2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
35 #include "qemu-timer.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
47 #include <machine/profile.h>
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
62 #include "memory-internal.h"
64 //#define DEBUG_TB_INVALIDATE
66 //#define DEBUG_UNASSIGNED
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
71 //#define DEBUG_IOPORT
72 //#define DEBUG_SUBPAGE
74 #if !defined(CONFIG_USER_ONLY)
75 /* TB consistency checks only implemented for usermode emulation. */
79 #define SMC_BITMAP_USE_THRESHOLD 10
81 static TranslationBlock
*tbs
;
82 static int code_gen_max_blocks
;
83 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
85 /* any access to the tbs or the page table must use this lock */
86 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
88 #if defined(__arm__) || defined(__sparc__)
89 /* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
91 section close to code segment. */
92 #define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
95 #elif defined(_WIN32) && !defined(_WIN64)
96 #define code_gen_section \
97 __attribute__((aligned (16)))
99 #define code_gen_section \
100 __attribute__((aligned (32)))
103 uint8_t code_gen_prologue
[1024] code_gen_section
;
104 static uint8_t *code_gen_buffer
;
105 static unsigned long code_gen_buffer_size
;
106 /* threshold to flush the translated code buffer */
107 static unsigned long code_gen_buffer_max_size
;
108 static uint8_t *code_gen_ptr
;
110 #if !defined(CONFIG_USER_ONLY)
112 static int in_migration
;
114 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
116 static MemoryRegion
*system_memory
;
117 static MemoryRegion
*system_io
;
119 AddressSpace address_space_io
;
120 AddressSpace address_space_memory
;
122 MemoryRegion io_mem_ram
, io_mem_rom
, io_mem_unassigned
, io_mem_notdirty
;
123 static MemoryRegion io_mem_subpage_ram
;
127 CPUArchState
*first_cpu
;
128 /* current CPU in the current thread. It is only valid inside
130 DEFINE_TLS(CPUArchState
*,cpu_single_env
);
131 /* 0 = Do not count executed instructions.
132 1 = Precise instruction counting.
133 2 = Adaptive rate instruction counting. */
136 typedef struct PageDesc
{
137 /* list of TBs intersecting this ram page */
138 TranslationBlock
*first_tb
;
139 /* in order to optimize self modifying code, we count the number
140 of lookups we do to a given page to use a bitmap */
141 unsigned int code_write_count
;
142 uint8_t *code_bitmap
;
143 #if defined(CONFIG_USER_ONLY)
148 /* In system mode we want L1_MAP to be based on ram offsets,
149 while in user mode we want it to be based on virtual addresses. */
150 #if !defined(CONFIG_USER_ONLY)
151 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
152 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
154 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
157 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
160 /* Size of the L2 (and L3, etc) page tables. */
162 #define L2_SIZE (1 << L2_BITS)
164 #define P_L2_LEVELS \
165 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
167 /* The bits remaining after N lower levels of page tables. */
168 #define V_L1_BITS_REM \
169 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
171 #if V_L1_BITS_REM < 4
172 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
174 #define V_L1_BITS V_L1_BITS_REM
177 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
179 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
181 uintptr_t qemu_real_host_page_size
;
182 uintptr_t qemu_host_page_size
;
183 uintptr_t qemu_host_page_mask
;
185 /* This is a multi-level map on the virtual address space.
186 The bottom level has pointers to PageDesc. */
187 static void *l1_map
[V_L1_SIZE
];
189 #if !defined(CONFIG_USER_ONLY)
190 typedef struct PhysPageEntry PhysPageEntry
;
192 static MemoryRegionSection
*phys_sections
;
193 static unsigned phys_sections_nb
, phys_sections_nb_alloc
;
194 static uint16_t phys_section_unassigned
;
195 static uint16_t phys_section_notdirty
;
196 static uint16_t phys_section_rom
;
197 static uint16_t phys_section_watch
;
199 struct PhysPageEntry
{
200 uint16_t is_leaf
: 1;
201 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
205 /* Simple allocator for PhysPageEntry nodes */
206 static PhysPageEntry (*phys_map_nodes
)[L2_SIZE
];
207 static unsigned phys_map_nodes_nb
, phys_map_nodes_nb_alloc
;
209 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
211 /* This is a multi-level map on the physical address space.
212 The bottom level has pointers to MemoryRegionSections. */
213 static PhysPageEntry phys_map
= { .ptr
= PHYS_MAP_NODE_NIL
, .is_leaf
= 0 };
215 static void io_mem_init(void);
216 static void memory_map_init(void);
218 static MemoryRegion io_mem_watch
;
222 static int tb_flush_count
;
223 static int tb_phys_invalidate_count
;
226 static void map_exec(void *addr
, long size
)
229 VirtualProtect(addr
, size
,
230 PAGE_EXECUTE_READWRITE
, &old_protect
);
234 static void map_exec(void *addr
, long size
)
236 unsigned long start
, end
, page_size
;
238 page_size
= getpagesize();
239 start
= (unsigned long)addr
;
240 start
&= ~(page_size
- 1);
242 end
= (unsigned long)addr
+ size
;
243 end
+= page_size
- 1;
244 end
&= ~(page_size
- 1);
246 mprotect((void *)start
, end
- start
,
247 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
251 static void page_init(void)
253 /* NOTE: we can always suppose that qemu_host_page_size >=
257 SYSTEM_INFO system_info
;
259 GetSystemInfo(&system_info
);
260 qemu_real_host_page_size
= system_info
.dwPageSize
;
263 qemu_real_host_page_size
= getpagesize();
265 if (qemu_host_page_size
== 0)
266 qemu_host_page_size
= qemu_real_host_page_size
;
267 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
268 qemu_host_page_size
= TARGET_PAGE_SIZE
;
269 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
271 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
273 #ifdef HAVE_KINFO_GETVMMAP
274 struct kinfo_vmentry
*freep
;
277 freep
= kinfo_getvmmap(getpid(), &cnt
);
280 for (i
= 0; i
< cnt
; i
++) {
281 unsigned long startaddr
, endaddr
;
283 startaddr
= freep
[i
].kve_start
;
284 endaddr
= freep
[i
].kve_end
;
285 if (h2g_valid(startaddr
)) {
286 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
288 if (h2g_valid(endaddr
)) {
289 endaddr
= h2g(endaddr
);
290 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
292 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
294 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
305 last_brk
= (unsigned long)sbrk(0);
307 f
= fopen("/compat/linux/proc/self/maps", "r");
312 unsigned long startaddr
, endaddr
;
315 n
= fscanf (f
, "%lx-%lx %*[^\n]\n", &startaddr
, &endaddr
);
317 if (n
== 2 && h2g_valid(startaddr
)) {
318 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
320 if (h2g_valid(endaddr
)) {
321 endaddr
= h2g(endaddr
);
325 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
337 static PageDesc
*page_find_alloc(tb_page_addr_t index
, int alloc
)
343 #if defined(CONFIG_USER_ONLY)
344 /* We can't use g_malloc because it may recurse into a locked mutex. */
345 # define ALLOC(P, SIZE) \
347 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
348 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
351 # define ALLOC(P, SIZE) \
352 do { P = g_malloc0(SIZE); } while (0)
355 /* Level 1. Always allocated. */
356 lp
= l1_map
+ ((index
>> V_L1_SHIFT
) & (V_L1_SIZE
- 1));
359 for (i
= V_L1_SHIFT
/ L2_BITS
- 1; i
> 0; i
--) {
366 ALLOC(p
, sizeof(void *) * L2_SIZE
);
370 lp
= p
+ ((index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1));
378 ALLOC(pd
, sizeof(PageDesc
) * L2_SIZE
);
384 return pd
+ (index
& (L2_SIZE
- 1));
387 static inline PageDesc
*page_find(tb_page_addr_t index
)
389 return page_find_alloc(index
, 0);
392 #if !defined(CONFIG_USER_ONLY)
394 static void phys_map_node_reserve(unsigned nodes
)
396 if (phys_map_nodes_nb
+ nodes
> phys_map_nodes_nb_alloc
) {
397 typedef PhysPageEntry Node
[L2_SIZE
];
398 phys_map_nodes_nb_alloc
= MAX(phys_map_nodes_nb_alloc
* 2, 16);
399 phys_map_nodes_nb_alloc
= MAX(phys_map_nodes_nb_alloc
,
400 phys_map_nodes_nb
+ nodes
);
401 phys_map_nodes
= g_renew(Node
, phys_map_nodes
,
402 phys_map_nodes_nb_alloc
);
406 static uint16_t phys_map_node_alloc(void)
411 ret
= phys_map_nodes_nb
++;
412 assert(ret
!= PHYS_MAP_NODE_NIL
);
413 assert(ret
!= phys_map_nodes_nb_alloc
);
414 for (i
= 0; i
< L2_SIZE
; ++i
) {
415 phys_map_nodes
[ret
][i
].is_leaf
= 0;
416 phys_map_nodes
[ret
][i
].ptr
= PHYS_MAP_NODE_NIL
;
421 static void phys_map_nodes_reset(void)
423 phys_map_nodes_nb
= 0;
427 static void phys_page_set_level(PhysPageEntry
*lp
, target_phys_addr_t
*index
,
428 target_phys_addr_t
*nb
, uint16_t leaf
,
433 target_phys_addr_t step
= (target_phys_addr_t
)1 << (level
* L2_BITS
);
435 if (!lp
->is_leaf
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
436 lp
->ptr
= phys_map_node_alloc();
437 p
= phys_map_nodes
[lp
->ptr
];
439 for (i
= 0; i
< L2_SIZE
; i
++) {
441 p
[i
].ptr
= phys_section_unassigned
;
445 p
= phys_map_nodes
[lp
->ptr
];
447 lp
= &p
[(*index
>> (level
* L2_BITS
)) & (L2_SIZE
- 1)];
449 while (*nb
&& lp
< &p
[L2_SIZE
]) {
450 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
456 phys_page_set_level(lp
, index
, nb
, leaf
, level
- 1);
462 static void phys_page_set(target_phys_addr_t index
, target_phys_addr_t nb
,
465 /* Wildly overreserve - it doesn't matter much. */
466 phys_map_node_reserve(3 * P_L2_LEVELS
);
468 phys_page_set_level(&phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
471 MemoryRegionSection
*phys_page_find(target_phys_addr_t index
)
473 PhysPageEntry lp
= phys_map
;
476 uint16_t s_index
= phys_section_unassigned
;
478 for (i
= P_L2_LEVELS
- 1; i
>= 0 && !lp
.is_leaf
; i
--) {
479 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
482 p
= phys_map_nodes
[lp
.ptr
];
483 lp
= p
[(index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1)];
488 return &phys_sections
[s_index
];
491 bool memory_region_is_unassigned(MemoryRegion
*mr
)
493 return mr
!= &io_mem_ram
&& mr
!= &io_mem_rom
494 && mr
!= &io_mem_notdirty
&& !mr
->rom_device
495 && mr
!= &io_mem_watch
;
498 #define mmap_lock() do { } while(0)
499 #define mmap_unlock() do { } while(0)
502 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
504 #if defined(CONFIG_USER_ONLY)
505 /* Currently it is not recommended to allocate big chunks of data in
506 user mode. It will change when a dedicated libc will be used */
507 #define USE_STATIC_CODE_GEN_BUFFER
510 #ifdef USE_STATIC_CODE_GEN_BUFFER
511 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
]
512 __attribute__((aligned (CODE_GEN_ALIGN
)));
515 static void code_gen_alloc(unsigned long tb_size
)
517 #ifdef USE_STATIC_CODE_GEN_BUFFER
518 code_gen_buffer
= static_code_gen_buffer
;
519 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
520 map_exec(code_gen_buffer
, code_gen_buffer_size
);
522 code_gen_buffer_size
= tb_size
;
523 if (code_gen_buffer_size
== 0) {
524 #if defined(CONFIG_USER_ONLY)
525 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
527 /* XXX: needs adjustments */
528 code_gen_buffer_size
= (unsigned long)(ram_size
/ 4);
531 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
532 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
533 /* The code gen buffer location may have constraints depending on
534 the host cpu and OS */
535 #if defined(__linux__)
540 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
541 #if defined(__x86_64__)
543 /* Cannot map more than that */
544 if (code_gen_buffer_size
> (800 * 1024 * 1024))
545 code_gen_buffer_size
= (800 * 1024 * 1024);
