls
-cipher
-suites
,id
=mysuite0
,priority
=@SYSTEM
\\
4692 -fw_cfg name
=etc
/edk2
/https
/ciphers
,gen_id
=mysuite0
4694 ``
-object filter
-buffer
,id
=id
,netdev
=netdevid
,interval
=t
[,queue
=all|rx|tx
][,status
=on|off
][,position
=head|tail|id
=<id
>][,insert
=behind|before
]``
4695 Interval t can
't be 0, this filter batches the packet delivery:
4696 all packets arriving in a given interval on netdev netdevid are
4697 delayed until the end of the interval. Interval is in
4698 microseconds. ``status`` is optional that indicate whether the
4699 netfilter is on (enabled) or off (disabled), the default status
4700 for netfilter will be 'on
'.
4702 queue all\|rx\|tx is an option that can be applied to any
4705 ``all``: the filter is attached both to the receive and the
4706 transmit queue of the netdev (default).
4708 ``rx``: the filter is attached to the receive queue of the
4709 netdev, where it will receive packets sent to the netdev.
4711 ``tx``: the filter is attached to the transmit queue of the
4712 netdev, where it will receive packets sent by the netdev.
4714 position head\|tail\|id=<id> is an option to specify where the
4715 filter should be inserted in the filter list. It can be applied
4718 ``head``: the filter is inserted at the head of the filter list,
4719 before any existing filters.
4721 ``tail``: the filter is inserted at the tail of the filter list,
4722 behind any existing filters (default).
4724 ``id=<id>``: the filter is inserted before or behind the filter
4725 specified by <id>, see the insert option below.
4727 insert behind\|before is an option to specify where to insert
4728 the new filter relative to the one specified with
4729 position=id=<id>. It can be applied to any netfilter.
4731 ``before``: insert before the specified filter.
4733 ``behind``: insert behind the specified filter (default).
4735 ``-object filter-mirror,id=id,netdev=netdevid,outdev=chardevid,queue=all|rx|tx[,vnet_hdr_support][,position=head|tail|id=<id>][,insert=behind|before]``
4736 filter-mirror on netdev netdevid,mirror net packet to
4737 chardevchardevid, if it has the vnet\_hdr\_support flag,
4738 filter-mirror will mirror packet with vnet\_hdr\_len.
4740 ``-object filter-redirector,id=id,netdev=netdevid,indev=chardevid,outdev=chardevid,queue=all|rx|tx[,vnet_hdr_support][,position=head|tail|id=<id>][,insert=behind|before]``
4741 filter-redirector on netdev netdevid,redirect filter's net
4742 packet to chardev chardevid
,and redirect indev
's packet to
4743 filter.if it has the vnet\_hdr\_support flag, filter-redirector
4744 will redirect packet with vnet\_hdr\_len. Create a
4745 filter-redirector we need to differ outdev id from indev id, id
4746 can not be the same. we can just use indev or outdev, but at
4747 least one of indev or outdev need to be specified.
4749 ``-object filter-rewriter,id=id,netdev=netdevid,queue=all|rx|tx,[vnet_hdr_support][,position=head|tail|id=<id>][,insert=behind|before]``
4750 Filter-rewriter is a part of COLO project.It will rewrite tcp
4751 packet to secondary from primary to keep secondary tcp
4752 connection,and rewrite tcp packet to primary from secondary make
4753 tcp packet can be handled by client.if it has the
4754 vnet\_hdr\_support flag, we can parse packet with vnet header.
4756 usage: colo secondary: -object
4757 filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0 -object
4758 filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1 -object
4759 filter-rewriter,id=rew0,netdev=hn0,queue=all
4761 ``-object filter-dump,id=id,netdev=dev[,file=filename][,maxlen=len][,position=head|tail|id=<id>][,insert=behind|before]``
4762 Dump the network traffic on netdev dev to the file specified by
4763 filename. At most len bytes (64k by default) per packet are
4764 stored. The file format is libpcap, so it can be analyzed with
4765 tools such as tcpdump or Wireshark.
4767 ``-object colo-compare,id=id,primary_in=chardevid,secondary_in=chardevid,outdev=chardevid,iothread=id[,vnet_hdr_support][,notify_dev=id][,compare_timeout=@var{ms}][,expired_scan_cycle=@var{ms}][,max_queue_size=@var{size}]``
4768 Colo-compare gets packet from primary\_in chardevid and
4769 secondary\_in, then compare whether the payload of primary packet
4770 and secondary packet are the same. If same, it will output
4771 primary packet to out\_dev, else it will notify COLO-framework to do
4772 checkpoint and send primary packet to out\_dev. In order to
4773 improve efficiency, we need to put the task of comparison in
4774 another iothread. If it has the vnet\_hdr\_support flag,
4775 colo compare will send/recv packet with vnet\_hdr\_len.
