target/s390x/tcg: SPX: check validity of new prefix
[qemu.git] / block / io.c
blob1e9bf09a49bfcd90bcb8be33aa5b1f3a56788119
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/write-threshold.h"
34 #include "qemu/cutils.h"
35 #include "qemu/memalign.h"
36 #include "qapi/error.h"
37 #include "qemu/error-report.h"
38 #include "qemu/main-loop.h"
39 #include "sysemu/replay.h"
41 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
42 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
44 static void bdrv_parent_cb_resize(BlockDriverState *bs);
45 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
46 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
48 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
49 bool ignore_bds_parents)
51 BdrvChild *c, *next;
53 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
54 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
55 continue;
57 bdrv_parent_drained_begin_single(c, false);
61 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
62 int *drained_end_counter)
64 assert(c->parent_quiesce_counter > 0);
65 c->parent_quiesce_counter--;
66 if (c->klass->drained_end) {
67 c->klass->drained_end(c, drained_end_counter);
71 void bdrv_parent_drained_end_single(BdrvChild *c)
73 int drained_end_counter = 0;
74 IO_OR_GS_CODE();
75 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
76 BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0);
79 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
80 bool ignore_bds_parents,
81 int *drained_end_counter)
83 BdrvChild *c;
85 QLIST_FOREACH(c, &bs->parents, next_parent) {
86 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
87 continue;
89 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
93 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
95 if (c->klass->drained_poll) {
96 return c->klass->drained_poll(c);
98 return false;
101 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
102 bool ignore_bds_parents)
104 BdrvChild *c, *next;
105 bool busy = false;
107 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
108 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
109 continue;
111 busy |= bdrv_parent_drained_poll_single(c);
114 return busy;
117 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
119 IO_OR_GS_CODE();
120 c->parent_quiesce_counter++;
121 if (c->klass->drained_begin) {
122 c->klass->drained_begin(c);
124 if (poll) {
125 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
129 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
131 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
132 src->pdiscard_alignment);
133 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
134 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
135 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
136 src->max_hw_transfer);
137 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
138 src->opt_mem_alignment);
139 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
140 src->min_mem_alignment);
141 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
142 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
145 typedef struct BdrvRefreshLimitsState {
146 BlockDriverState *bs;
147 BlockLimits old_bl;
148 } BdrvRefreshLimitsState;
150 static void bdrv_refresh_limits_abort(void *opaque)
152 BdrvRefreshLimitsState *s = opaque;
154 s->bs->bl = s->old_bl;
157 static TransactionActionDrv bdrv_refresh_limits_drv = {
158 .abort = bdrv_refresh_limits_abort,
159 .clean = g_free,
162 /* @tran is allowed to be NULL, in this case no rollback is possible. */
163 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
165 ERRP_GUARD();
166 BlockDriver *drv = bs->drv;
167 BdrvChild *c;
168 bool have_limits;
170 GLOBAL_STATE_CODE();
172 if (tran) {
173 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
174 *s = (BdrvRefreshLimitsState) {
175 .bs = bs,
176 .old_bl = bs->bl,
178 tran_add(tran, &bdrv_refresh_limits_drv, s);
181 memset(&bs->bl, 0, sizeof(bs->bl));
183 if (!drv) {
184 return;
187 /* Default alignment based on whether driver has byte interface */
188 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
189 drv->bdrv_aio_preadv ||
190 drv->bdrv_co_preadv_part) ? 1 : 512;
192 /* Take some limits from the children as a default */
193 have_limits = false;
194 QLIST_FOREACH(c, &bs->children, next) {
195 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
197 bdrv_merge_limits(&bs->bl, &c->bs->bl);
198 have_limits = true;
202 if (!have_limits) {
203 bs->bl.min_mem_alignment = 512;
204 bs->bl.opt_mem_alignment = qemu_real_host_page_size();
206 /* Safe default since most protocols use readv()/writev()/etc */
207 bs->bl.max_iov = IOV_MAX;
210 /* Then let the driver override it */
211 if (drv->bdrv_refresh_limits) {
212 drv->bdrv_refresh_limits(bs, errp);
213 if (*errp) {
214 return;
218 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
219 error_setg(errp, "Driver requires too large request alignment");
224 * The copy-on-read flag is actually a reference count so multiple users may
225 * use the feature without worrying about clobbering its previous state.
226 * Copy-on-read stays enabled until all users have called to disable it.
228 void bdrv_enable_copy_on_read(BlockDriverState *bs)
230 IO_CODE();
231 qatomic_inc(&bs->copy_on_read);
234 void bdrv_disable_copy_on_read(BlockDriverState *bs)
236 int old = qatomic_fetch_dec(&bs->copy_on_read);
237 IO_CODE();
238 assert(old >= 1);
241 typedef struct {
242 Coroutine *co;
243 BlockDriverState *bs;
244 bool done;
245 bool begin;
246 bool recursive;
247 bool poll;
248 BdrvChild *parent;
249 bool ignore_bds_parents;
250 int *drained_end_counter;
251 } BdrvCoDrainData;
253 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
255 BdrvCoDrainData *data = opaque;
256 BlockDriverState *bs = data->bs;
258 if (data->begin) {
259 bs->drv->bdrv_co_drain_begin(bs);
260 } else {
261 bs->drv->bdrv_co_drain_end(bs);
264 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
265 qatomic_mb_set(&data->done, true);
266 if (!data->begin) {
267 qatomic_dec(data->drained_end_counter);
269 bdrv_dec_in_flight(bs);
271 g_free(data);
274 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
275 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
276 int *drained_end_counter)
278 BdrvCoDrainData *data;
280 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
281 (!begin && !bs->drv->bdrv_co_drain_end)) {
282 return;
285 data = g_new(BdrvCoDrainData, 1);
286 *data = (BdrvCoDrainData) {
287 .bs = bs,
288 .done = false,
289 .begin = begin,
290 .drained_end_counter = drained_end_counter,
293 if (!begin) {
294 qatomic_inc(drained_end_counter);
297 /* Make sure the driver callback completes during the polling phase for
298 * drain_begin. */
299 bdrv_inc_in_flight(bs);
300 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
301 aio_co_schedule(bdrv_get_aio_context(bs), data->co);
304 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
305 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
306 BdrvChild *ignore_parent, bool ignore_bds_parents)
308 BdrvChild *child, *next;
309 IO_OR_GS_CODE();
311 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
312 return true;
315 if (qatomic_read(&bs->in_flight)) {
316 return true;
319 if (recursive) {
320 assert(!ignore_bds_parents);
321 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
322 if (bdrv_drain_poll(child->bs, recursive, child, false)) {
323 return true;
328 return false;
331 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
332 BdrvChild *ignore_parent)
334 return bdrv_drain_poll(bs, recursive, ignore_parent, false);
337 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
338 BdrvChild *parent, bool ignore_bds_parents,
339 bool poll);
340 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
341 BdrvChild *parent, bool ignore_bds_parents,
342 int *drained_end_counter);
344 static void bdrv_co_drain_bh_cb(void *opaque)
346 BdrvCoDrainData *data = opaque;
347 Coroutine *co = data->co;
348 BlockDriverState *bs = data->bs;
350 if (bs) {
351 AioContext *ctx = bdrv_get_aio_context(bs);
352 aio_context_acquire(ctx);
353 bdrv_dec_in_flight(bs);
354 if (data->begin) {
355 assert(!data->drained_end_counter);
356 bdrv_do_drained_begin(bs, data->recursive, data->parent,
357 data->ignore_bds_parents, data->poll);
358 } else {
359 assert(!data->poll);
360 bdrv_do_drained_end(bs, data->recursive, data->parent,
361 data->ignore_bds_parents,
362 data->drained_end_counter);
364 aio_context_release(ctx);
365 } else {
366 assert(data->begin);
367 bdrv_drain_all_begin();
370 data->done = true;
371 aio_co_wake(co);
374 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
375 bool begin, bool recursive,
376 BdrvChild *parent,
377 bool ignore_bds_parents,
378 bool poll,
379 int *drained_end_counter)
381 BdrvCoDrainData data;
382 Coroutine *self = qemu_coroutine_self();
383 AioContext *ctx = bdrv_get_aio_context(bs);
384 AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
386 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
387 * other coroutines run if they were queued by aio_co_enter(). */
389 assert(qemu_in_coroutine());
390 data = (BdrvCoDrainData) {
391 .co = self,
392 .bs = bs,
393 .done = false,
394 .begin = begin,
395 .recursive = recursive,
396 .parent = parent,
397 .ignore_bds_parents = ignore_bds_parents,
398 .poll = poll,
399 .drained_end_counter = drained_end_counter,
402 if (bs) {
403 bdrv_inc_in_flight(bs);
407 * Temporarily drop the lock across yield or we would get deadlocks.
408 * bdrv_co_drain_bh_cb() reaquires the lock as needed.
410 * When we yield below, the lock for the current context will be
411 * released, so if this is actually the lock that protects bs, don't drop
412 * it a second time.
414 if (ctx != co_ctx) {
415 aio_context_release(ctx);
417 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
419 qemu_coroutine_yield();
420 /* If we are resumed from some other event (such as an aio completion or a
421 * timer callback), it is a bug in the caller that should be fixed. */
422 assert(data.done);
424 /* Reaquire the AioContext of bs if we dropped it */
425 if (ctx != co_ctx) {
426 aio_context_acquire(ctx);
430 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
431 BdrvChild *parent, bool ignore_bds_parents)
433 IO_OR_GS_CODE();
434 assert(!qemu_in_coroutine());
436 /* Stop things in parent-to-child order */
437 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
438 aio_disable_external(bdrv_get_aio_context(bs));
441 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
442 bdrv_drain_invoke(bs, true, NULL);
445 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
446 BdrvChild *parent, bool ignore_bds_parents,
447 bool poll)
449 BdrvChild *child, *next;
451 if (qemu_in_coroutine()) {
452 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
453 poll, NULL);
454 return;
457 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
459 if (recursive) {
460 assert(!ignore_bds_parents);
461 bs->recursive_quiesce_counter++;
462 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
463 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
464 false);
469 * Wait for drained requests to finish.
471 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
472 * call is needed so things in this AioContext can make progress even
473 * though we don't return to the main AioContext loop - this automatically
474 * includes other nodes in the same AioContext and therefore all child
475 * nodes.
477 if (poll) {
478 assert(!ignore_bds_parents);
479 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
483 void bdrv_drained_begin(BlockDriverState *bs)
485 IO_OR_GS_CODE();
486 bdrv_do_drained_begin(bs, false, NULL, false, true);
489 void bdrv_subtree_drained_begin(BlockDriverState *bs)
491 IO_OR_GS_CODE();
492 bdrv_do_drained_begin(bs, true, NULL, false, true);
496 * This function does not poll, nor must any of its recursively called
497 * functions. The *drained_end_counter pointee will be incremented
498 * once for every background operation scheduled, and decremented once
499 * the operation settles. Therefore, the pointer must remain valid
500 * until the pointee reaches 0. That implies that whoever sets up the
501 * pointee has to poll until it is 0.
503 * We use atomic operations to access *drained_end_counter, because
504 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
505 * @bs may contain nodes in different AioContexts,
506 * (2) bdrv_drain_all_end() uses the same counter for all nodes,
507 * regardless of which AioContext they are in.