546 #elif defined(__sparc__) && HOST_LONG_BITS == 64
547 // Map the buffer below 2G, so we can use direct calls and branches
548 start
= (void *) 0x40000000UL
;
549 if (code_gen_buffer_size
> (512 * 1024 * 1024))
550 code_gen_buffer_size
= (512 * 1024 * 1024);
551 #elif defined(__arm__)
552 /* Keep the buffer no bigger than 16MB to branch between blocks */
553 if (code_gen_buffer_size
> 16 * 1024 * 1024)
554 code_gen_buffer_size
= 16 * 1024 * 1024;
555 #elif defined(__s390x__)
556 /* Map the buffer so that we can use direct calls and branches. */
557 /* We have a +- 4GB range on the branches; leave some slop. */
558 if (code_gen_buffer_size
> (3ul * 1024 * 1024 * 1024)) {
559 code_gen_buffer_size
= 3ul * 1024 * 1024 * 1024;
561 start
= (void *)0x90000000UL
;
563 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
564 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
566 if (code_gen_buffer
== MAP_FAILED
) {
567 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
571 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
572 || defined(__DragonFly__) || defined(__OpenBSD__) \
573 || defined(__NetBSD__)
577 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
578 #if defined(__x86_64__)
579 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
580 * 0x40000000 is free */
582 addr
= (void *)0x40000000;
583 /* Cannot map more than that */
584 if (code_gen_buffer_size
> (800 * 1024 * 1024))
585 code_gen_buffer_size
= (800 * 1024 * 1024);
586 #elif defined(__sparc__) && HOST_LONG_BITS == 64
587 // Map the buffer below 2G, so we can use direct calls and branches
588 addr
= (void *) 0x40000000UL
;
589 if (code_gen_buffer_size
> (512 * 1024 * 1024)) {
590 code_gen_buffer_size
= (512 * 1024 * 1024);
593 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
594 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
596 if (code_gen_buffer
== MAP_FAILED
) {
597 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
602 code_gen_buffer
= g_malloc(code_gen_buffer_size
);
603 map_exec(code_gen_buffer
, code_gen_buffer_size
);
605 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
606 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
607 code_gen_buffer_max_size
= code_gen_buffer_size
-
608 (TCG_MAX_OP_SIZE
* OPC_BUF_SIZE
);
609 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
610 tbs
= g_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
613 /* Must be called before using the QEMU cpus. 'tb_size' is the size
614 (in bytes) allocated to the translation buffer. Zero means default
616 void tcg_exec_init(unsigned long tb_size
)
619 code_gen_alloc(tb_size
);
620 code_gen_ptr
= code_gen_buffer
;
621 tcg_register_jit(code_gen_buffer
, code_gen_buffer_size
);
623 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
624 /* There's no guest base to take into account, so go ahead and
625 initialize the prologue now. */
626 tcg_prologue_init(&tcg_ctx
);
630 bool tcg_enabled(void)
632 return code_gen_buffer
!= NULL
;
635 void cpu_exec_init_all(void)
637 #if !defined(CONFIG_USER_ONLY)
643 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
645 static int cpu_common_post_load(void *opaque
, int version_id
)
647 CPUArchState
*env
= opaque
;
649 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
650 version_id is increased. */
651 env
->interrupt_request
&= ~0x01;
657 static const VMStateDescription vmstate_cpu_common
= {
658 .name
= "cpu_common",
660 .minimum_version_id
= 1,
661 .minimum_version_id_old
= 1,
662 .post_load
= cpu_common_post_load
,
663 .fields
= (VMStateField
[]) {
664 VMSTATE_UINT32(halted
, CPUArchState
),
665 VMSTATE_UINT32(interrupt_request
, CPUArchState
),
666 VMSTATE_END_OF_LIST()
671 CPUArchState
*qemu_get_cpu(int cpu
)
673 CPUArchState
*env
= first_cpu
;
676 if (env
->cpu_index
== cpu
)
684 void cpu_exec_init(CPUArchState
*env
)
689 #if defined(CONFIG_USER_ONLY)
692 env
->next_cpu
= NULL
;
695 while (*penv
!= NULL
) {
696 penv
= &(*penv
)->next_cpu
;
699 env
->cpu_index
= cpu_index
;
701 QTAILQ_INIT(&env
->breakpoints
);
702 QTAILQ_INIT(&env
->watchpoints
);
703 #ifndef CONFIG_USER_ONLY
704 env
->thread_id
= qemu_get_thread_id();
707 #if defined(CONFIG_USER_ONLY)
710 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
711 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, env
);
712 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
713 cpu_save
, cpu_load
, env
);
717 /* Allocate a new translation block. Flush the translation buffer if
718 too many translation blocks or too much generated code. */
719 static TranslationBlock
*tb_alloc(target_ulong pc
)
721 TranslationBlock
*tb
;
723 if (nb_tbs
>= code_gen_max_blocks
||
724 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
732 void tb_free(TranslationBlock
*tb
)
734 /* In practice this is mostly used for single use temporary TB
735 Ignore the hard cases and just back up if this TB happens to
736 be the last one generated. */
737 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
738 code_gen_ptr
= tb
->tc_ptr
;
743 static inline void invalidate_page_bitmap(PageDesc
*p
)
745 if (p
->code_bitmap
) {
746 g_free(p
->code_bitmap
);
747 p
->code_bitmap
= NULL
;
749 p
->code_write_count
= 0;
752 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
754 static void page_flush_tb_1 (int level
, void **lp
)
763 for (i
= 0; i
< L2_SIZE
; ++i
) {
764 pd
[i
].first_tb
= NULL
;
765 invalidate_page_bitmap(pd
+ i
);
769 for (i
= 0; i
< L2_SIZE
; ++i
) {
770 page_flush_tb_1 (level
- 1, pp
+ i
);
775 static void page_flush_tb(void)
778 for (i
= 0; i
< V_L1_SIZE
; i
++) {
779 page_flush_tb_1(V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
783 /* flush all the translation blocks */
784 /* XXX: tb_flush is currently not thread safe */
785 void tb_flush(CPUArchState
*env1
)
788 #if defined(DEBUG_FLUSH)
789 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
790 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
792 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
794 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
795 cpu_abort(env1
, "Internal error: code buffer overflow\n");
799 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
800 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
803 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
806 code_gen_ptr
= code_gen_buffer
;
807 /* XXX: flush processor icache at this point if cache flush is
812 #ifdef DEBUG_TB_CHECK
814 static void tb_invalidate_check(target_ulong address
)
816 TranslationBlock
*tb
;
818 address
&= TARGET_PAGE_MASK
;
819 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
820 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
821 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
822 address
>= tb
->pc
+ tb
->size
)) {
823 printf("ERROR invalidate: address=" TARGET_FMT_lx
824 " PC=%08lx size=%04x\n",
825 address
, (long)tb
->pc
, tb
->size
);
831 /* verify that all the pages have correct rights for code */
832 static void tb_page_check(void)
834 TranslationBlock
*tb
;
835 int i
, flags1
, flags2
;
837 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
838 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
839 flags1
= page_get_flags(tb
->pc
);
840 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
841 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
842 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
843 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
851 /* invalidate one TB */
852 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
855 TranslationBlock
*tb1
;
859 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
862 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
866 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
868 TranslationBlock
*tb1
;
873 n1
= (uintptr_t)tb1
& 3;
874 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
876 *ptb
= tb1
->page_next
[n1
];
879 ptb
= &tb1
->page_next
[n1
];
883 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
885 TranslationBlock
*tb1
, **ptb
;
888 ptb
= &tb
->jmp_next
[n
];
891 /* find tb(n) in circular list */
894 n1
= (uintptr_t)tb1
& 3;
895 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
896 if (n1
== n
&& tb1
== tb
)
899 ptb
= &tb1
->jmp_first
;
901 ptb
= &tb1
->jmp_next
[n1
];
904 /* now we can suppress tb(n) from the list */
905 *ptb
= tb
->jmp_next
[n
];
907 tb
->jmp_next
[n
] = NULL
;
911 /* reset the jump entry 'n' of a TB so that it is not chained to
913 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
915 tb_set_jmp_target(tb
, n
, (uintptr_t)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
918 void tb_phys_invalidate(TranslationBlock
*tb
, tb_page_addr_t page_addr
)
923 tb_page_addr_t phys_pc
;
924 TranslationBlock
*tb1
, *tb2
;
926 /* remove the TB from the hash list */
927 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
928 h
= tb_phys_hash_func(phys_pc
);
929 tb_remove(&tb_phys_hash
[h
], tb
,
930 offsetof(TranslationBlock
, phys_hash_next
));
932 /* remove the TB from the page list */
933 if (tb
->page_addr
[0] != page_addr
) {
934 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
935 tb_page_remove(&p
->first_tb
, tb
);
936 invalidate_page_bitmap(p
);
938 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
939 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
940 tb_page_remove(&p
->first_tb
, tb
);
941 invalidate_page_bitmap(p
);
944 tb_invalidated_flag
= 1;
946 /* remove the TB from the hash list */
947 h
= tb_jmp_cache_hash_func(tb
->pc
);
948 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
949 if (env
->tb_jmp_cache
[h
] == tb
)
950 env
->tb_jmp_cache
[h
] = NULL
;
953 /* suppress this TB from the two jump lists */
954 tb_jmp_remove(tb
, 0);
955 tb_jmp_remove(tb
, 1);
957 /* suppress any remaining jumps to this TB */
960 n1
= (uintptr_t)tb1
& 3;
963 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
964 tb2
= tb1
->jmp_next
[n1
];
965 tb_reset_jump(tb1
, n1
);
966 tb1
->jmp_next
[n1
] = NULL
;
969 tb
->jmp_first
= (TranslationBlock
*)((uintptr_t)tb
| 2); /* fail safe */
971 tb_phys_invalidate_count
++;
974 static inline void set_bits(uint8_t *tab
, int start
, int len
)
980 mask
= 0xff << (start
& 7);
981 if ((start
& ~7) == (end
& ~7)) {
983 mask
&= ~(0xff << (end
& 7));
988 start
= (start
+ 8) & ~7;
990 while (start
< end1
) {
995 mask
= ~(0xff << (end
& 7));
1001 static void build_page_bitmap(PageDesc
*p
)
1003 int n
, tb_start
, tb_end
;
1004 TranslationBlock
*tb
;
1006 p
->code_bitmap
= g_malloc0(TARGET_PAGE_SIZE
/ 8);
1009 while (tb
!= NULL
) {
1010 n
= (uintptr_t)tb
& 3;
1011 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1012 /* NOTE: this is subtle as a TB may span two physical pages */
1014 /* NOTE: tb_end may be after the end of the page, but
1015 it is not a problem */
1016 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
1017 tb_end
= tb_start
+ tb
->size
;
1018 if (tb_end
> TARGET_PAGE_SIZE
)
1019 tb_end
= TARGET_PAGE_SIZE
;
1022 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1024 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
1025 tb
= tb
->page_next
[n
];
1029 TranslationBlock
*tb_gen_code(CPUArchState
*env
,
1030 target_ulong pc
, target_ulong cs_base
,
1031 int flags
, int cflags
)
1033 TranslationBlock
*tb
;
1035 tb_page_addr_t phys_pc
, phys_page2
;
1036 target_ulong virt_page2
;
1039 phys_pc
= get_page_addr_code(env
, pc
);
1042 /* flush must be done */
1044 /* cannot fail at this point */
1046 /* Don't forget to invalidate previous TB info. */
1047 tb_invalidated_flag
= 1;
1049 tc_ptr
= code_gen_ptr
;
1050 tb
->tc_ptr
= tc_ptr
;
1051 tb
->cs_base
= cs_base
;
1053 tb
->cflags
= cflags
;
1054 cpu_gen_code(env
