target-i386: compute eflags outside rcl/rcr helper
[qemu.git] / gdbstub.c
blob32dfea9ed0c30828a63e9006ef984bf5725745af
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
30 #include "qemu.h"
31 #else
32 #include "monitor/monitor.h"
33 #include "char/char.h"
34 #include "sysemu/sysemu.h"
35 #include "exec/gdbstub.h"
36 #endif
38 #define MAX_PACKET_LENGTH 4096
40 #include "cpu.h"
41 #include "qemu/sockets.h"
42 #include "sysemu/kvm.h"
43 #include "qemu/bitops.h"
45 #ifndef TARGET_CPU_MEMORY_RW_DEBUG
46 static inline int target_memory_rw_debug(CPUArchState *env, target_ulong addr,
47 uint8_t *buf, int len, int is_write)
49 return cpu_memory_rw_debug(env, addr, buf, len, is_write);
51 #else
52 /* target_memory_rw_debug() defined in cpu.h */
53 #endif
55 enum {
56 GDB_SIGNAL_0 = 0,
57 GDB_SIGNAL_INT = 2,
58 GDB_SIGNAL_QUIT = 3,
59 GDB_SIGNAL_TRAP = 5,
60 GDB_SIGNAL_ABRT = 6,
61 GDB_SIGNAL_ALRM = 14,
62 GDB_SIGNAL_IO = 23,
63 GDB_SIGNAL_XCPU = 24,
64 GDB_SIGNAL_UNKNOWN = 143
67 #ifdef CONFIG_USER_ONLY
69 /* Map target signal numbers to GDB protocol signal numbers and vice
70 * versa. For user emulation's currently supported systems, we can
71 * assume most signals are defined.
74 static int gdb_signal_table[] = {
76 TARGET_SIGHUP,
77 TARGET_SIGINT,
78 TARGET_SIGQUIT,
79 TARGET_SIGILL,
80 TARGET_SIGTRAP,
81 TARGET_SIGABRT,
82 -1, /* SIGEMT */
83 TARGET_SIGFPE,
84 TARGET_SIGKILL,
85 TARGET_SIGBUS,
86 TARGET_SIGSEGV,
87 TARGET_SIGSYS,
88 TARGET_SIGPIPE,
89 TARGET_SIGALRM,
90 TARGET_SIGTERM,
91 TARGET_SIGURG,
92 TARGET_SIGSTOP,
93 TARGET_SIGTSTP,
94 TARGET_SIGCONT,
95 TARGET_SIGCHLD,
96 TARGET_SIGTTIN,
97 TARGET_SIGTTOU,
98 TARGET_SIGIO,
99 TARGET_SIGXCPU,
100 TARGET_SIGXFSZ,
101 TARGET_SIGVTALRM,
102 TARGET_SIGPROF,
103 TARGET_SIGWINCH,
104 -1, /* SIGLOST */
105 TARGET_SIGUSR1,
106 TARGET_SIGUSR2,
107 #ifdef TARGET_SIGPWR
108 TARGET_SIGPWR,
109 #else
111 #endif
112 -1, /* SIGPOLL */
124 #ifdef __SIGRTMIN
125 __SIGRTMIN + 1,
126 __SIGRTMIN + 2,
127 __SIGRTMIN + 3,
128 __SIGRTMIN + 4,
129 __SIGRTMIN + 5,
130 __SIGRTMIN + 6,
131 __SIGRTMIN + 7,
132 __SIGRTMIN + 8,
133 __SIGRTMIN + 9,
134 __SIGRTMIN + 10,
135 __SIGRTMIN + 11,
136 __SIGRTMIN + 12,
137 __SIGRTMIN + 13,
138 __SIGRTMIN + 14,
139 __SIGRTMIN + 15,
140 __SIGRTMIN + 16,
141 __SIGRTMIN + 17,
142 __SIGRTMIN + 18,
143 __SIGRTMIN + 19,
144 __SIGRTMIN + 20,
145 __SIGRTMIN + 21,
146 __SIGRTMIN + 22,
147 __SIGRTMIN + 23,
148 __SIGRTMIN + 24,
149 __SIGRTMIN + 25,
150 __SIGRTMIN + 26,
151 __SIGRTMIN + 27,
152 __SIGRTMIN + 28,
153 __SIGRTMIN + 29,
154 __SIGRTMIN + 30,
155 __SIGRTMIN + 31,
156 -1, /* SIGCANCEL */
157 __SIGRTMIN,
158 __SIGRTMIN + 32,
159 __SIGRTMIN + 33,
160 __SIGRTMIN + 34,
161 __SIGRTMIN + 35,
162 __SIGRTMIN + 36,
163 __SIGRTMIN + 37,
164 __SIGRTMIN + 38,
165 __SIGRTMIN + 39,
166 __SIGRTMIN + 40,
167 __SIGRTMIN + 41,
168 __SIGRTMIN + 42,
169 __SIGRTMIN + 43,
170 __SIGRTMIN + 44,
171 __SIGRTMIN + 45,
172 __SIGRTMIN + 46,
173 __SIGRTMIN + 47,
174 __SIGRTMIN + 48,
175 __SIGRTMIN + 49,
176 __SIGRTMIN + 50,
177 __SIGRTMIN + 51,
178 __SIGRTMIN + 52,
179 __SIGRTMIN + 53,
180 __SIGRTMIN + 54,
181 __SIGRTMIN + 55,
182 __SIGRTMIN + 56,
183 __SIGRTMIN + 57,
184 __SIGRTMIN + 58,
185 __SIGRTMIN + 59,
186 __SIGRTMIN + 60,
187 __SIGRTMIN + 61,
188 __SIGRTMIN + 62,
189 __SIGRTMIN + 63,
190 __SIGRTMIN + 64,
191 __SIGRTMIN + 65,
192 __SIGRTMIN + 66,
193 __SIGRTMIN + 67,
194 __SIGRTMIN + 68,
195 __SIGRTMIN + 69,
196 __SIGRTMIN + 70,
197 __SIGRTMIN + 71,
198 __SIGRTMIN + 72,
199 __SIGRTMIN + 73,
200 __SIGRTMIN + 74,
201 __SIGRTMIN + 75,
202 __SIGRTMIN + 76,
203 __SIGRTMIN + 77,
204 __SIGRTMIN + 78,
205 __SIGRTMIN + 79,
206 __SIGRTMIN + 80,
207 __SIGRTMIN + 81,
208 __SIGRTMIN + 82,
209 __SIGRTMIN + 83,
210 __SIGRTMIN + 84,
211 __SIGRTMIN + 85,
212 __SIGRTMIN + 86,
213 __SIGRTMIN + 87,
214 __SIGRTMIN + 88,
215 __SIGRTMIN + 89,
216 __SIGRTMIN + 90,
217 __SIGRTMIN + 91,
218 __SIGRTMIN + 92,
219 __SIGRTMIN + 93,
220 __SIGRTMIN + 94,
221 __SIGRTMIN + 95,
222 -1, /* SIGINFO */
223 -1, /* UNKNOWN */
224 -1, /* DEFAULT */
231 #endif
233 #else
234 /* In system mode we only need SIGINT and SIGTRAP; other signals
235 are not yet supported. */
237 enum {
238 TARGET_SIGINT = 2,
239 TARGET_SIGTRAP = 5
242 static int gdb_signal_table[] = {
245 TARGET_SIGINT,
248 TARGET_SIGTRAP
250 #endif
252 #ifdef CONFIG_USER_ONLY
253 static int target_signal_to_gdb (int sig)
255 int i;
256 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
257 if (gdb_signal_table[i] == sig)
258 return i;
259 return GDB_SIGNAL_UNKNOWN;
261 #endif
263 static int gdb_signal_to_target (int sig)
265 if (sig < ARRAY_SIZE (gdb_signal_table))
266 return gdb_signal_table[sig];
267 else
268 return -1;
271 //#define DEBUG_GDB
273 typedef struct GDBRegisterState {
274 int base_reg;
275 int num_regs;
276 gdb_reg_cb get_reg;
277 gdb_reg_cb set_reg;
278 const char *xml;
279 struct GDBRegisterState *next;
280 } GDBRegisterState;
282 enum RSState {
283 RS_INACTIVE,
284 RS_IDLE,
285 RS_GETLINE,
286 RS_CHKSUM1,
287 RS_CHKSUM2,
289 typedef struct GDBState {
290 CPUArchState *c_cpu; /* current CPU for step/continue ops */
291 CPUArchState *g_cpu; /* current CPU for other ops */
292 CPUArchState *query_cpu; /* for q{f|s}ThreadInfo */
293 enum RSState state; /* parsing state */
294 char line_buf[MAX_PACKET_LENGTH];
295 int line_buf_index;
296 int line_csum;
297 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
298 int last_packet_len;
299 int signal;
300 #ifdef CONFIG_USER_ONLY
301 int fd;
302 int running_state;
303 #else
304 CharDriverState *chr;
305 CharDriverState *mon_chr;
306 #endif
307 char syscall_buf[256];
308 gdb_syscall_complete_cb current_syscall_cb;
309 } GDBState;
311 /* By default use no IRQs and no timers while single stepping so as to
312 * make single stepping like an ICE HW step.
314 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
316 static GDBState *gdbserver_state;
318 /* This is an ugly hack to cope with both new and old gdb.
