2 * ARM implementation of KVM hooks, 32 bit specific code.
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
12 #include <sys/types.h>
13 #include <sys/ioctl.h>
16 #include <linux/kvm.h>
18 #include "qemu-common.h"
19 #include "qemu/timer.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
24 #include "internals.h"
25 #include "hw/arm/arm.h"
27 static inline void set_feature(uint64_t *features
, int feature
)
29 *features
|= 1ULL << feature
;
32 bool kvm_arm_get_host_cpu_features(ARMHostCPUClass
*ahcc
)
34 /* Identify the feature bits corresponding to the host CPU, and
35 * fill out the ARMHostCPUClass fields accordingly. To do this
36 * we have to create a scratch VM, create a single CPU inside it,
37 * and then query that CPU for the relevant ID registers.
39 int i
, ret
, fdarray
[3];
40 uint32_t midr
, id_pfr0
, id_isar0
, mvfr1
;
41 uint64_t features
= 0;
42 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
43 * we know these will only support creating one kind of guest CPU,
44 * which is its preferred CPU type.
46 static const uint32_t cpus_to_try
[] = {
47 QEMU_KVM_ARM_TARGET_CORTEX_A15
,
48 QEMU_KVM_ARM_TARGET_NONE
50 struct kvm_vcpu_init init
;
51 struct kvm_one_reg idregs
[] = {
53 .id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
54 | ENCODE_CP_REG(15, 0, 0, 0, 0, 0),
55 .addr
= (uintptr_t)&midr
,
58 .id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
59 | ENCODE_CP_REG(15, 0, 0, 1, 0, 0),
60 .addr
= (uintptr_t)&id_pfr0
,
63 .id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
64 | ENCODE_CP_REG(15, 0, 0, 2, 0, 0),
65 .addr
= (uintptr_t)&id_isar0
,
68 .id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
69 | KVM_REG_ARM_VFP
| KVM_REG_ARM_VFP_MVFR1
,
70 .addr
= (uintptr_t)&mvfr1
,
74 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try
, fdarray
, &init
)) {
78 ahcc
->target
= init
.target
;
80 /* This is not strictly blessed by the device tree binding docs yet,
81 * but in practice the kernel does not care about this string so
82 * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
84 ahcc
->dtb_compatible
= "arm,arm-v7";
86 for (i
= 0; i
< ARRAY_SIZE(idregs
); i
++) {
87 ret
= ioctl(fdarray
[2], KVM_GET_ONE_REG
, &idregs
[i
]);
93 kvm_arm_destroy_scratch_host_vcpu(fdarray
);
99 /* Now we've retrieved all the register information we can
100 * set the feature bits based on the ID register fields.
101 * We can assume any KVM supporting CPU is at least a v7
102 * with VFPv3, LPAE and the generic timers; this in turn implies
103 * most of the other feature bits, but a few must be tested.
105 set_feature(&features
, ARM_FEATURE_V7
);
106 set_feature(&features
, ARM_FEATURE_VFP3
);
107 set_feature(&features
, ARM_FEATURE_LPAE
);
108 set_feature(&features
, ARM_FEATURE_GENERIC_TIMER
);
110 switch (extract32(id_isar0
, 24, 4)) {
112 set_feature(&features
, ARM_FEATURE_THUMB_DIV
);
115 set_feature(&features
, ARM_FEATURE_ARM_DIV
);
116 set_feature(&features
, ARM_FEATURE_THUMB_DIV
);
122 if (extract32(id_pfr0
, 12, 4) == 1) {
123 set_feature(&features
, ARM_FEATURE_THUMB2EE
);
125 if (extract32(mvfr1
, 20, 4) == 1) {
126 set_feature(&features
, ARM_FEATURE_VFP_FP16
);
128 if (extract32(mvfr1
, 12, 4) == 1) {
129 set_feature(&features
, ARM_FEATURE_NEON
);
131 if (extract32(mvfr1
, 28, 4) == 1) {
132 /* FMAC support implies VFPv4 */