, tb
, &code_gen_size
);
1055 code_gen_ptr
= (void *)(((uintptr_t)code_gen_ptr
+ code_gen_size
+
1056 CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
1058 /* check next page if needed */
1059 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
1061 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
1062 phys_page2
= get_page_addr_code(env
, virt_page2
);
1064 tb_link_page(tb
, phys_pc
, phys_page2
);
1069 * Invalidate all TBs which intersect with the target physical address range
1070 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1071 * 'is_cpu_write_access' should be true if called from a real cpu write
1072 * access: the virtual CPU will exit the current TB if code is modified inside
1075 void tb_invalidate_phys_range(tb_page_addr_t start
, tb_page_addr_t end
,
1076 int is_cpu_write_access
)
1078 while (start
< end
) {
1079 tb_invalidate_phys_page_range(start
, end
, is_cpu_write_access
);
1080 start
&= TARGET_PAGE_MASK
;
1081 start
+= TARGET_PAGE_SIZE
;
1086 * Invalidate all TBs which intersect with the target physical address range
1087 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1088 * 'is_cpu_write_access' should be true if called from a real cpu write
1089 * access: the virtual CPU will exit the current TB if code is modified inside
1092 void tb_invalidate_phys_page_range(tb_page_addr_t start
, tb_page_addr_t end
,
1093 int is_cpu_write_access
)
1095 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
1096 CPUArchState
*env
= cpu_single_env
;
1097 tb_page_addr_t tb_start
, tb_end
;
1100 #ifdef TARGET_HAS_PRECISE_SMC
1101 int current_tb_not_found
= is_cpu_write_access
;
1102 TranslationBlock
*current_tb
= NULL
;
1103 int current_tb_modified
= 0;
1104 target_ulong current_pc
= 0;
1105 target_ulong current_cs_base
= 0;
1106 int current_flags
= 0;
1107 #endif /* TARGET_HAS_PRECISE_SMC */
1109 p
= page_find(start
>> TARGET_PAGE_BITS
);
1112 if (!p
->code_bitmap
&&
1113 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
1114 is_cpu_write_access
) {
1115 /* build code bitmap */
1116 build_page_bitmap(p
);
1119 /* we remove all the TBs in the range [start, end[ */
1120 /* XXX: see if in some cases it could be faster to invalidate all the code */
1122 while (tb
!= NULL
) {
1123 n
= (uintptr_t)tb
& 3;
1124 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1125 tb_next
= tb
->page_next
[n
];
1126 /* NOTE: this is subtle as a TB may span two physical pages */
1128 /* NOTE: tb_end may be after the end of the page, but
1129 it is not a problem */
1130 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1131 tb_end
= tb_start
+ tb
->size
;
1133 tb_start
= tb
->page_addr
[1];
1134 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1136 if (!(tb_end
<= start
|| tb_start
>= end
)) {
1137 #ifdef TARGET_HAS_PRECISE_SMC
1138 if (current_tb_not_found
) {
1139 current_tb_not_found
= 0;
1141 if (env
->mem_io_pc
) {
1142 /* now we have a real cpu fault */
1143 current_tb
= tb_find_pc(env
->mem_io_pc
);
1146 if (current_tb
== tb
&&
1147 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1148 /* If we are modifying the current TB, we must stop
1149 its execution. We could be more precise by checking
1150 that the modification is after the current PC, but it
1151 would require a specialized function to partially
1152 restore the CPU state */
1154 current_tb_modified
= 1;
1155 cpu_restore_state(current_tb
, env
, env
->mem_io_pc
);
1156 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1159 #endif /* TARGET_HAS_PRECISE_SMC */
1160 /* we need to do that to handle the case where a signal
1161 occurs while doing tb_phys_invalidate() */
1164 saved_tb
= env
->current_tb
;
1165 env
->current_tb
= NULL
;
1167 tb_phys_invalidate(tb
, -1);
1169 env
->current_tb
= saved_tb
;
1170 if (env
->interrupt_request
&& env
->current_tb
)
1171 cpu_interrupt(env
, env
->interrupt_request
);
1176 #if !defined(CONFIG_USER_ONLY)
1177 /* if no code remaining, no need to continue to use slow writes */
1179 invalidate_page_bitmap(p
);
1180 if (is_cpu_write_access
) {
1181 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
1185 #ifdef TARGET_HAS_PRECISE_SMC
1186 if (current_tb_modified
) {
1187 /* we generate a block containing just the instruction
1188 modifying the memory. It will ensure that it cannot modify
1190 env
->current_tb
= NULL
;
1191 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1192 cpu_resume_from_signal(env
, NULL
);
1197 /* len must be <= 8 and start must be a multiple of len */
1198 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start
, int len
)
1204 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1205 cpu_single_env
->mem_io_vaddr
, len
,
1206 cpu_single_env
->eip
,
1207 cpu_single_env
->eip
+
1208 (intptr_t)cpu_single_env
->segs
[R_CS
].base
);
1211 p
= page_find(start
>> TARGET_PAGE_BITS
);
1214 if (p
->code_bitmap
) {
1215 offset
= start
& ~TARGET_PAGE_MASK
;
1216 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1217 if (b
& ((1 << len
) - 1))
1221 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1225 #if !defined(CONFIG_SOFTMMU)
1226 static void tb_invalidate_phys_page(tb_page_addr_t addr
,
1227 uintptr_t pc
, void *puc
)
1229 TranslationBlock
*tb
;
1232 #ifdef TARGET_HAS_PRECISE_SMC
1233 TranslationBlock
*current_tb
= NULL
;
1234 CPUArchState
*env
= cpu_single_env
;
1235 int current_tb_modified
= 0;
1236 target_ulong current_pc
= 0;
1237 target_ulong current_cs_base
= 0;
1238 int current_flags
= 0;
1241 addr
&= TARGET_PAGE_MASK
;
1242 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1246 #ifdef TARGET_HAS_PRECISE_SMC
1247 if (tb
&& pc
!= 0) {
1248 current_tb
= tb_find_pc(pc
);
1251 while (tb
!= NULL
) {
1252 n
= (uintptr_t)tb
& 3;
1253 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1254 #ifdef TARGET_HAS_PRECISE_SMC
1255 if (current_tb
== tb
&&
1256 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1257 /* If we are modifying the current TB, we must stop
1258 its execution. We could be more precise by checking
1259 that the modification is after the current PC, but it
1260 would require a specialized function to partially
1261 restore the CPU state */
1263 current_tb_modified
= 1;
1264 cpu_restore_state(current_tb
, env
, pc
);
1265 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1268 #endif /* TARGET_HAS_PRECISE_SMC */
1269 tb_phys_invalidate(tb
, addr
);
1270 tb
= tb
->page_next
[n
];
1273 #ifdef TARGET_HAS_PRECISE_SMC
1274 if (current_tb_modified
) {
1275 /* we generate a block containing just the instruction
1276 modifying the memory. It will ensure that it cannot modify
1278 env
->current_tb
= NULL
;
1279 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1280 cpu_resume_from_signal(env
, puc
);
1286 /* add the tb in the target page and protect it if necessary */
1287 static inline void tb_alloc_page(TranslationBlock
*tb
,
1288 unsigned int n
, tb_page_addr_t page_addr
)
1291 #ifndef CONFIG_USER_ONLY
1292 bool page_already_protected
;
1295 tb
->page_addr
[n
] = page_addr
;
1296 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
, 1);
1297 tb
->page_next
[n
] = p
->first_tb
;
1298 #ifndef CONFIG_USER_ONLY
1299 page_already_protected
= p
->first_tb
!= NULL
;
1301 p
->first_tb
= (TranslationBlock
*)((uintptr_t)tb
| n
);
1302 invalidate_page_bitmap(p
);
1304 #if defined(TARGET_HAS_SMC) || 1
1306 #if defined(CONFIG_USER_ONLY)
1307 if (p
->flags
& PAGE_WRITE
) {
1312 /* force the host page as non writable (writes will have a
1313 page fault + mprotect overhead) */
1314 page_addr
&= qemu_host_page_mask
;
1316 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1317 addr
+= TARGET_PAGE_SIZE
) {
1319 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1323 p2
->flags
&= ~PAGE_WRITE
;
1325 mprotect(g2h(page_addr
), qemu_host_page_size
,
1326 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1327 #ifdef DEBUG_TB_INVALIDATE
1328 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1333 /* if some code is already present, then the pages are already
1334 protected. So we handle the case where only the first TB is
1335 allocated in a physical page */
1336 if (!page_already_protected
) {
1337 tlb_protect_code(page_addr
);
1341 #endif /* TARGET_HAS_SMC */
1344 /* add a new TB and link it to the physical page tables. phys_page2 is
1345 (-1) to indicate that only one page contains the TB. */
1346 void tb_link_page(TranslationBlock
*tb
,
1347 tb_page_addr_t phys_pc
, tb_page_addr_t phys_page2
)
1350 TranslationBlock
**ptb
;
1352 /* Grab the mmap lock to stop another thread invalidating this TB
1353 before we are done. */
1355 /* add in the physical hash table */
1356 h
= tb_phys_hash_func(phys_pc
);
1357 ptb
= &tb_phys_hash
[h
];
1358 tb
->phys_hash_next
= *ptb
;
1361 /* add in the page list */
1362 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1363 if (phys_page2
!= -1)
1364 tb_alloc_page(tb
, 1, phys_page2
);
1366 tb
->page_addr
[1] = -1;
1368 tb
->jmp_first
= (TranslationBlock
*)((uintptr_t)tb
| 2);
1369 tb
->jmp_next
[0] = NULL
;
1370 tb
->jmp_next
[1] = NULL
;
1372 /* init original jump addresses */
1373 if (tb
->tb_next_offset
[0] != 0xffff)
1374 tb_reset_jump(tb
, 0);
1375 if (tb
->tb_next_offset
[1] != 0xffff)
1376 tb_reset_jump(tb
, 1);
1378 #ifdef DEBUG_TB_CHECK
1384 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1385 tb[1].tc_ptr. Return NULL if not found */
1386 TranslationBlock
*tb_find_pc(uintptr_t tc_ptr
)
1388 int m_min
, m_max
, m
;
1390 TranslationBlock
*tb
;
1394 if (tc_ptr
< (uintptr_t)code_gen_buffer
||
1395 tc_ptr
>= (uintptr_t)code_gen_ptr
) {
1398 /* binary search (cf Knuth) */
1401 while (m_min
<= m_max
) {
1402 m
= (m_min
+ m_max
) >> 1;
1404 v
= (uintptr_t)tb
->tc_ptr
;
1407 else if (tc_ptr
< v
) {
1416 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1418 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1420 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1423 tb1
= tb
->jmp_next
[n
];
1425 /* find head of list */
1427 n1
= (uintptr_t)tb1
& 3;
1428 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
1431 tb1
= tb1
->jmp_next
[n1
];
1433 /* we are now sure now that tb jumps to tb1 */
1436 /* remove tb from the jmp_first list */
1437 ptb
= &tb_next
->jmp_first
;
1440 n1
= (uintptr_t)tb1
& 3;
1441 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
1442 if (n1
== n
&& tb1
== tb
)
1444 ptb
= &tb1
->jmp_next
[n1
];
1446 *ptb
= tb
->jmp_next
[n
];
1447 tb
->jmp_next
[n
] = NULL
;
1449 /* suppress the jump to next tb in generated code */
1450 tb_reset_jump(tb
, n
);
1452 /* suppress jumps in the tb on which we could have jumped */
1453 tb_reset_jump_recursive(tb_next
);
1457 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1459 tb_reset_jump_recursive2(tb
, 0);
1460 tb_reset_jump_recursive2(tb
, 1);
1463 #if defined(TARGET_HAS_ICE)
1464 #if defined(CONFIG_USER_ONLY)
1465 static void breakpoint_invalidate(CPUArchState
*env
, target_ulong pc
)
1467 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
1470 void tb_invalidate_phys_addr(target_phys_addr_t addr
)
1472 ram_addr_t ram_addr
;
1473 MemoryRegionSection
*section
;
1475 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1476 if (!(memory_region_is_ram(section
->mr
)
1477 || (section
->mr
->rom_device
&& section
->mr
->readable
))) {
1480 ram_addr
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
1481 + memory_region_section_addr(section
, addr
);
1482 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1485 static void breakpoint_invalidate(CPUArchState
*env
, target_ulong pc
)
1487 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env
, pc
) |
1488 (pc
& ~TARGET_PAGE_MASK
));
