qemu tcg: Remove one entry of INDEX_op_ld_i64 from ppc_op_defs
[qemu.git] / fpu / softfloat.h
blob2ce4110c0739b8671037c09060dc617f3b7ddad0
1 /*
2 * QEMU float support
4 * Derived from SoftFloat.
5 */
7 /*============================================================================
9 This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10 Package, Release 2b.
12 Written by John R. Hauser. This work was made possible in part by the
13 International Computer Science Institute, located at Suite 600, 1947 Center
14 Street, Berkeley, California 94704. Funding was partially provided by the
15 National Science Foundation under grant MIP-9311980. The original version
16 of this code was written as part of a project to build a fixed-point vector
17 processor in collaboration with the University of California at Berkeley,
18 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20 arithmetic/SoftFloat.html'.
22 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24 RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28 INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
31 Derivative works are acceptable, even for commercial purposes, so long as
32 (1) the source code for the derivative work includes prominent notice that
33 the work is derivative, and (2) the source code includes prominent notice with
34 these four paragraphs for those parts of this code that are retained.
36 =============================================================================*/
38 #ifndef SOFTFLOAT_H
39 #define SOFTFLOAT_H
41 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
42 #include <sunmath.h>
43 #endif
45 #include <inttypes.h>
46 #include "config-host.h"
48 /*----------------------------------------------------------------------------
49 | Each of the following `typedef's defines the most convenient type that holds
50 | integers of at least as many bits as specified. For example, `uint8' should
51 | be the most convenient type that can hold unsigned integers of as many as
52 | 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
53 | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
54 | to the same as `int'.
55 *----------------------------------------------------------------------------*/
56 typedef uint8_t flag;
57 typedef uint8_t uint8;
58 typedef int8_t int8;
59 #ifndef _AIX
60 typedef int uint16;
61 typedef int int16;
62 #endif
63 typedef unsigned int uint32;
64 typedef signed int int32;
65 typedef uint64_t uint64;
66 typedef int64_t int64;
68 #define LIT64( a ) a##LL
69 #define INLINE static inline
71 #define STATUS_PARAM , float_status *status
72 #define STATUS(field) status->field
73 #define STATUS_VAR , status
75 /*----------------------------------------------------------------------------
76 | Software IEC/IEEE floating-point ordering relations
77 *----------------------------------------------------------------------------*/
78 enum {
79 float_relation_less = -1,
80 float_relation_equal = 0,
81 float_relation_greater = 1,
82 float_relation_unordered = 2
85 /*----------------------------------------------------------------------------
86 | Software IEC/IEEE floating-point types.
87 *----------------------------------------------------------------------------*/
88 /* Use structures for soft-float types. This prevents accidentally mixing
89 them with native int/float types. A sufficiently clever compiler and
90 sane ABI should be able to see though these structs. However
91 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
92 //#define USE_SOFTFLOAT_STRUCT_TYPES
93 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
94 typedef struct {
95 uint16_t v;
96 } float16;
97 #define float16_val(x) (((float16)(x)).v)
98 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
99 #define const_float16(x) { x }
100 typedef struct {
101 uint32_t v;
102 } float32;
103 /* The cast ensures an error if the wrong type is passed. */
104 #define float32_val(x) (((float32)(x)).v)
105 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
106 #define const_float32(x) { x }
107 typedef struct {
108 uint64_t v;
109 } float64;
110 #define float64_val(x) (((float64)(x)).v)
111 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
112 #define const_float64(x) { x }
113 #else
114 typedef uint16_t float16;
115 typedef uint32_t float32;
116 typedef uint64_t float64;
117 #define float16_val(x) (x)
118 #define float32_val(x) (x)
119 #define float64_val(x) (x)
120 #define make_float16(x) (x)
121 #define make_float32(x) (x)
122 #define make_float64(x) (x)
123 #define const_float16(x) (x)
124 #define const_float32(x) (x)
125 #define const_float64(x) (x)
126 #endif
127 typedef struct {
128 uint64_t low;
129 uint16_t high;
130 } floatx80;
131 #define make_floatx80(exp, mant) ((floatx80) { mant, exp })
132 #define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
133 typedef struct {
134 #ifdef HOST_WORDS_BIGENDIAN
135 uint64_t high, low;
136 #else
137 uint64_t low, high;
138 #endif
139 } float128;
140 #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
141 #define make_float128_init(high_, low_) { .high = high_, .low = low_ }
143 /*----------------------------------------------------------------------------
144 | Software IEC/IEEE floating-point underflow tininess-detection mode.