319 If gdb sends qXfer:features:read then assume we're talking to a newish
320 gdb that understands target descriptions. */
321 static int gdb_has_xml;
323 #ifdef CONFIG_USER_ONLY
324 /* XXX: This is not thread safe. Do we care? */
325 static int gdbserver_fd = -1;
327 static int get_char(GDBState *s)
329 uint8_t ch;
330 int ret;
332 for(;;) {
333 ret = qemu_recv(s->fd, &ch, 1, 0);
334 if (ret < 0) {
335 if (errno == ECONNRESET)
336 s->fd = -1;
337 if (errno != EINTR && errno != EAGAIN)
338 return -1;
339 } else if (ret == 0) {
340 close(s->fd);
341 s->fd = -1;
342 return -1;
343 } else {
344 break;
347 return ch;
349 #endif
351 static enum {
352 GDB_SYS_UNKNOWN,
353 GDB_SYS_ENABLED,
354 GDB_SYS_DISABLED,
355 } gdb_syscall_mode;
357 /* If gdb is connected when the first semihosting syscall occurs then use
358 remote gdb syscalls. Otherwise use native file IO. */
359 int use_gdb_syscalls(void)
361 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
362 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
363 : GDB_SYS_DISABLED);
365 return gdb_syscall_mode == GDB_SYS_ENABLED;
368 /* Resume execution. */
369 static inline void gdb_continue(GDBState *s)
371 #ifdef CONFIG_USER_ONLY
372 s->running_state = 1;
373 #else
374 vm_start();
375 #endif
378 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
380 #ifdef CONFIG_USER_ONLY
381 int ret;
383 while (len > 0) {
384 ret = send(s->fd, buf, len, 0);
385 if (ret < 0) {
386 if (errno != EINTR && errno != EAGAIN)
387 return;
388 } else {
389 buf += ret;
390 len -= ret;
393 #else
394 qemu_chr_fe_write(s->chr, buf, len);
395 #endif
398 static inline int fromhex(int v)
400 if (v >= '0' && v <= '9')
401 return v - '0';
402 else if (v >= 'A' && v <= 'F')
403 return v - 'A' + 10;
404 else if (v >= 'a' && v <= 'f')
405 return v - 'a' + 10;
406 else
407 return 0;
410 static inline int tohex(int v)
412 if (v < 10)
413 return v + '0';
414 else
415 return v - 10 + 'a';
418 static void memtohex(char *buf, const uint8_t *mem, int len)
420 int i, c;
421 char *q;
422 q = buf;
423 for(i = 0; i < len; i++) {
424 c = mem[i];
425 *q++ = tohex(c >> 4);
426 *q++ = tohex(c & 0xf);
428 *q = '\0';
431 static void hextomem(uint8_t *mem, const char *buf, int len)
433 int i;
435 for(i = 0; i < len; i++) {
436 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
437 buf += 2;
441 /* return -1 if error, 0 if OK */
442 static int put_packet_binary(GDBState *s, const char *buf, int len)
444 int csum, i;
445 uint8_t *p;
447 for(;;) {
448 p = s->last_packet;
449 *(p++) = '$';
450 memcpy(p, buf, len);
451 p += len;
452 csum = 0;
453 for(i = 0; i < len; i++) {
454 csum += buf[i];
456 *(p++) = '#';
457 *(p++) = tohex((csum >> 4) & 0xf);
458 *(p++) = tohex((csum) & 0xf);
460 s->last_packet_len = p - s->last_packet;
461 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
463 #ifdef CONFIG_USER_ONLY
464 i = get_char(s);
465 if (i < 0)
466 return -1;
467 if (i == '+')
468 break;
469 #else
470 break;
471 #endif
473 return 0;
476 /* return -1 if error, 0 if OK */
477 static int put_packet(GDBState *s, const char *buf)
479 #ifdef DEBUG_GDB
480 printf("reply='%s'\n", buf);
481 #endif
483 return put_packet_binary(s, buf, strlen(buf));
486 /* The GDB remote protocol transfers values in target byte order. This means
487 we can use the raw memory access routines to access the value buffer.
488 Conveniently, these also handle the case where the buffer is mis-aligned.
490 #define GET_REG8(val) do { \
491 stb_p(mem_buf, val); \
492 return 1; \
493 } while(0)
494 #define GET_REG16(val) do { \
495 stw_p(mem_buf, val); \
496 return 2; \
497 } while(0)
498 #define GET_REG32(val) do { \
499 stl_p(mem_buf, val); \
500 return 4; \
501 } while(0)
502 #define GET_REG64(val) do { \
503 stq_p(mem_buf, val); \
504 return 8; \
505 } while(0)
507 #if TARGET_LONG_BITS == 64
508 #define GET_REGL(val) GET_REG64(val)
509 #define ldtul_p(addr) ldq_p(addr)
510 #else
511 #define GET_REGL(val) GET_REG32(val)
512 #define ldtul_p(addr) ldl_p(addr)
513 #endif
515 #if defined(TARGET_I386)
517 #ifdef TARGET_X86_64
518 static const int gpr_map[16] = {
519 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
520 8, 9, 10, 11, 12, 13, 14, 15
522 #else
523 #define gpr_map gpr_map32
524 #endif
525 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
527 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
529 #define IDX_IP_REG CPU_NB_REGS
530 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
531 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
532 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
533 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
534 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
536 static int cpu_gdb_read_register(CPUX86State *env, uint8_t *mem_buf, int n)
538 if (n < CPU_NB_REGS) {
539 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
540 GET_REG64(env->regs[gpr_map[n]]);
541 } else if (n < CPU_NB_REGS32) {
542 GET_REG32(env->regs[gpr_map32[n]]);
544 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
545 #ifdef USE_X86LDOUBLE
546 /* FIXME: byteswap float values - after fixing fpregs layout. */
547 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
548 #else
549 memset(mem_buf, 0, 10);
550 #endif
551 return 10;
552 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
553 n -= IDX_XMM_REGS;
554 if (n < CPU_NB_REGS32 ||
555 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
556 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
557 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
558 return 16;
560 } else {
561 switch (n) {
562 case IDX_IP_REG:
563 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
564 GET_REG64(env->eip);
565 } else {
566 GET_REG32(env->eip);
568 case IDX_FLAGS_REG: GET_REG32(env->eflags);
570 case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
571 case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
572 case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
573 case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
574 case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
575 case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
577 case IDX_FP_REGS + 8: GET_REG32(env->fpuc);
578 case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |
579 (env->fpstt & 0x7) << 11);
580 case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
581 case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
582 case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
583 case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
584 case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
585 case IDX_FP_REGS + 15: GET_REG32(0); /* fop */
587 case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
590 return 0;
593 static int cpu_x86_gdb_load_seg(CPUX86State *env, int sreg, uint8_t *mem_buf)
595 uint16_t selector = ldl_p(mem_buf);
597 if (selector != env->segs[sreg].selector) {
598 #if defined(CONFIG_USER_ONLY)
599 cpu_x86_load_seg(env, sreg, selector);
600 #else
601 unsigned int limit, flags;
602 target_ulong base;
604 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
605 base = selector << 4;
606 limit = 0xffff;
607 flags = 0;
608 } else {
609 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
610 return 4;
612 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
613 #endif
615 return 4;
618 static int cpu_gdb_write_register(CPUX86State *env, uint8_t *mem_buf, int n)
620 uint32_t tmp;
622 if (n < CPU_NB_REGS) {
623 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
624 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
625 return sizeof(target_ulong);
626 } else if (n < CPU_NB_REGS32) {
627 n = gpr_map32[n];
628 env->regs[n] &= ~0xffffffffUL;
629 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
630 return 4;
632 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
633 #ifdef USE_X86LDOUBLE
634 /* FIXME: byteswap float values - after fixing fpregs layout. */
635 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
636 #endif
637 return 10;
638 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
639 n -= IDX_XMM_REGS;
640 if (n < CPU_NB_REGS32 ||
641 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
642 env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
643 env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
644 return 16;
646 } else {
647 switch (n) {
648 case IDX_IP_REG:
649 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
650 env->eip = ldq_p(mem_buf);
651 return 8;
652 } else {
653 env->eip &= ~0xffffffffUL;
654 env->eip |= (uint32_t)ldl_p(mem_buf);
655 return 4;
657 case IDX_FLAGS_REG:
658 env->eflags = ldl_p(mem_buf);
659 return 4;
661 case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
662 case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
663 case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
