2 * emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #include "disas/disas.h"
24 #include "qemu/atomic.h"
25 #include "sysemu/qtest.h"
26 #include "qemu/timer.h"
28 /* -icount align implementation. */
30 typedef struct SyncClocks
{
32 int64_t last_cpu_icount
;
33 int64_t realtime_clock
;
36 #if !defined(CONFIG_USER_ONLY)
37 /* Allow the guest to have a max 3ms advance.
38 * The difference between the 2 clocks could therefore
41 #define VM_CLOCK_ADVANCE 3000000
42 #define THRESHOLD_REDUCE 1.5
43 #define MAX_DELAY_PRINT_RATE 2000000000LL
44 #define MAX_NB_PRINTS 100
46 static void align_clocks(SyncClocks
*sc
, const CPUState
*cpu
)
50 if (!icount_align_option
) {
54 cpu_icount
= cpu
->icount_extra
+ cpu
->icount_decr
.u16
.low
;
55 sc
->diff_clk
+= cpu_icount_to_ns(sc
->last_cpu_icount
- cpu_icount
);
56 sc
->last_cpu_icount
= cpu_icount
;
58 if (sc
->diff_clk
> VM_CLOCK_ADVANCE
) {
60 struct timespec sleep_delay
, rem_delay
;
61 sleep_delay
.tv_sec
= sc
->diff_clk
/ 1000000000LL;
62 sleep_delay
.tv_nsec
= sc
->diff_clk
% 1000000000LL;
63 if (nanosleep(&sleep_delay
, &rem_delay
) < 0) {
64 sc
->diff_clk
-= (sleep_delay
.tv_sec
- rem_delay
.tv_sec
) * 1000000000LL;
65 sc
->diff_clk
-= sleep_delay
.tv_nsec
- rem_delay
.tv_nsec
;
70 Sleep(sc
->diff_clk
/ SCALE_MS
);
76 static void print_delay(const SyncClocks
*sc
)
78 static float threshold_delay
;
79 static int64_t last_realtime_clock
;
82 if (icount_align_option
&&
83 sc
->realtime_clock
- last_realtime_clock
>= MAX_DELAY_PRINT_RATE
&&
84 nb_prints
< MAX_NB_PRINTS
) {
85 if ((-sc
->diff_clk
/ (float)1000000000LL > threshold_delay
) ||
86 (-sc
->diff_clk
/ (float)1000000000LL <
87 (threshold_delay
- THRESHOLD_REDUCE
))) {
88 threshold_delay
= (-sc
->diff_clk
/ 1000000000LL) + 1;
89 printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
93 last_realtime_clock
= sc
->realtime_clock
;
98 static void init_delay_params(SyncClocks
*sc
,
101 if (!icount_align_option
) {
104 sc
->realtime_clock
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
105 sc
->diff_clk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) -
107 cpu_get_clock_offset();
108 sc
->last_cpu_icount
= cpu
->icount_extra
+ cpu
->icount_decr
.u16
.low
;
109 if (sc
->diff_clk
< max_delay
) {
110 max_delay
= sc
->diff_clk
;
112 if (sc
->diff_clk
> max_advance
) {
113 max_advance
= sc
->diff_clk
;
116 /* Print every 2s max if the guest is late. We limit the number
117 of printed messages to NB_PRINT_MAX(currently 100) */
121 static void align_clocks(SyncClocks
*sc
, const CPUState
*cpu
)
125 static void init_delay_params(SyncClocks
*sc
, const CPUState
*cpu
)
128 #endif /* CONFIG USER ONLY */
130 void cpu_loop_exit(CPUState
*cpu
)
132 cpu
->current_tb
= NULL
;
133 siglongjmp(cpu
->jmp_env
, 1);
136 /* exit the current TB from a signal handler. The host registers are
137 restored in a state compatible with the CPU emulator
139 #if defined(CONFIG_SOFTMMU)
140 void cpu_resume_from_signal(CPUState
*cpu
, void *puc
)
142 /* XXX: restore cpu registers saved in host registers */
144 cpu
->exception_index
= -1;
145 siglongjmp(cpu
->jmp_env
, 1);
149 /* Execute a TB, and fix up the CPU state afterwards if necessary */
150 static inline tcg_target_ulong
cpu_tb_exec(CPUState
*cpu
, uint8_t *tb_ptr
)
152 CPUArchState
*env
= cpu
->env_ptr
;
155 #if defined(DEBUG_DISAS)
156 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
157 #if defined(TARGET_I386)
158 log_cpu_state(cpu
, CPU_DUMP_CCOP
);
159 #elif defined(TARGET_M68K)
160 /* ??? Should not modify env state for dumping. */
161 cpu_m68k_flush_flags(env
, env
->cc_op
);
162 env
->cc_op
= CC_OP_FLAGS
;
163 env
->sr
= (env
->sr
& 0xffe0) | env
->cc_dest
| (env
->cc_x
<< 4);
164 log_cpu_state(cpu
, 0);
166 log_cpu_state(cpu
, 0);
169 #endif /* DEBUG_DISAS */
171 next_tb
= tcg_qemu_tb_exec(env
, tb_ptr
);
172 trace_exec_tb_exit((void *) (next_tb
& ~TB_EXIT_MASK
),
173 next_tb
& TB_EXIT_MASK
);
175 if ((next_tb
& TB_EXIT_MASK
) > TB_EXIT_IDX1
) {
176 /* We didn't start executing this TB (eg because the instruction
177 * counter hit zero); we must restore the guest PC to the address
178 * of the start of the TB.