145 *----------------------------------------------------------------------------*/
146 enum {
147 float_tininess_after_rounding = 0,
148 float_tininess_before_rounding = 1
151 /*----------------------------------------------------------------------------
152 | Software IEC/IEEE floating-point rounding mode.
153 *----------------------------------------------------------------------------*/
154 enum {
155 float_round_nearest_even = 0,
156 float_round_down = 1,
157 float_round_up = 2,
158 float_round_to_zero = 3
161 /*----------------------------------------------------------------------------
162 | Software IEC/IEEE floating-point exception flags.
163 *----------------------------------------------------------------------------*/
164 enum {
165 float_flag_invalid = 1,
166 float_flag_divbyzero = 4,
167 float_flag_overflow = 8,
168 float_flag_underflow = 16,
169 float_flag_inexact = 32,
170 float_flag_input_denormal = 64,
171 float_flag_output_denormal = 128
174 typedef struct float_status {
175 signed char float_detect_tininess;
176 signed char float_rounding_mode;
177 signed char float_exception_flags;
178 signed char floatx80_rounding_precision;
179 /* should denormalised results go to zero and set the inexact flag? */
180 flag flush_to_zero;
181 /* should denormalised inputs go to zero and set the input_denormal flag? */
182 flag flush_inputs_to_zero;
183 flag default_nan_mode;
184 } float_status;
186 void set_float_rounding_mode(int val STATUS_PARAM);
187 void set_float_exception_flags(int val STATUS_PARAM);
188 INLINE void set_float_detect_tininess(int val STATUS_PARAM)
190 STATUS(float_detect_tininess) = val;
192 INLINE void set_flush_to_zero(flag val STATUS_PARAM)
194 STATUS(flush_to_zero) = val;
196 INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
198 STATUS(flush_inputs_to_zero) = val;
200 INLINE void set_default_nan_mode(flag val STATUS_PARAM)
202 STATUS(default_nan_mode) = val;
204 INLINE int get_float_exception_flags(float_status *status)
206 return STATUS(float_exception_flags);
208 void set_floatx80_rounding_precision(int val STATUS_PARAM);
210 /*----------------------------------------------------------------------------
211 | Routine to raise any or all of the software IEC/IEEE floating-point
212 | exception flags.
213 *----------------------------------------------------------------------------*/
214 void float_raise( int8 flags STATUS_PARAM);
216 /*----------------------------------------------------------------------------
217 | Options to indicate which negations to perform in float*_muladd()
218 | Using these differs from negating an input or output before calling
219 | the muladd function in that this means that a NaN doesn't have its
220 | sign bit inverted before it is propagated.
221 *----------------------------------------------------------------------------*/
222 enum {
223 float_muladd_negate_c = 1,
224 float_muladd_negate_product = 2,
225 float_muladd_negate_result = 3,
228 /*----------------------------------------------------------------------------
229 | Software IEC/IEEE integer-to-floating-point conversion routines.
230 *----------------------------------------------------------------------------*/
231 float32 int32_to_float32( int32 STATUS_PARAM );
232 float64 int32_to_float64( int32 STATUS_PARAM );
233 float32 uint32_to_float32( uint32 STATUS_PARAM );
234 float64 uint32_to_float64( uint32 STATUS_PARAM );
235 floatx80 int32_to_floatx80( int32 STATUS_PARAM );
236 float128 int32_to_float128( int32 STATUS_PARAM );
237 float32 int64_to_float32( int64 STATUS_PARAM );
238 float32 uint64_to_float32( uint64 STATUS_PARAM );
239 float64 int64_to_float64( int64 STATUS_PARAM );
240 float64 uint64_to_float64( uint64 STATUS_PARAM );
241 floatx80 int64_to_floatx80( int64 STATUS_PARAM );
242 float128 int64_to_float128( int64 STATUS_PARAM );
244 /*----------------------------------------------------------------------------
245 | Software half-precision conversion routines.
246 *----------------------------------------------------------------------------*/
247 float16 float32_to_float16( float32, flag STATUS_PARAM );
248 float32 float16_to_float32( float16, flag STATUS_PARAM );
250 /*----------------------------------------------------------------------------
251 | Software half-precision operations.
252 *----------------------------------------------------------------------------*/
253 int float16_is_quiet_nan( float16 );
254 int float16_is_signaling_nan( float16 );
255 float16 float16_maybe_silence_nan( float16 );
257 /*----------------------------------------------------------------------------
258 | The pattern for a default generated half-precision NaN.
