2 * OneNAND flash memories emulation.
4 * Copyright (C) 2008 Nokia Corporation
5 * Written by Andrzej Zaborowski <andrew@openedhand.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu-common.h"
26 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
30 #define BLOCK_SHIFT (PAGE_SHIFT + 6)
35 target_phys_addr_t base
;
38 BlockDriverState
*bdrv
;
39 BlockDriverState
*bdrv_cur
;
72 ONEN_BUF_DEST_BLOCK
= 2,
73 ONEN_BUF_DEST_PAGE
= 3,
78 ONEN_ERR_CMD
= 1 << 10,
79 ONEN_ERR_ERASE
= 1 << 11,
80 ONEN_ERR_PROG
= 1 << 12,
81 ONEN_ERR_LOAD
= 1 << 13,
85 ONEN_INT_RESET
= 1 << 4,
86 ONEN_INT_ERASE
= 1 << 5,
87 ONEN_INT_PROG
= 1 << 6,
88 ONEN_INT_LOAD
= 1 << 7,
93 ONEN_LOCK_LOCKTIGHTEN
= 1 << 0,
94 ONEN_LOCK_LOCKED
= 1 << 1,
95 ONEN_LOCK_UNLOCKED
= 1 << 2,
98 void onenand_base_update(void *opaque
, target_phys_addr_t
new)
100 OneNANDState
*s
= (OneNANDState
*) opaque
;
104 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
105 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
106 * write boot commands. Also take note of the BWPS bit. */
107 cpu_register_physical_memory(s
->base
+ (0x0000 << s
->shift
),
108 0x0200 << s
->shift
, s
->iomemtype
);
109 cpu_register_physical_memory(s
->base
+ (0x0200 << s
->shift
),
111 (s
->ram
+(0x0200 << s
->shift
)) | IO_MEM_RAM
);
113 cpu_register_physical_memory_offset(s
->base
+ (0xc000 << s
->shift
),
114 0x4000 << s
->shift
, s
->iomemtype
, (0xc000 << s
->shift
));
117 void onenand_base_unmap(void *opaque
)
119 OneNANDState
*s
= (OneNANDState
*) opaque
;
121 cpu_register_physical_memory(s
->base
,
122 0x10000 << s
->shift
, IO_MEM_UNASSIGNED
);
125 static void onenand_intr_update(OneNANDState
*s
)
127 qemu_set_irq(s
->intr
, ((s
->intstatus
>> 15) ^ (~s
->config
[0] >> 6)) & 1);
130 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
131 static void onenand_reset(OneNANDState
*s
, int cold
)
133 memset(&s
->addr
, 0, sizeof(s
->addr
));
137 s
->config
[0] = 0x40c0;
138 s
->config
[1] = 0x0000;
139 onenand_intr_update(s
);
140 qemu_irq_raise(s
->rdy
);
142 s
->intstatus
= cold
? 0x8080 : 0x8010;
145 s
->wpstatus
= 0x0002;
148 s
->bdrv_cur
= s
->bdrv
;
149 s
->current
= s
->image
;
150 s
->secs_cur
= s
->secs
;
153 /* Lock the whole flash */
154 memset(s
->blockwp
, ONEN_LOCK_LOCKED
, s
->blocks
);
156 if (s
->bdrv
&& bdrv_read(s
->bdrv
, 0, s
->boot
[0], 8) < 0)
157 hw_error("%s: Loading the BootRAM failed.\n", __FUNCTION__
);
161 static inline int onenand_load_main(OneNANDState
*s
, int sec
, int secn
,
165 return bdrv_read(s
->bdrv_cur
, sec
, dest
, secn
) < 0;
166 else if (sec
+ secn
> s
->secs_cur
)
169 memcpy(dest
, s
->current
+ (sec
<< 9), secn
<< 9);
174 static inline int onenand_prog_main(OneNANDState
*s
, int sec
, int secn
,
178 return bdrv_write(s
->bdrv_cur
, sec
, src
, secn
) < 0;
179 else if (sec
+ secn
> s
->secs_cur
)
182 memcpy(s
->current
+ (sec
<< 9), src
, secn
<< 9);
187 static inline int onenand_load_spare(OneNANDState
*s
, int sec
, int secn
,
193 if (bdrv_read(s
->bdrv_cur
, s
->secs_cur
+ (sec
>> 5), buf
, 1) < 0)
195 memcpy(dest
, buf
+ ((sec
& 31) << 4), secn
<< 4);
196 } else if (sec
+ secn
> s
->secs_cur
)
199 memcpy(dest
, s
->current
+ (s
->secs_cur
<< 9) + (sec
<< 4), secn
<< 4);