180 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
181 TranslationBlock
*tb
= (TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
);
182 if (cc
->synchronize_from_tb
) {
183 cc
->synchronize_from_tb(cpu
, tb
);
186 cc
->set_pc(cpu
, tb
->pc
);
189 if ((next_tb
& TB_EXIT_MASK
) == TB_EXIT_REQUESTED
) {
190 /* We were asked to stop executing TBs (probably a pending
191 * interrupt. We've now stopped, so clear the flag.
193 cpu
->tcg_exit_req
= 0;
198 /* Execute the code without caching the generated code. An interpreter
199 could be used if available. */
200 static void cpu_exec_nocache(CPUArchState
*env
, int max_cycles
,
201 TranslationBlock
*orig_tb
)
203 CPUState
*cpu
= ENV_GET_CPU(env
);
204 TranslationBlock
*tb
;
206 /* Should never happen.
207 We only end up here when an existing TB is too long. */
208 if (max_cycles
> CF_COUNT_MASK
)
209 max_cycles
= CF_COUNT_MASK
;
211 tb
= tb_gen_code(cpu
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
213 cpu
->current_tb
= tb
;
214 /* execute the generated code */
215 trace_exec_tb_nocache(tb
, tb
->pc
);
216 cpu_tb_exec(cpu
, tb
->tc_ptr
);
217 cpu
->current_tb
= NULL
;
218 tb_phys_invalidate(tb
, -1);
222 static TranslationBlock
*tb_find_slow(CPUArchState
*env
,
224 target_ulong cs_base
,
227 CPUState
*cpu
= ENV_GET_CPU(env
);
228 TranslationBlock
*tb
, **ptb1
;
230 tb_page_addr_t phys_pc
, phys_page1
;
231 target_ulong virt_page2
;
233 tcg_ctx
.tb_ctx
.tb_invalidated_flag
= 0;
235 /* find translated block using physical mappings */
236 phys_pc
= get_page_addr_code(env
, pc
);
237 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
238 h
= tb_phys_hash_func(phys_pc
);
239 ptb1
= &tcg_ctx
.tb_ctx
.tb_phys_hash
[h
];
245 tb
->page_addr
[0] == phys_page1
&&
246 tb
->cs_base
== cs_base
&&
247 tb
->flags
== flags
) {
248 /* check next page if needed */
249 if (tb
->page_addr
[1] != -1) {
250 tb_page_addr_t phys_page2
;
252 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
254 phys_page2
= get_page_addr_code(env
, virt_page2
);
255 if (tb
->page_addr
[1] == phys_page2
)
261 ptb1
= &tb
->phys_hash_next
;
264 /* if no translated code available, then translate it now */
265 tb
= tb_gen_code(cpu
, pc
, cs_base
, flags
, 0);
268 /* Move the last found TB to the head of the list */
270 *ptb1
= tb
->phys_hash_next
;
271 tb
->phys_hash_next
= tcg_ctx
.tb_ctx
.tb_phys_hash
[h
];
272 tcg_ctx
.tb_ctx
.tb_phys_hash
[h
] = tb
;
274 /* we add the TB in the virtual pc hash table */
275 cpu
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
279 static inline TranslationBlock
*tb_find_fast(CPUArchState
*env
)
281 CPUState
*cpu
= ENV_GET_CPU(env
);
282 TranslationBlock
*tb
;
283 target_ulong cs_base
, pc
;
286 /* we record a subset of the CPU state. It will
287 always be the same before a given translated block
289 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
290 tb
= cpu
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
291 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
292 tb
->flags
!= flags
)) {
293 tb
= tb_find_slow(env
, pc
, cs_base
, flags
);
298 static void cpu_handle_debug_exception(CPUArchState
*env
)
300 CPUState
*cpu
= ENV_GET_CPU(env
);
301 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
304 if (!cpu
->watchpoint_hit
) {
305 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
306 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
310 cc
->debug_excp_handler(cpu
);
313 /* main execution loop */
315 volatile sig_atomic_t exit_request
;
317 int cpu_exec(CPUArchState
*env
)
319 CPUState
*cpu
= ENV_GET_CPU(env
);
320 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
322 X86CPU
*x86_cpu
= X86_CPU(cpu
);
324 int ret