259 *----------------------------------------------------------------------------*/
260 extern const float16 float16_default_nan;
262 /*----------------------------------------------------------------------------
263 | Software IEC/IEEE single-precision conversion routines.
264 *----------------------------------------------------------------------------*/
265 int16 float32_to_int16_round_to_zero( float32 STATUS_PARAM );
266 uint16 float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
267 int32 float32_to_int32( float32 STATUS_PARAM );
268 int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
269 uint32 float32_to_uint32( float32 STATUS_PARAM );
270 uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
271 int64 float32_to_int64( float32 STATUS_PARAM );
272 int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
273 float64 float32_to_float64( float32 STATUS_PARAM );
274 floatx80 float32_to_floatx80( float32 STATUS_PARAM );
275 float128 float32_to_float128( float32 STATUS_PARAM );
277 /*----------------------------------------------------------------------------
278 | Software IEC/IEEE single-precision operations.
279 *----------------------------------------------------------------------------*/
280 float32 float32_round_to_int( float32 STATUS_PARAM );
281 float32 float32_add( float32, float32 STATUS_PARAM );
282 float32 float32_sub( float32, float32 STATUS_PARAM );
283 float32 float32_mul( float32, float32 STATUS_PARAM );
284 float32 float32_div( float32, float32 STATUS_PARAM );
285 float32 float32_rem( float32, float32 STATUS_PARAM );
286 float32 float32_muladd(float32, float32, float32, int STATUS_PARAM);
287 float32 float32_sqrt( float32 STATUS_PARAM );
288 float32 float32_exp2( float32 STATUS_PARAM );
289 float32 float32_log2( float32 STATUS_PARAM );
290 int float32_eq( float32, float32 STATUS_PARAM );
291 int float32_le( float32, float32 STATUS_PARAM );
292 int float32_lt( float32, float32 STATUS_PARAM );
293 int float32_unordered( float32, float32 STATUS_PARAM );
294 int float32_eq_quiet( float32, float32 STATUS_PARAM );
295 int float32_le_quiet( float32, float32 STATUS_PARAM );
296 int float32_lt_quiet( float32, float32 STATUS_PARAM );
297 int float32_unordered_quiet( float32, float32 STATUS_PARAM );
298 int float32_compare( float32, float32 STATUS_PARAM );
299 int float32_compare_quiet( float32, float32 STATUS_PARAM );
300 float32 float32_min(float32, float32 STATUS_PARAM);
301 float32 float32_max(float32, float32 STATUS_PARAM);
302 int float32_is_quiet_nan( float32 );
303 int float32_is_signaling_nan( float32 );
304 float32 float32_maybe_silence_nan( float32 );
305 float32 float32_scalbn( float32, int STATUS_PARAM );
307 INLINE float32 float32_abs(float32 a)
309 /* Note that abs does *not* handle NaN specially, nor does
310 * it flush denormal inputs to zero.
312 return make_float32(float32_val(a) & 0x7fffffff);
315 INLINE float32 float32_chs(float32 a)
317 /* Note that chs does *not* handle NaN specially, nor does
318 * it flush denormal inputs to zero.
320 return make_float32(float32_val(a) ^ 0x80000000);
323 INLINE int float32_is_infinity(float32 a)
325 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
328 INLINE int float32_is_neg(float32 a)
330 return float32_val(a) >> 31;
333 INLINE int float32_is_zero(float32 a)
335 return (float32_val(a) & 0x7fffffff) == 0;
338 INLINE int float32_is_any_nan(float32 a)
340 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
343 INLINE int float32_is_zero_or_denormal(float32 a)
345 return (float32_val(a) & 0x7f800000) == 0;
348 INLINE float32 float32_set_sign(float32 a, int sign)
350 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
353 #define float32_zero make_float32(0)
354 #define float32_one make_float32(0x3f800000)
355 #define float32_ln2 make_float32(0x3f317218)
356 #define float32_pi make_float32(0x40490fdb)
357 #define float32_half make_float32(0x3f000000)
358 #define float32_infinity make_float32(0x7f800000)
361 /*----------------------------------------------------------------------------
362 | The pattern for a default generated single-precision NaN.
363 *----------------------------------------------------------------------------*/
364 extern const float32 float32_default_nan;
366 /*----------------------------------------------------------------------------
367 | Software IEC/IEEE double-precision conversion routines.