133 set_feature(&features
, ARM_FEATURE_VFP4
);
136 ahcc
->features
= features
;
141 static bool reg_syncs_via_tuple_list(uint64_t regidx
)
143 /* Return true if the regidx is a register we should synchronize
144 * via the cpreg_tuples array (ie is not a core reg we sync by
145 * hand in kvm_arch_get/put_registers())
147 switch (regidx
& KVM_REG_ARM_COPROC_MASK
) {
148 case KVM_REG_ARM_CORE
:
149 case KVM_REG_ARM_VFP
:
156 static int compare_u64(const void *a
, const void *b
)
158 if (*(uint64_t *)a
> *(uint64_t *)b
) {
161 if (*(uint64_t *)a
< *(uint64_t *)b
) {
167 int kvm_arch_init_vcpu(CPUState
*cs
)
169 struct kvm_vcpu_init init
;
170 int i
, ret
, arraylen
;
172 struct kvm_one_reg r
;
173 struct kvm_reg_list rl
;
174 struct kvm_reg_list
*rlp
;
175 ARMCPU
*cpu
= ARM_CPU(cs
);
177 if (cpu
->kvm_target
== QEMU_KVM_ARM_TARGET_NONE
) {
178 fprintf(stderr
, "KVM is not supported for this guest CPU type\n");
182 init
.target
= cpu
->kvm_target
;
183 memset(init
.features
, 0, sizeof(init
.features
));
184 if (cpu
->start_powered_off
) {
185 init
.features
[0] = 1 << KVM_ARM_VCPU_POWER_OFF
;
187 ret
= kvm_vcpu_ioctl(cs
, KVM_ARM_VCPU_INIT
, &init
);
191 /* Query the kernel to make sure it supports 32 VFP
192 * registers: QEMU's "cortex-a15" CPU is always a
193 * VFP-D32 core. The simplest way to do this is just
194 * to attempt to read register d31.
196 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
| 31;
197 r
.addr
= (uintptr_t)(&v
);
198 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
199 if (ret
== -ENOENT
) {
203 /* Populate the cpreg list based on the kernel's idea
204 * of what registers exist (and throw away the TCG-created list).
207 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, &rl
);
211 rlp
= g_malloc(sizeof(struct kvm_reg_list
) + rl
.n
* sizeof(uint64_t));
213 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, rlp
);
217 /* Sort the list we get back from the kernel, since cpreg_tuples
218 * must be in strictly ascending order.
220 qsort(&rlp
->reg
, rlp
->n
, sizeof(rlp
->reg
[0]), compare_u64
);
222 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
223 if (!reg_syncs_via_tuple_list(rlp
->reg
[i
])) {
226 switch (rlp
->reg
[i
] & KVM_REG_SIZE_MASK
) {
227 case KVM_REG_SIZE_U32
:
228 case KVM_REG_SIZE_U64
:
231 fprintf(stderr
, "Can't handle size of register in kernel list\n");
239 cpu
->cpreg_indexes
= g_renew(uint64_t, cpu
->cpreg_indexes
, arraylen
);
240 cpu
->cpreg_values
= g_renew(uint64_t, cpu
->cpreg_values
, arraylen
);
241 cpu
->cpreg_vmstate_indexes
= g_renew(uint64_t, cpu
->cpreg_vmstate_indexes
,
243 cpu
->cpreg_vmstate_values
= g_renew(uint64_t, cpu
->cpreg_vmstate_values
,
245 cpu
->cpreg_array_len
= arraylen
;
246 cpu
->cpreg_vmstate_array_len
= arraylen
;
248 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
249 uint64_t regidx
= rlp
->reg
[i
];
250 if (!reg_syncs_via_tuple_list(regidx
)) {
253 cpu
->cpreg_indexes
[arraylen
] = regidx
;
256 assert(cpu
->cpreg_array_len
== arraylen
);
258 if (!write_kvmstate_to_list(cpu
)) {
259 /* Shouldn't happen unless kernel is inconsistent about
260 * what registers exist.
262 fprintf(stderr
, "Initial read of kernel register state failed\n");
267 /* Save a copy of the initial register values so that we can
268 * feed it back to the kernel on VCPU reset.