, interrupt_request
;
325 TranslationBlock
*tb
;
330 /* This must be volatile so it is not trashed by longjmp() */
331 volatile bool have_tb_lock
= false;
334 if (!cpu_has_work(cpu
)) {
343 /* As long as current_cpu is null, up to the assignment just above,
344 * requests by other threads to exit the execution loop are expected to
345 * be issued using the exit_request global. We must make sure that our
346 * evaluation of the global value is performed past the current_cpu
347 * value transition point, which requires a memory barrier as well as
348 * an instruction scheduling constraint on modern architectures. */
351 if (unlikely(exit_request
)) {
352 cpu
->exit_request
= 1;
355 cc
->cpu_exec_enter(cpu
);
356 cpu
->exception_index
= -1;
358 /* Calculate difference between guest clock and host clock.
359 * This delay includes the delay of the last cycle, so
360 * what we have to do is sleep until it is 0. As for the
361 * advance/delay we gain here, we try to fix it next time.
363 init_delay_params(&sc
, cpu
);
365 /* prepare setjmp context for exception handling */
367 if (sigsetjmp(cpu
->jmp_env
, 0) == 0) {
368 /* if an exception is pending, we execute it here */
369 if (cpu
->exception_index
>= 0) {
370 if (cpu
->exception_index
>= EXCP_INTERRUPT
) {
371 /* exit request from the cpu execution loop */
372 ret
= cpu
->exception_index
;
373 if (ret
== EXCP_DEBUG
) {
374 cpu_handle_debug_exception(env
);
378 #if defined(CONFIG_USER_ONLY)
379 /* if user mode only, we simulate a fake exception
380 which will be handled outside the cpu execution
382 #if defined(TARGET_I386)
383 cc
->do_interrupt(cpu
);
385 ret
= cpu
->exception_index
;
388 cc
->do_interrupt(cpu
);
389 cpu
->exception_index
= -1;
394 next_tb
= 0; /* force lookup of first TB */
396 interrupt_request
= cpu
->interrupt_request
;
397 if (unlikely(interrupt_request
)) {
398 if (unlikely(cpu
->singlestep_enabled
& SSTEP_NOIRQ
)) {
399 /* Mask out external interrupts for this step. */
400 interrupt_request
&= ~CPU_INTERRUPT_SSTEP_MASK
;
402 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
403 cpu
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
404 cpu
->exception_index
= EXCP_DEBUG
;
407 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
408 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
409 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || \
410 defined(TARGET_UNICORE32) || defined(TARGET_TRICORE)
411 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
412 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
414 cpu
->exception_index
= EXCP_HLT
;
418 #if defined(TARGET_I386)
419 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
420 cpu_svm_check_intercept_param(env
, SVM_EXIT_INIT
, 0);
421 do_cpu_init(x86_cpu
);
422 cpu
->exception_index
= EXCP_HALTED
;
426 if (interrupt_request
& CPU_INTERRUPT_RESET
) {
430 #if defined(TARGET_I386)
431 #if !defined(CONFIG_USER_ONLY)
432 if (interrupt_request
& CPU_INTERRUPT_POLL
) {
433 cpu
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
434 apic_poll_irq(x86_cpu
->apic_state
);
437 if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
438 do_cpu_sipi(x86_cpu
);
439 } else if (env
->hflags2
& HF2_GIF_MASK
) {
440 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
441 !(env
->hflags
& HF_SMM_MASK
)) {
442 cpu_svm_check_intercept_param(env
, SVM_EXIT_SMI
,
444 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
445 do_smm_enter(x86_cpu
);
447 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
448 !(env
->hflags2
& HF2_NMI_MASK
)) {
449 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
450 env
->hflags2
|= HF2_NMI_MASK
;
451 do_interrupt_x86_hardirq(env