509 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
510 BdrvChild *parent, bool ignore_bds_parents,
511 int *drained_end_counter)
513 BdrvChild *child;
514 int old_quiesce_counter;
516 assert(drained_end_counter != NULL);
518 if (qemu_in_coroutine()) {
519 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
520 false, drained_end_counter);
521 return;
523 assert(bs->quiesce_counter > 0);
525 /* Re-enable things in child-to-parent order */
526 bdrv_drain_invoke(bs, false, drained_end_counter);
527 bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
528 drained_end_counter);
530 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
531 if (old_quiesce_counter == 1) {
532 aio_enable_external(bdrv_get_aio_context(bs));
535 if (recursive) {
536 assert(!ignore_bds_parents);
537 bs->recursive_quiesce_counter--;
538 QLIST_FOREACH(child, &bs->children, next) {
539 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
540 drained_end_counter);
545 void bdrv_drained_end(BlockDriverState *bs)
547 int drained_end_counter = 0;
548 IO_OR_GS_CODE();
549 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
550 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
553 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
555 IO_CODE();
556 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
559 void bdrv_subtree_drained_end(BlockDriverState *bs)
561 int drained_end_counter = 0;
562 IO_OR_GS_CODE();
563 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
564 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
567 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
569 int i;
570 IO_OR_GS_CODE();
572 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
573 bdrv_do_drained_begin(child->bs, true, child, false, true);
577 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
579 int drained_end_counter = 0;
580 int i;
581 IO_OR_GS_CODE();
583 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
584 bdrv_do_drained_end(child->bs, true, child, false,
585 &drained_end_counter);
588 BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0);
591 void bdrv_drain(BlockDriverState *bs)
593 IO_OR_GS_CODE();
594 bdrv_drained_begin(bs);
595 bdrv_drained_end(bs);
598 static void bdrv_drain_assert_idle(BlockDriverState *bs)
600 BdrvChild *child, *next;
602 assert(qatomic_read(&bs->in_flight) == 0);
603 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
604 bdrv_drain_assert_idle(child->bs);
608 unsigned int bdrv_drain_all_count = 0;
610 static bool bdrv_drain_all_poll(void)
612 BlockDriverState *bs = NULL;
613 bool result = false;
614 GLOBAL_STATE_CODE();
616 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
617 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
618 while ((bs = bdrv_next_all_states(bs))) {
619 AioContext *aio_context = bdrv_get_aio_context(bs);
620 aio_context_acquire(aio_context);
621 result |= bdrv_drain_poll(bs, false, NULL, true);
622 aio_context_release(aio_context);
625 return result;
629 * Wait for pending requests to complete across all BlockDriverStates
631 * This function does not flush data to disk, use bdrv_flush_all() for that
632 * after calling this function.
634 * This pauses all block jobs and disables external clients. It must
635 * be paired with bdrv_drain_all_end().
637 * NOTE: no new block jobs or BlockDriverStates can be created between
638 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
640 void bdrv_drain_all_begin(void)
642 BlockDriverState *bs = NULL;
643 GLOBAL_STATE_CODE();
645 if (qemu_in_coroutine()) {
646 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
647 return;
651 * bdrv queue is managed by record/replay,
652 * waiting for finishing the I/O requests may
653 * be infinite
655 if (replay_events_enabled()) {
656 return;
659 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
660 * loop AioContext, so make sure we're in the main context. */
661 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
662 assert(bdrv_drain_all_count < INT_MAX);
663 bdrv_drain_all_count++;
665 /* Quiesce all nodes, without polling in-flight requests yet. The graph
666 * cannot change during this loop. */
667 while ((bs = bdrv_next_all_states(bs))) {
668 AioContext *aio_context = bdrv_get_aio_context(bs);
670 aio_context_acquire(aio_context);
671 bdrv_do_drained_begin(bs, false, NULL, true, false);
672 aio_context_release(aio_context);
675 /* Now poll the in-flight requests */
676 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
678 while ((bs = bdrv_next_all_states(bs))) {
679 bdrv_drain_assert_idle(bs);
683 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
685 int drained_end_counter = 0;
686 GLOBAL_STATE_CODE();
688 g_assert(bs->quiesce_counter > 0);
689 g_assert(!bs->refcnt);
691 while (bs->quiesce_counter) {
692 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
694 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
697 void bdrv_drain_all_end(void)
699 BlockDriverState *bs = NULL;
700 int drained_end_counter = 0;
701 GLOBAL_STATE_CODE();
704 * bdrv queue is managed by record/replay,
705 * waiting for finishing the I/O requests may
706 * be endless
708 if (replay_events_enabled()) {
709 return;
712 while ((bs = bdrv_next_all_states(bs))) {
713 AioContext *aio_context = bdrv_get_aio_context(bs);
715 aio_context_acquire(aio_context);
716 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
717 aio_context_release(aio_context);
720 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
721 AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0);
723 assert(bdrv_drain_all_count > 0);
724 bdrv_drain_all_count--;
727 void bdrv_drain_all(void)
729 GLOBAL_STATE_CODE();
730 bdrv_drain_all_begin();
731 bdrv_drain_all_end();
735 * Remove an active request from the tracked requests list
737 * This function should be called when a tracked request is completing.
739 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
741 if (req->serialising) {
742 qatomic_dec(&req->bs->serialising_in_flight);
745 qemu_co_mutex_lock(&req->bs->reqs_lock);
746 QLIST_REMOVE(req, list);
747 qemu_co_queue_restart_all(&req->wait_queue);
748 qemu_co_mutex_unlock(&req->bs->reqs_lock);
752 * Add an active request to the tracked requests list
754 static void tracked_request_begin(BdrvTrackedRequest *req,
755 BlockDriverState *bs,
756 int64_t offset,
757 int64_t bytes,
758 enum BdrvTrackedRequestType type)
760 bdrv_check_request(offset, bytes, &error_abort);
762 *req = (BdrvTrackedRequest){
763 .bs = bs,
764 .offset = offset,
765 .bytes = bytes,
766 .type = type,
767 .co = qemu_coroutine_self(),
768 .serialising = false,
769 .overlap_offset = offset,
770 .overlap_bytes = bytes,
773 qemu_co_queue_init(&req->wait_queue);
775 qemu_co_mutex_lock(&bs->reqs_lock);
776 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
777 qemu_co_mutex_unlock(&bs->reqs_lock);
780 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
781 int64_t offset, int64_t bytes)
783 bdrv_check_request(offset, bytes, &error_abort);
785 /* aaaa bbbb */
786 if (offset >= req->overlap_offset + req->overlap_bytes) {
787 return false;
789 /* bbbb aaaa */
790 if (req->overlap_offset >= offset + bytes) {
791 return false;
793 return true;
796 /* Called with self->bs->reqs_lock held */
797 static BdrvTrackedRequest *
798 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
800 BdrvTrackedRequest *req;
802 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
803 if (req == self || (!req->serialising && !self->serialising)) {
804 continue;
806 if (tracked_request_overlaps(req, self->overlap_offset,
807 self->overlap_bytes))
810 * Hitting this means there was a reentrant request, for
811 * example, a block driver issuing nested requests. This must
812 * never happen since it means deadlock.
814 assert(qemu_coroutine_self() != req->co);
817 * If the request is already (indirectly) waiting for us, or
818 * will wait for us as soon as it wakes up, then just go on
819 * (instead of producing a deadlock in the former case).
821 if (!req->waiting_for) {
822 return req;
827 return NULL;
830 /* Called with self->bs->reqs_lock held */
831 static bool coroutine_fn
832 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
834 BdrvTrackedRequest *req;
835 bool waited = false;
837 while ((req = bdrv_find_conflicting_request(self))) {
838 self->waiting_for = req;
839 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
840 self->waiting_for = NULL;
841 waited = true;
844 return waited;
847 /* Called with req->bs->reqs_lock held */
848 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
849 uint64_t align)
851 int64_t overlap_offset = req->offset & ~(align - 1);
852 int64_t overlap_bytes =
853 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
855 bdrv_check_request(req->offset, req->bytes, &error_abort);
857 if (!req->serialising) {
858 qatomic_inc(&req->bs->serialising_in_flight);
859 req->serialising = true;
862 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
863 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
867 * Return the tracked request on @bs for the current coroutine, or
868 * NULL if there is none.
870 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
872 BdrvTrackedRequest *req;
873 Coroutine *self = qemu_coroutine_self();
874 IO_CODE();
876 QLIST_FOREACH(req, &bs->tracked_requests, list) {
877 if (req->co == self) {
878 return req;
882 return NULL;
886 * Round a region to cluster boundaries
888 void bdrv_round_to_clusters(BlockDriverState *bs,
889 int64_t offset, int64_t bytes,
890 int64_t *cluster_offset,
891 int64_t *cluster_bytes)
893 BlockDriverInfo bdi;
894 IO_CODE();
895 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
896 *cluster_offset = offset;
897 *cluster_bytes = bytes;
898 } else {
899 int64_t c = bdi.cluster_size;
900 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
901 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
905 static int bdrv_get_cluster_size(BlockDriverState *bs)
907 BlockDriverInfo bdi;
908 int ret;
910 ret = bdrv_get_info(bs, &bdi);
911 if (ret < 0 || bdi.cluster_size == 0) {
912 return bs->bl.request_alignment;
913 } else {
914 return bdi.cluster_size;
918 void bdrv_inc_in_flight(BlockDriverState *bs)
920 IO_CODE();
921 qatomic_inc(&bs->in_flight);
924 void bdrv_wakeup(BlockDriverState *bs)
926 IO_CODE();
927 aio_wait_kick();
930 void bdrv_dec_in_flight(BlockDriverState *bs)
932 IO_CODE();
933 qatomic_dec(&bs->in_flight);
934 bdrv_wakeup(bs);
937 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
939 BlockDriverState *bs = self->bs;
940 bool waited = false;
942 if (!qatomic_read(&bs->serialising_in_flight)) {
943 return false;
946 qemu_co_mutex_lock(&bs->reqs_lock);
947 waited = bdrv_wait_serialising_requests_locked(self);
948 qemu_co_mutex_unlock(&bs->reqs_lock);
950 return waited;
953 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
954 uint64_t align)
956 bool waited;
957 IO_CODE();
959 qemu_co_mutex_lock(&req->bs->reqs_lock);
961 tracked_request_set_serialising(req, align);
962 waited = bdrv_wait_serialising_requests_locked(req);
964 qemu_co_mutex_unlock(&req->bs->reqs_lock);
966 return waited;
969 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
970 QEMUIOVector *qiov, size_t qiov_offset,
971 Error **errp)
974 * Check generic offset/bytes correctness
977 if (offset < 0) {
978 error_setg(errp, "offset is negative: %" PRIi64, offset);
979 return -EIO;
982 if (bytes < 0) {
983 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
984 return -EIO;
987 if (bytes > BDRV_MAX_LENGTH) {
988 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
989 bytes, BDRV_MAX_LENGTH);
990 return -EIO;
993 if (offset > BDRV_MAX_LENGTH) {
994 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
995 offset, BDRV_MAX_LENGTH);
996 return -EIO;
999 if (offset > BDRV_MAX_LENGTH - bytes) {
1000 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
1001 "exceeds maximum(%" PRIi64 ")", offset, bytes,
1002 BDRV_MAX_LENGTH);
1003 return -EIO;
1006 if (!qiov) {
1007 return 0;
1011 * Check qiov and qiov_offset
1014 if (qiov_offset > qiov->size) {
1015 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
1016 qiov_offset, qiov->size);
1017 return -EIO;
1020 if (bytes > qiov->size - qiov_offset) {
1021 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
1022 "vector size(%zu)", bytes, qiov_offset, qiov->size);
1023 return -EIO;
1026 return 0;
1029 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
1031 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
1034 static int bdrv_check_request32(int64_t offset, int64_t bytes,
1035 QEMUIOVector *qiov, size_t qiov_offset)
1037 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
1038 if (ret < 0) {
1039 return ret;
1042 if (bytes > BDRV_REQUEST_MAX_BYTES) {
1043 return -EIO;
1046 return 0;
1049 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
1050 int64_t bytes, BdrvRequestFlags flags)
1052 IO_CODE();
1053 return bdrv_pwritev(child, offset, bytes, NULL,
1054 BDRV_REQ_ZERO_WRITE | flags);
1058 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
1059 * The operation is sped up by checking the block status and only writing
1060 * zeroes to the device if they currently do not return zeroes. Optional
1061 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
1062 * BDRV_REQ_FUA).