204 static inline int onenand_prog_spare(OneNANDState
*s
, int sec
, int secn
,
210 if (bdrv_read(s
->bdrv_cur
, s
->secs_cur
+ (sec
>> 5), buf
, 1) < 0)
212 memcpy(buf
+ ((sec
& 31) << 4), src
, secn
<< 4);
213 return bdrv_write(s
->bdrv_cur
, s
->secs_cur
+ (sec
>> 5), buf
, 1) < 0;
214 } else if (sec
+ secn
> s
->secs_cur
)
217 memcpy(s
->current
+ (s
->secs_cur
<< 9) + (sec
<< 4), src
, secn
<< 4);
222 static inline int onenand_erase(OneNANDState
*s
, int sec
, int num
)
227 memset(buf
, 0xff, sizeof(buf
));
228 for (; num
> 0; num
--, sec
++) {
229 if (onenand_prog_main(s
, sec
, 1, buf
))
231 if (onenand_prog_spare(s
, sec
, 1, buf
))
238 static void onenand_command(OneNANDState
*s
, int cmd
)
243 #define SETADDR(block, page) \
244 sec = (s->addr[page] & 3) + \
245 ((((s->addr[page] >> 2) & 0x3f) + \
246 (((s->addr[block] & 0xfff) | \
247 (s->addr[block] >> 15 ? \
248 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
250 buf = (s->bufaddr & 8) ? \
251 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
252 buf += (s->bufaddr & 3) << 9;
254 buf = (s->bufaddr & 8) ? \
255 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
256 buf += (s->bufaddr & 3) << 4;
259 case 0x00: /* Load single/multiple sector data unit into buffer */
260 SETADDR(ONEN_BUF_BLOCK
, ONEN_BUF_PAGE
)
263 if (onenand_load_main(s
, sec
, s
->count
, buf
))
264 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_LOAD
;
268 if (onenand_load_spare(s
, sec
, s
->count
, buf
))
269 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_LOAD
;
272 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
273 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
274 * then we need two split the read/write into two chunks.
276 s
->intstatus
|= ONEN_INT
| ONEN_INT_LOAD
;
278 case 0x13: /* Load single/multiple spare sector into buffer */
279 SETADDR(ONEN_BUF_BLOCK
, ONEN_BUF_PAGE
)
282 if (onenand_load_spare(s
, sec
, s
->count
, buf
))
283 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_LOAD
;
285 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
286 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
287 * then we need two split the read/write into two chunks.
289 s
->intstatus
|= ONEN_INT
| ONEN_INT_LOAD
;
291 case 0x80: /* Program single/multiple sector data unit from buffer */
292 SETADDR(ONEN_BUF_BLOCK
, ONEN_BUF_PAGE
)
295 if (onenand_prog_main(s
, sec
, s
->count
, buf
))
296 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_PROG
;
300 if (onenand_prog_spare(s
, sec
, s
->count
, buf
))
301 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_PROG
;
304 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
305 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
306 * then we need two split the read/write into two chunks.
308 s
->intstatus
|= ONEN_INT
| ONEN_INT_PROG
;
310 case 0x1a: /* Program single/multiple spare area sector from buffer */
311 SETADDR(ONEN_BUF_BLOCK
, ONEN_BUF_PAGE
)
314 if (onenand_prog_spare(s
, sec
, s
->count
, buf
))
315 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_PROG
;
317 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
318 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
319 * then we need two split the read/write into two chunks.