664 case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
665 case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
666 case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
668 case IDX_FP_REGS + 8:
669 env->fpuc = ldl_p(mem_buf);
670 return 4;
671 case IDX_FP_REGS + 9:
672 tmp = ldl_p(mem_buf);
673 env->fpstt = (tmp >> 11) & 7;
674 env->fpus = tmp & ~0x3800;
675 return 4;
676 case IDX_FP_REGS + 10: /* ftag */ return 4;
677 case IDX_FP_REGS + 11: /* fiseg */ return 4;
678 case IDX_FP_REGS + 12: /* fioff */ return 4;
679 case IDX_FP_REGS + 13: /* foseg */ return 4;
680 case IDX_FP_REGS + 14: /* fooff */ return 4;
681 case IDX_FP_REGS + 15: /* fop */ return 4;
683 case IDX_MXCSR_REG:
684 env->mxcsr = ldl_p(mem_buf);
685 return 4;
688 /* Unrecognised register. */
689 return 0;
692 #elif defined (TARGET_PPC)
694 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
695 expects whatever the target description contains. Due to a
696 historical mishap the FP registers appear in between core integer
697 regs and PC, MSR, CR, and so forth. We hack round this by giving the
698 FP regs zero size when talking to a newer gdb. */
699 #define NUM_CORE_REGS 71
700 #if defined (TARGET_PPC64)
701 #define GDB_CORE_XML "power64-core.xml"
702 #else
703 #define GDB_CORE_XML "power-core.xml"
704 #endif
706 static int cpu_gdb_read_register(CPUPPCState *env, uint8_t *mem_buf, int n)
708 if (n < 32) {
709 /* gprs */
710 GET_REGL(env->gpr[n]);
711 } else if (n < 64) {
712 /* fprs */
713 if (gdb_has_xml)
714 return 0;
715 stfq_p(mem_buf, env->fpr[n-32]);
716 return 8;
717 } else {
718 switch (n) {
719 case 64: GET_REGL(env->nip);
720 case 65: GET_REGL(env->msr);
721 case 66:
723 uint32_t cr = 0;
724 int i;
725 for (i = 0; i < 8; i++)
726 cr |= env->crf[i] << (32 - ((i + 1) * 4));
727 GET_REG32(cr);
729 case 67: GET_REGL(env->lr);
730 case 68: GET_REGL(env->ctr);
731 case 69: GET_REGL(env->xer);
732 case 70:
734 if (gdb_has_xml)
735 return 0;
736 GET_REG32(env->fpscr);
740 return 0;
743 static int cpu_gdb_write_register(CPUPPCState *env, uint8_t *mem_buf, int n)
745 if (n < 32) {
746 /* gprs */
747 env->gpr[n] = ldtul_p(mem_buf);
748 return sizeof(target_ulong);
749 } else if (n < 64) {
750 /* fprs */
751 if (gdb_has_xml)
752 return 0;
753 env->fpr[n-32] = ldfq_p(mem_buf);
754 return 8;
755 } else {
756 switch (n) {
757 case 64:
758 env->nip = ldtul_p(mem_buf);
759 return sizeof(target_ulong);
760 case 65:
761 ppc_store_msr(env, ldtul_p(mem_buf));
762 return sizeof(target_ulong);
763 case 66:
765 uint32_t cr = ldl_p(mem_buf);
766 int i;
767 for (i = 0; i < 8; i++)
768 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
769 return 4;
771 case 67:
772 env->lr = ldtul_p(mem_buf);
773 return sizeof(target_ulong);
774 case 68:
775 env->ctr = ldtul_p(mem_buf);
776 return sizeof(target_ulong);
777 case 69:
778 env->xer = ldtul_p(mem_buf);
779 return sizeof(target_ulong);
780 case 70:
781 /* fpscr */
782 if (gdb_has_xml)
783 return 0;
784 return 4;
787 return 0;
790 #elif defined (TARGET_SPARC)
792 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
793 #define NUM_CORE_REGS 86
794 #else
795 #define NUM_CORE_REGS 72
796 #endif
798 #ifdef TARGET_ABI32
799 #define GET_REGA(val) GET_REG32(val)
800 #else
801 #define GET_REGA(val) GET_REGL(val)
802 #endif
804 static int cpu_gdb_read_register(CPUSPARCState *env, uint8_t *mem_buf, int n)
806 if (n < 8) {
807 /* g0..g7 */
808 GET_REGA(env->gregs[n]);
810 if (n < 32) {
811 /* register window */
812 GET_REGA(env->regwptr[n - 8]);
814 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
815 if (n < 64) {
816 /* fprs */
817 if (n & 1) {
818 GET_REG32(env->fpr[(n - 32) / 2].l.lower);
819 } else {
820 GET_REG32(env->fpr[(n - 32) / 2].l.upper);
823 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
824 switch (n) {
825 case 64: GET_REGA(env->y);
826 case 65: GET_REGA(cpu_get_psr(env));
827 case 66: GET_REGA(env->wim);
828 case 67: GET_REGA(env->tbr);
829 case 68: GET_REGA(env->pc);
830 case 69: GET_REGA(env->npc);
831 case 70: GET_REGA(env->fsr);
832 case 71: GET_REGA(0); /* csr */
833 default: GET_REGA(0);
835 #else
836 if (n < 64) {
837 /* f0-f31 */
838 if (n & 1) {
839 GET_REG32(env->fpr[(n - 32) / 2].l.lower);
840 } else {
841 GET_REG32(env->fpr[(n - 32) / 2].l.upper);
844 if (n < 80) {
845 /* f32-f62 (double width, even numbers only) */
846 GET_REG64(env->fpr[(n - 32) / 2].ll);
848 switch (n) {
849 case 80: GET_REGL(env->pc);
850 case 81: GET_REGL(env->npc);
851 case 82: GET_REGL((cpu_get_ccr(env) << 32) |
852 ((env->asi & 0xff) << 24) |
853 ((env->pstate & 0xfff) << 8) |
854 cpu_get_cwp64(env));
855 case 83: GET_REGL(env->fsr);
856 case 84: GET_REGL(env->fprs);
857 case 85: GET_REGL(env->y);
859 #endif
860 return 0;
863 static int cpu_gdb_write_register(CPUSPARCState *env, uint8_t *mem_buf, int n)
865 #if defined(TARGET_ABI32)
866 abi_ulong tmp;
868 tmp = ldl_p(mem_buf);
869 #else
870 target_ulong tmp;
872 tmp = ldtul_p(mem_buf);
873 #endif
875 if (n < 8) {
876 /* g0..g7 */
877 env->gregs[n] = tmp;
878 } else if (n < 32) {
879 /* register window */
880 env->regwptr[n - 8] = tmp;
882 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
883 else if (n < 64) {
884 /* fprs */
885 /* f0-f31 */
886 if (n & 1) {
887 env->fpr[(n - 32) / 2].l.lower = tmp;
888 } else {
889 env->fpr[(n - 32) / 2].l.upper = tmp;
891 } else {
892 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
893 switch (n) {
894 case 64: env->y = tmp; break;
895 case 65: cpu_put_psr(env, tmp); break;
896 case 66: env->wim = tmp; break;
897 case 67: env->tbr = tmp; break;
898 case 68: env->pc = tmp; break;
899 case 69: env->npc = tmp; break;
900 case 70: env->fsr = tmp; break;
901 default: return 0;
904 return 4;
905 #else
906 else if (n < 64) {
907 /* f0-f31 */
908 tmp = ldl_p(mem_buf);
909 if (n & 1) {
910 env->fpr[(n - 32) / 2].l.lower = tmp;
911 } else {
912 env->fpr[(n - 32) / 2].l.upper = tmp;
914 return 4;
915 } else if (n < 80) {
916 /* f32-f62 (double width, even numbers only) */
917 env->fpr[(n - 32) / 2].ll = tmp;
918 } else {
919 switch (n) {
920 case 80: env->pc = tmp; break;
921 case 81: env->npc = tmp; break;
922 case 82:
923 cpu_put_ccr(env, tmp >> 32);
924 env->asi = (tmp >> 24) & 0xff;
925 env->pstate = (tmp >> 8) & 0xfff;
926 cpu_put_cwp64(env, tmp & 0xff);
927 break;
928 case 83: env->fsr = tmp; break;
929 case 84: env->fprs = tmp; break;
930 case 85: env->y = tmp; break;
931 default: return 0;
934 return 8;
935 #endif
937 #elif defined (TARGET_ARM)
939 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
940 whatever the target description contains. Due to a historical mishap
941 the FPA registers appear in between core integer regs and the CPSR.
942 We hack round this by giving the FPA regs zero size when talking to a
943 newer gdb. */
944 #define NUM_CORE_REGS 26
945 #define GDB_CORE_XML "arm-core.xml"
947 static int cpu_gdb_read_register(CPUARMState *env, uint8_t *mem_buf, int n)
949 if (n < 16) {
950 /* Core integer register. */
951 GET_REG32(env->regs[n]);
953 if (n < 24) {
954 /* FPA registers. */
955 if (gdb_has_xml)
956 return 0;
957 memset(mem_buf, 0, 12);
958 return 12;
960 switch (n) {
961 case 24:
962 /* FPA status register. */
963 if (gdb_has_xml)
964 return 0;
965 GET_REG32(0);
966 case 25:
967 /* CPSR */
968 GET_REG32(cpsr_read(env));
970 /* Unknown register. */
971 return 0;
974 static int cpu_gdb_write_register(CPUARMState *env, uint8_t *mem_buf, int n)
976 uint32_t tmp;
978 tmp = ldl_p(mem_buf);
980 /* Mask out low bit of PC to workaround gdb bugs. This will probably
981 cause problems if we ever implement the Jazelle DBX extensions. */
982 if (n == 15)
983 tmp &= ~1;
985 if (n < 16) {
986 /* Core integer register. */
987 env->regs[n] = tmp;
988 return 4;
990 if (n < 24) { /* 16-23 */
991 /* FPA registers (ignored). */
992 if (gdb_has_xml)
993 return 0;
994 return 12;
996 switch (n) {
997 case 24:
998 /* FPA status register (ignored). */
999 if (gdb_has_xml)
1000 return 0;
1001 return 4;
1002 case 25:
1003 /* CPSR */
1004 cpsr_write (env, tmp, 0xffffffff);
1005 return 4;
1007 /* Unknown register. */
1008 return 0;
1011 #elif defined (TARGET_M68K)
1013 #define NUM_CORE_REGS 18
1015 #define GDB_CORE_XML "cf-core.xml"
1017 static int cpu_gdb_read_register(CPUM68KState *env, uint8_t *mem_buf, int n)
1019 if (n < 8) {
1020 /* D0-D7 */
1021 GET_REG32(env->dregs[n]);
1022 } else if (n < 16) {
1023 /* A0-A7 */
1024 GET_REG32(env->aregs[n - 8]);
1025 } else {
1026 switch (n) {
1027 case 16: GET_REG32(env->sr);
1028 case 17: GET_REG32(env->pc);
1031 /* FP registers not included here because they vary between
1032 ColdFire and m68k. Use XML bits for these. */
1033 return 0;
1036 static int cpu_gdb_write_register(CPUM68KState *env, uint8_t *mem_buf, int n)
1038 uint32_t tmp;