1064 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
1066 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
1068 int ret;
1069 int64_t target_size, bytes, offset = 0;
1070 BlockDriverState *bs = child->bs;
1071 IO_CODE();
1073 target_size = bdrv_getlength(bs);
1074 if (target_size < 0) {
1075 return target_size;
1078 for (;;) {
1079 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
1080 if (bytes <= 0) {
1081 return 0;
1083 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
1084 if (ret < 0) {
1085 return ret;
1087 if (ret & BDRV_BLOCK_ZERO) {
1088 offset += bytes;
1089 continue;
1091 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
1092 if (ret < 0) {
1093 return ret;
1095 offset += bytes;
1099 /* See bdrv_pwrite() for the return codes */
1100 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int64_t bytes)
1102 int ret;
1103 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1104 IO_CODE();
1106 if (bytes < 0) {
1107 return -EINVAL;
1110 ret = bdrv_preadv(child, offset, bytes, &qiov, 0);
1112 return ret < 0 ? ret : bytes;
1115 /* Return no. of bytes on success or < 0 on error. Important errors are:
1116 -EIO generic I/O error (may happen for all errors)
1117 -ENOMEDIUM No media inserted.
1118 -EINVAL Invalid offset or number of bytes
1119 -EACCES Trying to write a read-only device
1121 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf,
1122 int64_t bytes)
1124 int ret;
1125 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1126 IO_CODE();
1128 if (bytes < 0) {
1129 return -EINVAL;
1132 ret = bdrv_pwritev(child, offset, bytes, &qiov, 0);
1134 return ret < 0 ? ret : bytes;
1138 * Writes to the file and ensures that no writes are reordered across this
1139 * request (acts as a barrier)
1141 * Returns 0 on success, -errno in error cases.
1143 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1144 const void *buf, int64_t count)
1146 int ret;
1147 IO_CODE();
1149 ret = bdrv_pwrite(child, offset, buf, count);
1150 if (ret < 0) {
1151 return ret;
1154 ret = bdrv_flush(child->bs);
1155 if (ret < 0) {
1156 return ret;
1159 return 0;
1162 typedef struct CoroutineIOCompletion {
1163 Coroutine *coroutine;
1164 int ret;
1165 } CoroutineIOCompletion;
1167 static void bdrv_co_io_em_complete(void *opaque, int ret)
1169 CoroutineIOCompletion *co = opaque;
1171 co->ret = ret;
1172 aio_co_wake(co->coroutine);
1175 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1176 int64_t offset, int64_t bytes,
1177 QEMUIOVector *qiov,
1178 size_t qiov_offset, int flags)
1180 BlockDriver *drv = bs->drv;
1181 int64_t sector_num;
1182 unsigned int nb_sectors;
1183 QEMUIOVector local_qiov;
1184 int ret;
1186 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1187 assert(!(flags & ~BDRV_REQ_MASK));
1188 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1190 if (!drv) {
1191 return -ENOMEDIUM;
1194 if (drv->bdrv_co_preadv_part) {
1195 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1196 flags);
1199 if (qiov_offset > 0 || bytes != qiov->size) {
1200 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1201 qiov = &local_qiov;
1204 if (drv->bdrv_co_preadv) {
1205 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1206 goto out;
1209 if (drv->bdrv_aio_preadv) {
1210 BlockAIOCB *acb;
1211 CoroutineIOCompletion co = {
1212 .coroutine = qemu_coroutine_self(),
1215 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1216 bdrv_co_io_em_complete, &co);
1217 if (acb == NULL) {
1218 ret = -EIO;
1219 goto out;
1220 } else {
1221 qemu_coroutine_yield();
1222 ret = co.ret;
1223 goto out;
1227 sector_num = offset >> BDRV_SECTOR_BITS;
1228 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1230 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1231 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1232 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1233 assert(drv->bdrv_co_readv);
1235 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1237 out:
1238 if (qiov == &local_qiov) {
1239 qemu_iovec_destroy(&local_qiov);
1242 return ret;
1245 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1246 int64_t offset, int64_t bytes,
1247 QEMUIOVector *qiov,
1248 size_t qiov_offset,
1249 BdrvRequestFlags flags)
1251 BlockDriver *drv = bs->drv;
1252 int64_t sector_num;
1253 unsigned int nb_sectors;
1254 QEMUIOVector local_qiov;
1255 int ret;
1257 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1258 assert(!(flags & ~BDRV_REQ_MASK));
1259 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1261 if (!drv) {
1262 return -ENOMEDIUM;
1265 if (drv->bdrv_co_pwritev_part) {
1266 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1267 flags & bs->supported_write_flags);
1268 flags &= ~bs->supported_write_flags;
1269 goto emulate_flags;
1272 if (qiov_offset > 0 || bytes != qiov->size) {
1273 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1274 qiov = &local_qiov;
1277 if (drv->bdrv_co_pwritev) {
1278 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1279 flags & bs->supported_write_flags);
1280 flags &= ~bs->supported_write_flags;
1281 goto emulate_flags;
1284 if (drv->bdrv_aio_pwritev) {
1285 BlockAIOCB *acb;
1286 CoroutineIOCompletion co = {
1287 .coroutine = qemu_coroutine_self(),
1290 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1291 flags & bs->supported_write_flags,
1292 bdrv_co_io_em_complete, &co);
1293 flags &= ~bs->supported_write_flags;
1294 if (acb == NULL) {
1295 ret = -EIO;
1296 } else {
1297 qemu_coroutine_yield();
1298 ret = co.ret;
1300 goto emulate_flags;
1303 sector_num = offset >> BDRV_SECTOR_BITS;
1304 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1306 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1307 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1308 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1310 assert(drv->bdrv_co_writev);
1311 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1312 flags & bs->supported_write_flags);
1313 flags &= ~bs->supported_write_flags;
1315 emulate_flags:
1316 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1317 ret = bdrv_co_flush(bs);
1320 if (qiov == &local_qiov) {
1321 qemu_iovec_destroy(&local_qiov);
1324 return ret;
1327 static int coroutine_fn
1328 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1329 int64_t bytes, QEMUIOVector *qiov,
1330 size_t qiov_offset)
1332 BlockDriver *drv = bs->drv;
1333 QEMUIOVector local_qiov;
1334 int ret;
1336 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1338 if (!drv) {
1339 return -ENOMEDIUM;
1342 if (!block_driver_can_compress(drv)) {
1343 return -ENOTSUP;
1346 if (drv->bdrv_co_pwritev_compressed_part) {
1347 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1348 qiov, qiov_offset);
1351 if (qiov_offset == 0) {
1352 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1355 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1356 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1357 qemu_iovec_destroy(&local_qiov);
1359 return ret;
1362 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1363 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1364 size_t qiov_offset, int flags)
1366 BlockDriverState *bs = child->bs;
1368 /* Perform I/O through a temporary buffer so that users who scribble over
1369 * their read buffer while the operation is in progress do not end up
1370 * modifying the image file. This is critical for zero-copy guest I/O
1371 * where anything might happen inside guest memory.
1373 void *bounce_buffer = NULL;
1375 BlockDriver *drv = bs->drv;
1376 int64_t cluster_offset;
1377 int64_t cluster_bytes;
1378 int64_t skip_bytes;
1379 int ret;
1380 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1381 BDRV_REQUEST_MAX_BYTES);
1382 int64_t progress = 0;
1383 bool skip_write;
1385 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1387 if (!drv) {
1388 return -ENOMEDIUM;
1392 * Do not write anything when the BDS is inactive. That is not
1393 * allowed, and it would not help.
1395 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1397 /* FIXME We cannot require callers to have write permissions when all they
1398 * are doing is a read request. If we did things right, write permissions
1399 * would be obtained anyway, but internally by the copy-on-read code. As
1400 * long as it is implemented here rather than in a separate filter driver,
1401 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1402 * it could request permissions. Therefore we have to bypass the permission
1403 * system for the moment. */
1404 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1406 /* Cover entire cluster so no additional backing file I/O is required when
1407 * allocating cluster in the image file. Note that this value may exceed
1408 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1409 * is one reason we loop rather than doing it all at once.
1411 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1412 skip_bytes = offset - cluster_offset;
1414 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1415 cluster_offset, cluster_bytes);
1417 while (cluster_bytes) {
1418 int64_t pnum;
1420 if (skip_write) {
1421 ret = 1; /* "already allocated", so nothing will be copied */
1422 pnum = MIN(cluster_bytes, max_transfer);
1423 } else {
1424 ret = bdrv_is_allocated(bs, cluster_offset,
1425 MIN(cluster_bytes, max_transfer), &pnum);
1426 if (ret < 0) {
1428 * Safe to treat errors in querying allocation as if
1429 * unallocated; we'll probably fail again soon on the
1430 * read, but at least that will set a decent errno.
1432 pnum = MIN(cluster_bytes, max_transfer);
1435 /* Stop at EOF if the image ends in the middle of the cluster */
1436 if (ret == 0 && pnum == 0) {
1437 assert(progress >= bytes);
1438 break;
1441 assert(skip_bytes < pnum);
1444 if (ret <= 0) {
1445 QEMUIOVector local_qiov;
1447 /* Must copy-on-read; use the bounce buffer */
1448 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1449 if (!bounce_buffer) {
1450 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1451 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1452 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1454 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1455 if (!bounce_buffer) {
1456 ret = -ENOMEM;
1457 goto err;
1460 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1462 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1463 &local_qiov, 0, 0);
1464 if (ret < 0) {
1465 goto err;
1468 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1469 if (drv->bdrv_co_pwrite_zeroes &&
1470 buffer_is_zero(bounce_buffer, pnum)) {
1471 /* FIXME: Should we (perhaps conditionally) be setting
1472 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1473 * that still correctly reads as zero? */
1474 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1475 BDRV_REQ_WRITE_UNCHANGED);
1476 } else {
1477 /* This does not change the data on the disk, it is not
1478 * necessary to flush even in cache=writethrough mode.