321 s
->intstatus
|= ONEN_INT
| ONEN_INT_PROG
;
323 case 0x1b: /* Copy-back program */
326 SETADDR(ONEN_BUF_BLOCK
, ONEN_BUF_PAGE
)
327 if (onenand_load_main(s
, sec
, s
->count
, buf
))
328 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_PROG
;
330 SETADDR(ONEN_BUF_DEST_BLOCK
, ONEN_BUF_DEST_PAGE
)
331 if (onenand_prog_main(s
, sec
, s
->count
, buf
))
332 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_PROG
;
334 /* TODO: spare areas */
336 s
->intstatus
|= ONEN_INT
| ONEN_INT_PROG
;
339 case 0x23: /* Unlock NAND array block(s) */
340 s
->intstatus
|= ONEN_INT
;
342 /* XXX the previous (?) area should be locked automatically */
343 for (b
= s
->unladdr
[0]; b
<= s
->unladdr
[1]; b
++) {
344 if (b
>= s
->blocks
) {
345 s
->status
|= ONEN_ERR_CMD
;
348 if (s
->blockwp
[b
] == ONEN_LOCK_LOCKTIGHTEN
)
351 s
->wpstatus
= s
->blockwp
[b
] = ONEN_LOCK_UNLOCKED
;
354 case 0x27: /* Unlock All NAND array blocks */
355 s
->intstatus
|= ONEN_INT
;
357 for (b
= 0; b
< s
->blocks
; b
++) {
358 if (b
>= s
->blocks
) {
359 s
->status
|= ONEN_ERR_CMD
;
362 if (s
->blockwp
[b
] == ONEN_LOCK_LOCKTIGHTEN
)
365 s
->wpstatus
= s
->blockwp
[b
] = ONEN_LOCK_UNLOCKED
;
369 case 0x2a: /* Lock NAND array block(s) */
370 s
->intstatus
|= ONEN_INT
;
372 for (b
= s
->unladdr
[0]; b
<= s
->unladdr
[1]; b
++) {
373 if (b
>= s
->blocks
) {
374 s
->status
|= ONEN_ERR_CMD
;
377 if (s
->blockwp
[b
] == ONEN_LOCK_LOCKTIGHTEN
)
380 s
->wpstatus
= s
->blockwp
[b
] = ONEN_LOCK_LOCKED
;
383 case 0x2c: /* Lock-tight NAND array block(s) */
384 s
->intstatus
|= ONEN_INT
;
386 for (b
= s
->unladdr
[0]; b
<= s
->unladdr
[1]; b
++) {
387 if (b
>= s
->blocks
) {
388 s
->status
|= ONEN_ERR_CMD
;
391 if (s
->blockwp
[b
] == ONEN_LOCK_UNLOCKED
)
394 s
->wpstatus
= s
->blockwp
[b
] = ONEN_LOCK_LOCKTIGHTEN
;
398 case 0x71: /* Erase-Verify-Read */
399 s
->intstatus
|= ONEN_INT
;
401 case 0x95: /* Multi-block erase */
402 qemu_irq_pulse(s
->intr
);
404 case 0x94: /* Block erase */
405 sec
= ((s
->addr
[ONEN_BUF_BLOCK
] & 0xfff) |
406 (s
->addr
[ONEN_BUF_BLOCK
] >> 15 ? s
->density_mask
: 0))
407 << (BLOCK_SHIFT
- 9);
408 if (onenand_erase(s
, sec
, 1 << (BLOCK_SHIFT
- 9)))
409 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_ERASE
;
411 s
->intstatus
|= ONEN_INT
| ONEN_INT_ERASE
;
413 case 0xb0: /* Erase suspend */
415 case 0x30: /* Erase resume */
416 s
->intstatus
|= ONEN_INT
| ONEN_INT_ERASE
;
419 case 0xf0: /* Reset NAND Flash core */
422 case 0xf3: /* Reset OneNAND */
426 case 0x65: /* OTP Access */
427 s
->intstatus
|= ONEN_INT
;
430 s
->secs_cur
= 1 << (BLOCK_SHIFT
- 9);
431 s
->addr
[ONEN_BUF_BLOCK
] = 0;
436 s
->status
|= ONEN_ERR_CMD
;
437 s
->intstatus
|= ONEN_INT
;
438 fprintf(stderr