1040 tmp = ldl_p(mem_buf);
1042 if (n < 8) {
1043 /* D0-D7 */
1044 env->dregs[n] = tmp;
1045 } else if (n < 16) {
1046 /* A0-A7 */
1047 env->aregs[n - 8] = tmp;
1048 } else {
1049 switch (n) {
1050 case 16: env->sr = tmp; break;
1051 case 17: env->pc = tmp; break;
1052 default: return 0;
1055 return 4;
1057 #elif defined (TARGET_MIPS)
1059 #define NUM_CORE_REGS 73
1061 static int cpu_gdb_read_register(CPUMIPSState *env, uint8_t *mem_buf, int n)
1063 if (n < 32) {
1064 GET_REGL(env->active_tc.gpr[n]);
1066 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
1067 if (n >= 38 && n < 70) {
1068 if (env->CP0_Status & (1 << CP0St_FR))
1069 GET_REGL(env->active_fpu.fpr[n - 38].d);
1070 else
1071 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
1073 switch (n) {
1074 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
1075 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
1078 switch (n) {
1079 case 32: GET_REGL((int32_t)env->CP0_Status);
1080 case 33: GET_REGL(env->active_tc.LO[0]);
1081 case 34: GET_REGL(env->active_tc.HI[0]);
1082 case 35: GET_REGL(env->CP0_BadVAddr);
1083 case 36: GET_REGL((int32_t)env->CP0_Cause);
1084 case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16));
1085 case 72: GET_REGL(0); /* fp */
1086 case 89: GET_REGL((int32_t)env->CP0_PRid);
1088 if (n >= 73 && n <= 88) {
1089 /* 16 embedded regs. */
1090 GET_REGL(0);
1093 return 0;
1096 /* convert MIPS rounding mode in FCR31 to IEEE library */
1097 static unsigned int ieee_rm[] =
1099 float_round_nearest_even,
1100 float_round_to_zero,
1101 float_round_up,
1102 float_round_down
1104 #define RESTORE_ROUNDING_MODE \
1105 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1107 static int cpu_gdb_write_register(CPUMIPSState *env, uint8_t *mem_buf, int n)
1109 target_ulong tmp;
1111 tmp = ldtul_p(mem_buf);
1113 if (n < 32) {
1114 env->active_tc.gpr[n] = tmp;
1115 return sizeof(target_ulong);
1117 if (env->CP0_Config1 & (1 << CP0C1_FP)
1118 && n >= 38 && n < 73) {
1119 if (n < 70) {
1120 if (env->CP0_Status & (1 << CP0St_FR))
1121 env->active_fpu.fpr[n - 38].d = tmp;
1122 else
1123 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1125 switch (n) {
1126 case 70:
1127 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1128 /* set rounding mode */
1129 RESTORE_ROUNDING_MODE;
1130 break;
1131 case 71: env->active_fpu.fcr0 = tmp; break;
1133 return sizeof(target_ulong);
1135 switch (n) {
1136 case 32: env->CP0_Status = tmp; break;
1137 case 33: env->active_tc.LO[0] = tmp; break;
1138 case 34: env->active_tc.HI[0] = tmp; break;
1139 case 35: env->CP0_BadVAddr = tmp; break;
1140 case 36: env->CP0_Cause = tmp; break;
1141 case 37:
1142 env->active_tc.PC = tmp & ~(target_ulong)1;
1143 if (tmp & 1) {
1144 env->hflags |= MIPS_HFLAG_M16;
1145 } else {
1146 env->hflags &= ~(MIPS_HFLAG_M16);
1148 break;
1149 case 72: /* fp, ignored */ break;
1150 default:
1151 if (n > 89)
1152 return 0;
1153 /* Other registers are readonly. Ignore writes. */
1154 break;
1157 return sizeof(target_ulong);
1159 #elif defined(TARGET_OPENRISC)
1161 #define NUM_CORE_REGS (32 + 3)
1163 static int cpu_gdb_read_register(CPUOpenRISCState *env, uint8_t *mem_buf, int n)
1165 if (n < 32) {
1166 GET_REG32(env->gpr[n]);
1167 } else {
1168 switch (n) {
1169 case 32: /* PPC */
1170 GET_REG32(env->ppc);
1171 break;
1173 case 33: /* NPC */
1174 GET_REG32(env->npc);
1175 break;
1177 case 34: /* SR */
1178 GET_REG32(env->sr);
1179 break;
1181 default:
1182 break;
1185 return 0;
1188 static int cpu_gdb_write_register(CPUOpenRISCState *env,
1189 uint8_t *mem_buf, int n)
1191 uint32_t tmp;
1193 if (n > NUM_CORE_REGS) {
1194 return 0;
1197 tmp = ldl_p(mem_buf);
1199 if (n < 32) {
1200 env->gpr[n] = tmp;
1201 } else {
1202 switch (n) {
1203 case 32: /* PPC */
1204 env->ppc = tmp;
1205 break;
1207 case 33: /* NPC */
1208 env->npc = tmp;
1209 break;
1211 case 34: /* SR */
1212 env->sr = tmp;
1213 break;
1215 default:
1216 break;
1219 return 4;
1221 #elif defined (TARGET_SH4)
1223 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1224 /* FIXME: We should use XML for this. */
1226 #define NUM_CORE_REGS 59
1228 static int cpu_gdb_read_register(CPUSH4State *env, uint8_t *mem_buf, int n)
1230 switch (n) {
1231 case 0 ... 7:
1232 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1233 GET_REGL(env->gregs[n + 16]);
1234 } else {
1235 GET_REGL(env->gregs[n]);
1237 case 8 ... 15:
1238 GET_REGL(env->gregs[n]);
1239 case 16:
1240 GET_REGL(env->pc);
1241 case 17:
1242 GET_REGL(env->pr);
1243 case 18:
1244 GET_REGL(env->gbr);
1245 case 19:
1246 GET_REGL(env->vbr);
1247 case 20:
1248 GET_REGL(env->mach);
1249 case 21:
1250 GET_REGL(env->macl);
1251 case 22:
1252 GET_REGL(env->sr);
1253 case 23:
1254 GET_REGL(env->fpul);
1255 case 24:
1256 GET_REGL(env->fpscr);
1257 case 25 ... 40:
1258 if (env->fpscr & FPSCR_FR) {
1259 stfl_p(mem_buf, env->fregs[n - 9]);
1260 } else {
1261 stfl_p(mem_buf, env->fregs[n - 25]);
1263 return 4;
1264 case 41:
1265 GET_REGL(env->ssr);
1266 case 42:
1267 GET_REGL(env->spc);
1268 case 43 ... 50:
1269 GET_REGL(env->gregs[n - 43]);
1270 case 51 ... 58:
1271 GET_REGL(env->gregs[n - (51 - 16)]);
1274 return 0;
1277 static int cpu_gdb_write_register(CPUSH4State *env, uint8_t *mem_buf, int n)
1279 switch (n) {
1280 case 0 ... 7:
1281 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1282 env->gregs[n + 16] = ldl_p(mem_buf);
1283 } else {
1284 env->gregs[n] = ldl_p(mem_buf);
1286 break;
1287 case 8 ... 15:
1288 env->gregs[n] = ldl_p(mem_buf);
1289 break;
1290 case 16:
1291 env->pc = ldl_p(mem_buf);
1292 break;
1293 case 17:
1294 env->pr = ldl_p(mem_buf);
1295 break;
1296 case 18:
1297 env->gbr = ldl_p(mem_buf);
1298 break;
1299 case 19:
1300 env->vbr = ldl_p(mem_buf);
1301 break;
1302 case 20:
1303 env->mach = ldl_p(mem_buf);
1304 break;
1305 case 21:
1306 env->macl = ldl_p(mem_buf);
1307 break;
1308 case 22:
1309 env->sr = ldl_p(mem_buf);
1310 break;
1311 case 23:
1312 env->fpul = ldl_p(mem_buf);
1313 break;
1314 case 24:
1315 env->fpscr = ldl_p(mem_buf);
1316 break;
1317 case 25 ... 40:
1318 if (env->fpscr & FPSCR_FR) {
1319 env->fregs[n - 9] = ldfl_p(mem_buf);
1320 } else {
1321 env->fregs[n - 25] = ldfl_p(mem_buf);
1323 break;
1324 case 41:
1325 env->ssr = ldl_p(mem_buf);
1326 break;
1327 case 42:
1328 env->spc = ldl_p(mem_buf);
1329 break;
1330 case 43 ... 50:
1331 env->gregs[n - 43] = ldl_p(mem_buf);
1332 break;
1333 case 51 ... 58:
1334 env->gregs[n - (51 - 16)] = ldl_p(mem_buf);
1335 break;
1336 default: return 0;
1339 return 4;
1341 #elif defined (TARGET_MICROBLAZE)
1343 #define NUM_CORE_REGS (32 + 5)
1345 static int cpu_gdb_read_register(CPUMBState *env, uint8_t *mem_buf, int n)
1347 if (n < 32) {
1348 GET_REG32(env->regs[n]);
1349 } else {
1350 GET_REG32(env->sregs[n - 32]);
1352 return 0;
1355 static int cpu_gdb_write_register(CPUMBState *env, uint8_t *mem_buf, int n)
1357 uint32_t tmp;
1359 if (n > NUM_CORE_REGS)
1360 return 0;
1362 tmp = ldl_p(mem_buf);
1364 if (n < 32) {
1365 env->regs[n] = tmp;
1366 } else {
1367 env->sregs[n - 32] = tmp;
1369 return 4;
1371 #elif defined (TARGET_CRIS)
1373 #define NUM_CORE_REGS 49
1375 static int
1376 read_register_crisv10(CPUCRISState *env, uint8_t *mem_buf, int n)
1378 if (n < 15) {
1379 GET_REG32(env->regs[n]);
1382 if (n == 15) {
1383 GET_REG32(env->pc);
1386 if (n < 32) {
1387 switch (n) {
1388 case 16:
1389 GET_REG8(env->pregs[n - 16]);
1390 break;
1391 case 17:
1392 GET_REG8(env->pregs[n - 16]);
1393 break;
1394 case 20:
1395 case 21:
1396 GET_REG16(env->pregs[n - 16]);
1397 break;
1398 default:
1399 if (n >= 23) {
1400 GET_REG32(env->pregs[n - 16]);
1402 break;
1405 return 0;
1408 static int cpu_gdb_read_register(CPUCRISState *env, uint8_t *mem_buf, int n)
1410 uint8_t srs;
1412 if (env->pregs[PR_VR] < 32)
1413 return read_register_crisv10(env, mem_buf, n);
1415 srs = env->pregs[PR_SRS];
1416 if (n < 16) {
1417 GET_REG32(env->regs[n]);
1420 if (n >= 21 && n < 32) {
1421 GET_REG32(env->pregs[n - 16]);
1423 if (n >= 33 && n < 49) {
1424 GET_REG32(env->sregs[srs][n - 33]);
1426 switch (n) {
1427 case 16: GET_REG8(env->pregs[0]);
1428 case 17: GET_REG8(env->pregs[1]);
1429 case 18: GET_REG32(env->pregs[2]);
1430 case 19: GET_REG8(srs);
1431 case 20: GET_REG16(env->pregs[4]);
1432 case 32: GET_REG32(env->pc);
1435 return 0;
1438 static int cpu_gdb_write_register(CPUCRISState *env, uint8_t *mem_buf, int n)
1440 uint32_t tmp;
1442 if (n > 49)
1443 return 0;
1445 tmp = ldl_p(mem_buf);
1447 if (n < 16) {
1448 env->regs[n] = tmp;
1451 if (n >= 21 && n < 32) {
1452 env->pregs[n - 16] = tmp;
1455 /* FIXME: Should support function regs be writable? */
1456 switch (n) {
1457 case 16: return 1;
1458 case 17: return 1;
1459 case 18: env->pregs[PR_PID] = tmp; break;
1460 case 19: return 1;
1461 case 20: return 2;
1462 case 32: env->pc = tmp; break;
