2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/arm/virt.h"
35 #include "hw/devices.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/kvm.h"
41 #include "hw/boards.h"
42 #include "hw/loader.h"
43 #include "exec/address-spaces.h"
44 #include "qemu/bitops.h"
45 #include "qemu/error-report.h"
46 #include "hw/pci-host/gpex.h"
47 #include "hw/arm/virt-acpi-build.h"
48 #include "hw/arm/sysbus-fdt.h"
49 #include "hw/platform-bus.h"
50 #include "hw/arm/fdt.h"
51 #include "hw/intc/arm_gic_common.h"
53 #include "hw/smbios/smbios.h"
54 #include "qapi/visitor.h"
56 /* Number of external interrupt lines to configure the GIC with */
59 #define PLATFORM_BUS_NUM_IRQS 64
61 static ARMPlatformBusSystemParams platform_bus_params
;
63 typedef struct VirtBoardInfo
{
64 struct arm_boot_info bootinfo
;
65 const char *cpu_model
;
66 const MemMapEntry
*memmap
;
71 uint32_t clock_phandle
;
78 VirtBoardInfo
*daughterboard
;
88 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
89 #define VIRT_MACHINE(obj) \
90 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
91 #define VIRT_MACHINE_GET_CLASS(obj) \
92 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
93 #define VIRT_MACHINE_CLASS(klass) \
94 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
96 /* Addresses and sizes of our components.
97 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
98 * 128MB..256MB is used for miscellaneous device I/O.
99 * 256MB..1GB is reserved for possible future PCI support (ie where the
100 * PCI memory window will go if we add a PCI host controller).
101 * 1GB and up is RAM (which may happily spill over into the
102 * high memory region beyond 4GB).
103 * This represents a compromise between how much RAM can be given to
104 * a 32 bit VM and leaving space for expansion and in particular for PCI.
105 * Note that devices should generally be placed at multiples of 0x10000,
106 * to accommodate guests using 64K pages.
108 static const MemMapEntry a15memmap
[] = {
109 /* Space up to 0x8000000 is reserved for a boot ROM */
110 [VIRT_FLASH
] = { 0, 0x08000000 },
111 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
112 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
113 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
114 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
115 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
116 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
117 [VIRT_GIC_ITS
] = { 0x08080000, 0x00020000 },
118 /* This redistributor space allows up to 2*64kB*123 CPUs */
119 [VIRT_GIC_REDIST
] = { 0x080A0000, 0x00F60000 },
120 [VIRT_UART
] = { 0x09000000, 0x00001000 },
121 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
122 [VIRT_FW_CFG
] = { 0x09020000, 0x00000018 },
123 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
124 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
125 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
126 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
127 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
128 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
129 [VIRT_MEM
] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
130 /* Second PCIe window, 512GB wide at the 512GB boundary */
131 [VIRT_PCIE_MMIO_HIGH
] = { 0x8000000000ULL
, 0x8000000000ULL
},
134 static const int a15irqmap
[] = {
137 [VIRT_PCIE
] = 3, /* ... to 6 */
138 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
139 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
140 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
143 static VirtBoardInfo machines
[] = {
145 .cpu_model
= "cortex-a15",
150 .cpu_model
= "cortex-a53",
155 .cpu_model
= "cortex-a57",
166 static VirtBoardInfo
*find_machine_info(const char *cpu
)
170 for (i
= 0; i
< ARRAY_SIZE(machines
); i
++) {
171 if (strcmp(cpu
, machines
[i
].cpu_model
) == 0) {
178 static void create_fdt(VirtBoardInfo
*vbi
)
180 void *fdt
= create_device_tree(&vbi
->fdt_size
);
183 error_report("create_device_tree() failed");
190 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
191 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
192 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
195 * /chosen and /memory nodes must exist for load_dtb
196 * to fill in necessary properties later
198 qemu_fdt_add_subnode(fdt
, "/chosen");
199 qemu_fdt_add_subnode(fdt
, "/memory");
200 qemu_fdt_setprop_string(fdt
, "/memory", "device_type", "memory");
202 /* Clock node, for the benefit of the UART. The kernel device tree
203 * binding documentation claims the PL011 node clock properties are
204 * optional but in practice if you omit them the kernel refuses to
205 * probe for the device.