368 *----------------------------------------------------------------------------*/
369 int16 float64_to_int16_round_to_zero( float64 STATUS_PARAM );
370 uint16 float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
371 int32 float64_to_int32( float64 STATUS_PARAM );
372 int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
373 uint32 float64_to_uint32( float64 STATUS_PARAM );
374 uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
375 int64 float64_to_int64( float64 STATUS_PARAM );
376 int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
377 uint64 float64_to_uint64 (float64 a STATUS_PARAM);
378 uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
379 float32 float64_to_float32( float64 STATUS_PARAM );
380 floatx80 float64_to_floatx80( float64 STATUS_PARAM );
381 float128 float64_to_float128( float64 STATUS_PARAM );
383 /*----------------------------------------------------------------------------
384 | Software IEC/IEEE double-precision operations.
385 *----------------------------------------------------------------------------*/
386 float64 float64_round_to_int( float64 STATUS_PARAM );
387 float64 float64_trunc_to_int( float64 STATUS_PARAM );
388 float64 float64_add( float64, float64 STATUS_PARAM );
389 float64 float64_sub( float64, float64 STATUS_PARAM );
390 float64 float64_mul( float64, float64 STATUS_PARAM );
391 float64 float64_div( float64, float64 STATUS_PARAM );
392 float64 float64_rem( float64, float64 STATUS_PARAM );
393 float64 float64_muladd(float64, float64, float64, int STATUS_PARAM);
394 float64 float64_sqrt( float64 STATUS_PARAM );
395 float64 float64_log2( float64 STATUS_PARAM );
396 int float64_eq( float64, float64 STATUS_PARAM );
397 int float64_le( float64, float64 STATUS_PARAM );
398 int float64_lt( float64, float64 STATUS_PARAM );
399 int float64_unordered( float64, float64 STATUS_PARAM );
400 int float64_eq_quiet( float64, float64 STATUS_PARAM );
401 int float64_le_quiet( float64, float64 STATUS_PARAM );
402 int float64_lt_quiet( float64, float64 STATUS_PARAM );
403 int float64_unordered_quiet( float64, float64 STATUS_PARAM );
404 int float64_compare( float64, float64 STATUS_PARAM );
405 int float64_compare_quiet( float64, float64 STATUS_PARAM );
406 float64 float64_min(float64, float64 STATUS_PARAM);
407 float64 float64_max(float64, float64 STATUS_PARAM);
408 int float64_is_quiet_nan( float64 a );
409 int float64_is_signaling_nan( float64 );
410 float64 float64_maybe_silence_nan( float64 );
411 float64 float64_scalbn( float64, int STATUS_PARAM );
413 INLINE float64 float64_abs(float64 a)
415 /* Note that abs does *not* handle NaN specially, nor does
416 * it flush denormal inputs to zero.
418 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
421 INLINE float64 float64_chs(float64 a)
423 /* Note that chs does *not* handle NaN specially, nor does
424 * it flush denormal inputs to zero.
426 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
429 INLINE int float64_is_infinity(float64 a)
431 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
434 INLINE int float64_is_neg(float64 a)
436 return float64_val(a) >> 63;
439 INLINE int float64_is_zero(float64 a)
441 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
444 INLINE int float64_is_any_nan(float64 a)
446 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
449 INLINE int float64_is_zero_or_denormal(float64 a)
451 return (float64_val(a) & 0x7ff0000000000000LL) == 0;
454 INLINE float64 float64_set_sign(float64 a, int sign)
456 return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
457 | ((int64_t)sign << 63));
460 #define float64_zero make_float64(0)
461 #define float64_one make_float64(0x3ff0000000000000LL)
462 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
463 #define float64_pi make_float64(0x400921fb54442d18LL)
464 #define float64_half make_float64(0x3fe0000000000000LL)
465 #define float64_infinity make_float64(0x7ff0000000000000LL)
467 /*----------------------------------------------------------------------------
468 | The pattern for a default generated double-precision NaN.
469 *----------------------------------------------------------------------------*/
470 extern const float64 float64_default_nan;
472 /*----------------------------------------------------------------------------
473 | Software IEC/IEEE extended double-precision conversion routines.
474 *----------------------------------------------------------------------------*/
475 int32 floatx80_to_int32( floatx80 STATUS_PARAM );
476 int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
477 int64 floatx80_to_int64( floatx80 STATUS_PARAM );
478 int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
479 float32 floatx80_to_float32( floatx80 STATUS_PARAM );
480 float64 floatx80_to_float64( floatx80 STATUS_PARAM );
481 float128 floatx80_to_float128( floatx80 STATUS_PARAM );
483 /*----------------------------------------------------------------------------
484 | Software IEC/IEEE extended double-precision operations.