, EXCP02_NMI
, 1);
453 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
454 cpu
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
455 do_interrupt_x86_hardirq(env
, EXCP12_MCHK
, 0);
457 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
458 (((env
->hflags2
& HF2_VINTR_MASK
) &&
459 (env
->hflags2
& HF2_HIF_MASK
)) ||
460 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
461 (env
->eflags
& IF_MASK
&&
462 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
464 cpu_svm_check_intercept_param(env
, SVM_EXIT_INTR
,
466 cpu
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
|
468 intno
= cpu_get_pic_interrupt(env
);
469 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
470 do_interrupt_x86_hardirq(env
, intno
, 1);
471 /* ensure that no TB jump will be modified as
472 the program flow was changed */
474 #if !defined(CONFIG_USER_ONLY)
475 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
476 (env
->eflags
& IF_MASK
) &&
477 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
479 /* FIXME: this should respect TPR */
480 cpu_svm_check_intercept_param(env
, SVM_EXIT_VINTR
,
482 intno
= ldl_phys(cpu
->as
,
484 + offsetof(struct vmcb
,
485 control
.int_vector
));
486 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
487 do_interrupt_x86_hardirq(env
, intno
, 1);
488 cpu
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
493 #elif defined(TARGET_PPC)
494 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
495 ppc_hw_interrupt(env
);
496 if (env
->pending_interrupts
== 0) {
497 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
501 #elif defined(TARGET_LM32)
502 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
503 && (env
->ie
& IE_IE
)) {
504 cpu
->exception_index
= EXCP_IRQ
;
505 cc
->do_interrupt(cpu
);
508 #elif defined(TARGET_MICROBLAZE)
509 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
510 && (env
->sregs
[SR_MSR
] & MSR_IE
)
511 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
512 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
513 cpu
->exception_index
= EXCP_IRQ
;
514 cc
->do_interrupt(cpu
);
517 #elif defined(TARGET_MIPS)
518 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
519 cpu_mips_hw_interrupts_pending(env
)) {
521 cpu
->exception_index
= EXCP_EXT_INTERRUPT
;
523 cc
->do_interrupt(cpu
);
526 #elif defined(TARGET_TRICORE)
527 if ((interrupt_request
& CPU_INTERRUPT_HARD
)) {
528 cc
->do_interrupt(cpu
);
532 #elif defined(TARGET_OPENRISC)
535 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
536 && (env
->sr
& SR_IEE
)) {
539 if ((interrupt_request
& CPU_INTERRUPT_TIMER
)
540 && (env
->sr
& SR_TEE
)) {
544 cpu
->exception_index
= idx
;
545 cc
->do_interrupt(cpu
);
549 #elif defined(TARGET_SPARC)
550 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
551 if (cpu_interrupts_enabled(env
) &&
552 env
->interrupt_index
> 0) {
553 int pil
= env
->interrupt_index
& 0xf;
554 int type
= env
->interrupt_index
& 0xf0;
556 if (((type
== TT_EXTINT
) &&
557 cpu_pil_allowed(env
, pil
)) ||
559 cpu
->exception_index
= env
->interrupt_index
;
560 cc
->do_interrupt(cpu
);
565 #elif defined(TARGET_ARM)
566 if (interrupt_request
& CPU_INTERRUPT_FIQ
567 && !(env
->daif
& PSTATE_F
)) {
568 cpu
->exception_index
= EXCP_FIQ
;
569 cc
->do_interrupt(cpu
);
572 /* ARMv7-M interrupt return works by loading a magic value
573 into the PC. On real hardware the load causes the
574 return to occur. The qemu implementation performs the
575 jump normally, then does the exception return when the
576 CPU tries to execute code at the magic address.
577 This will cause the magic PC value to be pushed to
578 the stack if an interrupt occurred at the wrong time.