1465 return 4;
1467 #elif defined (TARGET_ALPHA)
1469 #define NUM_CORE_REGS 67
1471 static int cpu_gdb_read_register(CPUAlphaState *env, uint8_t *mem_buf, int n)
1473 uint64_t val;
1474 CPU_DoubleU d;
1476 switch (n) {
1477 case 0 ... 30:
1478 val = env->ir[n];
1479 break;
1480 case 32 ... 62:
1481 d.d = env->fir[n - 32];
1482 val = d.ll;
1483 break;
1484 case 63:
1485 val = cpu_alpha_load_fpcr(env);
1486 break;
1487 case 64:
1488 val = env->pc;
1489 break;
1490 case 66:
1491 val = env->unique;
1492 break;
1493 case 31:
1494 case 65:
1495 /* 31 really is the zero register; 65 is unassigned in the
1496 gdb protocol, but is still required to occupy 8 bytes. */
1497 val = 0;
1498 break;
1499 default:
1500 return 0;
1502 GET_REGL(val);
1505 static int cpu_gdb_write_register(CPUAlphaState *env, uint8_t *mem_buf, int n)
1507 target_ulong tmp = ldtul_p(mem_buf);
1508 CPU_DoubleU d;
1510 switch (n) {
1511 case 0 ... 30:
1512 env->ir[n] = tmp;
1513 break;
1514 case 32 ... 62:
1515 d.ll = tmp;
1516 env->fir[n - 32] = d.d;
1517 break;
1518 case 63:
1519 cpu_alpha_store_fpcr(env, tmp);
1520 break;
1521 case 64:
1522 env->pc = tmp;
1523 break;
1524 case 66:
1525 env->unique = tmp;
1526 break;
1527 case 31:
1528 case 65:
1529 /* 31 really is the zero register; 65 is unassigned in the
1530 gdb protocol, but is still required to occupy 8 bytes. */
1531 break;
1532 default:
1533 return 0;
1535 return 8;
1537 #elif defined (TARGET_S390X)
1539 #define NUM_CORE_REGS S390_NUM_REGS
1541 static int cpu_gdb_read_register(CPUS390XState *env, uint8_t *mem_buf, int n)
1543 uint64_t val;
1544 int cc_op;
1546 switch (n) {
1547 case S390_PSWM_REGNUM:
1548 cc_op = calc_cc(env, env->cc_op, env->cc_src, env->cc_dst, env->cc_vr);
1549 val = deposit64(env->psw.mask, 44, 2, cc_op);
1550 GET_REGL(val);
1551 break;
1552 case S390_PSWA_REGNUM:
1553 GET_REGL(env->psw.addr);
1554 break;
1555 case S390_R0_REGNUM ... S390_R15_REGNUM:
1556 GET_REGL(env->regs[n-S390_R0_REGNUM]);
1557 break;
1558 case S390_A0_REGNUM ... S390_A15_REGNUM:
1559 GET_REG32(env->aregs[n-S390_A0_REGNUM]);
1560 break;
1561 case S390_FPC_REGNUM:
1562 GET_REG32(env->fpc);
1563 break;
1564 case S390_F0_REGNUM ... S390_F15_REGNUM:
1565 GET_REG64(env->fregs[n-S390_F0_REGNUM].ll);
1566 break;
1569 return 0;
1572 static int cpu_gdb_write_register(CPUS390XState *env, uint8_t *mem_buf, int n)
1574 target_ulong tmpl;
1575 uint32_t tmp32;
1576 int r = 8;
1577 tmpl = ldtul_p(mem_buf);
1578 tmp32 = ldl_p(mem_buf);
1580 switch (n) {
1581 case S390_PSWM_REGNUM:
1582 env->psw.mask = tmpl;
1583 env->cc_op = extract64(tmpl, 44, 2);
1584 break;
1585 case S390_PSWA_REGNUM:
1586 env->psw.addr = tmpl;
1587 break;
1588 case S390_R0_REGNUM ... S390_R15_REGNUM:
1589 env->regs[n-S390_R0_REGNUM] = tmpl;
1590 break;
1591 case S390_A0_REGNUM ... S390_A15_REGNUM:
1592 env->aregs[n-S390_A0_REGNUM] = tmp32;
1593 r = 4;
1594 break;
1595 case S390_FPC_REGNUM:
1596 env->fpc = tmp32;
1597 r = 4;
1598 break;
1599 case S390_F0_REGNUM ... S390_F15_REGNUM:
1600 env->fregs[n-S390_F0_REGNUM].ll = tmpl;
1601 break;
1602 default:
1603 return 0;
1605 return r;
1607 #elif defined (TARGET_LM32)
1609 #include "hw/lm32_pic.h"
1610 #define NUM_CORE_REGS (32 + 7)
1612 static int cpu_gdb_read_register(CPULM32State *env, uint8_t *mem_buf, int n)
1614 if (n < 32) {
1615 GET_REG32(env->regs[n]);
1616 } else {
1617 switch (n) {
1618 case 32:
1619 GET_REG32(env->pc);
1620 break;
1621 /* FIXME: put in right exception ID */
1622 case 33:
1623 GET_REG32(0);
1624 break;
1625 case 34:
1626 GET_REG32(env->eba);
1627 break;
1628 case 35:
1629 GET_REG32(env->deba);
1630 break;
1631 case 36:
1632 GET_REG32(env->ie);
1633 break;
1634 case 37:
1635 GET_REG32(lm32_pic_get_im(env->pic_state));
1636 break;
1637 case 38:
1638 GET_REG32(lm32_pic_get_ip(env->pic_state));
1639 break;
1642 return 0;
1645 static int cpu_gdb_write_register(CPULM32State *env, uint8_t *mem_buf, int n)
1647 uint32_t tmp;
1649 if (n > NUM_CORE_REGS) {
1650 return 0;
1653 tmp = ldl_p(mem_buf);
1655 if (n < 32) {
1656 env->regs[n] = tmp;
1657 } else {
1658 switch (n) {
1659 case 32:
1660 env->pc = tmp;
1661 break;
1662 case 34:
1663 env->eba = tmp;
1664 break;
1665 case 35:
1666 env->deba = tmp;
1667 break;
1668 case 36:
1669 env->ie = tmp;
1670 break;
1671 case 37:
1672 lm32_pic_set_im(env->pic_state, tmp);
1673 break;
1674 case 38:
1675 lm32_pic_set_ip(env->pic_state, tmp);
1676 break;
1679 return 4;
1681 #elif defined(TARGET_XTENSA)
1683 /* Use num_core_regs to see only non-privileged registers in an unmodified gdb.
1684 * Use num_regs to see all registers. gdb modification is required for that:
1685 * reset bit 0 in the 'flags' field of the registers definitions in the
1686 * gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
1688 #define NUM_CORE_REGS (env->config->gdb_regmap.num_regs)
1689 #define num_g_regs NUM_CORE_REGS
1691 static int cpu_gdb_read_register(CPUXtensaState *env, uint8_t *mem_buf, int n)
1693 const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
1695 if (n < 0 || n >= env->config->gdb_regmap.num_regs) {
1696 return 0;
1699 switch (reg->type) {
1700 case 9: /*pc*/
1701 GET_REG32(env->pc);
1702 break;
1704 case 1: /*ar*/
1705 xtensa_sync_phys_from_window(env);
1706 GET_REG32(env->phys_regs[(reg->targno & 0xff) % env->config->nareg]);
1707 break;
1709 case 2: /*SR*/
1710 GET_REG32(env->sregs[reg->targno & 0xff]);
1711 break;
1713 case 3: /*UR*/
1714 GET_REG32(env->uregs[reg->targno & 0xff]);
1715 break;
1717 case 4: /*f*/
1718 GET_REG32(float32_val(env->fregs[reg->targno & 0x0f]));
1719 break;
1721 case 8: /*a*/
1722 GET_REG32(env->regs[reg->targno & 0x0f]);
1723 break;
1725 default:
1726 qemu_log("%s from reg %d of unsupported type %d\n",
1727 __func__, n, reg->type);
1728 return 0;
1732 static int cpu_gdb_write_register(CPUXtensaState *env, uint8_t *mem_buf, int n)
1734 uint32_t tmp;
1735 const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
1737 if (n < 0 || n >= env->config->gdb_regmap.num_regs) {
1738 return 0;
1741 tmp = ldl_p(mem_buf);
1743 switch (reg->type) {
1744 case 9: /*pc*/
1745 env->pc = tmp;
1746 break;
1748 case 1: /*ar*/
1749 env->phys_regs[(reg->targno & 0xff) % env->config->nareg] = tmp;
1750 xtensa_sync_window_from_phys(env);
1751 break;
1753 case 2: /*SR*/
1754 env->sregs[reg->targno & 0xff] = tmp;
1755 break;
1757 case 3: /*UR*/
1758 env->uregs[reg->targno & 0xff] = tmp;
1759 break;
1761 case 4: /*f*/
1762 env->fregs[reg->targno & 0x0f] = make_float32(tmp);
1763 break;
1765 case 8: /*a*/
1766 env->regs[reg->targno & 0x0f] = tmp;
1767 break;
1769 default:
1770 qemu_log("%s to reg %d of unsupported type %d\n",
1771 __func__, n, reg->type);
1772 return 0;
1775 return 4;
1777 #else
1779 #define NUM_CORE_REGS 0
1781 static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n)
1783 return 0;
1786 static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n)
1788 return 0;
1791 #endif
1793 #if !defined(TARGET_XTENSA)
1794 static int num_g_regs = NUM_CORE_REGS;
1795 #endif
1797 #ifdef GDB_CORE_XML
1798 /* Encode data using the encoding for 'x' packets. */
1799 static int memtox(char *buf, const char *mem, int len)
1801 char *p = buf;
1802 char c;
1804 while (len--) {
1805 c = *(mem++);
1806 switch (c) {
1807 case '#': case '$': case '*': case '}':
1808 *(p++) = '}';
1809 *(p++) = c ^ 0x20;
1810 break;
1811 default:
1812 *(p++) = c;
1813 break;
1816 return p - buf;
1819 static const char *get_feature_xml(const char *p, const char **newp)
1821 size_t len;
1822 int i;
1823 const char *name;
1824 static char target_xml[1024];
1826 len = 0;
1827 while (p[len] && p[len] != ':')
1828 len++;
1829 *newp = p + len;
1831 name = NULL;
1832 if (strncmp(p, "target.xml", len) == 0) {
1833 /* Generate the XML description for this CPU. */
1834 if (!target_xml[0]) {
1835 GDBRegisterState *r;
1837 snprintf(target_xml, sizeof(target_xml),
1838 "<?xml version=\"1.0\"?>"
1839 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1840 "<target>"
1841 "<xi:include href=\"%s\"/>",
1842 GDB_CORE_XML);
1844 for (r = first_cpu->gdb_regs; r; r = r->next) {
1845 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1846 pstrcat(target_xml, sizeof(target_xml), r->xml);
1847 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1849 pstrcat(target_xml, sizeof(target_xml), "</target>");
1851 return target_xml;
1853 for (i = 0; ; i++) {
1854 name = xml_builtin[i][0];
1855 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1856 break;
1858 return name ? xml_builtin[i][1] : NULL;
1860 #endif
1862 static int gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int reg)
1864 GDBRegisterState *r;
1866 if (reg < NUM_CORE_REGS)
1867 return cpu_gdb_read_register(env, mem_buf, reg);
1869 for (r = env->gdb_regs; r; r = r->next) {