1480 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1481 &local_qiov, 0,
1482 BDRV_REQ_WRITE_UNCHANGED);
1485 if (ret < 0) {
1486 /* It might be okay to ignore write errors for guest
1487 * requests. If this is a deliberate copy-on-read
1488 * then we don't want to ignore the error. Simply
1489 * report it in all cases.
1491 goto err;
1494 if (!(flags & BDRV_REQ_PREFETCH)) {
1495 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1496 bounce_buffer + skip_bytes,
1497 MIN(pnum - skip_bytes, bytes - progress));
1499 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1500 /* Read directly into the destination */
1501 ret = bdrv_driver_preadv(bs, offset + progress,
1502 MIN(pnum - skip_bytes, bytes - progress),
1503 qiov, qiov_offset + progress, 0);
1504 if (ret < 0) {
1505 goto err;
1509 cluster_offset += pnum;
1510 cluster_bytes -= pnum;
1511 progress += pnum - skip_bytes;
1512 skip_bytes = 0;
1514 ret = 0;
1516 err:
1517 qemu_vfree(bounce_buffer);
1518 return ret;
1522 * Forwards an already correctly aligned request to the BlockDriver. This
1523 * handles copy on read, zeroing after EOF, and fragmentation of large
1524 * reads; any other features must be implemented by the caller.
1526 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1527 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1528 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1530 BlockDriverState *bs = child->bs;
1531 int64_t total_bytes, max_bytes;
1532 int ret = 0;
1533 int64_t bytes_remaining = bytes;
1534 int max_transfer;
1536 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1537 assert(is_power_of_2(align));
1538 assert((offset & (align - 1)) == 0);
1539 assert((bytes & (align - 1)) == 0);
1540 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1541 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1542 align);
1544 /* TODO: We would need a per-BDS .supported_read_flags and
1545 * potential fallback support, if we ever implement any read flags
1546 * to pass through to drivers. For now, there aren't any
1547 * passthrough flags. */
1548 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1550 /* Handle Copy on Read and associated serialisation */
1551 if (flags & BDRV_REQ_COPY_ON_READ) {
1552 /* If we touch the same cluster it counts as an overlap. This
1553 * guarantees that allocating writes will be serialized and not race
1554 * with each other for the same cluster. For example, in copy-on-read
1555 * it ensures that the CoR read and write operations are atomic and
1556 * guest writes cannot interleave between them. */
1557 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1558 } else {
1559 bdrv_wait_serialising_requests(req);
1562 if (flags & BDRV_REQ_COPY_ON_READ) {
1563 int64_t pnum;
1565 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1566 flags &= ~BDRV_REQ_COPY_ON_READ;
1568 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1569 if (ret < 0) {
1570 goto out;
1573 if (!ret || pnum != bytes) {
1574 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1575 qiov, qiov_offset, flags);
1576 goto out;
1577 } else if (flags & BDRV_REQ_PREFETCH) {
1578 goto out;
1582 /* Forward the request to the BlockDriver, possibly fragmenting it */
1583 total_bytes = bdrv_getlength(bs);
1584 if (total_bytes < 0) {
1585 ret = total_bytes;
1586 goto out;
1589 assert(!(flags & ~bs->supported_read_flags));
1591 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1592 if (bytes <= max_bytes && bytes <= max_transfer) {
1593 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1594 goto out;
1597 while (bytes_remaining) {
1598 int64_t num;
1600 if (max_bytes) {
1601 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1602 assert(num);
1604 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1605 num, qiov,
1606 qiov_offset + bytes - bytes_remaining,
1607 flags);
1608 max_bytes -= num;
1609 } else {
1610 num = bytes_remaining;
1611 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1612 0, bytes_remaining);
1614 if (ret < 0) {
1615 goto out;
1617 bytes_remaining -= num;
1620 out:
1621 return ret < 0 ? ret : 0;
1625 * Request padding
1627 * |<---- align ----->| |<----- align ---->|
1628 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1629 * | | | | | |
1630 * -*----------$-------*-------- ... --------*-----$------------*---
1631 * | | | | | |
1632 * | offset | | end |
1633 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1634 * [buf ... ) [tail_buf )
1636 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1637 * is placed at the beginning of @buf and @tail at the @end.
1639 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1640 * around tail, if tail exists.
1642 * @merge_reads is true for small requests,
1643 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1644 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1646 typedef struct BdrvRequestPadding {
1647 uint8_t *buf;
1648 size_t buf_len;
1649 uint8_t *tail_buf;
1650 size_t head;
1651 size_t tail;
1652 bool merge_reads;
1653 QEMUIOVector local_qiov;
1654 } BdrvRequestPadding;
1656 static bool bdrv_init_padding(BlockDriverState *bs,
1657 int64_t offset, int64_t bytes,
1658 BdrvRequestPadding *pad)
1660 int64_t align = bs->bl.request_alignment;
1661 int64_t sum;
1663 bdrv_check_request(offset, bytes, &error_abort);
1664 assert(align <= INT_MAX); /* documented in block/block_int.h */
1665 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1667 memset(pad, 0, sizeof(*pad));
1669 pad->head = offset & (align - 1);
1670 pad->tail = ((offset + bytes) & (align - 1));
1671 if (pad->tail) {
1672 pad->tail = align - pad->tail;
1675 if (!pad->head && !pad->tail) {
1676 return false;
1679 assert(bytes); /* Nothing good in aligning zero-length requests */
1681 sum = pad->head + bytes + pad->tail;
1682 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1683 pad->buf = qemu_blockalign(bs, pad->buf_len);
1684 pad->merge_reads = sum == pad->buf_len;
1685 if (pad->tail) {
1686 pad->tail_buf = pad->buf + pad->buf_len - align;
1689 return true;
1692 static int bdrv_padding_rmw_read(BdrvChild *child,
1693 BdrvTrackedRequest *req,
1694 BdrvRequestPadding *pad,
1695 bool zero_middle)
1697 QEMUIOVector local_qiov;
1698 BlockDriverState *bs = child->bs;
1699 uint64_t align = bs->bl.request_alignment;
1700 int ret;
1702 assert(req->serialising && pad->buf);
1704 if (pad->head || pad->merge_reads) {
1705 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1707 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1709 if (pad->head) {
1710 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1712 if (pad->merge_reads && pad->tail) {
1713 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1715 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1716 align, &local_qiov, 0, 0);
1717 if (ret < 0) {
1718 return ret;
1720 if (pad->head) {
1721 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1723 if (pad->merge_reads && pad->tail) {
1724 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1727 if (pad->merge_reads) {
1728 goto zero_mem;
1732 if (pad->tail) {
1733 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1735 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1736 ret = bdrv_aligned_preadv(
1737 child, req,
1738 req->overlap_offset + req->overlap_bytes - align,
1739 align, align, &local_qiov, 0, 0);
1740 if (ret < 0) {
1741 return ret;
1743 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1746 zero_mem:
1747 if (zero_middle) {
1748 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1751 return 0;
1754 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1756 if (pad->buf) {
1757 qemu_vfree(pad->buf);
1758 qemu_iovec_destroy(&pad->local_qiov);
1760 memset(pad, 0, sizeof(*pad));
1764 * bdrv_pad_request
1766 * Exchange request parameters with padded request if needed. Don't include RMW
1767 * read of padding, bdrv_padding_rmw_read() should be called separately if
1768 * needed.
1770 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1771 * - on function start they represent original request
1772 * - on failure or when padding is not needed they are unchanged
1773 * - on success when padding is needed they represent padded request
1775 static int bdrv_pad_request(BlockDriverState *bs,
1776 QEMUIOVector **qiov, size_t *qiov_offset,
1777 int64_t *offset, int64_t *bytes,
1778 BdrvRequestPadding *pad, bool *padded)
1780 int ret;
1782 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1784 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1785 if (padded) {
1786 *padded = false;
1788 return 0;
1791 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1792 *qiov, *qiov_offset, *bytes,
1793 pad->buf + pad->buf_len - pad->tail,
1794 pad->tail);
1795 if (ret < 0) {
1796 bdrv_padding_destroy(pad);
1797 return ret;
1799 *bytes += pad->head + pad->tail;
1800 *offset -= pad->head;
1801 *qiov = &pad->local_qiov;
1802 *qiov_offset = 0;
1803 if (padded) {
1804 *padded = true;
1807 return 0;
1810 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1811 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1812 BdrvRequestFlags flags)
1814 IO_CODE();
1815 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1818 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1819 int64_t offset, int64_t bytes,
1820 QEMUIOVector *qiov, size_t qiov_offset,
1821 BdrvRequestFlags flags)
1823 BlockDriverState *bs = child->bs;
1824 BdrvTrackedRequest req;
1825 BdrvRequestPadding pad;
1826 int ret;
1827 IO_CODE();
1829 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1831 if (!bdrv_is_inserted(bs)) {
1832 return -ENOMEDIUM;
1835 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1836 if (ret < 0) {
1837 return ret;
1840 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1842 * Aligning zero request is nonsense. Even if driver has special meaning
1843 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1844 * it to driver due to request_alignment.
1846 * Still, no reason to return an error if someone do unaligned
1847 * zero-length read occasionally.
1849 return 0;
1852 bdrv_inc_in_flight(bs);
1854 /* Don't do copy-on-read if we read data before write operation */
1855 if (qatomic_read(&bs->copy_on_read)) {
1856 flags |= BDRV_REQ_COPY_ON_READ;
1859 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1860 NULL);
1861 if (ret < 0) {
1862 goto fail;
1865 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1866 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1867 bs->bl.request_alignment,
1868 qiov, qiov_offset, flags);
1869 tracked_request_end(&req);
1870 bdrv_padding_destroy(&pad);
1872 fail:
1873 bdrv_dec_in_flight(bs);
1875 return ret;
1878 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1879 int64_t offset, int64_t bytes, BdrvRequestFlags flags)
1881 BlockDriver *drv = bs->drv;
1882 QEMUIOVector qiov;
1883 void *buf = NULL;
1884 int ret = 0;
1885 bool need_flush = false;
1886 int head = 0;
1887 int tail = 0;
1889 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1890 INT64_MAX);
1891 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1892 bs->bl.request_alignment);
1893 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1895 bdrv_check_request(offset, bytes, &error_abort);
1897 if (!drv) {
1898 return -ENOMEDIUM;
1901 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1902 return -ENOTSUP;
1905 /* Invalidate the cached block-status data range if this write overlaps */
1906 bdrv_bsc_invalidate_range(bs, offset, bytes);
1908 assert(alignment % bs->bl.request_alignment == 0);
1909 head = offset % alignment;
1910 tail = (offset + bytes) % alignment;
1911 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1912 assert(max_write_zeroes >= bs->bl.request_alignment);
1914 while (bytes > 0 && !ret) {
1915 int64_t num = bytes;
1917 /* Align request. Block drivers can expect the "bulk" of the request
1918 * to be aligned, and that unaligned requests do not cross cluster
1919 * boundaries.