579 We avoid this by disabling interrupts when
580 pc contains a magic address. */
581 if (interrupt_request
& CPU_INTERRUPT_HARD
582 && !(env
->daif
& PSTATE_I
)
583 && (!IS_M(env
) || env
->regs
[15] < 0xfffffff0)) {
584 cpu
->exception_index
= EXCP_IRQ
;
585 cc
->do_interrupt(cpu
);
588 #elif defined(TARGET_UNICORE32)
589 if (interrupt_request
& CPU_INTERRUPT_HARD
590 && !(env
->uncached_asr
& ASR_I
)) {
591 cpu
->exception_index
= UC32_EXCP_INTR
;
592 cc
->do_interrupt(cpu
);
596 /* The target hook has 3 exit conditions:
597 False when the interrupt isn't processed,
598 True when it is, and we should restart on a new TB,
599 and via longjmp via cpu_loop_exit. */
600 if (cc
->cpu_exec_interrupt(cpu
, interrupt_request
)) {
603 /* Don't use the cached interrupt_request value,
604 do_interrupt may have updated the EXITTB flag. */
605 if (cpu
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
606 cpu
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
607 /* ensure that no TB jump will be modified as
608 the program flow was changed */
612 if (unlikely(cpu
->exit_request
)) {
613 cpu
->exit_request
= 0;
614 cpu
->exception_index
= EXCP_INTERRUPT
;
617 spin_lock(&tcg_ctx
.tb_ctx
.tb_lock
);
619 tb
= tb_find_fast(env
);
620 /* Note: we do it here to avoid a gcc bug on Mac OS X when
621 doing it in tb_find_slow */
622 if (tcg_ctx
.tb_ctx
.tb_invalidated_flag
) {
623 /* as some TB could have been invalidated because
624 of memory exceptions while generating the code, we
625 must recompute the hash index here */
627 tcg_ctx
.tb_ctx
.tb_invalidated_flag
= 0;
629 if (qemu_loglevel_mask(CPU_LOG_EXEC
)) {
630 qemu_log("Trace %p [" TARGET_FMT_lx
"] %s\n",
631 tb
->tc_ptr
, tb
->pc
, lookup_symbol(tb
->pc
));
633 /* see if we can patch the calling TB. When the TB
634 spans two pages, we cannot safely do a direct
636 if (next_tb
!= 0 && tb
->page_addr
[1] == -1) {
637 tb_add_jump((TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
),
638 next_tb
& TB_EXIT_MASK
, tb
);
640 have_tb_lock
= false;
641 spin_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
643 /* cpu_interrupt might be called while translating the
644 TB, but before it is linked into a potentially
645 infinite loop and becomes env->current_tb. Avoid
646 starting execution if there is a pending interrupt. */
647 cpu
->current_tb
= tb
;
649 if (likely(!cpu
->exit_request
)) {
650 trace_exec_tb(tb
, tb
->pc
);
652 /* execute the generated code */
653 next_tb
= cpu_tb_exec(cpu
, tc_ptr
);
654 switch (next_tb
& TB_EXIT_MASK
) {
655 case TB_EXIT_REQUESTED
:
656 /* Something asked us to stop executing
657 * chained TBs; just continue round the main
658 * loop. Whatever requested the exit will also
659 * have set something else (eg exit_request or
660 * interrupt_request) which we will handle
661 * next time around the loop.
663 tb
= (TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
);
666 case TB_EXIT_ICOUNT_EXPIRED
:
668 /* Instruction counter expired. */
670 tb
= (TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
);
671 insns_left
= cpu
->icount_decr
.u32
;
672 if (cpu
->icount_extra
&& insns_left
>= 0) {
673 /* Refill decrementer and continue execution. */
674 cpu
->icount_extra
+= insns_left
;
675 if (cpu
->icount_extra
> 0xffff) {
678 insns_left
= cpu
->icount_extra
;
680 cpu
->icount_extra
-= insns_left
;
681 cpu
->icount_decr
.u16
.low
= insns_left
;
683 if (insns_left
> 0) {
684 /* Execute remaining instructions. */
685 cpu_exec_nocache(env
, insns_left
, tb
);
686 align_clocks(&sc
, cpu
);
688 cpu
->exception_index
= EXCP_INTERRUPT
;
698 cpu
->current_tb
= NULL
;
699 /* Try to align the host and virtual clocks
700 if the guest is in advance */
701 align_clocks(&sc
, cpu
);
702 /* reset soft MMU for next block (it can currently
703 only be set by a memory fault) */
706 /* Reload env after longjmp - the compiler may have smashed all
707 * local variables as longjmp is marked 'noreturn'. */
710 cc
= CPU_GET_CLASS(cpu
);
712 x86_cpu
= X86_CPU(cpu
);
715 spin_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
716 have_tb_lock
= false;
721 cc
->cpu_exec_exit(cpu
);
723 /* fail safe : never use current_cpu outside cpu_exec() */