, "%s: unknown OneNAND command %x\n",
442 onenand_intr_update(s
);
445 static uint32_t onenand_read(void *opaque
, target_phys_addr_t addr
)
447 OneNANDState
*s
= (OneNANDState
*) opaque
;
448 int offset
= addr
>> s
->shift
;
451 case 0x0000 ... 0xc000:
452 return lduw_le_p(s
->boot
[0] + addr
);
454 case 0xf000: /* Manufacturer ID */
455 return (s
->id
>> 16) & 0xff;
456 case 0xf001: /* Device ID */
457 return (s
->id
>> 8) & 0xff;
458 /* TODO: get the following values from a real chip! */
459 case 0xf002: /* Version ID */
460 return (s
->id
>> 0) & 0xff;
461 case 0xf003: /* Data Buffer size */
462 return 1 << PAGE_SHIFT
;
463 case 0xf004: /* Boot Buffer size */
465 case 0xf005: /* Amount of buffers */
467 case 0xf006: /* Technology */
470 case 0xf100 ... 0xf107: /* Start addresses */
471 return s
->addr
[offset
- 0xf100];
473 case 0xf200: /* Start buffer */
474 return (s
->bufaddr
<< 8) | ((s
->count
- 1) & (1 << (PAGE_SHIFT
- 10)));
476 case 0xf220: /* Command */
478 case 0xf221: /* System Configuration 1 */
479 return s
->config
[0] & 0xffe0;
480 case 0xf222: /* System Configuration 2 */
483 case 0xf240: /* Controller Status */
485 case 0xf241: /* Interrupt */
487 case 0xf24c: /* Unlock Start Block Address */
488 return s
->unladdr
[0];
489 case 0xf24d: /* Unlock End Block Address */
490 return s
->unladdr
[1];
491 case 0xf24e: /* Write Protection Status */
494 case 0xff00: /* ECC Status */
496 case 0xff01: /* ECC Result of main area data */
497 case 0xff02: /* ECC Result of spare area data */
498 case 0xff03: /* ECC Result of main area data */
499 case 0xff04: /* ECC Result of spare area data */
500 hw_error("%s: imeplement ECC\n", __FUNCTION__
);
504 fprintf(stderr
, "%s: unknown OneNAND register %x\n",
505 __FUNCTION__
, offset
);
509 static void onenand_write(void *opaque
, target_phys_addr_t addr
,
512 OneNANDState
*s
= (OneNANDState
*) opaque
;
513 int offset
= addr
>> s
->shift
;
517 case 0x0000 ... 0x01ff:
518 case 0x8000 ... 0x800f:
522 if (value
== 0x0000) {
523 SETADDR(ONEN_BUF_BLOCK
, ONEN_BUF_PAGE
)
524 onenand_load_main(s
, sec
,
525 1 << (PAGE_SHIFT
- 9), s
->data
[0][0]);
526 s
->addr
[ONEN_BUF_PAGE
] += 4;
527 s
->addr
[ONEN_BUF_PAGE
] &= 0xff;
533 case 0x00f0: /* Reset OneNAND */
537 case 0x00e0: /* Load Data into Buffer */
541 case 0x0090: /* Read Identification Data */
542 memset(s
->boot
[0], 0, 3 << s
->shift
);
543 s
->boot
[0][0 << s
->shift
] = (s
->id
>> 16) & 0xff;
544 s
->boot
[0][1 << s
->shift
] = (s
->id
>> 8) & 0xff;
545 s
->boot
[0][2 << s
->shift
] = s
->wpstatus
& 0xff;
549 fprintf(stderr
, "%s: unknown OneNAND boot command %x\n",
550 __FUNCTION__
, value
);
554 case 0xf100 ... 0xf107: /* Start addresses */