1870 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1871 return r->get_reg(env, mem_buf, reg - r->base_reg);
1874 return 0;
1877 static int gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int reg)
1879 GDBRegisterState *r;
1881 if (reg < NUM_CORE_REGS)
1882 return cpu_gdb_write_register(env, mem_buf, reg);
1884 for (r = env->gdb_regs; r; r = r->next) {
1885 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1886 return r->set_reg(env, mem_buf, reg - r->base_reg);
1889 return 0;
1892 #if !defined(TARGET_XTENSA)
1893 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1894 specifies the first register number and these registers are included in
1895 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1896 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1899 void gdb_register_coprocessor(CPUArchState * env,
1900 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1901 int num_regs, const char *xml, int g_pos)
1903 GDBRegisterState *s;
1904 GDBRegisterState **p;
1905 static int last_reg = NUM_CORE_REGS;
1907 p = &env->gdb_regs;
1908 while (*p) {
1909 /* Check for duplicates. */
1910 if (strcmp((*p)->xml, xml) == 0)
1911 return;
1912 p = &(*p)->next;
1915 s = g_new0(GDBRegisterState, 1);
1916 s->base_reg = last_reg;
1917 s->num_regs = num_regs;
1918 s->get_reg = get_reg;
1919 s->set_reg = set_reg;
1920 s->xml = xml;
1922 /* Add to end of list. */
1923 last_reg += num_regs;
1924 *p = s;
1925 if (g_pos) {
1926 if (g_pos != s->base_reg) {
1927 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1928 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1929 } else {
1930 num_g_regs = last_reg;
1934 #endif
1936 #ifndef CONFIG_USER_ONLY
1937 static const int xlat_gdb_type[] = {
1938 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1939 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1940 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1942 #endif
1944 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1946 CPUArchState *env;
1947 int err = 0;
1949 if (kvm_enabled())
1950 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1952 switch (type) {
1953 case GDB_BREAKPOINT_SW:
1954 case GDB_BREAKPOINT_HW:
1955 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1956 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1957 if (err)
1958 break;
1960 return err;
1961 #ifndef CONFIG_USER_ONLY
1962 case GDB_WATCHPOINT_WRITE:
1963 case GDB_WATCHPOINT_READ:
1964 case GDB_WATCHPOINT_ACCESS:
1965 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1966 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1967 NULL);
1968 if (err)
1969 break;
1971 return err;
1972 #endif
1973 default:
1974 return -ENOSYS;
1978 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1980 CPUArchState *env;
1981 int err = 0;
1983 if (kvm_enabled())
1984 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1986 switch (type) {
1987 case GDB_BREAKPOINT_SW:
1988 case GDB_BREAKPOINT_HW:
1989 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1990 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1991 if (err)
1992 break;
1994 return err;
1995 #ifndef CONFIG_USER_ONLY
1996 case GDB_WATCHPOINT_WRITE:
1997 case GDB_WATCHPOINT_READ:
1998 case GDB_WATCHPOINT_ACCESS:
1999 for (env = first_cpu; env != NULL; env = env->next_cpu) {
2000 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
2001 if (err)
2002 break;
2004 return err;
2005 #endif
2006 default:
2007 return -ENOSYS;
2011 static void gdb_breakpoint_remove_all(void)
2013 CPUArchState *env;
2015 if (kvm_enabled()) {
2016 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
2017 return;
2020 for (env = first_cpu; env != NULL; env = env->next_cpu) {
2021 cpu_breakpoint_remove_all(env, BP_GDB);
2022 #ifndef CONFIG_USER_ONLY
2023 cpu_watchpoint_remove_all(env, BP_GDB);
2024 #endif
2028 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
2030 cpu_synchronize_state(s->c_cpu);
2031 #if defined(TARGET_I386)
2032 s->c_cpu->eip = pc;
2033 #elif defined (TARGET_PPC)
2034 s->c_cpu->nip = pc;
2035 #elif defined (TARGET_SPARC)
2036 s->c_cpu->pc = pc;
2037 s->c_cpu->npc = pc + 4;
2038 #elif defined (TARGET_ARM)
2039 s->c_cpu->regs[15] = pc;
2040 #elif defined (TARGET_SH4)
2041 s->c_cpu->pc = pc;
2042 #elif defined (TARGET_MIPS)
2043 s->c_cpu->active_tc.PC = pc & ~(target_ulong)1;
2044 if (pc & 1) {
2045 s->c_cpu->hflags |= MIPS_HFLAG_M16;
2046 } else {
2047 s->c_cpu->hflags &= ~(MIPS_HFLAG_M16);
2049 #elif defined (TARGET_MICROBLAZE)
2050 s->c_cpu->sregs[SR_PC] = pc;
2051 #elif defined(TARGET_OPENRISC)
2052 s->c_cpu->pc = pc;
2053 #elif defined (TARGET_CRIS)
2054 s->c_cpu->pc = pc;
2055 #elif defined (TARGET_ALPHA)
2056 s->c_cpu->pc = pc;
2057 #elif defined (TARGET_S390X)
2058 s->c_cpu->psw.addr = pc;
2059 #elif defined (TARGET_LM32)
2060 s->c_cpu->pc = pc;
2061 #elif defined(TARGET_XTENSA)
2062 s->c_cpu->pc = pc;
2063 #endif
2066 static CPUArchState *find_cpu(uint32_t thread_id)
2068 CPUArchState *env;
2069 CPUState *cpu;
2071 for (env = first_cpu; env != NULL; env = env->next_cpu) {
2072 cpu = ENV_GET_CPU(env);
2073 if (cpu_index(cpu) == thread_id) {
2074 return env;
2078 return NULL;
2081 static int gdb_handle_packet(GDBState *s, const char *line_buf)
2083 CPUArchState *env;
2084 const char *p;
2085 uint32_t thread;
2086 int ch, reg_size, type, res;
2087 char buf[MAX_PACKET_LENGTH];
2088 uint8_t mem_buf[MAX_PACKET_LENGTH];
2089 uint8_t *registers;
2090 target_ulong addr, len;
2092 #ifdef DEBUG_GDB
2093 printf("command='%s'\n", line_buf);
2094 #endif
2095 p = line_buf;
2096 ch = *p++;
2097 switch(ch) {
2098 case '?':
2099 /* TODO: Make this return the correct value for user-mode. */
2100 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
2101 cpu_index(ENV_GET_CPU(s->c_cpu)));
2102 put_packet(s, buf);
2103 /* Remove all the breakpoints when this query is issued,
2104 * because gdb is doing and initial connect and the state
2105 * should be cleaned up.
2107 gdb_breakpoint_remove_all();
2108 break;
2109 case 'c':
2110 if (*p != '\0') {
2111 addr = strtoull(p, (char **)&p, 16);
2112 gdb_set_cpu_pc(s, addr);
2114 s->signal = 0;
2115 gdb_continue(s);
2116 return RS_IDLE;
2117 case 'C':
2118 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
2119 if (s->signal == -1)
2120 s->signal = 0;
2121 gdb_continue(s);
2122 return RS_IDLE;
2123 case 'v':
2124 if (strncmp(p, "Cont", 4) == 0) {
2125 int res_signal, res_thread;
2127 p += 4;
2128 if (*p == '?') {
2129 put_packet(s, "vCont;c;C;s;S");
2130 break;
2132 res = 0;
2133 res_signal = 0;
2134 res_thread = 0;
2135 while (*p) {
2136 int action, signal;
2138 if (*p++ != ';') {
2139 res = 0;
2140 break;
2142 action = *p++;
2143 signal = 0;
2144 if (action == 'C' || action == 'S') {
2145 signal = strtoul(p, (char **)&p, 16);
2146 } else if (action != 'c' && action != 's') {
2147 res = 0;
2148 break;
2150 thread = 0;
2151 if (*p == ':') {
2152 thread = strtoull(p+1, (char **)&p, 16);
2154 action = tolower(action);
2155 if (res == 0 || (res == 'c' && action == 's')) {
2156 res = action;
2157 res_signal = signal;
2158 res_thread = thread;
2161 if (res) {
2162 if (res_thread != -1 && res_thread != 0) {
2163 env = find_cpu(res_thread);
2164 if (env == NULL) {
2165 put_packet(s, "E22");
2166 break;
2168 s->c_cpu = env;
2170 if (res == 's') {
2171 cpu_single_step(s->c_cpu, sstep_flags);
2173 s->signal = res_signal;
2174 gdb_continue(s);
2175 return RS_IDLE;
2177 break;
2178 } else {
2179 goto unknown_command;
2181 case 'k':
2182 #ifdef CONFIG_USER_ONLY
2183 /* Kill the target */
2184 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
2185 exit(0);
2186 #endif
2187 case 'D':
2188 /* Detach packet */
2189 gdb_breakpoint_remove_all();
2190 gdb_syscall_mode = GDB_SYS_DISABLED;
2191 gdb_continue(s);
2192 put_packet(s, "OK");
2193 break;
2194 case 's':
2195 if (*p != '\0') {
2196 addr = strtoull(p, (char **)&p, 16);
2197 gdb_set_cpu_pc(s, addr);
2199 cpu_single_step(s->c_cpu, sstep_flags);
2200 gdb_continue(s);
2201 return RS_IDLE;
2202 case 'F':
2204 target_ulong ret;
2205 target_ulong err;
2207 ret = strtoull(p, (char **)&p, 16);
2208 if (*p == ',') {
2209 p++;
2210 err = strtoull(p, (char **)&p, 16);
2211 } else {
2212 err = 0;
2214 if (*p == ',')
2215 p++;
2216 type = *p;
2217 if (s->current_syscall_cb) {
2218 s->current_syscall_cb(s->c_cpu, ret, err);
2219 s->current_syscall_cb = NULL;
2221 if (type == 'C') {
2222 put_packet(s, "T02");
2223 } else {
2224 gdb_continue(s);
2227 break;
2228 case 'g':
2229 cpu_synchronize_state(s->g_cpu);
2230 env = s->g_cpu;
2231 len = 0;
2232 for (addr = 0; addr < num_g_regs; addr++) {
2233 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
2234 len += reg_size;
2236 memtohex(buf, mem_buf, len);
2237 put_packet(s, buf);
2238 break;
2239 case 'G':
2240 cpu_synchronize_state(s->g_cpu);
2241 env = s->g_cpu;
2242 registers = mem_buf;
2243 len = strlen(p) / 2;