1491 #endif /* TARGET_HAS_ICE */
1493 #if defined(CONFIG_USER_ONLY)
1494 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
1499 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
1500 int flags
, CPUWatchpoint
**watchpoint
)
1505 /* Add a watchpoint. */
1506 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
1507 int flags
, CPUWatchpoint
**watchpoint
)
1509 target_ulong len_mask
= ~(len
- 1);
1512 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1513 if ((len
& (len
- 1)) || (addr
& ~len_mask
) ||
1514 len
== 0 || len
> TARGET_PAGE_SIZE
) {
1515 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1516 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1519 wp
= g_malloc(sizeof(*wp
));
1522 wp
->len_mask
= len_mask
;
1525 /* keep all GDB-injected watchpoints in front */
1527 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1529 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1531 tlb_flush_page(env
, addr
);
1538 /* Remove a specific watchpoint. */
1539 int cpu_watchpoint_remove(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
1542 target_ulong len_mask
= ~(len
- 1);
1545 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1546 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1547 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1548 cpu_watchpoint_remove_by_ref(env
, wp
);
1555 /* Remove a specific watchpoint by reference. */
1556 void cpu_watchpoint_remove_by_ref(CPUArchState
*env
, CPUWatchpoint
*watchpoint
)
1558 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1560 tlb_flush_page(env
, watchpoint
->vaddr
);
1565 /* Remove all matching watchpoints. */
1566 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
1568 CPUWatchpoint
*wp
, *next
;
1570 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1571 if (wp
->flags
& mask
)
1572 cpu_watchpoint_remove_by_ref(env
, wp
);
1577 /* Add a breakpoint. */
1578 int cpu_breakpoint_insert(CPUArchState
*env
, target_ulong pc
, int flags
,
1579 CPUBreakpoint
**breakpoint
)
1581 #if defined(TARGET_HAS_ICE)
1584 bp
= g_malloc(sizeof(*bp
));
1589 /* keep all GDB-injected breakpoints in front */
1591 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1593 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1595 breakpoint_invalidate(env
, pc
);
1605 /* Remove a specific breakpoint. */
1606 int cpu_breakpoint_remove(CPUArchState
*env
, target_ulong pc
, int flags
)
1608 #if defined(TARGET_HAS_ICE)
1611 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1612 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1613 cpu_breakpoint_remove_by_ref(env
, bp
);
1623 /* Remove a specific breakpoint by reference. */
1624 void cpu_breakpoint_remove_by_ref(CPUArchState
*env
, CPUBreakpoint
*breakpoint
)
1626 #if defined(TARGET_HAS_ICE)
1627 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1629 breakpoint_invalidate(env
, breakpoint
->pc
);
1635 /* Remove all matching breakpoints. */
1636 void cpu_breakpoint_remove_all(CPUArchState
*env
, int mask
)
1638 #if defined(TARGET_HAS_ICE)
1639 CPUBreakpoint
*bp
, *next
;
1641 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1642 if (bp
->flags
& mask
)
1643 cpu_breakpoint_remove_by_ref(env
, bp
);
1648 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1649 CPU loop after each instruction */
1650 void cpu_single_step(CPUArchState
*env
, int enabled
)
1652 #if defined(TARGET_HAS_ICE)
1653 if (env
->singlestep_enabled
!= enabled
) {
1654 env
->singlestep_enabled
= enabled
;
1656 kvm_update_guest_debug(env
, 0);
1658 /* must flush all the translated code to avoid inconsistencies */
1659 /* XXX: only flush what is necessary */
1666 static void cpu_unlink_tb(CPUArchState
*env
)
1668 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1669 problem and hope the cpu will stop of its own accord. For userspace
1670 emulation this often isn't actually as bad as it sounds. Often
1671 signals are used primarily to interrupt blocking syscalls. */
1672 TranslationBlock
*tb
;
1673 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1675 spin_lock(&interrupt_lock
);
1676 tb
= env
->current_tb
;
1677 /* if the cpu is currently executing code, we must unlink it and
1678 all the potentially executing TB */
1680 env
->current_tb
= NULL
;
1681 tb_reset_jump_recursive(tb
);
1683 spin_unlock(&interrupt_lock
);
1686 #ifndef CONFIG_USER_ONLY
1687 /* mask must never be zero, except for A20 change call */
1688 static void tcg_handle_interrupt(CPUArchState
*env
, int mask
)
1692 old_mask
= env
->interrupt_request
;
1693 env
->interrupt_request
|= mask
;
1696 * If called from iothread context, wake the target cpu in
1699 if (!qemu_cpu_is_self(env
)) {
1705 env
->icount_decr
.u16
.high
= 0xffff;
1707 && (mask
& ~old_mask
) != 0) {
1708 cpu_abort(env
, "Raised interrupt while not in I/O function");
1715 CPUInterruptHandler cpu_interrupt_handler
= tcg_handle_interrupt
;
1717 #else /* CONFIG_USER_ONLY */
1719 void cpu_interrupt(CPUArchState
*env
, int mask
)
1721 env
->interrupt_request
|= mask
;
1724 #endif /* CONFIG_USER_ONLY */
1726 void cpu_reset_interrupt(CPUArchState
*env
, int mask
)
1728 env
->interrupt_request
&= ~mask
;
1731 void cpu_exit(CPUArchState
*env
)
1733 env
->exit_request
= 1;
1737 void cpu_abort(CPUArchState
*env
, const char *fmt
, ...)
1744 fprintf(stderr
, "qemu: fatal: ");
1745 vfprintf(stderr
, fmt
, ap
);
1746 fprintf(stderr
, "\n");
1747 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1748 if (qemu_log_enabled()) {
1749 qemu_log("qemu: fatal: ");
1750 qemu_log_vprintf(fmt
, ap2
);
1752 log_cpu_state(env
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1758 #if defined(CONFIG_USER_ONLY)
1760 struct sigaction act
;
1761 sigfillset(&act
.sa_mask
);
1762 act
.sa_handler
= SIG_DFL
;
1763 sigaction(SIGABRT
, &act
, NULL
);
1769 CPUArchState
*cpu_copy(CPUArchState
*env
)
1771 CPUArchState
*new_env
= cpu_init(env
->cpu_model_str
);
1772 CPUArchState
*next_cpu
= new_env
->next_cpu
;
1773 int cpu_index
= new_env
->cpu_index
;
1774 #if defined(TARGET_HAS_ICE)
1779 memcpy(new_env
, env
, sizeof(CPUArchState
));
1781 /* Preserve chaining and index. */
1782 new_env
->next_cpu
= next_cpu
;
1783 new_env
->cpu_index
= cpu_index
;
1785 /* Clone all break/watchpoints.
1786 Note: Once we support ptrace with hw-debug register access, make sure
1787 BP_CPU break/watchpoints are handled correctly on clone. */
1788 QTAILQ_INIT(&env
->breakpoints
);
1789 QTAILQ_INIT(&env
->watchpoints
);
1790 #if defined(TARGET_HAS_ICE)
1791 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1792 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
1794 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1795 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
1803 #if !defined(CONFIG_USER_ONLY)
1804 void tb_flush_jmp_cache(CPUArchState
*env
, target_ulong addr
)
1808 /* Discard jump cache entries for any tb which might potentially
1809 overlap the flushed page. */
1810 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1811 memset (&env
->tb_jmp_cache
[i
], 0,
1812 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1814 i
= tb_jmp_cache_hash_page(addr
);
1815 memset (&env
->tb_jmp_cache
[i
], 0,
1816 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1819 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t end
,
1824 /* we modify the TLB cache so that the dirty bit will be set again
1825 when accessing the range */
1826 start1
= (uintptr_t)qemu_safe_ram_ptr(start
);
1827 /* Check that we don't span multiple blocks - this breaks the
1828 address comparisons below. */
1829 if ((uintptr_t)qemu_safe_ram_ptr(end
- 1) - start1
1830 != (end
- 1) - start
) {
1833 cpu_tlb_reset_dirty_all(start1
, length
);
1837 /* Note: start and end must be within the same ram block. */
1838 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
1843 start
&= TARGET_PAGE_MASK
;
1844 end
= TARGET_PAGE_ALIGN(end
);
1846 length
= end
- start
;
1849 cpu_physical_memory_mask_dirty_range(start
, length
, dirty_flags
);
1851 if (tcg_enabled()) {
1852 tlb_reset_dirty_range_all(start
, end
, length
);
1856 int cpu_physical_memory_set_dirty_tracking(int enable
)
1859 in_migration
= enable
;
1863 target_phys_addr_t
memory_region_section_get_iotlb(CPUArchState
*env
,
1864 MemoryRegionSection
*section
,
1866 target_phys_addr_t paddr
,
1868 target_ulong
*address
)
1870 target_phys_addr_t iotlb
;
1873 if (memory_region_is_ram(section
->mr
)) {
1875 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
1876 + memory_region_section_addr(section
, paddr
);
1877 if (!section
->readonly
) {
1878 iotlb
|= phys_section_notdirty
;
1880 iotlb
|= phys_section_rom
;
1883 /* IO handlers are currently passed a physical address.
1884 It would be nice to pass an offset from the base address
1885 of that region. This would avoid having to special case RAM,
1886 and avoid full address decoding in every device.
1887 We can't use the high bits of pd for this because
1888 IO_MEM_ROMD uses these as a ram address. */
1889 iotlb
= section
- phys_sections
;
1890 iotlb
+= memory_region_section_addr(section
, paddr
);
1893 /* Make accesses to pages with watchpoints go via the
1894 watchpoint trap routines. */
1895 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1896 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
1897 /* Avoid trapping reads of pages with a write breakpoint. */
1898 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1899 iotlb
= phys_section_watch
+ paddr
;
1900 *address
|= TLB_MMIO
;
1911 * Walks guest process memory "regions" one by one
1912 * and calls callback function 'fn' for each region.
1915 struct walk_memory_regions_data
1917 walk_memory_regions_fn fn
;
1923 static int walk_memory_regions_end(struct walk_memory_regions_data
*data
,
1924 abi_ulong end
, int new_prot
)
1926 if (data
->start
!= -1ul) {
1927 int rc
= data
->fn(data
->priv
, data
->start
, end
, data
->prot
);
1933 data
->start
= (new_prot
? end
: -1ul);
1934 data
->prot
= new_prot
;
1939 static int walk_memory_regions_1(struct walk_memory_regions_data
*data
,
1940 abi_ulong base
, int level
, void **lp
)
1946 return walk_memory_regions_end(data
, base
, 0);
1951 for (i
= 0; i
< L2_SIZE
; ++i
) {
1952 int prot
= pd
[i
].flags
;
1954 pa
= base
| (i
<< TARGET_PAGE_BITS
);
1955 if (prot
!= data
->prot
) {
1956 rc
= walk_memory_regions_end(data
, pa
, prot
);
1964 for (i
= 0; i
< L2_SIZE
; ++i
) {
1965 pa
= base
| ((abi_ulong
)i
<<
1966 (TARGET_PAGE_BITS
+ L2_BITS
* level
));
1967 rc
= walk_memory_regions_1(data
, pa
, level
- 1, pp
+ i
);
1977 int walk_memory_regions(void *priv
, walk_memory_regions_fn fn
)
1979 struct walk_memory_regions_data data
;
1987 for (i
= 0; i
< V_L1_SIZE
; i
++) {
1988 int rc
= walk_memory_regions_1(&data
, (abi_ulong
)i
<< V_L1_SHIFT
,
1989 V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
1995 return walk_memory_regions_end(&data
, 0, 0);
1998 static int dump_region(void *priv
, abi_ulong start
,
1999 abi_ulong end
, unsigned long prot
)
2001 FILE *f
= (FILE *)priv
;
2003 (void) fprintf(f
, TARGET_ABI_FMT_lx
"-"TARGET_ABI_FMT_lx
2004 " "TARGET_ABI_FMT_lx
" %c%c%c\n",
2005 start
, end
, end
- start
,
2006 ((prot
& PAGE_READ
) ? 'r' : '-'),
2007 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
2008 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
2013 /* dump memory mappings */
2014 void page_dump(FILE *f
)
2016 (void) fprintf(f
, "%-8s %-8s %-8s %s\n",
2017 "start", "end", "size", "prot");
2018 walk_memory_regions(f
, dump_region
);
2021 int page_get_flags(target_ulong address
)
2025 p
= page_find(address
>> TARGET_PAGE_BITS
);
2031 /* Modify the flags of a page and invalidate the code if necessary.