555 s
->addr
[offset
- 0xf100] = value
;
558 case 0xf200: /* Start buffer */
559 s
->bufaddr
= (value
>> 8) & 0xf;
560 if (PAGE_SHIFT
== 11)
561 s
->count
= (value
& 3) ?: 4;
562 else if (PAGE_SHIFT
== 10)
563 s
->count
= (value
& 1) ?: 2;
566 case 0xf220: /* Command */
567 if (s
->intstatus
& (1 << 15))
570 onenand_command(s
, s
->command
);
572 case 0xf221: /* System Configuration 1 */
573 s
->config
[0] = value
;
574 onenand_intr_update(s
);
575 qemu_set_irq(s
->rdy
, (s
->config
[0] >> 7) & 1);
577 case 0xf222: /* System Configuration 2 */
578 s
->config
[1] = value
;
581 case 0xf241: /* Interrupt */
582 s
->intstatus
&= value
;
583 if ((1 << 15) & ~s
->intstatus
)
584 s
->status
&= ~(ONEN_ERR_CMD
| ONEN_ERR_ERASE
|
585 ONEN_ERR_PROG
| ONEN_ERR_LOAD
);
586 onenand_intr_update(s
);
588 case 0xf24c: /* Unlock Start Block Address */
589 s
->unladdr
[0] = value
& (s
->blocks
- 1);
590 /* For some reason we have to set the end address to by default
591 * be same as start because the software forgets to write anything
593 s
->unladdr
[1] = value
& (s
->blocks
- 1);
595 case 0xf24d: /* Unlock End Block Address */
596 s
->unladdr
[1] = value
& (s
->blocks
- 1);
600 fprintf(stderr
, "%s: unknown OneNAND register %x\n",
601 __FUNCTION__
, offset
);
605 static CPUReadMemoryFunc
* const onenand_readfn
[] = {
606 onenand_read
, /* TODO */
611 static CPUWriteMemoryFunc
* const onenand_writefn
[] = {
612 onenand_write
, /* TODO */
617 void *onenand_init(uint32_t id
, int regshift
, qemu_irq irq
)
619 OneNANDState
*s
= (OneNANDState
*) qemu_mallocz(sizeof(*s
));
620 DriveInfo
*dinfo
= drive_get(IF_MTD
, 0, 0);
621 uint32_t size
= 1 << (24 + ((id
>> 12) & 7));
628 s
->blocks
= size
>> BLOCK_SHIFT
;
630 s
->blockwp
= qemu_malloc(s
->blocks
);
631 s
->density_mask
= (id
& (1 << 11)) ? (1 << (6 + ((id
>> 12) & 7))) : 0;
632 s
->iomemtype
= cpu_register_io_memory(onenand_readfn
,
635 s
->image
= memset(qemu_malloc(size
+ (size
>> 5)),
636 0xff, size
+ (size
>> 5));
638 s
->bdrv
= dinfo
->bdrv
;
639 s
->otp
= memset(qemu_malloc((64 + 2) << PAGE_SHIFT
),
640 0xff, (64 + 2) << PAGE_SHIFT
);
641 s
->ram
= qemu_ram_alloc(0xc000 << s
->shift
);
642 ram
= qemu_get_ram_ptr(s
->ram
);
643 s
->boot
[0] = ram
+ (0x0000 << s
->shift
);
644 s
->boot
[1] = ram
+ (0x8000 << s
->shift
);
645 s
->data
[0][0] = ram
+ ((0x0200 + (0 << (PAGE_SHIFT
- 1))) << s
->shift
);
646 s
->data
[0][1] = ram
+ ((0x8010 + (0 << (PAGE_SHIFT
- 6))) << s
->shift
);
647 s
->data
[1][0] = ram
+ ((0x0200 + (1 << (PAGE_SHIFT
- 1))) << s
->shift
);
648 s
->data
[1][1] = ram
+ ((0x8010 + (1 << (PAGE_SHIFT
- 6))) << s
->shift
);
655 void *onenand_raw_otp(void *opaque
)
657 OneNANDState
*s
= (OneNANDState
*) opaque
;