2244 hextomem((uint8_t *)registers, p, len);
2245 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
2246 reg_size = gdb_write_register(s->g_cpu, registers, addr);
2247 len -= reg_size;
2248 registers += reg_size;
2250 put_packet(s, "OK");
2251 break;
2252 case 'm':
2253 addr = strtoull(p, (char **)&p, 16);
2254 if (*p == ',')
2255 p++;
2256 len = strtoull(p, NULL, 16);
2257 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
2258 put_packet (s, "E14");
2259 } else {
2260 memtohex(buf, mem_buf, len);
2261 put_packet(s, buf);
2263 break;
2264 case 'M':
2265 addr = strtoull(p, (char **)&p, 16);
2266 if (*p == ',')
2267 p++;
2268 len = strtoull(p, (char **)&p, 16);
2269 if (*p == ':')
2270 p++;
2271 hextomem(mem_buf, p, len);
2272 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0) {
2273 put_packet(s, "E14");
2274 } else {
2275 put_packet(s, "OK");
2277 break;
2278 case 'p':
2279 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
2280 This works, but can be very slow. Anything new enough to
2281 understand XML also knows how to use this properly. */
2282 if (!gdb_has_xml)
2283 goto unknown_command;
2284 addr = strtoull(p, (char **)&p, 16);
2285 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
2286 if (reg_size) {
2287 memtohex(buf, mem_buf, reg_size);
2288 put_packet(s, buf);
2289 } else {
2290 put_packet(s, "E14");
2292 break;
2293 case 'P':
2294 if (!gdb_has_xml)
2295 goto unknown_command;
2296 addr = strtoull(p, (char **)&p, 16);
2297 if (*p == '=')
2298 p++;
2299 reg_size = strlen(p) / 2;
2300 hextomem(mem_buf, p, reg_size);
2301 gdb_write_register(s->g_cpu, mem_buf, addr);
2302 put_packet(s, "OK");
2303 break;
2304 case 'Z':
2305 case 'z':
2306 type = strtoul(p, (char **)&p, 16);
2307 if (*p == ',')
2308 p++;
2309 addr = strtoull(p, (char **)&p, 16);
2310 if (*p == ',')
2311 p++;
2312 len = strtoull(p, (char **)&p, 16);
2313 if (ch == 'Z')
2314 res = gdb_breakpoint_insert(addr, len, type);
2315 else
2316 res = gdb_breakpoint_remove(addr, len, type);
2317 if (res >= 0)
2318 put_packet(s, "OK");
2319 else if (res == -ENOSYS)
2320 put_packet(s, "");
2321 else
2322 put_packet(s, "E22");
2323 break;
2324 case 'H':
2325 type = *p++;
2326 thread = strtoull(p, (char **)&p, 16);
2327 if (thread == -1 || thread == 0) {
2328 put_packet(s, "OK");
2329 break;
2331 env = find_cpu(thread);
2332 if (env == NULL) {
2333 put_packet(s, "E22");
2334 break;
2336 switch (type) {
2337 case 'c':
2338 s->c_cpu = env;
2339 put_packet(s, "OK");
2340 break;
2341 case 'g':
2342 s->g_cpu = env;
2343 put_packet(s, "OK");
2344 break;
2345 default:
2346 put_packet(s, "E22");
2347 break;
2349 break;
2350 case 'T':
2351 thread = strtoull(p, (char **)&p, 16);
2352 env = find_cpu(thread);
2354 if (env != NULL) {
2355 put_packet(s, "OK");
2356 } else {
2357 put_packet(s, "E22");
2359 break;
2360 case 'q':
2361 case 'Q':
2362 /* parse any 'q' packets here */
2363 if (!strcmp(p,"qemu.sstepbits")) {
2364 /* Query Breakpoint bit definitions */
2365 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2366 SSTEP_ENABLE,
2367 SSTEP_NOIRQ,
2368 SSTEP_NOTIMER);
2369 put_packet(s, buf);
2370 break;
2371 } else if (strncmp(p,"qemu.sstep",10) == 0) {
2372 /* Display or change the sstep_flags */
2373 p += 10;
2374 if (*p != '=') {
2375 /* Display current setting */
2376 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
2377 put_packet(s, buf);
2378 break;
2380 p++;
2381 type = strtoul(p, (char **)&p, 16);
2382 sstep_flags = type;
2383 put_packet(s, "OK");
2384 break;
2385 } else if (strcmp(p,"C") == 0) {
2386 /* "Current thread" remains vague in the spec, so always return
2387 * the first CPU (gdb returns the first thread). */
2388 put_packet(s, "QC1");
2389 break;
2390 } else if (strcmp(p,"fThreadInfo") == 0) {
2391 s->query_cpu = first_cpu;
2392 goto report_cpuinfo;
2393 } else if (strcmp(p,"sThreadInfo") == 0) {
2394 report_cpuinfo:
2395 if (s->query_cpu) {
2396 snprintf(buf, sizeof(buf), "m%x",
2397 cpu_index(ENV_GET_CPU(s->query_cpu)));
2398 put_packet(s, buf);
2399 s->query_cpu = s->query_cpu->next_cpu;
2400 } else
2401 put_packet(s, "l");
2402 break;
2403 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
2404 thread = strtoull(p+16, (char **)&p, 16);
2405 env = find_cpu(thread);
2406 if (env != NULL) {
2407 CPUState *cpu = ENV_GET_CPU(env);
2408 cpu_synchronize_state(env);
2409 len = snprintf((char *)mem_buf, sizeof(mem_buf),
2410 "CPU#%d [%s]", cpu->cpu_index,
2411 env->halted ? "halted " : "running");
2412 memtohex(buf, mem_buf, len);
2413 put_packet(s, buf);
2415 break;
2417 #ifdef CONFIG_USER_ONLY
2418 else if (strncmp(p, "Offsets", 7) == 0) {
2419 TaskState *ts = s->c_cpu->opaque;
2421 snprintf(buf, sizeof(buf),
2422 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2423 ";Bss=" TARGET_ABI_FMT_lx,
2424 ts->info->code_offset,
2425 ts->info->data_offset,
2426 ts->info->data_offset);
2427 put_packet(s, buf);
2428 break;
2430 #else /* !CONFIG_USER_ONLY */
2431 else if (strncmp(p, "Rcmd,", 5) == 0) {
2432 int len = strlen(p + 5);
2434 if ((len % 2) != 0) {
2435 put_packet(s, "E01");
2436 break;
2438 hextomem(mem_buf, p + 5, len);
2439 len = len / 2;
2440 mem_buf[len++] = 0;
2441 qemu_chr_be_write(s->mon_chr, mem_buf, len);
2442 put_packet(s, "OK");
2443 break;
2445 #endif /* !CONFIG_USER_ONLY */
2446 if (strncmp(p, "Supported", 9) == 0) {
2447 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
2448 #ifdef GDB_CORE_XML
2449 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2450 #endif
2451 put_packet(s, buf);
2452 break;
2454 #ifdef GDB_CORE_XML
2455 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2456 const char *xml;
2457 target_ulong total_len;
2459 gdb_has_xml = 1;
2460 p += 19;
2461 xml = get_feature_xml(p, &p);
2462 if (!xml) {
2463 snprintf(buf, sizeof(buf), "E00");
2464 put_packet(s, buf);
2465 break;
2468 if (*p == ':')
2469 p++;
2470 addr = strtoul(p, (char **)&p, 16);
2471 if (*p == ',')
2472 p++;
2473 len = strtoul(p, (char **)&p, 16);
2475 total_len = strlen(xml);
2476 if (addr > total_len) {
2477 snprintf(buf, sizeof(buf), "E00");
2478 put_packet(s, buf);
2479 break;
2481 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2482 len = (MAX_PACKET_LENGTH - 5) / 2;
2483 if (len < total_len - addr) {
2484 buf[0] = 'm';
2485 len = memtox(buf + 1, xml + addr, len);
2486 } else {
2487 buf[0] = 'l';
2488 len = memtox(buf + 1, xml + addr, total_len - addr);
2490 put_packet_binary(s, buf, len + 1);
2491 break;
2493 #endif
2494 /* Unrecognised 'q' command. */
2495 goto unknown_command;
2497 default:
2498 unknown_command:
2499 /* put empty packet */
2500 buf[0] = '\0';
2501 put_packet(s, buf);
2502 break;
2504 return RS_IDLE;
2507 void gdb_set_stop_cpu(CPUArchState *env)
2509 gdbserver_state->c_cpu = env;
2510 gdbserver_state->g_cpu = env;
2513 #ifndef CONFIG_USER_ONLY
2514 static void gdb_vm_state_change(void *opaque, int running, RunState state)
2516 GDBState *s = gdbserver_state;
2517 CPUArchState *env = s->c_cpu;
2518 CPUState *cpu = ENV_GET_CPU(env);
2519 char buf[256];
2520 const char *type;
2521 int ret;
2523 if (running || s->state == RS_INACTIVE) {
2524 return;
2526 /* Is there a GDB syscall waiting to be sent? */
2527 if (s->current_syscall_cb) {
2528 put_packet(s, s->syscall_buf);
2529 return;
2531 switch (state) {
2532 case RUN_STATE_DEBUG:
2533 if (env->watchpoint_hit) {
2534 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
2535 case BP_MEM_READ:
2536 type = "r";
2537 break;
2538 case BP_MEM_ACCESS:
2539 type = "a";
2540 break;
2541 default:
2542 type = "";
2543 break;
2545 snprintf(buf, sizeof(buf),
2546 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
2547 GDB_SIGNAL_TRAP, cpu_index(cpu), type,
2548 env->watchpoint_hit->vaddr);
2549 env->watchpoint_hit = NULL;
2550 goto send_packet;
2552 tb_flush(env);
2553 ret = GDB_SIGNAL_TRAP;
2554 break;
2555 case RUN_STATE_PAUSED:
2556 ret = GDB_SIGNAL_INT;
2557 break;
2558 case RUN_STATE_SHUTDOWN:
2559 ret = GDB_SIGNAL_QUIT;
2560 break;
2561 case RUN_STATE_IO_ERROR:
2562 ret = GDB_SIGNAL_IO;
2563 break;
2564 case RUN_STATE_WATCHDOG:
2565 ret = GDB_SIGNAL_ALRM;
2566 break;
2567 case RUN_STATE_INTERNAL_ERROR:
2568 ret = GDB_SIGNAL_ABRT;
2569 break;
2570 case RUN_STATE_SAVE_VM:
2571 case RUN_STATE_RESTORE_VM:
2572 return;
2573 case RUN_STATE_FINISH_MIGRATE:
2574 ret = GDB_SIGNAL_XCPU;
2575 break;
2576 default:
2577 ret = GDB_SIGNAL_UNKNOWN;
2578 break;
2580 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, cpu_index(cpu));
2582 send_packet:
2583 put_packet(s, buf);
2585 /* disable single step if it was enabled */
2586 cpu_single_step(env, 0);
2588 #endif
2590 /* Send a gdb syscall request.
2591 This accepts limited printf-style format specifiers, specifically:
2592 %x - target_ulong argument printed in hex.
2593 %lx - 64-bit argument printed in hex.