2032 The flag PAGE_WRITE_ORG is positioned automatically depending
2033 on PAGE_WRITE. The mmap_lock should already be held. */
2034 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2036 target_ulong addr
, len
;
2038 /* This function should never be called with addresses outside the
2039 guest address space. If this assert fires, it probably indicates
2040 a missing call to h2g_valid. */
2041 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2042 assert(end
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2044 assert(start
< end
);
2046 start
= start
& TARGET_PAGE_MASK
;
2047 end
= TARGET_PAGE_ALIGN(end
);
2049 if (flags
& PAGE_WRITE
) {
2050 flags
|= PAGE_WRITE_ORG
;
2053 for (addr
= start
, len
= end
- start
;
2055 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2056 PageDesc
*p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2058 /* If the write protection bit is set, then we invalidate
2060 if (!(p
->flags
& PAGE_WRITE
) &&
2061 (flags
& PAGE_WRITE
) &&
2063 tb_invalidate_phys_page(addr
, 0, NULL
);
2069 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2075 /* This function should never be called with addresses outside the
2076 guest address space. If this assert fires, it probably indicates
2077 a missing call to h2g_valid. */
2078 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2079 assert(start
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2085 if (start
+ len
- 1 < start
) {
2086 /* We've wrapped around. */
2090 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2091 start
= start
& TARGET_PAGE_MASK
;
2093 for (addr
= start
, len
= end
- start
;
2095 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2096 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2099 if( !(p
->flags
& PAGE_VALID
) )
2102 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2104 if (flags
& PAGE_WRITE
) {
2105 if (!(p
->flags
& PAGE_WRITE_ORG
))
2107 /* unprotect the page if it was put read-only because it
2108 contains translated code */
2109 if (!(p
->flags
& PAGE_WRITE
)) {
2110 if (!page_unprotect(addr
, 0, NULL
))
2119 /* called from signal handler: invalidate the code and unprotect the
2120 page. Return TRUE if the fault was successfully handled. */
2121 int page_unprotect(target_ulong address
, uintptr_t pc
, void *puc
)
2125 target_ulong host_start
, host_end
, addr
;
2127 /* Technically this isn't safe inside a signal handler. However we
2128 know this only ever happens in a synchronous SEGV handler, so in
2129 practice it seems to be ok. */
2132 p
= page_find(address
>> TARGET_PAGE_BITS
);
2138 /* if the page was really writable, then we change its
2139 protection back to writable */
2140 if ((p
->flags
& PAGE_WRITE_ORG
) && !(p
->flags
& PAGE_WRITE
)) {
2141 host_start
= address
& qemu_host_page_mask
;
2142 host_end
= host_start
+ qemu_host_page_size
;
2145 for (addr
= host_start
; addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2146 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2147 p
->flags
|= PAGE_WRITE
;
2150 /* and since the content will be modified, we must invalidate
2151 the corresponding translated code. */
2152 tb_invalidate_phys_page(addr
, pc
, puc
);
2153 #ifdef DEBUG_TB_CHECK
2154 tb_invalidate_check(addr
);
2157 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2166 #endif /* defined(CONFIG_USER_ONLY) */
2168 #if !defined(CONFIG_USER_ONLY)
2170 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2171 typedef struct subpage_t
{
2173 target_phys_addr_t base
;
2174 uint16_t sub_section
[TARGET_PAGE_SIZE
];
2177 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2179 static subpage_t
*subpage_init(target_phys_addr_t base
);
2180 static void destroy_page_desc(uint16_t section_index
)
2182 MemoryRegionSection
*section
= &phys_sections
[section_index
];
2183 MemoryRegion
*mr
= section
->mr
;
2186 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
2187 memory_region_destroy(&subpage
->iomem
);
2192 static void destroy_l2_mapping(PhysPageEntry
*lp
, unsigned level
)
2197 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
2201 p
= phys_map_nodes
[lp
->ptr
];
2202 for (i
= 0; i
< L2_SIZE
; ++i
) {
2203 if (!p
[i
].is_leaf
) {
2204 destroy_l2_mapping(&p
[i
], level
- 1);
2206 destroy_page_desc(p
[i
].ptr
);
2210 lp
->ptr
= PHYS_MAP_NODE_NIL
;
2213 static void destroy_all_mappings(void)
2215 destroy_l2_mapping(&phys_map
, P_L2_LEVELS
- 1);
2216 phys_map_nodes_reset();
2219 static uint16_t phys_section_add(MemoryRegionSection
*section
)
2221 if (phys_sections_nb
== phys_sections_nb_alloc
) {
2222 phys_sections_nb_alloc
= MAX(phys_sections_nb_alloc
* 2, 16);
2223 phys_sections
= g_renew(MemoryRegionSection
, phys_sections
,
2224 phys_sections_nb_alloc
);
2226 phys_sections
[phys_sections_nb
] = *section
;
2227 return phys_sections_nb
++;
2230 static void phys_sections_clear(void)
2232 phys_sections_nb
= 0;
2235 static void register_subpage(MemoryRegionSection
*section
)
2238 target_phys_addr_t base
= section
->offset_within_address_space
2240 MemoryRegionSection
*existing
= phys_page_find(base
>> TARGET_PAGE_BITS
);
2241 MemoryRegionSection subsection
= {
2242 .offset_within_address_space
= base
,
2243 .size
= TARGET_PAGE_SIZE
,
2245 target_phys_addr_t start
, end
;
2247 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
2249 if (!(existing
->mr
->subpage
)) {
2250 subpage
= subpage_init(base
);
2251 subsection
.mr
= &subpage
->iomem
;
2252 phys_page_set(base
>> TARGET_PAGE_BITS
, 1,
2253 phys_section_add(&subsection
));
2255 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
2257 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
2258 end
= start
+ section
->size
- 1;
2259 subpage_register(subpage
, start
, end
, phys_section_add(section
));
2263 static void register_multipage(MemoryRegionSection
*section
)
2265 target_phys_addr_t start_addr
= section
->offset_within_address_space
;
2266 ram_addr_t size
= section
->size
;
2267 target_phys_addr_t addr
;
2268 uint16_t section_index
= phys_section_add(section
);
2273 phys_page_set(addr
>> TARGET_PAGE_BITS
, size
>> TARGET_PAGE_BITS
,
2277 void cpu_register_physical_memory_log(MemoryRegionSection
*section
,
2280 MemoryRegionSection now
= *section
, remain
= *section
;
2282 if ((now
.offset_within_address_space
& ~TARGET_PAGE_MASK
)
2283 || (now
.size
< TARGET_PAGE_SIZE
)) {
2284 now
.size
= MIN(TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
2285 - now
.offset_within_address_space
,
2287 register_subpage(&now
);
2288 remain
.size
-= now
.size
;
2289 remain
.offset_within_address_space
+= now
.size
;
2290 remain
.offset_within_region
+= now
.size
;
2292 while (remain
.size
>= TARGET_PAGE_SIZE
) {
2294 if (remain
.offset_within_region
& ~TARGET_PAGE_MASK
) {
2295 now
.size
= TARGET_PAGE_SIZE
;
2296 register_subpage(&now
);
2298 now
.size
&= TARGET_PAGE_MASK
;
2299 register_multipage(&now
);
2301 remain
.size
-= now
.size
;
2302 remain
.offset_within_address_space
+= now
.size
;
2303 remain
.offset_within_region
+= now
.size
;
2307 register_subpage(&now
);
2311 void qemu_flush_coalesced_mmio_buffer(void)
2314 kvm_flush_coalesced_mmio_buffer();
2317 #if defined(__linux__) && !defined(TARGET_S390X)
2319 #include <sys/vfs.h>
2321 #define HUGETLBFS_MAGIC 0x958458f6
2323 static long gethugepagesize(const char *path
)
2329 ret
= statfs(path
, &fs
);
2330 } while (ret
!= 0 && errno
== EINTR
);
2337 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
2338 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
2343 static void *file_ram_alloc(RAMBlock
*block
,
2353 unsigned long hpagesize
;
2355 hpagesize
= gethugepagesize(path
);
2360 if (memory
< hpagesize
) {
2364 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2365 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2369 if (asprintf(&filename
, "%s/qemu_back_mem.XXXXXX", path
) == -1) {
2373 fd
= mkstemp(filename
);
2375 perror("unable to create backing store for hugepages");
2382 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
2385 * ftruncate is not supported by hugetlbfs in older
2386 * hosts, so don't bother bailing out on errors.
2387 * If anything goes wrong with it under other filesystems,
2390 if (ftruncate(fd
, memory
))
2391 perror("ftruncate");
2394 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2395 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2396 * to sidestep this quirk.
2398 flags
= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
: MAP_PRIVATE
;
2399 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, flags
, fd
, 0);
2401 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
2403 if (area
== MAP_FAILED
) {
2404 perror("file_ram_alloc: can't mmap RAM pages");
2413 static ram_addr_t
find_ram_offset(ram_addr_t size
)
2415 RAMBlock
*block
, *next_block
;
2416 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
2418 if (QLIST_EMPTY(&ram_list
.blocks
))
2421 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2422 ram_addr_t end
, next
= RAM_ADDR_MAX
;
2424 end
= block
->offset
+ block
->length
;
2426 QLIST_FOREACH(next_block
, &ram_list
.blocks
, next
) {
2427 if (next_block
->offset
>= end
) {
2428 next
= MIN(next
, next_block
->offset
);
2431 if (next
- end
>= size
&& next
- end
< mingap
) {
2433 mingap
= next
- end
;
2437 if (offset
== RAM_ADDR_MAX
) {
2438 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
2446 static ram_addr_t
last_ram_offset(void)
2449 ram_addr_t last
= 0;
2451 QLIST_FOREACH(block
, &ram_list
.blocks
, next
)
2452 last
= MAX(last
, block
->offset
+ block
->length
);
2457 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
2460 QemuOpts
*machine_opts
;
2462 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2463 machine_opts
= qemu_opts_find(qemu_find_opts("machine"), 0);
2465 !qemu_opt_get_bool(machine_opts
, "dump-guest-core", true)) {
2466 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
2468 perror("qemu_madvise");
2469 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
2470 "but dump_guest_core=off specified\n");
2475 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
2477 RAMBlock
*new_block
, *block
;
2480 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2481 if (block
->offset
== addr
) {
2487 assert(!new_block
->idstr
[0]);
2490 char *id
= qdev_get_dev_path(dev
);
2492 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
2496 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
2498 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2499 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
2500 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
2507 static int memory_try_enable_merging(void *addr
, size_t len
)
2511 opts
= qemu_opts_find(qemu_find_opts("machine"), 0);
2512 if (opts
&& !qemu_opt_get_bool(opts
, "mem-merge", true)) {
2513 /* disabled by the user */
2517 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
2520 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
2523 RAMBlock
*new_block
;
2525 size
= TARGET_PAGE_ALIGN(size
);
2526 new_block
= g_malloc0(sizeof(*new_block
));
2529 new_block
->offset
= find_ram_offset(size
);
2531 new_block
->host
= host
;
2532 new_block
->flags
|= RAM_PREALLOC_MASK
;
2535 #if defined (__linux__) && !defined(TARGET_S390X)
2536 new_block
->host
= file_ram_alloc(new_block
, size
, mem_path
);
2537 if (!new_block
->host
) {
2538 new_block
->host
= qemu_vmalloc(size
);
2539 memory_try_enable_merging(new_block
->host
, size
);
2542 fprintf(stderr
, "-mem-path option unsupported\n");
2546 if (xen_enabled()) {
2547 xen_ram_alloc(new_block
->offset
, size
, mr
);
2548 } else if (kvm_enabled()) {
2549 /* some s390/kvm configurations have special constraints */
2550 new_block
->host
= kvm_vmalloc(size
);
2552 new_block
->host
= qemu_vmalloc(size
);
2554 memory_try_enable_merging(new_block
->host
, size
);
2557 new_block
->length
= size
;
2559 QLIST_INSERT_HEAD(&ram_list
.blocks
, new_block
, next
);
2561 ram_list
.phys_dirty
= g_realloc(ram_list
.phys_dirty
,
2562 last_ram_offset() >> TARGET_PAGE_BITS
);
2563 memset(ram_list
.phys_dirty
+ (new_block
->offset
>> TARGET_PAGE_BITS
),
2564 0, size
>> TARGET_PAGE_BITS
);
2565 cpu_physical_memory_set_dirty_range(new_block
->offset
, size
, 0xff);
2567 qemu_ram_setup_dump(new_block
->host
, size
);
2570 kvm_setup_guest_memory(new_block
->host
, size
);
2572 return new_block
->offset
;
2575 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
)
2577 return qemu_ram_alloc_from_ptr(size
, NULL
, mr
);
2580 void qemu_ram_free_from_ptr(ram_addr_t addr
)
2584 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2585 if (addr
== block
->offset
) {
2586 QLIST_REMOVE(block
, next
);
2593 void qemu_ram_free(ram_addr_t addr
)
2597 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2598 if (addr
== block
->offset
) {
2599 QLIST_REMOVE(block
, next
);
2600 if (block
->flags
& RAM_PREALLOC_MASK
) {
2602 } else if (mem_path
) {
2603 #if defined (__linux__) && !defined(TARGET_S390X)
2605 munmap(block
->host
, block
->length
);
2608 qemu_vfree(block
->host
);
2614 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2615 munmap(block
->host
, block
->length
);
2617 if (xen_enabled()) {
2618 xen_invalidate_map_cache_entry(block
->host
);
2620 qemu_vfree(block
->host
);
2632 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2639 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2640 offset
= addr
- block
->offset
;
2641 if (offset
< block
->length
) {
2642 vaddr
= block
->host
+ offset
;
2643 if (block
->flags
& RAM_PREALLOC_MASK
) {
2647 munmap(vaddr
, length
);
2649 #if defined(__linux__) && !defined(TARGET_S390X)
2652 flags
|= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
:
2655 flags
|= MAP_PRIVATE
;
2657 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2658 flags
, block
->fd
, offset
);
2660 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2661 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2668 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2669 flags
|= MAP_SHARED
| MAP_ANONYMOUS
;
2670 area
= mmap(vaddr
, length
, PROT_EXEC
|PROT_READ
|PROT_WRITE
,
2673 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2674 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2678 if (area
!= vaddr
) {
2679 fprintf(stderr
, "Could not remap addr: "
2680 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
2684 memory_try_enable_merging(vaddr
, length
);
2685 qemu_ram_setup_dump(vaddr
, length
);
2691 #endif /* !_WIN32 */
2693 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2694 With the exception of the softmmu code in this file, this should
2695 only be used for local memory (e.g. video ram) that the device owns,
2696 and knows it isn't going to access beyond the end of the block.