207 vbi
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
208 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
209 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
210 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
211 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
212 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
214 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vbi
->clock_phandle
);
218 static void fdt_add_psci_node(const VirtBoardInfo
*vbi
)
220 uint32_t cpu_suspend_fn
;
224 void *fdt
= vbi
->fdt
;
225 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(0));
227 qemu_fdt_add_subnode(fdt
, "/psci");
228 if (armcpu
->psci_version
== 2) {
229 const char comp
[] = "arm,psci-0.2\0arm,psci";
230 qemu_fdt_setprop(fdt
, "/psci", "compatible", comp
, sizeof(comp
));
232 cpu_off_fn
= QEMU_PSCI_0_2_FN_CPU_OFF
;
233 if (arm_feature(&armcpu
->env
, ARM_FEATURE_AARCH64
)) {
234 cpu_suspend_fn
= QEMU_PSCI_0_2_FN64_CPU_SUSPEND
;
235 cpu_on_fn
= QEMU_PSCI_0_2_FN64_CPU_ON
;
236 migrate_fn
= QEMU_PSCI_0_2_FN64_MIGRATE
;
238 cpu_suspend_fn
= QEMU_PSCI_0_2_FN_CPU_SUSPEND
;
239 cpu_on_fn
= QEMU_PSCI_0_2_FN_CPU_ON
;
240 migrate_fn
= QEMU_PSCI_0_2_FN_MIGRATE
;
243 qemu_fdt_setprop_string(fdt
, "/psci", "compatible", "arm,psci");
245 cpu_suspend_fn
= QEMU_PSCI_0_1_FN_CPU_SUSPEND
;
246 cpu_off_fn
= QEMU_PSCI_0_1_FN_CPU_OFF
;
247 cpu_on_fn
= QEMU_PSCI_0_1_FN_CPU_ON
;
248 migrate_fn
= QEMU_PSCI_0_1_FN_MIGRATE
;
251 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
252 * to the instruction that should be used to invoke PSCI functions.
253 * However, the device tree binding uses 'method' instead, so that is
254 * what we should use here.
256 qemu_fdt_setprop_string(fdt
, "/psci", "method", "hvc");
258 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_suspend", cpu_suspend_fn
);
259 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_off", cpu_off_fn
);
260 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_on", cpu_on_fn
);
261 qemu_fdt_setprop_cell(fdt
, "/psci", "migrate", migrate_fn
);
264 static void fdt_add_timer_nodes(const VirtBoardInfo
*vbi
, int gictype
)
266 /* Note that on A15 h/w these interrupts are level-triggered,
267 * but for the GIC implementation provided by both QEMU and KVM
268 * they are edge-triggered.
271 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
274 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
275 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
276 (1 << vbi
->smp_cpus
) - 1);
279 qemu_fdt_add_subnode(vbi
->fdt
, "/timer");
281 armcpu
= ARM_CPU(qemu_get_cpu(0));
282 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
283 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
284 qemu_fdt_setprop(vbi
->fdt
, "/timer", "compatible",
285 compat
, sizeof(compat
));
287 qemu_fdt_setprop_string(vbi
->fdt
, "/timer", "compatible",
290 qemu_fdt_setprop_cells(vbi
->fdt
, "/timer", "interrupts",
291 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
292 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
293 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
294 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
297 static void fdt_add_cpu_nodes(const VirtBoardInfo
*vbi
)
303 * From Documentation/devicetree/bindings/arm/cpus.txt
304 * On ARM v8 64-bit systems value should be set to 2,
305 * that corresponds to the MPIDR_EL1 register size.
306 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
307 * in the system, #address-cells can be set to 1, since
308 * MPIDR_EL1[63:32] bits are not used for CPUs
311 * Here we actually don't know whether our system is 32- or 64-bit one.
312 * The simplest way to go is to examine affinity IDs of all our CPUs. If
313 * at least one of them has Aff3 populated, we set #address-cells to 2.
315 for (cpu
= 0; cpu
< vbi
->smp_cpus
; cpu
++) {
316 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
318 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
324 qemu_fdt_add_subnode(vbi
->fdt
, "/cpus");
325 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#address-cells", addr_cells
);
326 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#size-cells", 0x0);
328 for (cpu
= vbi
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
329 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
330 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
332 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
333 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "cpu");
334 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible",
335 armcpu
->dtb_compatible
);
337 if (vbi
->smp_cpus
> 1) {
338 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
339 "enable-method", "psci");
342 if (addr_cells
== 2) {
343 qemu_fdt_setprop_u64(vbi
->fdt
, nodename
, "reg",
344 armcpu
->mp_affinity
);
346 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "reg",
347 armcpu
->mp_affinity
);
354 static void fdt_add_v2m_gic_node(VirtBoardInfo
*vbi
)
356 vbi
->v2m_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