4776 The compare\_timeout=@var{ms} determines the maximum time of the
4777 colo-compare hold the packet. The expired\_scan\_cycle=@var{ms}
4778 is to set the period of scanning expired primary node network packets.
4779 The max\_queue\_size=@var{size} is to set the max compare queue
4780 size depend on user environment.
4781 If user want to use Xen COLO, need to add the notify\_dev to
4782 notify Xen colo-frame to do checkpoint.
4784 COLO-compare must be used with the help of filter-mirror,
4785 filter-redirector and filter-rewriter.
4792 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4793 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4794 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4795 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4796 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4797 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4798 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4799 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4800 -object iothread,id=iothread1
4801 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4802 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4803 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4804 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,iothread=iothread1
4807 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4808 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4809 -chardev socket,id=red0,host=3.3.3.3,port=9003
4810 -chardev socket,id=red1,host=3.3.3.3,port=9004
4811 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4812 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4818 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4819 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4820 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4821 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4822 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4823 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4824 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4825 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4826 -chardev socket,id=notify_way,host=3.3.3.3,port=9009,server,nowait
4827 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4828 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4829 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4830 -object iothread,id=iothread1
4831 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,notify_dev=nofity_way,iothread=iothread1
4834 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4835 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4836 -chardev socket,id=red0,host=3.3.3.3,port=9003
4837 -chardev socket,id=red1,host=3.3.3.3,port=9004
4838 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4839 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4841 If you want to know the detail of above command line, you can
4842 read the colo-compare git log.
4844 ``-object cryptodev-backend-builtin,id=id[,queues=queues]``
4845 Creates a cryptodev backend which executes crypto opreation from
4846 the QEMU cipher APIS. The id parameter is a unique ID that will
4847 be used to reference this cryptodev backend from the
4848 ``virtio-crypto`` device. The queues parameter is optional,
4849 which specify the queue number of cryptodev backend, the default
4856 -object cryptodev-backend-builtin,id=cryptodev0 \\
4857 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \\
4860 ``-object cryptodev-vhost-user,id=id,chardev=chardevid[,queues=queues]``
4861 Creates a vhost-user cryptodev backend, backed by a chardev
4862 chardevid. The id parameter is a unique ID that will be used to
4863 reference this cryptodev backend from the ``virtio-crypto``
4864 device. The chardev should be a unix domain socket backed one.
4865 The vhost-user uses a specifically defined protocol to pass
4866 vhost ioctl replacement messages to an application on the other
4867 end of the socket. The queues parameter is optional, which
4868 specify the queue number of cryptodev backend for multiqueue
4869 vhost-user, the default of queues is 1.
4875 -chardev socket,id=chardev0,path=/path/to/socket \\
4876 -object cryptodev-vhost-user,id=cryptodev0,chardev=chardev0 \\
4877 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \\
4880 ``-object secret,id=id,data=string,format=raw|base64[,keyid=secretid,iv=string]``
4882 ``-object secret,id=id,file=filename,format=raw|base64[,keyid=secretid,iv=string]``
4883 Defines a secret to store a password, encryption key, or some
4884 other sensitive data. The sensitive data can either be passed
4885 directly via the data parameter, or indirectly via the file
4886 parameter. Using the data parameter is insecure unless the
4887 sensitive data is encrypted.
4889 The sensitive data can be provided in raw format (the default),
4890 or base64. When encoded as JSON, the raw format only supports
4891 valid UTF-8 characters, so base64 is recommended for sending
4892 binary data. QEMU will convert from which ever format is
4893 provided to the format it needs internally. eg, an RBD password
4894 can be provided in raw format, even though it will be base64
4895 encoded when passed onto the RBD sever.
4897 For added protection, it is possible to encrypt the data
4898 associated with a secret using the AES-256-CBC cipher. Use of
4899 encryption is indicated by providing the keyid and iv
4900 parameters. The keyid parameter provides the ID of a previously
4901 defined secret that contains the AES-256 decryption key. This
4902 key should be 32-bytes long and be base64 encoded. The iv
4903 parameter provides the random initialization vector used for
4904 encryption of this particular secret and should be a base64
4905 encrypted string of the 16-byte IV.