1921 if (head) {
1922 /* Make a small request up to the first aligned sector. For
1923 * convenience, limit this request to max_transfer even if
1924 * we don't need to fall back to writes. */
1925 num = MIN(MIN(bytes, max_transfer), alignment - head);
1926 head = (head + num) % alignment;
1927 assert(num < max_write_zeroes);
1928 } else if (tail && num > alignment) {
1929 /* Shorten the request to the last aligned sector. */
1930 num -= tail;
1933 /* limit request size */
1934 if (num > max_write_zeroes) {
1935 num = max_write_zeroes;
1938 ret = -ENOTSUP;
1939 /* First try the efficient write zeroes operation */
1940 if (drv->bdrv_co_pwrite_zeroes) {
1941 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1942 flags & bs->supported_zero_flags);
1943 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1944 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1945 need_flush = true;
1947 } else {
1948 assert(!bs->supported_zero_flags);
1951 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1952 /* Fall back to bounce buffer if write zeroes is unsupported */
1953 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1955 if ((flags & BDRV_REQ_FUA) &&
1956 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1957 /* No need for bdrv_driver_pwrite() to do a fallback
1958 * flush on each chunk; use just one at the end */
1959 write_flags &= ~BDRV_REQ_FUA;
1960 need_flush = true;
1962 num = MIN(num, max_transfer);
1963 if (buf == NULL) {
1964 buf = qemu_try_blockalign0(bs, num);
1965 if (buf == NULL) {
1966 ret = -ENOMEM;
1967 goto fail;
1970 qemu_iovec_init_buf(&qiov, buf, num);
1972 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1974 /* Keep bounce buffer around if it is big enough for all
1975 * all future requests.
1977 if (num < max_transfer) {
1978 qemu_vfree(buf);
1979 buf = NULL;
1983 offset += num;
1984 bytes -= num;
1987 fail:
1988 if (ret == 0 && need_flush) {
1989 ret = bdrv_co_flush(bs);
1991 qemu_vfree(buf);
1992 return ret;
1995 static inline int coroutine_fn
1996 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1997 BdrvTrackedRequest *req, int flags)
1999 BlockDriverState *bs = child->bs;
2001 bdrv_check_request(offset, bytes, &error_abort);
2003 if (bdrv_is_read_only(bs)) {
2004 return -EPERM;
2007 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2008 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
2009 assert(!(flags & ~BDRV_REQ_MASK));
2010 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
2012 if (flags & BDRV_REQ_SERIALISING) {
2013 QEMU_LOCK_GUARD(&bs->reqs_lock);
2015 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
2017 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
2018 return -EBUSY;
2021 bdrv_wait_serialising_requests_locked(req);
2022 } else {
2023 bdrv_wait_serialising_requests(req);
2026 assert(req->overlap_offset <= offset);
2027 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
2028 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
2029 child->perm & BLK_PERM_RESIZE);
2031 switch (req->type) {
2032 case BDRV_TRACKED_WRITE:
2033 case BDRV_TRACKED_DISCARD:
2034 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
2035 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
2036 } else {
2037 assert(child->perm & BLK_PERM_WRITE);
2039 bdrv_write_threshold_check_write(bs, offset, bytes);
2040 return 0;
2041 case BDRV_TRACKED_TRUNCATE:
2042 assert(child->perm & BLK_PERM_RESIZE);
2043 return 0;
2044 default:
2045 abort();
2049 static inline void coroutine_fn
2050 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2051 BdrvTrackedRequest *req, int ret)
2053 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2054 BlockDriverState *bs = child->bs;
2056 bdrv_check_request(offset, bytes, &error_abort);
2058 qatomic_inc(&bs->write_gen);
2061 * Discard cannot extend the image, but in error handling cases, such as
2062 * when reverting a qcow2 cluster allocation, the discarded range can pass
2063 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2064 * here. Instead, just skip it, since semantically a discard request
2065 * beyond EOF cannot expand the image anyway.
2067 if (ret == 0 &&
2068 (req->type == BDRV_TRACKED_TRUNCATE ||
2069 end_sector > bs->total_sectors) &&
2070 req->type != BDRV_TRACKED_DISCARD) {
2071 bs->total_sectors = end_sector;
2072 bdrv_parent_cb_resize(bs);
2073 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2075 if (req->bytes) {
2076 switch (req->type) {
2077 case BDRV_TRACKED_WRITE:
2078 stat64_max(&bs->wr_highest_offset, offset + bytes);
2079 /* fall through, to set dirty bits */
2080 case BDRV_TRACKED_DISCARD:
2081 bdrv_set_dirty(bs, offset, bytes);
2082 break;
2083 default:
2084 break;
2090 * Forwards an already correctly aligned write request to the BlockDriver,
2091 * after possibly fragmenting it.
2093 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
2094 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
2095 int64_t align, QEMUIOVector *qiov, size_t qiov_offset,
2096 BdrvRequestFlags flags)
2098 BlockDriverState *bs = child->bs;
2099 BlockDriver *drv = bs->drv;
2100 int ret;
2102 int64_t bytes_remaining = bytes;
2103 int max_transfer;
2105 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2107 if (!drv) {
2108 return -ENOMEDIUM;
2111 if (bdrv_has_readonly_bitmaps(bs)) {
2112 return -EPERM;
2115 assert(is_power_of_2(align));
2116 assert((offset & (align - 1)) == 0);
2117 assert((bytes & (align - 1)) == 0);
2118 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2119 align);
2121 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2123 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2124 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2125 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2126 flags |= BDRV_REQ_ZERO_WRITE;
2127 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2128 flags |= BDRV_REQ_MAY_UNMAP;
2132 if (ret < 0) {
2133 /* Do nothing, write notifier decided to fail this request */
2134 } else if (flags & BDRV_REQ_ZERO_WRITE) {
2135 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2136 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2137 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2138 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2139 qiov, qiov_offset);
2140 } else if (bytes <= max_transfer) {
2141 bdrv_debug_event(bs, BLKDBG_PWRITEV);
2142 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2143 } else {
2144 bdrv_debug_event(bs, BLKDBG_PWRITEV);
2145 while (bytes_remaining) {
2146 int num = MIN(bytes_remaining, max_transfer);
2147 int local_flags = flags;
2149 assert(num);
2150 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2151 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2152 /* If FUA is going to be emulated by flush, we only
2153 * need to flush on the last iteration */
2154 local_flags &= ~BDRV_REQ_FUA;
2157 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2158 num, qiov,
2159 qiov_offset + bytes - bytes_remaining,
2160 local_flags);
2161 if (ret < 0) {
2162 break;
2164 bytes_remaining -= num;
2167 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2169 if (ret >= 0) {
2170 ret = 0;
2172 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2174 return ret;
2177 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2178 int64_t offset,
2179 int64_t bytes,
2180 BdrvRequestFlags flags,
2181 BdrvTrackedRequest *req)
2183 BlockDriverState *bs = child->bs;
2184 QEMUIOVector local_qiov;
2185 uint64_t align = bs->bl.request_alignment;
2186 int ret = 0;
2187 bool padding;
2188 BdrvRequestPadding pad;
2190 padding = bdrv_init_padding(bs, offset, bytes, &pad);
2191 if (padding) {
2192 assert(!(flags & BDRV_REQ_NO_WAIT));
2193 bdrv_make_request_serialising(req, align);
2195 bdrv_padding_rmw_read(child, req, &pad, true);
2197 if (pad.head || pad.merge_reads) {
2198 int64_t aligned_offset = offset & ~(align - 1);
2199 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2201 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2202 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2203 align, &local_qiov, 0,
2204 flags & ~BDRV_REQ_ZERO_WRITE);
2205 if (ret < 0 || pad.merge_reads) {
2206 /* Error or all work is done */
2207 goto out;
2209 offset += write_bytes - pad.head;
2210 bytes -= write_bytes - pad.head;
2214 assert(!bytes || (offset & (align - 1)) == 0);
2215 if (bytes >= align) {
2216 /* Write the aligned part in the middle. */
2217 int64_t aligned_bytes = bytes & ~(align - 1);
2218 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2219 NULL, 0, flags);
2220 if (ret < 0) {
2221 goto out;
2223 bytes -= aligned_bytes;
2224 offset += aligned_bytes;
2227 assert(!bytes || (offset & (align - 1)) == 0);
2228 if (bytes) {
2229 assert(align == pad.tail + bytes);
2231 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2232 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2233 &local_qiov, 0,
2234 flags & ~BDRV_REQ_ZERO_WRITE);
2237 out:
2238 bdrv_padding_destroy(&pad);
2240 return ret;
2244 * Handle a write request in coroutine context
2246 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2247 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2248 BdrvRequestFlags flags)
2250 IO_CODE();
2251 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2254 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2255 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2256 BdrvRequestFlags flags)
2258 BlockDriverState *bs = child->bs;
2259 BdrvTrackedRequest req;
2260 uint64_t align = bs->bl.request_alignment;
2261 BdrvRequestPadding pad;
2262 int ret;
2263 bool padded = false;
2264 IO_CODE();
2266 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2268 if (!bdrv_is_inserted(bs)) {
2269 return -ENOMEDIUM;
2272 if (flags & BDRV_REQ_ZERO_WRITE) {
2273 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2274 } else {
2275 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2277 if (ret < 0) {
2278 return ret;
2281 /* If the request is misaligned then we can't make it efficient */
2282 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2283 !QEMU_IS_ALIGNED(offset | bytes, align))
2285 return -ENOTSUP;
2288 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2290 * Aligning zero request is nonsense. Even if driver has special meaning
2291 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2292 * it to driver due to request_alignment.
2294 * Still, no reason to return an error if someone do unaligned
2295 * zero-length write occasionally.
2297 return 0;
2300 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2302 * Pad request for following read-modify-write cycle.
2303 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2304 * alignment only if there is no ZERO flag.
2306 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2307 &padded);
2308 if (ret < 0) {
2309 return ret;
2313 bdrv_inc_in_flight(bs);
2314 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2316 if (flags & BDRV_REQ_ZERO_WRITE) {
2317 assert(!padded);
2318 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2319 goto out;
2322 if (padded) {
2324 * Request was unaligned to request_alignment and therefore
2325 * padded. We are going to do read-modify-write, and must
2326 * serialize the request to prevent interactions of the
2327 * widened region with other transactions.
2329 assert(!(flags & BDRV_REQ_NO_WAIT));
2330 bdrv_make_request_serialising(&req, align);
2331 bdrv_padding_rmw_read(child, &req, &pad, false);
2334 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2335 qiov, qiov_offset, flags);
2337 bdrv_padding_destroy(&pad);
2339 out:
2340 tracked_request_end(&req);
2341 bdrv_dec_in_flight(bs);
2343 return ret;
2346 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2347 int64_t bytes, BdrvRequestFlags flags)
2349 IO_CODE();
2350 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2352 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2353 flags &= ~BDRV_REQ_MAY_UNMAP;
2356 return bdrv_co_pwritev(child, offset, bytes, NULL,
2357 BDRV_REQ_ZERO_WRITE | flags);
2361 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2363 int bdrv_flush_all(void)
2365 BdrvNextIterator it;
2366 BlockDriverState *bs = NULL;
2367 int result = 0;
2369 GLOBAL_STATE_CODE();
2372 * bdrv queue is managed by record/replay,
2373 * creating new flush request for stopping
2374 * the VM may break the determinism
2376 if (replay_events_enabled()) {
2377 return result;
2380 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2381 AioContext *aio_context = bdrv_get_aio_context(bs);
2382 int ret;
2384 aio_context_acquire(aio_context);
2385 ret = bdrv_flush(bs);
2386 if (ret < 0 && !result) {
2387 result = ret;
2389 aio_context_release(aio_context);
2392 return result;
2396 * Returns the allocation status of the specified sectors.