2698 It should not be used for general purpose DMA.
2699 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2701 void *qemu_get_ram_ptr(ram_addr_t addr
)
2705 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2706 if (addr
- block
->offset
< block
->length
) {
2707 /* Move this entry to to start of the list. */
2708 if (block
!= QLIST_FIRST(&ram_list
.blocks
)) {
2709 QLIST_REMOVE(block
, next
);
2710 QLIST_INSERT_HEAD(&ram_list
.blocks
, block
, next
);
2712 if (xen_enabled()) {
2713 /* We need to check if the requested address is in the RAM
2714 * because we don't want to map the entire memory in QEMU.
2715 * In that case just map until the end of the page.
2717 if (block
->offset
== 0) {
2718 return xen_map_cache(addr
, 0, 0);
2719 } else if (block
->host
== NULL
) {
2721 xen_map_cache(block
->offset
, block
->length
, 1);
2724 return block
->host
+ (addr
- block
->offset
);
2728 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
2734 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2735 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2737 void *qemu_safe_ram_ptr(ram_addr_t addr
)
2741 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2742 if (addr
- block
->offset
< block
->length
) {
2743 if (xen_enabled()) {
2744 /* We need to check if the requested address is in the RAM
2745 * because we don't want to map the entire memory in QEMU.
2746 * In that case just map until the end of the page.
2748 if (block
->offset
== 0) {
2749 return xen_map_cache(addr
, 0, 0);
2750 } else if (block
->host
== NULL
) {
2752 xen_map_cache(block
->offset
, block
->length
, 1);
2755 return block
->host
+ (addr
- block
->offset
);
2759 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
2765 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
2766 * but takes a size argument */
2767 void *qemu_ram_ptr_length(ram_addr_t addr
, ram_addr_t
*size
)
2772 if (xen_enabled()) {
2773 return xen_map_cache(addr
, *size
, 1);
2777 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2778 if (addr
- block
->offset
< block
->length
) {
2779 if (addr
- block
->offset
+ *size
> block
->length
)
2780 *size
= block
->length
- addr
+ block
->offset
;
2781 return block
->host
+ (addr
- block
->offset
);
2785 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
2790 void qemu_put_ram_ptr(void *addr
)
2792 trace_qemu_put_ram_ptr(addr
);
2795 int qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
2798 uint8_t *host
= ptr
;
2800 if (xen_enabled()) {
2801 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2805 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2806 /* This case append when the block is not mapped. */
2807 if (block
->host
== NULL
) {
2810 if (host
- block
->host
< block
->length
) {
2811 *ram_addr
= block
->offset
+ (host
- block
->host
);
2819 /* Some of the softmmu routines need to translate from a host pointer
2820 (typically a TLB entry) back to a ram offset. */
2821 ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
)
2823 ram_addr_t ram_addr
;
2825 if (qemu_ram_addr_from_host(ptr
, &ram_addr
)) {
2826 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
2832 static uint64_t unassigned_mem_read(void *opaque
, target_phys_addr_t addr
,
2835 #ifdef DEBUG_UNASSIGNED
2836 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2838 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2839 cpu_unassigned_access(cpu_single_env
, addr
, 0, 0, 0, size
);
2844 static void unassigned_mem_write(void *opaque
, target_phys_addr_t addr
,
2845 uint64_t val
, unsigned size
)
2847 #ifdef DEBUG_UNASSIGNED
2848 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%"PRIx64
"\n", addr
, val
);
2850 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2851 cpu_unassigned_access(cpu_single_env
, addr
, 1, 0, 0, size
);
2855 static const MemoryRegionOps unassigned_mem_ops
= {
2856 .read
= unassigned_mem_read
,
2857 .write
= unassigned_mem_write
,
2858 .endianness
= DEVICE_NATIVE_ENDIAN
,
2861 static uint64_t error_mem_read(void *opaque
, target_phys_addr_t addr
,
2867 static void error_mem_write(void *opaque
, target_phys_addr_t addr
,
2868 uint64_t value
, unsigned size
)
2873 static const MemoryRegionOps error_mem_ops
= {
2874 .read
= error_mem_read
,
2875 .write
= error_mem_write
,
2876 .endianness
= DEVICE_NATIVE_ENDIAN
,
2879 static const MemoryRegionOps rom_mem_ops
= {
2880 .read
= error_mem_read
,
2881 .write
= unassigned_mem_write
,
2882 .endianness
= DEVICE_NATIVE_ENDIAN
,
2885 static void notdirty_mem_write(void *opaque
, target_phys_addr_t ram_addr
,
2886 uint64_t val
, unsigned size
)
2889 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
2890 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2891 #if !defined(CONFIG_USER_ONLY)
2892 tb_invalidate_phys_page_fast(ram_addr
, size
);
2893 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
2898 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
2901 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
2904 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
2909 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2910 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
2911 /* we remove the notdirty callback only if the code has been
2913 if (dirty_flags
== 0xff)
2914 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2917 static const MemoryRegionOps notdirty_mem_ops
= {
2918 .read
= error_mem_read
,
2919 .write
= notdirty_mem_write
,
2920 .endianness
= DEVICE_NATIVE_ENDIAN
,
2923 /* Generate a debug exception if a watchpoint has been hit. */
2924 static void check_watchpoint(int offset
, int len_mask
, int flags
)
2926 CPUArchState
*env
= cpu_single_env
;
2927 target_ulong pc
, cs_base
;
2928 TranslationBlock
*tb
;
2933 if (env
->watchpoint_hit
) {
2934 /* We re-entered the check after replacing the TB. Now raise
2935 * the debug interrupt so that is will trigger after the
2936 * current instruction. */
2937 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
2940 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2941 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2942 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
2943 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
2944 wp
->flags
|= BP_WATCHPOINT_HIT
;
2945 if (!env
->watchpoint_hit
) {
2946 env
->watchpoint_hit
= wp
;
2947 tb
= tb_find_pc(env
->mem_io_pc
);
2949 cpu_abort(env
, "check_watchpoint: could not find TB for "
2950 "pc=%p", (void *)env
->mem_io_pc
);
2952 cpu_restore_state(tb
, env
, env
->mem_io_pc
);
2953 tb_phys_invalidate(tb
, -1);
2954 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2955 env
->exception_index
= EXCP_DEBUG
;
2958 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2959 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
2960 cpu_resume_from_signal(env
, NULL
);
2964 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2969 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2970 so these check for a hit then pass through to the normal out-of-line
2972 static uint64_t watch_mem_read(void *opaque
, target_phys_addr_t addr
,
2975 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_READ
);
2977 case 1: return ldub_phys(addr
);
2978 case 2: return lduw_phys(addr
);
2979 case 4: return ldl_phys(addr
);
2984 static void watch_mem_write(void *opaque
, target_phys_addr_t addr
,
2985 uint64_t val
, unsigned size
)
2987 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_WRITE
);
2990 stb_phys(addr
, val
);
2993 stw_phys(addr
, val
);
2996 stl_phys(addr
, val
);
3002 static const MemoryRegionOps watch_mem_ops
= {
3003 .read
= watch_mem_read
,
3004 .write
= watch_mem_write
,
3005 .endianness
= DEVICE_NATIVE_ENDIAN
,
3008 static uint64_t subpage_read(void *opaque
, target_phys_addr_t addr
,
3011 subpage_t
*mmio
= opaque
;
3012 unsigned int idx
= SUBPAGE_IDX(addr
);
3013 MemoryRegionSection
*section
;
3014 #if defined(DEBUG_SUBPAGE)
3015 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
3016 mmio
, len
, addr
, idx
);
3019 section
= &phys_sections
[mmio
->sub_section
[idx
]];
3021 addr
-= section
->offset_within_address_space
;
3022 addr
+= section
->offset_within_region
;
3023 return io_mem_read(section
->mr
, addr
, len
);
3026 static void subpage_write(void *opaque
, target_phys_addr_t addr
,
3027 uint64_t value
, unsigned len
)
3029 subpage_t
*mmio
= opaque
;
3030 unsigned int idx
= SUBPAGE_IDX(addr
);
3031 MemoryRegionSection
*section
;
3032 #if defined(DEBUG_SUBPAGE)
3033 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3034 " idx %d value %"PRIx64
"\n",
3035 __func__
, mmio
, len
, addr
, idx
, value
);
3038 section
= &phys_sections
[mmio
->sub_section
[idx
]];
3040 addr
-= section
->offset_within_address_space
;
3041 addr
+= section
->offset_within_region
;
3042 io_mem_write(section
->mr
, addr
, value
, len
);
3045 static const MemoryRegionOps subpage_ops
= {
3046 .read
= subpage_read
,
3047 .write
= subpage_write
,
3048 .endianness
= DEVICE_NATIVE_ENDIAN
,
3051 static uint64_t subpage_ram_read(void *opaque
, target_phys_addr_t addr
,
3054 ram_addr_t raddr
= addr
;
3055 void *ptr
= qemu_get_ram_ptr(raddr
);
3057 case 1: return ldub_p(ptr
);
3058 case 2: return lduw_p(ptr
);
3059 case 4: return ldl_p(ptr
);
3064 static void subpage_ram_write(void *opaque
, target_phys_addr_t addr
,
3065 uint64_t value
, unsigned size
)
3067 ram_addr_t raddr
= addr
;
3068 void *ptr
= qemu_get_ram_ptr(raddr
);
3070 case 1: return stb_p(ptr
, value
);
3071 case 2: return stw_p(ptr
, value
);
3072 case 4: return stl_p(ptr
, value
);
3077 static const MemoryRegionOps subpage_ram_ops
= {
3078 .read
= subpage_ram_read
,
3079 .write
= subpage_ram_write
,
3080 .endianness
= DEVICE_NATIVE_ENDIAN
,
3083 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
3088 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
3090 idx
= SUBPAGE_IDX(start
);
3091 eidx
= SUBPAGE_IDX(end
);
3092 #if defined(DEBUG_SUBPAGE)
3093 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
3094 mmio
, start
, end
, idx
, eidx
, memory
);
3096 if (memory_region_is_ram(phys_sections
[section
].mr
)) {
3097 MemoryRegionSection new_section
= phys_sections
[section
];
3098 new_section
.mr
= &io_mem_subpage_ram
;
3099 section
= phys_section_add(&new_section
);
3101 for (; idx
<= eidx
; idx
++) {
3102 mmio
->sub_section
[idx
] = section
;
3108 static subpage_t
*subpage_init(target_phys_addr_t base
)
3112 mmio
= g_malloc0(sizeof(subpage_t
));
3115 memory_region_init_io(&mmio
->iomem
, &subpage_ops
, mmio
,
3116 "subpage", TARGET_PAGE_SIZE
);
3117 mmio
->iomem
.subpage
= true;
3118 #if defined(DEBUG_SUBPAGE)
3119 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
3120 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
3122 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, phys_section_unassigned
);
3127 static uint16_t dummy_section(MemoryRegion
*mr
)
3129 MemoryRegionSection section
= {
3131 .offset_within_address_space
= 0,
3132 .offset_within_region
= 0,
3136 return phys_section_add(§ion
);
3139 MemoryRegion
*iotlb_to_region(target_phys_addr_t index
)
3141 return phys_sections
[index
& ~TARGET_PAGE_MASK
].mr
;
3144 static void io_mem_init(void)
3146 memory_region_init_io(&io_mem_ram
, &error_mem_ops
, NULL
, "ram", UINT64_MAX
);
3147 memory_region_init_io(&io_mem_rom
, &rom_mem_ops
, NULL
, "rom", UINT64_MAX
);
3148 memory_region_init_io(&io_mem_unassigned
, &unassigned_mem_ops
, NULL
,
3149 "unassigned", UINT64_MAX
);
3150 memory_region_init_io(&io_mem_notdirty
, ¬dirty_mem_ops
, NULL
,
3151 "notdirty", UINT64_MAX