2594 %s - string pointer (target_ulong) and length (int) pair. */
2595 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2597 va_list va;
2598 char *p;
2599 char *p_end;
2600 target_ulong addr;
2601 uint64_t i64;
2602 GDBState *s;
2604 s = gdbserver_state;
2605 if (!s)
2606 return;
2607 s->current_syscall_cb = cb;
2608 #ifndef CONFIG_USER_ONLY
2609 vm_stop(RUN_STATE_DEBUG);
2610 #endif
2611 va_start(va, fmt);
2612 p = s->syscall_buf;
2613 p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
2614 *(p++) = 'F';
2615 while (*fmt) {
2616 if (*fmt == '%') {
2617 fmt++;
2618 switch (*fmt++) {
2619 case 'x':
2620 addr = va_arg(va, target_ulong);
2621 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
2622 break;
2623 case 'l':
2624 if (*(fmt++) != 'x')
2625 goto bad_format;
2626 i64 = va_arg(va, uint64_t);
2627 p += snprintf(p, p_end - p, "%" PRIx64, i64);
2628 break;
2629 case 's':
2630 addr = va_arg(va, target_ulong);
2631 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
2632 addr, va_arg(va, int));
2633 break;
2634 default:
2635 bad_format:
2636 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2637 fmt - 1);
2638 break;
2640 } else {
2641 *(p++) = *(fmt++);
2644 *p = 0;
2645 va_end(va);
2646 #ifdef CONFIG_USER_ONLY
2647 put_packet(s, s->syscall_buf);
2648 gdb_handlesig(s->c_cpu, 0);
2649 #else
2650 /* In this case wait to send the syscall packet until notification that
2651 the CPU has stopped. This must be done because if the packet is sent
2652 now the reply from the syscall request could be received while the CPU
2653 is still in the running state, which can cause packets to be dropped
2654 and state transition 'T' packets to be sent while the syscall is still
2655 being processed. */
2656 cpu_exit(s->c_cpu);
2657 #endif
2660 static void gdb_read_byte(GDBState *s, int ch)
2662 int i, csum;
2663 uint8_t reply;
2665 #ifndef CONFIG_USER_ONLY
2666 if (s->last_packet_len) {
2667 /* Waiting for a response to the last packet. If we see the start
2668 of a new command then abandon the previous response. */
2669 if (ch == '-') {
2670 #ifdef DEBUG_GDB
2671 printf("Got NACK, retransmitting\n");
2672 #endif
2673 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2675 #ifdef DEBUG_GDB
2676 else if (ch == '+')
2677 printf("Got ACK\n");
2678 else
2679 printf("Got '%c' when expecting ACK/NACK\n", ch);
2680 #endif
2681 if (ch == '+' || ch == '$')
2682 s->last_packet_len = 0;
2683 if (ch != '$')
2684 return;
2686 if (runstate_is_running()) {
2687 /* when the CPU is running, we cannot do anything except stop
2688 it when receiving a char */
2689 vm_stop(RUN_STATE_PAUSED);
2690 } else
2691 #endif
2693 switch(s->state) {
2694 case RS_IDLE:
2695 if (ch == '$') {
2696 s->line_buf_index = 0;
2697 s->state = RS_GETLINE;
2699 break;
2700 case RS_GETLINE:
2701 if (ch == '#') {
2702 s->state = RS_CHKSUM1;
2703 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2704 s->state = RS_IDLE;
2705 } else {
2706 s->line_buf[s->line_buf_index++] = ch;
2708 break;
2709 case RS_CHKSUM1:
2710 s->line_buf[s->line_buf_index] = '\0';
2711 s->line_csum = fromhex(ch) << 4;
2712 s->state = RS_CHKSUM2;
2713 break;
2714 case RS_CHKSUM2:
2715 s->line_csum |= fromhex(ch);
2716 csum = 0;
2717 for(i = 0; i < s->line_buf_index; i++) {
2718 csum += s->line_buf[i];
2720 if (s->line_csum != (csum & 0xff)) {
2721 reply = '-';
2722 put_buffer(s, &reply, 1);
2723 s->state = RS_IDLE;
2724 } else {
2725 reply = '+';
2726 put_buffer(s, &reply, 1);
2727 s->state = gdb_handle_packet(s, s->line_buf);
2729 break;
2730 default:
2731 abort();
2736 /* Tell the remote gdb that the process has exited. */
2737 void gdb_exit(CPUArchState *env, int code)
2739 GDBState *s;
2740 char buf[4];
2742 s = gdbserver_state;
2743 if (!s) {
2744 return;
2746 #ifdef CONFIG_USER_ONLY
2747 if (gdbserver_fd < 0 || s->fd < 0) {
2748 return;
2750 #endif
2752 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2753 put_packet(s, buf);
2755 #ifndef CONFIG_USER_ONLY
2756 if (s->chr) {
2757 qemu_chr_delete(s->chr);
2759 #endif
2762 #ifdef CONFIG_USER_ONLY
2764 gdb_queuesig (void)
2766 GDBState *s;
2768 s = gdbserver_state;
2770 if (gdbserver_fd < 0 || s->fd < 0)
2771 return 0;
2772 else
2773 return 1;
2777 gdb_handlesig (CPUArchState *env, int sig)
2779 GDBState *s;
2780 char buf[256];
2781 int n;
2783 s = gdbserver_state;
2784 if (gdbserver_fd < 0 || s->fd < 0)
2785 return sig;
2787 /* disable single step if it was enabled */
2788 cpu_single_step(env, 0);
2789 tb_flush(env);
2791 if (sig != 0)
2793 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2794 put_packet(s, buf);
2796 /* put_packet() might have detected that the peer terminated the
2797 connection. */
2798 if (s->fd < 0)
2799 return sig;
2801 sig = 0;
2802 s->state = RS_IDLE;
2803 s->running_state = 0;
2804 while (s->running_state == 0) {
2805 n = read (s->fd, buf, 256);
2806 if (n > 0)
2808 int i;
2810 for (i = 0; i < n; i++)
2811 gdb_read_byte (s, buf[i]);
2813 else if (n == 0 || errno != EAGAIN)
2815 /* XXX: Connection closed. Should probably wait for another
2816 connection before continuing. */
2817 return sig;
2820 sig = s->signal;
2821 s->signal = 0;
2822 return sig;
2825 /* Tell the remote gdb that the process has exited due to SIG. */
2826 void gdb_signalled(CPUArchState *env, int sig)
2828 GDBState *s;
2829 char buf[4];
2831 s = gdbserver_state;
2832 if (gdbserver_fd < 0 || s->fd < 0)
2833 return;
2835 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2836 put_packet(s, buf);
2839 static void gdb_accept(void)
2841 GDBState *s;
2842 struct sockaddr_in sockaddr;
2843 socklen_t len;
2844 int val, fd;
2846 for(;;) {
2847 len = sizeof(sockaddr);
2848 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2849 if (fd < 0 && errno != EINTR) {
2850 perror("accept");
2851 return;
2852 } else if (fd >= 0) {
2853 #ifndef _WIN32
2854 fcntl(fd, F_SETFD, FD_CLOEXEC);
2855 #endif
2856 break;
2860 /* set short latency */
2861 val = 1;
2862 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2864 s = g_malloc0(sizeof(GDBState));
2865 s->c_cpu = first_cpu;
2866 s->g_cpu = first_cpu;
2867 s->fd = fd;
2868 gdb_has_xml = 0;
2870 gdbserver_state = s;
2872 fcntl(fd, F_SETFL, O_NONBLOCK);
2875 static int gdbserver_open(int port)
2877 struct sockaddr_in sockaddr;
2878 int fd, val, ret;
2880 fd = socket(PF_INET, SOCK_STREAM, 0);
2881 if (fd < 0) {
2882 perror("socket");
2883 return -1;
2885 #ifndef _WIN32
2886 fcntl(fd, F_SETFD, FD_CLOEXEC);
2887 #endif
2889 /* allow fast reuse */
2890 val = 1;
2891 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2893 sockaddr.sin_family = AF_INET;
2894 sockaddr.sin_port = htons(port);
2895 sockaddr.sin_addr.s_addr = 0;
2896 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2897 if (ret < 0) {
2898 perror("bind");
2899 close(fd);
2900 return -1;
2902 ret = listen(fd, 0);
2903 if (ret < 0) {
2904 perror("listen");
2905 close(fd);
2906 return -1;
2908 return fd;
2911 int gdbserver_start(int port)
2913 gdbserver_fd = gdbserver_open(port);
2914 if (gdbserver_fd < 0)
2915 return -1;
2916 /* accept connections */
2917 gdb_accept();
2918 return 0;
2921 /* Disable gdb stub for child processes. */
2922 void gdbserver_fork(CPUArchState *env)
2924 GDBState *s = gdbserver_state;
2925 if (gdbserver_fd < 0 || s->fd < 0)
2926 return;
2927 close(s->fd);
2928 s->fd = -1;
2929 cpu_breakpoint_remove_all(env, BP_GDB);
2930 cpu_watchpoint_remove_all(env, BP_GDB);
2932 #else
2933 static int gdb_chr_can_receive(void *opaque)
2935 /* We can handle an arbitrarily large amount of data.
2936 Pick the maximum packet size, which is as good as anything. */
2937 return MAX_PACKET_LENGTH;
2940 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2942 int i;
2944 for (i = 0; i < size; i++) {
2945 gdb_read_byte(gdbserver_state, buf[i]);
2949 static void gdb_chr_event(void *opaque, int event)
2951 switch (event) {
2952 case CHR_EVENT_OPENED:
2953 vm_stop(RUN_STATE_PAUSED);
2954 gdb_has_xml = 0;
2955 break;
2956 default:
2957 break;
2961 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2963 char buf[MAX_PACKET_LENGTH];
2965 buf[0] = 'O';
2966 if (len > (MAX_PACKET_LENGTH/2) - 1)
2967 len = (MAX_PACKET_LENGTH/2) - 1;
2968 memtohex(buf + 1, (uint8_t *)msg, len);
2969 put_packet(s, buf);
2972 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2974 const char *p = (const char *)buf;
2975 int max_sz;
2977 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2978 for (;;) {
2979 if (len <= max_sz) {
2980 gdb_monitor_output(gdbserver_state, p, len);
2981 break;
2983 gdb_monitor_output(gdbserver_state, p, max_sz);
2984 p += max_sz;
2985 len -= max_sz;
2987 return len;
2990 #ifndef _WIN32
2991 static void gdb_sigterm_handler(int signal)
2993 if (runstate_is_running()) {
2994 vm_stop(RUN_STATE_PAUSED);
2997 #endif
2999 int gdbserver_start(const char *device)
3001 GDBState *s;
3002 char gdbstub_device_name[128];
3003 CharDriverState *chr = NULL;
3004 CharDriverState *mon_chr;
3006 if (!device)
3007 return -1;
3008 if (strcmp(device, "none") != 0) {
3009 if (strstart(device, "tcp:", NULL)) {
3010 /* enforce required TCP attributes */
3011 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
3012 "%s,nowait,nodelay,server", device);
3013 device = gdbstub_device_name;
3015 #ifndef _WIN32
3016 else if (strcmp(device, "stdio") == 0) {
3017 struct sigaction act;
3019 memset(&act, 0, sizeof(act));
3020 act.sa_handler = gdb_sigterm_handler;
3021 sigaction(SIGINT, &act, NULL);
3023 #endif
3024 chr = qemu_chr_new("gdb", device, NULL);
3025 if (!chr)
3026 return -1;
3028 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
3029 gdb_chr_event, NULL);
3032 s = gdbserver_state;
3033 if (!s) {
3034 s = g_malloc0(sizeof(GDBState));
3035 gdbserver_state = s;
3037 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
3039 /* Initialize a monitor terminal for gdb */
3040 mon_chr = g_malloc0(sizeof(*mon_chr));
3041 mon_chr->chr_write = gdb_monitor_write;
3042 monitor_init(mon_chr, 0);
3043 } else {
3044 if (s->chr)
3045 qemu_chr_delete(s->chr);
3046 mon_chr = s->mon_chr;
3047 memset(s, 0, sizeof(GDBState));
3049 s->c_cpu = first_cpu;
3050 s->g_cpu = first_cpu;
3051 s->chr = chr;
3052 s->state = chr ? RS_IDLE : RS_INACTIVE;
3053 s->mon_chr = mon_chr;
3054 s->current_syscall_cb = NULL;
3056 return 0;
3058 #endif