2397 * Drivers not implementing the functionality are assumed to not support
2398 * backing files, hence all their sectors are reported as allocated.
2400 * If 'want_zero' is true, the caller is querying for mapping
2401 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2402 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2403 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2405 * If 'offset' is beyond the end of the disk image the return value is
2406 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2408 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2409 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2410 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2412 * 'pnum' is set to the number of bytes (including and immediately
2413 * following the specified offset) that are easily known to be in the
2414 * same allocated/unallocated state. Note that a second call starting
2415 * at the original offset plus returned pnum may have the same status.
2416 * The returned value is non-zero on success except at end-of-file.
2418 * Returns negative errno on failure. Otherwise, if the
2419 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2420 * set to the host mapping and BDS corresponding to the guest offset.
2422 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2423 bool want_zero,
2424 int64_t offset, int64_t bytes,
2425 int64_t *pnum, int64_t *map,
2426 BlockDriverState **file)
2428 int64_t total_size;
2429 int64_t n; /* bytes */
2430 int ret;
2431 int64_t local_map = 0;
2432 BlockDriverState *local_file = NULL;
2433 int64_t aligned_offset, aligned_bytes;
2434 uint32_t align;
2435 bool has_filtered_child;
2437 assert(pnum);
2438 *pnum = 0;
2439 total_size = bdrv_getlength(bs);
2440 if (total_size < 0) {
2441 ret = total_size;
2442 goto early_out;
2445 if (offset >= total_size) {
2446 ret = BDRV_BLOCK_EOF;
2447 goto early_out;
2449 if (!bytes) {
2450 ret = 0;
2451 goto early_out;
2454 n = total_size - offset;
2455 if (n < bytes) {
2456 bytes = n;
2459 /* Must be non-NULL or bdrv_getlength() would have failed */
2460 assert(bs->drv);
2461 has_filtered_child = bdrv_filter_child(bs);
2462 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2463 *pnum = bytes;
2464 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2465 if (offset + bytes == total_size) {
2466 ret |= BDRV_BLOCK_EOF;
2468 if (bs->drv->protocol_name) {
2469 ret |= BDRV_BLOCK_OFFSET_VALID;
2470 local_map = offset;
2471 local_file = bs;
2473 goto early_out;
2476 bdrv_inc_in_flight(bs);
2478 /* Round out to request_alignment boundaries */
2479 align = bs->bl.request_alignment;
2480 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2481 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2483 if (bs->drv->bdrv_co_block_status) {
2485 * Use the block-status cache only for protocol nodes: Format
2486 * drivers are generally quick to inquire the status, but protocol
2487 * drivers often need to get information from outside of qemu, so
2488 * we do not have control over the actual implementation. There
2489 * have been cases where inquiring the status took an unreasonably
2490 * long time, and we can do nothing in qemu to fix it.
2491 * This is especially problematic for images with large data areas,
2492 * because finding the few holes in them and giving them special
2493 * treatment does not gain much performance. Therefore, we try to
2494 * cache the last-identified data region.
2496 * Second, limiting ourselves to protocol nodes allows us to assume
2497 * the block status for data regions to be DATA | OFFSET_VALID, and
2498 * that the host offset is the same as the guest offset.
2500 * Note that it is possible that external writers zero parts of
2501 * the cached regions without the cache being invalidated, and so
2502 * we may report zeroes as data. This is not catastrophic,
2503 * however, because reporting zeroes as data is fine.
2505 if (QLIST_EMPTY(&bs->children) &&
2506 bdrv_bsc_is_data(bs, aligned_offset, pnum))
2508 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2509 local_file = bs;
2510 local_map = aligned_offset;
2511 } else {
2512 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2513 aligned_bytes, pnum, &local_map,
2514 &local_file);
2517 * Note that checking QLIST_EMPTY(&bs->children) is also done when
2518 * the cache is queried above. Technically, we do not need to check
2519 * it here; the worst that can happen is that we fill the cache for
2520 * non-protocol nodes, and then it is never used. However, filling
2521 * the cache requires an RCU update, so double check here to avoid
2522 * such an update if possible.
2524 * Check want_zero, because we only want to update the cache when we
2525 * have accurate information about what is zero and what is data.
2527 if (want_zero &&
2528 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2529 QLIST_EMPTY(&bs->children))
2532 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2533 * returned local_map value must be the same as the offset we
2534 * have passed (aligned_offset), and local_bs must be the node
2535 * itself.
2536 * Assert this, because we follow this rule when reading from
2537 * the cache (see the `local_file = bs` and
2538 * `local_map = aligned_offset` assignments above), and the
2539 * result the cache delivers must be the same as the driver
2540 * would deliver.
2542 assert(local_file == bs);
2543 assert(local_map == aligned_offset);
2544 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2547 } else {
2548 /* Default code for filters */
2550 local_file = bdrv_filter_bs(bs);
2551 assert(local_file);
2553 *pnum = aligned_bytes;
2554 local_map = aligned_offset;
2555 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2557 if (ret < 0) {
2558 *pnum = 0;
2559 goto out;
2563 * The driver's result must be a non-zero multiple of request_alignment.
2564 * Clamp pnum and adjust map to original request.
2566 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2567 align > offset - aligned_offset);
2568 if (ret & BDRV_BLOCK_RECURSE) {
2569 assert(ret & BDRV_BLOCK_DATA);
2570 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2571 assert(!(ret & BDRV_BLOCK_ZERO));
2574 *pnum -= offset - aligned_offset;
2575 if (*pnum > bytes) {
2576 *pnum = bytes;
2578 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2579 local_map += offset - aligned_offset;
2582 if (ret & BDRV_BLOCK_RAW) {
2583 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2584 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2585 *pnum, pnum, &local_map, &local_file);
2586 goto out;
2589 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2590 ret |= BDRV_BLOCK_ALLOCATED;
2591 } else if (bs->drv->supports_backing) {
2592 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2594 if (!cow_bs) {
2595 ret |= BDRV_BLOCK_ZERO;
2596 } else if (want_zero) {
2597 int64_t size2 = bdrv_getlength(cow_bs);
2599 if (size2 >= 0 && offset >= size2) {
2600 ret |= BDRV_BLOCK_ZERO;
2605 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2606 local_file && local_file != bs &&
2607 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2608 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2609 int64_t file_pnum;
2610 int ret2;
2612 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2613 *pnum, &file_pnum, NULL, NULL);
2614 if (ret2 >= 0) {
2615 /* Ignore errors. This is just providing extra information, it
2616 * is useful but not necessary.
2618 if (ret2 & BDRV_BLOCK_EOF &&
2619 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2621 * It is valid for the format block driver to read
2622 * beyond the end of the underlying file's current
2623 * size; such areas read as zero.
2625 ret |= BDRV_BLOCK_ZERO;
2626 } else {
2627 /* Limit request to the range reported by the protocol driver */
2628 *pnum = file_pnum;
2629 ret |= (ret2 & BDRV_BLOCK_ZERO);
2634 out:
2635 bdrv_dec_in_flight(bs);
2636 if (ret >= 0 && offset + *pnum == total_size) {
2637 ret |= BDRV_BLOCK_EOF;
2639 early_out:
2640 if (file) {
2641 *file = local_file;
2643 if (map) {
2644 *map = local_map;
2646 return ret;
2649 int coroutine_fn
2650 bdrv_co_common_block_status_above(BlockDriverState *bs,
2651 BlockDriverState *base,
2652 bool include_base,
2653 bool want_zero,
2654 int64_t offset,
2655 int64_t bytes,
2656 int64_t *pnum,
2657 int64_t *map,
2658 BlockDriverState **file,
2659 int *depth)
2661 int ret;
2662 BlockDriverState *p;
2663 int64_t eof = 0;
2664 int dummy;
2665 IO_CODE();
2667 assert(!include_base || base); /* Can't include NULL base */
2669 if (!depth) {
2670 depth = &dummy;
2672 *depth = 0;
2674 if (!include_base && bs == base) {
2675 *pnum = bytes;
2676 return 0;
2679 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2680 ++*depth;
2681 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2682 return ret;
2685 if (ret & BDRV_BLOCK_EOF) {
2686 eof = offset + *pnum;
2689 assert(*pnum <= bytes);
2690 bytes = *pnum;
2692 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2693 p = bdrv_filter_or_cow_bs(p))
2695 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2696 file);
2697 ++*depth;
2698 if (ret < 0) {
2699 return ret;
2701 if (*pnum == 0) {
2703 * The top layer deferred to this layer, and because this layer is
2704 * short, any zeroes that we synthesize beyond EOF behave as if they
2705 * were allocated at this layer.
2707 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2708 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2709 * below.
2711 assert(ret & BDRV_BLOCK_EOF);
2712 *pnum = bytes;
2713 if (file) {
2714 *file = p;
2716 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2717 break;
2719 if (ret & BDRV_BLOCK_ALLOCATED) {
2721 * We've found the node and the status, we must break.
2723 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2724 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2725 * below.
2727 ret &= ~BDRV_BLOCK_EOF;
2728 break;
2731 if (p == base) {
2732 assert(include_base);
2733 break;
2737 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2738 * let's continue the diving.
2740 assert(*pnum <= bytes);
2741 bytes = *pnum;
2744 if (offset + *pnum == eof) {
2745 ret |= BDRV_BLOCK_EOF;
2748 return ret;
2751 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2752 int64_t offset, int64_t bytes, int64_t *pnum,
2753 int64_t *map, BlockDriverState **file)
2755 IO_CODE();
2756 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2757 pnum, map, file, NULL);
2760 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2761 int64_t *pnum, int64_t *map, BlockDriverState **file)
2763 IO_CODE();
2764 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2765 offset, bytes, pnum, map, file);
2769 * Check @bs (and its backing chain) to see if the range defined
2770 * by @offset and @bytes is known to read as zeroes.
2771 * Return 1 if that is the case, 0 otherwise and -errno on error.
2772 * This test is meant to be fast rather than accurate so returning 0
2773 * does not guarantee non-zero data.
2775 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2776 int64_t bytes)
2778 int ret;
2779 int64_t pnum = bytes;
2780 IO_CODE();
2782 if (!bytes) {
2783 return 1;
2786 ret = bdrv_common_block_status_above(bs, NULL, false, false, offset,
2787 bytes, &pnum, NULL, NULL, NULL);
2789 if (ret < 0) {
2790 return ret;
2793 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2796 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2797 int64_t bytes, int64_t *pnum)
2799 int ret;
2800 int64_t dummy;
2801 IO_CODE();
2803 ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2804 bytes, pnum ? pnum : &dummy, NULL,
2805 NULL, NULL);
2806 if (ret < 0) {
2807 return ret;
2809 return !!(ret & BDRV_BLOCK_ALLOCATED);
2813 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2815 * Return a positive depth if (a prefix of) the given range is allocated
2816 * in any image between BASE and TOP (BASE is only included if include_base
2817 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2818 * BASE can be NULL to check if the given offset is allocated in any
2819 * image of the chain. Return 0 otherwise, or negative errno on
2820 * failure.