270 cpu
->cpreg_reset_values
= g_memdup(cpu
->cpreg_values
,
271 cpu
->cpreg_array_len
*
272 sizeof(cpu
->cpreg_values
[0]));
284 #define COREREG(KERNELNAME, QEMUFIELD) \
286 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
287 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
288 offsetof(CPUARMState, QEMUFIELD) \
291 #define VFPSYSREG(R) \
293 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
294 KVM_REG_ARM_VFP_##R, \
295 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
298 /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
299 #define COREREG64(KERNELNAME, QEMUFIELD) \
301 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
302 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
303 offsetoflow32(CPUARMState, QEMUFIELD) \
306 static const Reg regs
[] = {
307 /* R0_usr .. R14_usr */
308 COREREG(usr_regs
.uregs
[0], regs
[0]),
309 COREREG(usr_regs
.uregs
[1], regs
[1]),
310 COREREG(usr_regs
.uregs
[2], regs
[2]),
311 COREREG(usr_regs
.uregs
[3], regs
[3]),
312 COREREG(usr_regs
.uregs
[4], regs
[4]),
313 COREREG(usr_regs
.uregs
[5], regs
[5]),
314 COREREG(usr_regs
.uregs
[6], regs
[6]),
315 COREREG(usr_regs
.uregs
[7], regs
[7]),
316 COREREG(usr_regs
.uregs
[8], usr_regs
[0]),
317 COREREG(usr_regs
.uregs
[9], usr_regs
[1]),
318 COREREG(usr_regs
.uregs
[10], usr_regs
[2]),
319 COREREG(usr_regs
.uregs
[11], usr_regs
[3]),
320 COREREG(usr_regs
.uregs
[12], usr_regs
[4]),
321 COREREG(usr_regs
.uregs
[13], banked_r13
[0]),
322 COREREG(usr_regs
.uregs
[14], banked_r14
[0]),
323 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
324 COREREG(svc_regs
[0], banked_r13
[1]),
325 COREREG(svc_regs
[1], banked_r14
[1]),
326 COREREG64(svc_regs
[2], banked_spsr
[1]),
327 COREREG(abt_regs
[0], banked_r13
[2]),
328 COREREG(abt_regs
[1], banked_r14
[2]),
329 COREREG64(abt_regs
[2], banked_spsr
[2]),
330 COREREG(und_regs
[0], banked_r13
[3]),
331 COREREG(und_regs
[1], banked_r14
[3]),
332 COREREG64(und_regs
[2], banked_spsr
[3]),
333 COREREG(irq_regs
[0], banked_r13
[4]),
334 COREREG(irq_regs
[1], banked_r14
[4]),
335 COREREG64(irq_regs
[2], banked_spsr
[4]),
336 /* R8_fiq .. R14_fiq and SPSR_fiq */
337 COREREG(fiq_regs
[0], fiq_regs
[0]),
338 COREREG(fiq_regs
[1], fiq_regs
[1]),
339 COREREG(fiq_regs
[2], fiq_regs
[2]),
340 COREREG(fiq_regs
[3], fiq_regs
[3]),
341 COREREG(fiq_regs
[4], fiq_regs
[4]),
342 COREREG(fiq_regs
[5], banked_r13
[5]),
343 COREREG(fiq_regs
[6], banked_r14
[5]),
344 COREREG64(fiq_regs
[7], banked_spsr
[5]),
346 COREREG(usr_regs
.uregs
[15], regs
[15]),
347 /* VFP system registers */
356 int kvm_arch_put_registers(CPUState
*cs
, int level
)
358 ARMCPU
*cpu
= ARM_CPU(cs
);
359 CPUARMState
*env
= &cpu
->env
;
360 struct kvm_one_reg r
;
363 uint32_t cpsr
, fpscr
;
365 /* Make sure the banked regs are properly set */
366 mode
= env
->uncached_cpsr
& CPSR_M
;
367 bn
= bank_number(mode
);
368 if (mode
== ARM_CPU_MODE_FIQ
) {
369 memcpy(env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
371 memcpy(env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
373 env
->banked_r13
[bn
] = env
->regs
[13];
374 env
->banked_r14
[bn
] = env
->regs
[14];
375 env
->banked_spsr
[bn
] = env
->spsr
;
377 /* Now we can safely copy stuff down to the kernel */
378 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
380 r
.addr
= (uintptr_t)(env
) + regs
[i
].offset
;
381 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
387 /* Special cases which aren't a single CPUARMState field */
388 cpsr
= cpsr_read(env
);
389 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
|
390 KVM_REG_ARM_CORE