485 *----------------------------------------------------------------------------*/
486 floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
487 floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
488 floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
489 floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
490 floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
491 floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
492 floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
493 int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
494 int floatx80_le( floatx80, floatx80 STATUS_PARAM );
495 int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
496 int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
497 int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
498 int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
499 int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
500 int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
501 int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
502 int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
503 int floatx80_is_quiet_nan( floatx80 );
504 int floatx80_is_signaling_nan( floatx80 );
505 floatx80 floatx80_maybe_silence_nan( floatx80 );
506 floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
508 INLINE floatx80 floatx80_abs(floatx80 a)
510 a.high &= 0x7fff;
511 return a;
514 INLINE floatx80 floatx80_chs(floatx80 a)
516 a.high ^= 0x8000;
517 return a;
520 INLINE int floatx80_is_infinity(floatx80 a)
522 return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
525 INLINE int floatx80_is_neg(floatx80 a)
527 return a.high >> 15;
530 INLINE int floatx80_is_zero(floatx80 a)
532 return (a.high & 0x7fff) == 0 && a.low == 0;
535 INLINE int floatx80_is_zero_or_denormal(floatx80 a)
537 return (a.high & 0x7fff) == 0;
540 INLINE int floatx80_is_any_nan(floatx80 a)
542 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
545 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
546 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
547 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
548 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
549 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
550 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
552 /*----------------------------------------------------------------------------
553 | The pattern for a default generated extended double-precision NaN.
554 *----------------------------------------------------------------------------*/
555 extern const floatx80 floatx80_default_nan;
557 /*----------------------------------------------------------------------------
558 | Software IEC/IEEE quadruple-precision conversion routines.
559 *----------------------------------------------------------------------------*/
560 int32 float128_to_int32( float128 STATUS_PARAM );
561 int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
562 int64 float128_to_int64( float128 STATUS_PARAM );
563 int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
564 float32 float128_to_float32( float128 STATUS_PARAM );
565 float64 float128_to_float64( float128 STATUS_PARAM );
566 floatx80 float128_to_floatx80( float128 STATUS_PARAM );
568 /*----------------------------------------------------------------------------
569 | Software IEC/IEEE quadruple-precision operations.
570 *----------------------------------------------------------------------------*/
571 float128 float128_round_to_int( float128 STATUS_PARAM );
572 float128 float128_add( float128, float128 STATUS_PARAM );
573 float128 float128_sub( float128, float128 STATUS_PARAM );
574 float128 float128_mul( float128, float128 STATUS_PARAM );
575 float128 float128_div( float128, float128 STATUS_PARAM );
576 float128 float128_rem( float128, float128 STATUS_PARAM );
577 float128 float128_sqrt( float128 STATUS_PARAM );
578 int float128_eq( float128, float128 STATUS_PARAM );
579 int float128_le( float128, float128 STATUS_PARAM );
580 int float128_lt( float128, float128 STATUS_PARAM );
581 int float128_unordered( float128, float128 STATUS_PARAM );
582 int float128_eq_quiet( float128, float128 STATUS_PARAM );
583 int float128_le_quiet( float128, float128 STATUS_PARAM );
584 int float128_lt_quiet( float128, float128 STATUS_PARAM );
585 int float128_unordered_quiet( float128, float128 STATUS_PARAM );
586 int float128_compare( float128, float128 STATUS_PARAM );
587 int float128_compare_quiet( float128, float128 STATUS_PARAM );
588 int float128_is_quiet_nan( float128 );
589 int float128_is_signaling_nan( float128 );
590 float128 float128_maybe_silence_nan( float128 );
591 float128 float128_scalbn( float128, int STATUS_PARAM );
593 INLINE float128 float128_abs(float128 a)
595 a.high &= 0x7fffffffffffffffLL;
596 return a;
599 INLINE float128 float128_chs(float128 a)
601 a.high ^= 0x8000000000000000LL;
602 return a;
605 INLINE int float128_is_infinity(float128 a)
607 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
610 INLINE int float128_is_neg(float128 a)
612 return a.high >> 63;
615 INLINE int float128_is_zero(float128 a)
617 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
620 INLINE int float128_is_zero_or_denormal(float128 a)
622 return (a.high & 0x7fff000000000000LL) == 0;
625 INLINE int float128_is_any_nan(float128 a)
627 return ((a.high >> 48) & 0x7fff) == 0x7fff &&
628 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
631 /*----------------------------------------------------------------------------
632 | The pattern for a default generated quadruple-precision NaN.
633 *----------------------------------------------------------------------------*/
634 extern const float128 float128_default_nan;
636 #endif /* !SOFTFLOAT_H */