2822 * 'pnum' is set to the number of bytes (including and immediately
2823 * following the specified offset) that are known to be in the same
2824 * allocated/unallocated state. Note that a subsequent call starting
2825 * at 'offset + *pnum' may return the same allocation status (in other
2826 * words, the result is not necessarily the maximum possible range);
2827 * but 'pnum' will only be 0 when end of file is reached.
2829 int bdrv_is_allocated_above(BlockDriverState *top,
2830 BlockDriverState *base,
2831 bool include_base, int64_t offset,
2832 int64_t bytes, int64_t *pnum)
2834 int depth;
2835 int ret = bdrv_common_block_status_above(top, base, include_base, false,
2836 offset, bytes, pnum, NULL, NULL,
2837 &depth);
2838 IO_CODE();
2839 if (ret < 0) {
2840 return ret;
2843 if (ret & BDRV_BLOCK_ALLOCATED) {
2844 return depth;
2846 return 0;
2849 int coroutine_fn
2850 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2852 BlockDriver *drv = bs->drv;
2853 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2854 int ret;
2855 IO_CODE();
2857 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2858 if (ret < 0) {
2859 return ret;
2862 if (!drv) {
2863 return -ENOMEDIUM;
2866 bdrv_inc_in_flight(bs);
2868 if (drv->bdrv_load_vmstate) {
2869 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2870 } else if (child_bs) {
2871 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2872 } else {
2873 ret = -ENOTSUP;
2876 bdrv_dec_in_flight(bs);
2878 return ret;
2881 int coroutine_fn
2882 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2884 BlockDriver *drv = bs->drv;
2885 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2886 int ret;
2887 IO_CODE();
2889 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2890 if (ret < 0) {
2891 return ret;
2894 if (!drv) {
2895 return -ENOMEDIUM;
2898 bdrv_inc_in_flight(bs);
2900 if (drv->bdrv_save_vmstate) {
2901 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2902 } else if (child_bs) {
2903 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2904 } else {
2905 ret = -ENOTSUP;
2908 bdrv_dec_in_flight(bs);
2910 return ret;
2913 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2914 int64_t pos, int size)
2916 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2917 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2918 IO_CODE();
2920 return ret < 0 ? ret : size;
2923 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2924 int64_t pos, int size)
2926 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2927 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2928 IO_CODE();
2930 return ret < 0 ? ret : size;
2933 /**************************************************************/
2934 /* async I/Os */
2936 void bdrv_aio_cancel(BlockAIOCB *acb)
2938 IO_CODE();
2939 qemu_aio_ref(acb);
2940 bdrv_aio_cancel_async(acb);
2941 while (acb->refcnt > 1) {
2942 if (acb->aiocb_info->get_aio_context) {
2943 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2944 } else if (acb->bs) {
2945 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2946 * assert that we're not using an I/O thread. Thread-safe
2947 * code should use bdrv_aio_cancel_async exclusively.
2949 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2950 aio_poll(bdrv_get_aio_context(acb->bs), true);
2951 } else {
2952 abort();
2955 qemu_aio_unref(acb);
2958 /* Async version of aio cancel. The caller is not blocked if the acb implements
2959 * cancel_async, otherwise we do nothing and let the request normally complete.
2960 * In either case the completion callback must be called. */
2961 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2963 IO_CODE();
2964 if (acb->aiocb_info->cancel_async) {
2965 acb->aiocb_info->cancel_async(acb);
2969 /**************************************************************/
2970 /* Coroutine block device emulation */
2972 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2974 BdrvChild *primary_child = bdrv_primary_child(bs);
2975 BdrvChild *child;
2976 int current_gen;
2977 int ret = 0;
2978 IO_CODE();
2980 bdrv_inc_in_flight(bs);
2982 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2983 bdrv_is_sg(bs)) {
2984 goto early_exit;
2987 qemu_co_mutex_lock(&bs->reqs_lock);
2988 current_gen = qatomic_read(&bs->write_gen);
2990 /* Wait until any previous flushes are completed */
2991 while (bs->active_flush_req) {
2992 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2995 /* Flushes reach this point in nondecreasing current_gen order. */
2996 bs->active_flush_req = true;
2997 qemu_co_mutex_unlock(&bs->reqs_lock);
2999 /* Write back all layers by calling one driver function */
3000 if (bs->drv->bdrv_co_flush) {
3001 ret = bs->drv->bdrv_co_flush(bs);
3002 goto out;
3005 /* Write back cached data to the OS even with cache=unsafe */
3006 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
3007 if (bs->drv->bdrv_co_flush_to_os) {
3008 ret = bs->drv->bdrv_co_flush_to_os(bs);
3009 if (ret < 0) {
3010 goto out;
3014 /* But don't actually force it to the disk with cache=unsafe */
3015 if (bs->open_flags & BDRV_O_NO_FLUSH) {
3016 goto flush_children;
3019 /* Check if we really need to flush anything */
3020 if (bs->flushed_gen == current_gen) {
3021 goto flush_children;
3024 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
3025 if (!bs->drv) {
3026 /* bs->drv->bdrv_co_flush() might have ejected the BDS
3027 * (even in case of apparent success) */
3028 ret = -ENOMEDIUM;
3029 goto out;
3031 if (bs->drv->bdrv_co_flush_to_disk) {
3032 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3033 } else if (bs->drv->bdrv_aio_flush) {
3034 BlockAIOCB *acb;
3035 CoroutineIOCompletion co = {
3036 .coroutine = qemu_coroutine_self(),
3039 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3040 if (acb == NULL) {
3041 ret = -EIO;
3042 } else {
3043 qemu_coroutine_yield();
3044 ret = co.ret;
3046 } else {
3048 * Some block drivers always operate in either writethrough or unsafe
3049 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3050 * know how the server works (because the behaviour is hardcoded or
3051 * depends on server-side configuration), so we can't ensure that
3052 * everything is safe on disk. Returning an error doesn't work because
3053 * that would break guests even if the server operates in writethrough
3054 * mode.
3056 * Let's hope the user knows what he's doing.
3058 ret = 0;
3061 if (ret < 0) {
3062 goto out;
3065 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3066 * in the case of cache=unsafe, so there are no useless flushes.
3068 flush_children:
3069 ret = 0;
3070 QLIST_FOREACH(child, &bs->children, next) {
3071 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3072 int this_child_ret = bdrv_co_flush(child->bs);
3073 if (!ret) {
3074 ret = this_child_ret;
3079 out:
3080 /* Notify any pending flushes that we have completed */
3081 if (ret == 0) {
3082 bs->flushed_gen = current_gen;
3085 qemu_co_mutex_lock(&bs->reqs_lock);
3086 bs->active_flush_req = false;
3087 /* Return value is ignored - it's ok if wait queue is empty */
3088 qemu_co_queue_next(&bs->flush_queue);
3089 qemu_co_mutex_unlock(&bs->reqs_lock);
3091 early_exit:
3092 bdrv_dec_in_flight(bs);
3093 return ret;
3096 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3097 int64_t bytes)
3099 BdrvTrackedRequest req;
3100 int ret;
3101 int64_t max_pdiscard;
3102 int head, tail, align;
3103 BlockDriverState *bs = child->bs;
3104 IO_CODE();
3106 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
3107 return -ENOMEDIUM;
3110 if (bdrv_has_readonly_bitmaps(bs)) {
3111 return -EPERM;
3114 ret = bdrv_check_request(offset, bytes, NULL);
3115 if (ret < 0) {
3116 return ret;
3119 /* Do nothing if disabled. */
3120 if (!(bs->open_flags & BDRV_O_UNMAP)) {
3121 return 0;
3124 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
3125 return 0;
3128 /* Invalidate the cached block-status data range if this discard overlaps */
3129 bdrv_bsc_invalidate_range(bs, offset, bytes);
3131 /* Discard is advisory, but some devices track and coalesce
3132 * unaligned requests, so we must pass everything down rather than
3133 * round here. Still, most devices will just silently ignore
3134 * unaligned requests (by returning -ENOTSUP), so we must fragment
3135 * the request accordingly. */
3136 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3137 assert(align % bs->bl.request_alignment == 0);
3138 head = offset % align;
3139 tail = (offset + bytes) % align;
3141 bdrv_inc_in_flight(bs);
3142 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3144 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3145 if (ret < 0) {
3146 goto out;
3149 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3150 align);
3151 assert(max_pdiscard >= bs->bl.request_alignment);
3153 while (bytes > 0) {
3154 int64_t num = bytes;
3156 if (head) {
3157 /* Make small requests to get to alignment boundaries. */
3158 num = MIN(bytes, align - head);
3159 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3160 num %= bs->bl.request_alignment;
3162 head = (head + num) % align;
3163 assert(num < max_pdiscard);
3164 } else if (tail) {
3165 if (num > align) {
3166 /* Shorten the request to the last aligned cluster. */
3167 num -= tail;
3168 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3169 tail > bs->bl.request_alignment) {
3170 tail %= bs->bl.request_alignment;
3171 num -= tail;
3174 /* limit request size */
3175 if (num > max_pdiscard) {
3176 num = max_pdiscard;
3179 if (!bs->drv) {
3180 ret = -ENOMEDIUM;
3181 goto out;
3183 if (bs->drv->bdrv_co_pdiscard) {
3184 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3185 } else {
3186 BlockAIOCB *acb;
3187 CoroutineIOCompletion co = {
3188 .coroutine = qemu_coroutine_self(),
3191 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3192 bdrv_co_io_em_complete, &co);
3193 if (acb == NULL) {
3194 ret = -EIO;
3195 goto out;
3196 } else {
3197 qemu_coroutine_yield();
3198 ret = co.ret;
3201 if (ret && ret != -ENOTSUP) {
3202 goto out;
3205 offset += num;
3206 bytes -= num;
3208 ret = 0;
3209 out:
3210 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3211 tracked_request_end(&req);
3212 bdrv_dec_in_flight(bs);
3213 return ret;
3216 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3218 BlockDriver *drv = bs->drv;
3219 CoroutineIOCompletion co = {
3220 .coroutine = qemu_coroutine_self(),
3222 BlockAIOCB *acb;
3223 IO_CODE();
3225 bdrv_inc_in_flight(bs);
3226 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3227 co.ret = -ENOTSUP;
3228 goto out;
3231 if (drv->bdrv_co_ioctl) {
3232 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3233 } else {
3234 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3235 if (!acb) {
3236 co.ret = -ENOTSUP;
3237 goto out;
3239 qemu_coroutine_yield();
3241 out:
3242 bdrv_dec_in_flight(bs);
3243 return co.ret;
3246 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3248 IO_CODE();
3249 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3252 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3254 IO_CODE();
3255 return memset(qemu_blockalign(bs, size), 0, size);
3258 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3260 size_t align = bdrv_opt_mem_align(bs);
3261 IO_CODE();
3263 /* Ensure that NULL is never returned on success */
3264 assert(align > 0);
3265 if (size == 0) {
3266 size = align;
3269 return qemu_try_memalign(align, size);
3272 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3274 void *mem = qemu_try_blockalign(bs, size);
3275 IO_CODE();
3277 if (mem) {
3278 memset(mem, 0, size);
3281 return mem;
3285 * Check if all memory in this vector is sector aligned.