);
3152 memory_region_init_io(&io_mem_subpage_ram
, &subpage_ram_ops
, NULL
,
3153 "subpage-ram", UINT64_MAX
);
3154 memory_region_init_io(&io_mem_watch
, &watch_mem_ops
, NULL
,
3155 "watch", UINT64_MAX
);
3158 static void core_begin(MemoryListener
*listener
)
3160 destroy_all_mappings();
3161 phys_sections_clear();
3162 phys_map
.ptr
= PHYS_MAP_NODE_NIL
;
3163 phys_section_unassigned
= dummy_section(&io_mem_unassigned
);
3164 phys_section_notdirty
= dummy_section(&io_mem_notdirty
);
3165 phys_section_rom
= dummy_section(&io_mem_rom
);
3166 phys_section_watch
= dummy_section(&io_mem_watch
);
3169 static void tcg_commit(MemoryListener
*listener
)
3173 /* since each CPU stores ram addresses in its TLB cache, we must
3174 reset the modified entries */
3176 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
3181 static void core_region_add(MemoryListener
*listener
,
3182 MemoryRegionSection
*section
)
3184 cpu_register_physical_memory_log(section
, section
->readonly
);
3187 static void core_region_nop(MemoryListener
*listener
,
3188 MemoryRegionSection
*section
)
3190 cpu_register_physical_memory_log(section
, section
->readonly
);
3193 static void core_log_global_start(MemoryListener
*listener
)
3195 cpu_physical_memory_set_dirty_tracking(1);
3198 static void core_log_global_stop(MemoryListener
*listener
)
3200 cpu_physical_memory_set_dirty_tracking(0);
3203 static void io_region_add(MemoryListener
*listener
,
3204 MemoryRegionSection
*section
)
3206 MemoryRegionIORange
*mrio
= g_new(MemoryRegionIORange
, 1);
3208 mrio
->mr
= section
->mr
;
3209 mrio
->offset
= section
->offset_within_region
;
3210 iorange_init(&mrio
->iorange
, &memory_region_iorange_ops
,
3211 section
->offset_within_address_space
, section
->size
);
3212 ioport_register(&mrio
->iorange
);
3215 static void io_region_del(MemoryListener
*listener
,
3216 MemoryRegionSection
*section
)
3218 isa_unassign_ioport(section
->offset_within_address_space
, section
->size
);
3221 static MemoryListener core_memory_listener
= {
3222 .begin
= core_begin
,
3223 .region_add
= core_region_add
,
3224 .region_nop
= core_region_nop
,
3225 .log_global_start
= core_log_global_start
,
3226 .log_global_stop
= core_log_global_stop
,
3230 static MemoryListener io_memory_listener
= {
3231 .region_add
= io_region_add
,
3232 .region_del
= io_region_del
,
3236 static MemoryListener tcg_memory_listener
= {
3237 .commit
= tcg_commit
,
3240 static void memory_map_init(void)
3242 system_memory
= g_malloc(sizeof(*system_memory
));
3243 memory_region_init(system_memory
, "system", INT64_MAX
);
3244 address_space_init(&address_space_memory
, system_memory
);
3245 address_space_memory
.name
= "memory";
3247 system_io
= g_malloc(sizeof(*system_io
));
3248 memory_region_init(system_io
, "io", 65536);
3249 address_space_init(&address_space_io
, system_io
);
3250 address_space_io
.name
= "I/O";
3252 memory_listener_register(&core_memory_listener
, &address_space_memory
);
3253 memory_listener_register(&io_memory_listener
, &address_space_io
);
3254 memory_listener_register(&tcg_memory_listener
, &address_space_memory
);
3257 MemoryRegion
*get_system_memory(void)
3259 return system_memory
;
3262 MemoryRegion
*get_system_io(void)
3267 #endif /* !defined(CONFIG_USER_ONLY) */
3269 /* physical memory access (slow version, mainly for debug) */
3270 #if defined(CONFIG_USER_ONLY)
3271 int cpu_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
3272 uint8_t *buf
, int len
, int is_write
)
3279 page
= addr
& TARGET_PAGE_MASK
;
3280 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3283 flags
= page_get_flags(page
);
3284 if (!(flags
& PAGE_VALID
))
3287 if (!(flags
& PAGE_WRITE
))
3289 /* XXX: this code should not depend on lock_user */
3290 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3293 unlock_user(p
, addr
, l
);
3295 if (!(flags
& PAGE_READ
))
3297 /* XXX: this code should not depend on lock_user */
3298 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3301 unlock_user(p
, addr
, 0);
3312 static void invalidate_and_set_dirty(target_phys_addr_t addr
,
3313 target_phys_addr_t length
)
3315 if (!cpu_physical_memory_is_dirty(addr
)) {
3316 /* invalidate code */
3317 tb_invalidate_phys_page_range(addr
, addr
+ length
, 0);
3319 cpu_physical_memory_set_dirty_flags(addr
, (0xff & ~CODE_DIRTY_FLAG
));
3321 xen_modified_memory(addr
, length
);
3324 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
3325 int len
, int is_write
)
3330 target_phys_addr_t page
;
3331 MemoryRegionSection
*section
;
3334 page
= addr
& TARGET_PAGE_MASK
;
3335 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3338 section
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3341 if (!memory_region_is_ram(section
->mr
)) {
3342 target_phys_addr_t addr1
;
3343 addr1
= memory_region_section_addr(section
, addr
);
3344 /* XXX: could force cpu_single_env to NULL to avoid
3346 if (l
>= 4 && ((addr1
& 3) == 0)) {
3347 /* 32 bit write access */
3349 io_mem_write(section
->mr
, addr1
, val
, 4);
3351 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3352 /* 16 bit write access */
3354 io_mem_write(section
->mr
, addr1
, val
, 2);
3357 /* 8 bit write access */
3359 io_mem_write(section
->mr
, addr1
, val
, 1);
3362 } else if (!section
->readonly
) {
3364 addr1
= memory_region_get_ram_addr(section
->mr
)
3365 + memory_region_section_addr(section
, addr
);
3367 ptr
= qemu_get_ram_ptr(addr1
);
3368 memcpy(ptr
, buf
, l
);
3369 invalidate_and_set_dirty(addr1
, l
);
3370 qemu_put_ram_ptr(ptr
);
3373 if (!(memory_region_is_ram(section
->mr
) ||
3374 memory_region_is_romd(section
->mr
))) {
3375 target_phys_addr_t addr1
;
3377 addr1
= memory_region_section_addr(section
, addr
);
3378 if (l
>= 4 && ((addr1
& 3) == 0)) {
3379 /* 32 bit read access */
3380 val
= io_mem_read(section
->mr
, addr1
, 4);
3383 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3384 /* 16 bit read access */
3385 val
= io_mem_read(section
->mr
, addr1
, 2);
3389 /* 8 bit read access */
3390 val
= io_mem_read(section
->mr
, addr1
, 1);
3396 ptr
= qemu_get_ram_ptr(section
->mr
->ram_addr
3397 + memory_region_section_addr(section
,
3399 memcpy(buf
, ptr
, l
);
3400 qemu_put_ram_ptr(ptr
);
3409 /* used for ROM loading : can write in RAM and ROM */
3410 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
3411 const uint8_t *buf
, int len
)
3415 target_phys_addr_t page
;
3416 MemoryRegionSection
*section
;
3419 page
= addr
& TARGET_PAGE_MASK
;
3420 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3423 section
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3425 if (!(memory_region_is_ram(section
->mr
) ||
3426 memory_region_is_romd(section
->mr
))) {
3429 unsigned long addr1
;
3430 addr1
= memory_region_get_ram_addr(section
->mr
)
3431 + memory_region_section_addr(section
, addr
);
3433 ptr
= qemu_get_ram_ptr(addr1
);
3434 memcpy(ptr
, buf
, l
);
3435 invalidate_and_set_dirty(addr1
, l
);
3436 qemu_put_ram_ptr(ptr
);
3446 target_phys_addr_t addr
;
3447 target_phys_addr_t len
;
3450 static BounceBuffer bounce
;
3452 typedef struct MapClient
{
3454 void (*callback
)(void *opaque
);
3455 QLIST_ENTRY(MapClient
) link
;
3458 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3459 = QLIST_HEAD_INITIALIZER(map_client_list
);
3461 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
3463 MapClient
*client
= g_malloc(sizeof(*client
));
3465 client
->opaque
= opaque
;
3466 client
->callback
= callback
;
3467 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3471 void cpu_unregister_map_client(void *_client
)
3473 MapClient
*client
= (MapClient
*)_client
;
3475 QLIST_REMOVE(client
, link
);
3479 static void cpu_notify_map_clients(void)
3483 while (!QLIST_EMPTY(&map_client_list
)) {
3484 client
= QLIST_FIRST(&map_client_list
);
3485 client
->callback(client
->opaque
);
3486 cpu_unregister_map_client(client
);
3490 /* Map a physical memory region into a host virtual address.
3491 * May map a subset of the requested range, given by and returned in *plen.
3492 * May return NULL if resources needed to perform the mapping are exhausted.
3493 * Use only for reads OR writes - not for read-modify-write operations.
3494 * Use cpu_register_map_client() to know when retrying the map operation is
3495 * likely to succeed.
3497 void *cpu_physical_memory_map(target_phys_addr_t addr
,
3498 target_phys_addr_t
*plen
,
3501 target_phys_addr_t len
= *plen
;
3502 target_phys_addr_t todo
= 0;
3504 target_phys_addr_t page
;
3505 MemoryRegionSection
*section
;
3506 ram_addr_t raddr
= RAM_ADDR_MAX
;
3511 page
= addr
& TARGET_PAGE_MASK
;
3512 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3515 section
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3517 if (!(memory_region_is_ram(section
->mr
) && !section
->readonly
)) {
3518 if (todo
|| bounce
.buffer
) {
3521 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
3525 cpu_physical_memory_read(addr
, bounce
.buffer
, l
);
3529 return bounce
.buffer
;
3532 raddr
= memory_region_get_ram_addr(section
->mr
)
3533 + memory_region_section_addr(section
, addr
);
3541 ret
= qemu_ram_ptr_length(raddr
, &rlen
);
3546 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3547 * Will also mark the memory as dirty if is_write == 1. access_len gives
3548 * the amount of memory that was actually read or written by the caller.
3550 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
3551 int is_write
, target_phys_addr_t access_len
)
3553 if (buffer
!= bounce
.buffer
) {
3555 ram_addr_t addr1
= qemu_ram_addr_from_host_nofail(buffer
);
3556 while (access_len
) {
3558 l
= TARGET_PAGE_SIZE
;
3561 invalidate_and_set_dirty(addr1
, l
);
3566 if (xen_enabled()) {
3567 xen_invalidate_map_cache_entry(buffer
);
3572 cpu_physical_memory_write(bounce
.addr
, bounce
.buffer
, access_len
);
3574 qemu_vfree(bounce
.buffer
);
3575 bounce
.buffer
= NULL
;
3576 cpu_notify_map_clients();
3579 /* warning: addr must be aligned */
3580 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr
,
3581 enum device_endian endian
)
3585 MemoryRegionSection
*section
;
3587 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3589 if (!(memory_region_is_ram(section
->mr
) ||
3590 memory_region_is_romd(section
->mr
))) {
3592 addr
= memory_region_section_addr(section
, addr
);
3593 val
= io_mem_read(section
->mr
, addr
, 4);
3594 #if defined(TARGET_WORDS_BIGENDIAN)
3595 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3599 if (endian
== DEVICE_BIG_ENDIAN
) {
3605 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
3607 + memory_region_section_addr(section
, addr
));
3609 case DEVICE_LITTLE_ENDIAN
:
3610 val
= ldl_le_p(ptr
);
3612 case DEVICE_BIG_ENDIAN
:
3613 val
= ldl_be_p(ptr
);
3623 uint32_t ldl_phys(target_phys_addr_t addr
)
3625 return ldl_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
3628 uint32_t ldl_le_phys(target_phys_addr_t addr
)
3630 return ldl_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
3633 uint32_t ldl_be_phys(target_phys_addr_t addr
)
3635 return ldl_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
3638 /* warning: addr must be aligned */
3639 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr
,
3640 enum device_endian endian
)
3644 MemoryRegionSection
*section
;
3646 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3648 if (!(memory_region_is_ram(section
->mr
) ||
3649 memory_region_is_romd(section
->mr
))) {
3651 addr
= memory_region_section_addr(section
, addr
);
3653 /* XXX This is broken when device endian != cpu endian.