4907 The simplest (insecure) usage is to provide the secret inline
4911 # |qemu_system| -object secret,id=sec0,data=letmein,format=raw
4913 The simplest secure usage is to provide the secret via a file
4915 # printf "letmein" > mypasswd.txt # QEMU\_SYSTEM\_MACRO -object
4916 secret,id=sec0,file=mypasswd.txt,format=raw
4918 For greater security, AES-256-CBC should be used. To illustrate
4919 usage, consider the openssl command line tool which can encrypt
4920 the data. Note that when encrypting, the plaintext must be
4921 padded to the cipher block size (32 bytes) using the standard
4922 PKCS#5/6 compatible padding algorithm.
4924 First a master key needs to be created in base64 encoding:
4928 # openssl rand -base64 32 > key.b64
4929 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
4931 Each secret to be encrypted needs to have a random
4932 initialization vector generated. These do not need to be kept
4937 # openssl rand -base64 16 > iv.b64
4938 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
4940 The secret to be defined can now be encrypted, in this case
4941 we're telling openssl to base64 encode the result
, but it could
4942 be left as raw bytes
if desired
.
4946 # SECRET
=$
(printf
"letmein" |
4947 openssl enc
-aes
-256-cbc
-a
-K $KEY
-iv $IV
)
4949 When launching QEMU
, create a master secret pointing to
4950 ``key
.b64`` and specify that to be used to decrypt the user
4951 password
. Pass the contents of ``iv
.b64`` to the second secret
4956 -object secret
,id
=secmaster0
,format
=base64
,file
=key
.b64
\\
4957 -object secret
,id
=sec0
,keyid
=secmaster0
,format
=base64
,\\
4958 data
=$SECRET
,iv
=$
(<iv
.b64
)
4960 ``
-object sev
-guest
,id
=id
,cbitpos
=cbitpos
,reduced
-phys
-bits
=val
,[sev
-device
=string
,policy
=policy
,handle
=handle
,dh
-cert
-file
=file
,session
-file
=file
]``
4961 Create a Secure Encrypted
Virtualization (SEV
) guest object
,
4962 which can be used to provide the guest memory encryption support
4965 When memory encryption is enabled
, one of the physical address
4966 bit (aka the C
-bit
) is utilized to mark
if a memory page is
4967 protected
. The ``cbitpos`` is used to provide the C
-bit
4968 position
. The C
-bit position is Host family dependent hence user
4969 must provide
this value
. On EPYC
, the value should be
47.
4971 When memory encryption is enabled
, we loose certain bits
in
4972 physical address space
. The ``reduced
-phys
-bits`` is used to
4973 provide the number of bits we loose
in physical address space
.
4974 Similar to C
-bit
, the value is Host family dependent
. On EPYC
,
4975 the value should be
5.
4977 The ``sev
-device`` provides the device file to use
for
4978 communicating with the SEV firmware running inside AMD Secure
4979 Processor
. The
default device is
'/dev/sev'. If hardware
4980 supports memory encryption then
/dev
/sev devices are created by
4983 The ``policy`` provides the guest policy to be enforced by the
4984 SEV firmware and restrict what configuration and operational
4985 commands can be performed on
this guest by the hypervisor
. The
4986 policy should be provided by the guest owner and is bound to the
4987 guest and cannot be changed throughout the lifetime of the
4988 guest
. The
default is
0.
4990 If guest ``policy`` allows sharing the key with another SEV
4991 guest then ``handle`` can be use to provide handle of the guest
4992 from which to share the key
.
4994 The ``dh
-cert
-file`` and ``session
-file`` provides the guest
4995 owner
's Public Diffie-Hillman key defined in SEV spec. The PDH
4996 and session parameters are used for establishing a cryptographic
4997 session with the guest owner to negotiate keys used for
4998 attestation. The file must be encoded in base64.
5000 e.g to launch a SEV guest
5004 # |qemu_system_x86| \\
5006 -object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=5 \\
5007 -machine ...,memory-encryption=sev0 \\
5010 ``-object authz-simple,id=id,identity=string``
5011 Create an authorization object that will control access to
5014 The ``identity`` parameter is identifies the user and its format
5015 depends on the network service that authorization object is
5016 associated with. For authorizing based on TLS x509 certificates,
5017 the identity must be the x509 distinguished name. Note that care
5018 must be taken to escape any commas in the distinguished name.