3287 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3289 int i;
3290 size_t alignment = bdrv_min_mem_align(bs);
3291 IO_CODE();
3293 for (i = 0; i < qiov->niov; i++) {
3294 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3295 return false;
3297 if (qiov->iov[i].iov_len % alignment) {
3298 return false;
3302 return true;
3305 void bdrv_io_plug(BlockDriverState *bs)
3307 BdrvChild *child;
3308 IO_CODE();
3310 QLIST_FOREACH(child, &bs->children, next) {
3311 bdrv_io_plug(child->bs);
3314 if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3315 BlockDriver *drv = bs->drv;
3316 if (drv && drv->bdrv_io_plug) {
3317 drv->bdrv_io_plug(bs);
3322 void bdrv_io_unplug(BlockDriverState *bs)
3324 BdrvChild *child;
3325 IO_CODE();
3327 assert(bs->io_plugged);
3328 if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3329 BlockDriver *drv = bs->drv;
3330 if (drv && drv->bdrv_io_unplug) {
3331 drv->bdrv_io_unplug(bs);
3335 QLIST_FOREACH(child, &bs->children, next) {
3336 bdrv_io_unplug(child->bs);
3340 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3342 BdrvChild *child;
3344 GLOBAL_STATE_CODE();
3345 if (bs->drv && bs->drv->bdrv_register_buf) {
3346 bs->drv->bdrv_register_buf(bs, host, size);
3348 QLIST_FOREACH(child, &bs->children, next) {
3349 bdrv_register_buf(child->bs, host, size);
3353 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3355 BdrvChild *child;
3357 GLOBAL_STATE_CODE();
3358 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3359 bs->drv->bdrv_unregister_buf(bs, host);
3361 QLIST_FOREACH(child, &bs->children, next) {
3362 bdrv_unregister_buf(child->bs, host);
3366 static int coroutine_fn bdrv_co_copy_range_internal(
3367 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3368 int64_t dst_offset, int64_t bytes,
3369 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3370 bool recurse_src)
3372 BdrvTrackedRequest req;
3373 int ret;
3375 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3376 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3377 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3378 assert(!(read_flags & BDRV_REQ_NO_WAIT));
3379 assert(!(write_flags & BDRV_REQ_NO_WAIT));
3381 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3382 return -ENOMEDIUM;
3384 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3385 if (ret) {
3386 return ret;
3388 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3389 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3392 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3393 return -ENOMEDIUM;
3395 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3396 if (ret) {
3397 return ret;
3400 if (!src->bs->drv->bdrv_co_copy_range_from
3401 || !dst->bs->drv->bdrv_co_copy_range_to
3402 || src->bs->encrypted || dst->bs->encrypted) {
3403 return -ENOTSUP;
3406 if (recurse_src) {
3407 bdrv_inc_in_flight(src->bs);
3408 tracked_request_begin(&req, src->bs, src_offset, bytes,
3409 BDRV_TRACKED_READ);
3411 /* BDRV_REQ_SERIALISING is only for write operation */
3412 assert(!(read_flags & BDRV_REQ_SERIALISING));
3413 bdrv_wait_serialising_requests(&req);
3415 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3416 src, src_offset,
3417 dst, dst_offset,
3418 bytes,
3419 read_flags, write_flags);
3421 tracked_request_end(&req);
3422 bdrv_dec_in_flight(src->bs);
3423 } else {
3424 bdrv_inc_in_flight(dst->bs);
3425 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3426 BDRV_TRACKED_WRITE);
3427 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3428 write_flags);
3429 if (!ret) {
3430 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3431 src, src_offset,
3432 dst, dst_offset,
3433 bytes,
3434 read_flags, write_flags);
3436 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3437 tracked_request_end(&req);
3438 bdrv_dec_in_flight(dst->bs);
3441 return ret;
3444 /* Copy range from @src to @dst.
3446 * See the comment of bdrv_co_copy_range for the parameter and return value
3447 * semantics. */
3448 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3449 BdrvChild *dst, int64_t dst_offset,
3450 int64_t bytes,
3451 BdrvRequestFlags read_flags,
3452 BdrvRequestFlags write_flags)
3454 IO_CODE();
3455 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3456 read_flags, write_flags);
3457 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3458 bytes, read_flags, write_flags, true);
3461 /* Copy range from @src to @dst.
3463 * See the comment of bdrv_co_copy_range for the parameter and return value
3464 * semantics. */
3465 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3466 BdrvChild *dst, int64_t dst_offset,
3467 int64_t bytes,
3468 BdrvRequestFlags read_flags,
3469 BdrvRequestFlags write_flags)
3471 IO_CODE();
3472 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3473 read_flags, write_flags);
3474 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3475 bytes, read_flags, write_flags, false);
3478 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3479 BdrvChild *dst, int64_t dst_offset,
3480 int64_t bytes, BdrvRequestFlags read_flags,
3481 BdrvRequestFlags write_flags)
3483 IO_CODE();
3484 return bdrv_co_copy_range_from(src, src_offset,
3485 dst, dst_offset,
3486 bytes, read_flags, write_flags);
3489 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3491 BdrvChild *c;
3492 QLIST_FOREACH(c, &bs->parents, next_parent) {
3493 if (c->klass->resize) {
3494 c->klass->resize(c);
3500 * Truncate file to 'offset' bytes (needed only for file protocols)
3502 * If 'exact' is true, the file must be resized to exactly the given
3503 * 'offset'. Otherwise, it is sufficient for the node to be at least
3504 * 'offset' bytes in length.
3506 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3507 PreallocMode prealloc, BdrvRequestFlags flags,
3508 Error **errp)
3510 BlockDriverState *bs = child->bs;
3511 BdrvChild *filtered, *backing;
3512 BlockDriver *drv = bs->drv;
3513 BdrvTrackedRequest req;
3514 int64_t old_size, new_bytes;
3515 int ret;
3516 IO_CODE();
3518 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3519 if (!drv) {
3520 error_setg(errp, "No medium inserted");
3521 return -ENOMEDIUM;
3523 if (offset < 0) {
3524 error_setg(errp, "Image size cannot be negative");
3525 return -EINVAL;
3528 ret = bdrv_check_request(offset, 0, errp);
3529 if (ret < 0) {
3530 return ret;
3533 old_size = bdrv_getlength(bs);
3534 if (old_size < 0) {
3535 error_setg_errno(errp, -old_size, "Failed to get old image size");
3536 return old_size;
3539 if (bdrv_is_read_only(bs)) {
3540 error_setg(errp, "Image is read-only");
3541 return -EACCES;
3544 if (offset > old_size) {
3545 new_bytes = offset - old_size;
3546 } else {
3547 new_bytes = 0;
3550 bdrv_inc_in_flight(bs);
3551 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3552 BDRV_TRACKED_TRUNCATE);
3554 /* If we are growing the image and potentially using preallocation for the
3555 * new area, we need to make sure that no write requests are made to it
3556 * concurrently or they might be overwritten by preallocation. */
3557 if (new_bytes) {
3558 bdrv_make_request_serialising(&req, 1);
3560 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3562 if (ret < 0) {
3563 error_setg_errno(errp, -ret,
3564 "Failed to prepare request for truncation");
3565 goto out;
3568 filtered = bdrv_filter_child(bs);
3569 backing = bdrv_cow_child(bs);
3572 * If the image has a backing file that is large enough that it would
3573 * provide data for the new area, we cannot leave it unallocated because
3574 * then the backing file content would become visible. Instead, zero-fill
3575 * the new area.
3577 * Note that if the image has a backing file, but was opened without the
3578 * backing file, taking care of keeping things consistent with that backing
3579 * file is the user's responsibility.
3581 if (new_bytes && backing) {
3582 int64_t backing_len;
3584 backing_len = bdrv_getlength(backing->bs);
3585 if (backing_len < 0) {
3586 ret = backing_len;
3587 error_setg_errno(errp, -ret, "Could not get backing file size");
3588 goto out;
3591 if (backing_len > old_size) {
3592 flags |= BDRV_REQ_ZERO_WRITE;
3596 if (drv->bdrv_co_truncate) {
3597 if (flags & ~bs->supported_truncate_flags) {
3598 error_setg(errp, "Block driver does not support requested flags");
3599 ret = -ENOTSUP;
3600 goto out;
3602 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3603 } else if (filtered) {
3604 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3605 } else {
3606 error_setg(errp, "Image format driver does not support resize");
3607 ret = -ENOTSUP;
3608 goto out;
3610 if (ret < 0) {
3611 goto out;
3614 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3615 if (ret < 0) {
3616 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3617 } else {
3618 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3620 /* It's possible that truncation succeeded but refresh_total_sectors
3621 * failed, but the latter doesn't affect how we should finish the request.
3622 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3623 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3625 out:
3626 tracked_request_end(&req);
3627 bdrv_dec_in_flight(bs);
3629 return ret;
3632 void bdrv_cancel_in_flight(BlockDriverState *bs)
3634 GLOBAL_STATE_CODE();
3635 if (!bs || !bs->drv) {
3636 return;
3639 if (bs->drv->bdrv_cancel_in_flight) {
3640 bs->drv->bdrv_cancel_in_flight(bs);
3644 int coroutine_fn
3645 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3646 QEMUIOVector *qiov, size_t qiov_offset)
3648 BlockDriverState *bs = child->bs;
3649 BlockDriver *drv = bs->drv;
3650 int ret;
3651 IO_CODE();
3653 if (!drv) {
3654 return -ENOMEDIUM;
3657 if (!drv->bdrv_co_preadv_snapshot) {
3658 return -ENOTSUP;
3661 bdrv_inc_in_flight(bs);
3662 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3663 bdrv_dec_in_flight(bs);
3665 return ret;
3668 int coroutine_fn
3669 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3670 bool want_zero, int64_t offset, int64_t bytes,
3671 int64_t *pnum, int64_t *map,
3672 BlockDriverState **file)
3674 BlockDriver *drv = bs->drv;
3675 int ret;
3676 IO_CODE();
3678 if (!drv) {
3679 return -ENOMEDIUM;
3682 if (!drv->bdrv_co_snapshot_block_status) {
3683 return -ENOTSUP;
3686 bdrv_inc_in_flight(bs);
3687 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3688 pnum, map, file);
3689 bdrv_dec_in_flight(bs);
3691 return ret;
3694 int coroutine_fn
3695 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3697 BlockDriver *drv = bs->drv;
3698 int ret;
3699 IO_CODE();
3701 if (!drv) {
3702 return -ENOMEDIUM;
3705 if (!drv->bdrv_co_pdiscard_snapshot) {
3706 return -ENOTSUP;
3709 bdrv_inc_in_flight(bs);
3710 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3711 bdrv_dec_in_flight(bs);
3713 return ret;