3654 Fix and add "endian" variable check */
3655 #ifdef TARGET_WORDS_BIGENDIAN
3656 val
= io_mem_read(section
->mr
, addr
, 4) << 32;
3657 val
|= io_mem_read(section
->mr
, addr
+ 4, 4);
3659 val
= io_mem_read(section
->mr
, addr
, 4);
3660 val
|= io_mem_read(section
->mr
, addr
+ 4, 4) << 32;
3664 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
3666 + memory_region_section_addr(section
, addr
));
3668 case DEVICE_LITTLE_ENDIAN
:
3669 val
= ldq_le_p(ptr
);
3671 case DEVICE_BIG_ENDIAN
:
3672 val
= ldq_be_p(ptr
);
3682 uint64_t ldq_phys(target_phys_addr_t addr
)
3684 return ldq_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
3687 uint64_t ldq_le_phys(target_phys_addr_t addr
)
3689 return ldq_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
3692 uint64_t ldq_be_phys(target_phys_addr_t addr
)
3694 return ldq_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
3698 uint32_t ldub_phys(target_phys_addr_t addr
)
3701 cpu_physical_memory_read(addr
, &val
, 1);
3705 /* warning: addr must be aligned */
3706 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr
,
3707 enum device_endian endian
)
3711 MemoryRegionSection
*section
;
3713 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3715 if (!(memory_region_is_ram(section
->mr
) ||
3716 memory_region_is_romd(section
->mr
))) {
3718 addr
= memory_region_section_addr(section
, addr
);
3719 val
= io_mem_read(section
->mr
, addr
, 2);
3720 #if defined(TARGET_WORDS_BIGENDIAN)
3721 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3725 if (endian
== DEVICE_BIG_ENDIAN
) {
3731 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
3733 + memory_region_section_addr(section
, addr
));
3735 case DEVICE_LITTLE_ENDIAN
:
3736 val
= lduw_le_p(ptr
);
3738 case DEVICE_BIG_ENDIAN
:
3739 val
= lduw_be_p(ptr
);
3749 uint32_t lduw_phys(target_phys_addr_t addr
)
3751 return lduw_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
3754 uint32_t lduw_le_phys(target_phys_addr_t addr
)
3756 return lduw_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
3759 uint32_t lduw_be_phys(target_phys_addr_t addr
)
3761 return lduw_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
3764 /* warning: addr must be aligned. The ram page is not masked as dirty
3765 and the code inside is not invalidated. It is useful if the dirty
3766 bits are used to track modified PTEs */
3767 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
3770 MemoryRegionSection
*section
;
3772 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3774 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
3775 addr
= memory_region_section_addr(section
, addr
);
3776 if (memory_region_is_ram(section
->mr
)) {
3777 section
= &phys_sections
[phys_section_rom
];
3779 io_mem_write(section
->mr
, addr
, val
, 4);
3781 unsigned long addr1
= (memory_region_get_ram_addr(section
->mr
)
3783 + memory_region_section_addr(section
, addr
);
3784 ptr
= qemu_get_ram_ptr(addr1
);
3787 if (unlikely(in_migration
)) {
3788 if (!cpu_physical_memory_is_dirty(addr1
)) {
3789 /* invalidate code */
3790 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3792 cpu_physical_memory_set_dirty_flags(
3793 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
3799 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
3802 MemoryRegionSection
*section
;
3804 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3806 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
3807 addr
= memory_region_section_addr(section
, addr
);
3808 if (memory_region_is_ram(section
->mr
)) {
3809 section
= &phys_sections
[phys_section_rom
];
3811 #ifdef TARGET_WORDS_BIGENDIAN
3812 io_mem_write(section
->mr
, addr
, val
>> 32, 4);
3813 io_mem_write(section
->mr
, addr
+ 4, (uint32_t)val
, 4);
3815 io_mem_write(section
->mr
, addr
, (uint32_t)val
, 4);
3816 io_mem_write(section
->mr
, addr
+ 4, val
>> 32, 4);
3819 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
3821 + memory_region_section_addr(section
, addr
));
3826 /* warning: addr must be aligned */
3827 static inline void stl_phys_internal(target_phys_addr_t addr
, uint32_t val
,
3828 enum device_endian endian
)
3831 MemoryRegionSection
*section
;
3833 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3835 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
3836 addr
= memory_region_section_addr(section
, addr
);
3837 if (memory_region_is_ram(section
->mr
)) {
3838 section
= &phys_sections
[phys_section_rom
];
3840 #if defined(TARGET_WORDS_BIGENDIAN)
3841 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3845 if (endian
== DEVICE_BIG_ENDIAN
) {
3849 io_mem_write(section
->mr
, addr
, val
, 4);
3851 unsigned long addr1
;
3852 addr1
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
3853 + memory_region_section_addr(section
, addr
);
3855 ptr
= qemu_get_ram_ptr(addr1
);
3857 case DEVICE_LITTLE_ENDIAN
:
3860 case DEVICE_BIG_ENDIAN
:
3867 invalidate_and_set_dirty(addr1
, 4);
3871 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
3873 stl_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
3876 void stl_le_phys(target_phys_addr_t addr
, uint32_t val
)
3878 stl_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
3881 void stl_be_phys(target_phys_addr_t addr
, uint32_t val
)
3883 stl_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
3887 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
3890 cpu_physical_memory_write(addr
, &v
, 1);
3893 /* warning: addr must be aligned */
3894 static inline void stw_phys_internal(target_phys_addr_t addr
, uint32_t val
,
3895 enum device_endian endian
)
3898 MemoryRegionSection
*section
;
3900 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3902 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
3903 addr
= memory_region_section_addr(section
, addr
);
3904 if (memory_region_is_ram(section
->mr
)) {
3905 section
= &phys_sections
[phys_section_rom
];
3907 #if defined(TARGET_WORDS_BIGENDIAN)
3908 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3912 if (endian
== DEVICE_BIG_ENDIAN
) {
3916 io_mem_write(section
->mr
, addr
, val
, 2);
3918 unsigned long addr1
;
3919 addr1
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
3920 + memory_region_section_addr(section
, addr
);
3922 ptr
= qemu_get_ram_ptr(addr1
);
3924 case DEVICE_LITTLE_ENDIAN
:
3927 case DEVICE_BIG_ENDIAN
:
3934 invalidate_and_set_dirty(addr1
, 2);
3938 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
3940 stw_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
3943 void stw_le_phys(target_phys_addr_t addr
, uint32_t val
)
3945 stw_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
3948 void stw_be_phys(target_phys_addr_t addr
, uint32_t val
)
3950 stw_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
3954 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
3957 cpu_physical_memory_write(addr
, &val
, 8);
3960 void stq_le_phys(target_phys_addr_t addr
, uint64_t val
)
3962 val
= cpu_to_le64(val
);
3963 cpu_physical_memory_write(addr
, &val
, 8);
3966 void stq_be_phys(target_phys_addr_t addr
, uint64_t val
)
3968 val
= cpu_to_be64(val
);
3969 cpu_physical_memory_write(addr
, &val
, 8);
3972 /* virtual memory access for debug (includes writing to ROM) */
3973 int cpu_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
3974 uint8_t *buf
, int len
, int is_write
)
3977 target_phys_addr_t phys_addr
;
3981 page
= addr
& TARGET_PAGE_MASK
;
3982 phys_addr
= cpu_get_phys_page_debug(env
, page
);
3983 /* if no physical page mapped, return an error */
3984 if (phys_addr
== -1)
3986 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3989 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3991 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
3993 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
4002 /* in deterministic execution mode, instructions doing device I/Os
4003 must be at the end of the TB */
4004 void cpu_io_recompile(CPUArchState
*env
, uintptr_t retaddr
)
4006 TranslationBlock
*tb
;
4008 target_ulong pc
, cs_base
;
4011 tb
= tb_find_pc(retaddr
);
4013 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
4016 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
4017 cpu_restore_state(tb
, env
, retaddr
);
4018 /* Calculate how many instructions had been executed before the fault
4020 n
= n
- env
->icount_decr
.u16
.low
;
4021 /* Generate a new TB ending on the I/O insn. */
4023 /* On MIPS and SH, delay slot instructions can only be restarted if
4024 they were already the first instruction in the TB. If this is not
4025 the first instruction in a TB then re-execute the preceding
4027 #if defined(TARGET_MIPS)
4028 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
4029 env
->active_tc
.PC
-= 4;
4030 env
->icount_decr
.u16
.low
++;
4031 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
4033 #elif defined(TARGET_SH4)
4034 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
4037 env
->icount_decr
.u16
.low
++;
4038 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
4041 /* This should never happen. */
4042 if (n
> CF_COUNT_MASK
)
4043 cpu_abort(env
, "TB too big during recompile");
4045 cflags
= n
| CF_LAST_IO
;
4047 cs_base
= tb
->cs_base
;
4049 tb_phys_invalidate(tb
, -1);
4050 /* FIXME: In theory this could raise an exception. In practice
4051 we have already translated the block once so it's probably ok. */
4052 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
4053 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4054 the first in the TB) then we end up generating a whole new TB and
4055 repeating the fault, which is horribly inefficient.
4056 Better would be to execute just this insn uncached, or generate a
4058 cpu_resume_from_signal(env
, NULL
);
4061 #if !defined(CONFIG_USER_ONLY)
4063 void dump_exec_info(FILE *f
, fprintf_function cpu_fprintf
)
4065 int i
, target_code_size
, max_target_code_size
;
4066 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
4067 TranslationBlock
*tb
;
4069 target_code_size
= 0;
4070 max_target_code_size
= 0;
4072 direct_jmp_count
= 0;
4073 direct_jmp2_count
= 0;
4074 for(i
= 0; i
< nb_tbs
; i
++) {
4076 target_code_size
+= tb
->size
;
4077 if (tb
->size
> max_target_code_size
)
4078 max_target_code_size
= tb
->size
;
4079 if (tb
->page_addr
[1] != -1)
4081 if (tb
->tb_next_offset
[0] != 0xffff) {
4083 if (tb
->tb_next_offset
[1] != 0xffff) {
4084 direct_jmp2_count
++;
4088 /* XXX: avoid using doubles ? */
4089 cpu_fprintf(f
, "Translation buffer state:\n");
4090 cpu_fprintf(f
, "gen code size %td/%ld\n",
4091 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
4092 cpu_fprintf(f
, "TB count %d/%d\n",
4093 nb_tbs
, code_gen_max_blocks
);
4094 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
4095 nb_tbs
? target_code_size
/ nb_tbs
: 0,
4096 max_target_code_size
);
4097 cpu_fprintf(f
, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4098 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
4099 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
4100 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
4102 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
4103 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4105 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
4107 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
4108 cpu_fprintf(f
, "\nStatistics:\n");
4109 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
4110 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
4111 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
4112 tcg_dump_info(f
, cpu_fprintf
);
4116 * A helper function for the _utterly broken_ virtio device model to find out if
4117 * it's running on a big endian machine. Don't do this at home kids!
4119 bool virtio_is_big_endian(void);
4120 bool virtio_is_big_endian(void)
4122 #if defined(TARGET_WORDS_BIGENDIAN)
4131 #ifndef CONFIG_USER_ONLY
4132 bool cpu_physical_memory_is_io(target_phys_addr_t phys_addr
)
4134 MemoryRegionSection
*section
;
4136 section
= phys_page_find(phys_addr
>> TARGET_PAGE_BITS
);
4138 return !(memory_region_is_ram(section
->mr
) ||
4139 memory_region_is_romd(section
->mr
));