| KVM_REG_ARM_CORE_REG(usr_regs
.ARM_cpsr
);
391 r
.addr
= (uintptr_t)(&cpsr
);
392 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
398 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
399 for (i
= 0; i
< 32; i
++) {
400 r
.addr
= (uintptr_t)(&env
->vfp
.regs
[i
]);
401 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
408 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
|
409 KVM_REG_ARM_VFP_FPSCR
;
410 fpscr
= vfp_get_fpscr(env
);
411 r
.addr
= (uintptr_t)&fpscr
;
412 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
417 /* Note that we do not call write_cpustate_to_list()
418 * here, so we are only writing the tuple list back to
419 * KVM. This is safe because nothing can change the
420 * CPUARMState cp15 fields (in particular gdb accesses cannot)
421 * and so there are no changes to sync. In fact syncing would
422 * be wrong at this point: for a constant register where TCG and
423 * KVM disagree about its value, the preceding write_list_to_cpustate()
424 * would not have had any effect on the CPUARMState value (since the
425 * register is read-only), and a write_cpustate_to_list() here would
426 * then try to write the TCG value back into KVM -- this would either
427 * fail or incorrectly change the value the guest sees.
429 * If we ever want to allow the user to modify cp15 registers via
430 * the gdb stub, we would need to be more clever here (for instance
431 * tracking the set of registers kvm_arch_get_registers() successfully
432 * managed to update the CPUARMState with, and only allowing those
433 * to be written back up into the kernel).
435 if (!write_list_to_kvmstate(cpu
)) {
442 int kvm_arch_get_registers(CPUState
*cs
)
444 ARMCPU
*cpu
= ARM_CPU(cs
);
445 CPUARMState
*env
= &cpu
->env
;
446 struct kvm_one_reg r
;
449 uint32_t cpsr
, fpscr
;
451 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
453 r
.addr
= (uintptr_t)(env
) + regs
[i
].offset
;
454 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
460 /* Special cases which aren't a single CPUARMState field */
461 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
|
462 KVM_REG_ARM_CORE
| KVM_REG_ARM_CORE_REG(usr_regs
.ARM_cpsr
);
463 r
.addr
= (uintptr_t)(&cpsr
);
464 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
468 cpsr_write(env
, cpsr
, 0xffffffff);
470 /* Make sure the current mode regs are properly set */
471 mode
= env
->uncached_cpsr
& CPSR_M
;
472 bn
= bank_number(mode
);
473 if (mode
== ARM_CPU_MODE_FIQ
) {
474 memcpy(env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
476 memcpy(env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
478 env
->regs
[13] = env
->banked_r13
[bn
];
479 env
->regs
[14] = env
->banked_r14
[bn
];
480 env
->spsr
= env
->banked_spsr
[bn
];
483 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
484 for (i
= 0; i
< 32; i
++) {
485 r
.addr
= (uintptr_t)(&env
->vfp
.regs
[i
]);
486 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
493 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
|
494 KVM_REG_ARM_VFP_FPSCR
;
495 r
.addr
= (uintptr_t)&fpscr
;
496 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
500 vfp_set_fpscr(env
, fpscr
);
502 if (!write_kvmstate_to_list(cpu
)) {
505 /* Note that it's OK to have registers which aren't in CPUState,
506 * so we can ignore a failure return here.
508 write_list_to_cpustate(cpu
);
513 void kvm_arm_reset_vcpu(ARMCPU
*cpu
)
515 /* Feed the kernel back its initial register state */
516 memmove(cpu
->cpreg_values
, cpu
->cpreg_reset_values
,
517 cpu
->cpreg_array_len
* sizeof(cpu
->cpreg_values
[0]));
519 if (!write_list_to_kvmstate(cpu
)) {