5020 An example authorization object to validate a x509 distinguished
5021 name would look like:
5027 -object 'authz
-simple
,id
=auth0
,identity
=CN
=laptop
.example
.com
,,O
=Example Org
,,L
=London
,,ST
=London
,,C
=GB
' \\
5030 Note the use of quotes due to the x509 distinguished name
5031 containing whitespace, and escaping of ','.
5033 ``-object authz-listfile,id=id,filename=path,refresh=on|off``
5034 Create an authorization object that will control access to
5037 The ``filename`` parameter is the fully qualified path to a file
5038 containing the access control list rules in JSON format.
5040 An example set of rules that match against SASL usernames might
5047 { "match": "fred", "policy": "allow", "format": "exact" },
5048 { "match": "bob", "policy": "allow", "format": "exact" },
5049 { "match": "danb", "policy": "deny", "format": "glob" },
5050 { "match": "dan*", "policy": "allow", "format": "exact" },
5055 When checking access the object will iterate over all the rules
5056 and the first rule to match will have its ``policy`` value
5057 returned as the result. If no rules match, then the default
5058 ``policy`` value is returned.
5060 The rules can either be an exact string match, or they can use
5061 the simple UNIX glob pattern matching to allow wildcards to be
5064 If ``refresh`` is set to true the file will be monitored and
5065 automatically reloaded whenever its content changes.
5067 As with the ``authz-simple`` object, the format of the identity
5068 strings being matched depends on the network service, but is
5069 usually a TLS x509 distinguished name, or a SASL username.
5071 An example authorization object to validate a SASL username
5078 -object authz-simple,id=auth0,filename=/etc/qemu/vnc-sasl.acl,refresh=on \\
5081 ``-object authz-pam,id=id,service=string``
5082 Create an authorization object that will control access to
5085 The ``service`` parameter provides the name of a PAM service to
5086 use for authorization. It requires that a file
5087 ``/etc/pam.d/service`` exist to provide the configuration for
5088 the ``account`` subsystem.
5090 An example authorization object to validate a TLS x509
5091 distinguished name would look like:
5097 -object authz-pam,id=auth0,service=qemu-vnc \\
5100 There would then be a corresponding config file for PAM at
5101 ``/etc/pam.d/qemu-vnc`` that contains:
5105 account requisite pam_listfile.so item=user sense=allow \
5106 file=/etc/qemu/vnc.allow
5108 Finally the ``/etc/qemu/vnc.allow`` file would contain the list
5109 of x509 distingished names that are permitted access
5113 CN=laptop.example.com,O=Example Home,L=London,ST=London,C=GB
5115 ``-object iothread,id=id,poll-max-ns=poll-max-ns,poll-grow=poll-grow,poll-shrink=poll-shrink``
5116 Creates a dedicated event loop thread that devices can be
5117 assigned to. This is known as an IOThread. By default device
5118 emulation happens in vCPU threads or the main event loop thread.
5119 This can become a scalability bottleneck. IOThreads allow device
5120 emulation and I/O to run on other host CPUs.
5122 The ``id`` parameter is a unique ID that will be used to
5123 reference this IOThread from ``-device ...,iothread=id``.
5124 Multiple devices can be assigned to an IOThread. Note that not
5125 all devices support an ``iothread`` parameter.
5127 The ``query-iothreads`` QMP command lists IOThreads and reports
5128 their thread IDs so that the user can configure host CPU
5131 IOThreads use an adaptive polling algorithm to reduce event loop
5132 latency. Instead of entering a blocking system call to monitor
5133 file descriptors and then pay the cost of being woken up when an
5134 event occurs, the polling algorithm spins waiting for events for
5135 a short time. The algorithm's
default parameters are suitable
5136 for many cases but can be adjusted based on knowledge of the
5137 workload and
/or host device latency
.
5139 The ``poll
-max
-ns`` parameter is the maximum number of
5140 nanoseconds to busy wait
for events
. Polling can be disabled by
5141 setting
this value to
0.
5143 The ``poll
-grow`` parameter is the multiplier used to increase
5144 the polling time when the algorithm detects it is missing events
5145 due to not polling long enough
.
5147 The ``poll
-shrink`` parameter is the divisor used to decrease
5148 the polling time when the algorithm detects it is spending too
5149 long polling without encountering events
.
5151 The polling parameters can be modified at run
-time
using the
5152 ``qom
-set``
command (where ``iothread1`` is the IOThread
's
5157 (qemu) qom-set /objects/iothread1 poll-max-ns 100000
5161 HXCOMM This is the last statement. Insert new options before this line!