357 qemu_fdt_add_subnode(vbi
->fdt
, "/intc/v2m");
358 qemu_fdt_setprop_string(vbi
->fdt
, "/intc/v2m", "compatible",
359 "arm,gic-v2m-frame");
360 qemu_fdt_setprop(vbi
->fdt
, "/intc/v2m", "msi-controller", NULL
, 0);
361 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc/v2m", "reg",
362 2, vbi
->memmap
[VIRT_GIC_V2M
].base
,
363 2, vbi
->memmap
[VIRT_GIC_V2M
].size
);
364 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc/v2m", "phandle", vbi
->v2m_phandle
);
367 static void fdt_add_gic_node(VirtBoardInfo
*vbi
, int type
)
369 vbi
->gic_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
370 qemu_fdt_setprop_cell(vbi
->fdt
, "/", "interrupt-parent", vbi
->gic_phandle
);
372 qemu_fdt_add_subnode(vbi
->fdt
, "/intc");
373 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#interrupt-cells", 3);
374 qemu_fdt_setprop(vbi
->fdt
, "/intc", "interrupt-controller", NULL
, 0);
375 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#address-cells", 0x2);
376 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#size-cells", 0x2);
377 qemu_fdt_setprop(vbi
->fdt
, "/intc", "ranges", NULL
, 0);
379 qemu_fdt_setprop_string(vbi
->fdt
, "/intc", "compatible",
381 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc", "reg",
382 2, vbi
->memmap
[VIRT_GIC_DIST
].base
,
383 2, vbi
->memmap
[VIRT_GIC_DIST
].size
,
384 2, vbi
->memmap
[VIRT_GIC_REDIST
].base
,
385 2, vbi
->memmap
[VIRT_GIC_REDIST
].size
);
387 /* 'cortex-a15-gic' means 'GIC v2' */
388 qemu_fdt_setprop_string(vbi
->fdt
, "/intc", "compatible",
389 "arm,cortex-a15-gic");
390 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc", "reg",
391 2, vbi
->memmap
[VIRT_GIC_DIST
].base
,
392 2, vbi
->memmap
[VIRT_GIC_DIST
].size
,
393 2, vbi
->memmap
[VIRT_GIC_CPU
].base
,
394 2, vbi
->memmap
[VIRT_GIC_CPU
].size
);
397 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "phandle", vbi
->gic_phandle
);
400 static void create_v2m(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
403 int irq
= vbi
->irqmap
[VIRT_GIC_V2M
];
406 dev
= qdev_create(NULL
, "arm-gicv2m");
407 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vbi
->memmap
[VIRT_GIC_V2M
].base
);
408 qdev_prop_set_uint32(dev
, "base-spi", irq
);
409 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
410 qdev_init_nofail(dev
);
412 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
413 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
416 fdt_add_v2m_gic_node(vbi
);
419 static void create_gic(VirtBoardInfo
*vbi
, qemu_irq
*pic
, int type
, bool secure
)
421 /* We create a standalone GIC */
423 SysBusDevice
*gicbusdev
;
427 gictype
= (type
== 3) ? gicv3_class_name() : gic_class_name();
429 gicdev
= qdev_create(NULL
, gictype
);
430 qdev_prop_set_uint32(gicdev
, "revision", type
);
431 qdev_prop_set_uint32(gicdev
, "num-cpu", smp_cpus
);
432 /* Note that the num-irq property counts both internal and external
433 * interrupts; there are always 32 of the former (mandated by GIC spec).
435 qdev_prop_set_uint32(gicdev
, "num-irq", NUM_IRQS
+ 32);
436 if (!kvm_irqchip_in_kernel()) {
437 qdev_prop_set_bit(gicdev
, "has-security-extensions", secure
);
439 qdev_init_nofail(gicdev
);
440 gicbusdev
= SYS_BUS_DEVICE(gicdev
);
441 sysbus_mmio_map(gicbusdev
, 0, vbi
->memmap
[VIRT_GIC_DIST
].base
);
443 sysbus_mmio_map(gicbusdev
, 1, vbi
->memmap
[VIRT_GIC_REDIST
].base
);
445 sysbus_mmio_map(gicbusdev
, 1, vbi
->memmap
[VIRT_GIC_CPU
].base
);
448 /* Wire the outputs from each CPU's generic timer to the
449 * appropriate GIC PPI inputs, and the GIC's IRQ output to
450 * the CPU's IRQ input.
452 for (i
= 0; i
< smp_cpus
; i
++) {
453 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
454 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
456 /* Mapping from the output timer irq lines from the CPU to the
457 * GIC PPI inputs we use for the virt board.
459 const int timer_irq
[] = {
460 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
461 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
462 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
463 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
466 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
467 qdev_connect_gpio_out(cpudev
, irq
,
468 qdev_get_gpio_in(gicdev
,
469 ppibase
+ timer_irq
[irq
]));
472 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
473 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
474 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
477 for (i
= 0; i
< NUM_IRQS
; i
++) {
478 pic
[i
] = qdev_get_gpio_in(gicdev
, i
);
481 fdt_add_gic_node(vbi
, type
);
484 create_v2m(vbi
, pic
);
488 static void create_uart(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
491 hwaddr base
= vbi
->memmap
[VIRT_UART
].base
;
492 hwaddr size
= vbi
->memmap
[VIRT_UART
].size
;
493 int irq
= vbi
->irqmap
[VIRT_UART
];
494 const char compat
[] = "arm,pl011\0arm,primecell";
495 const char clocknames
[] = "uartclk\0apb_pclk";
497 sysbus_create_simple("pl011", base
, pic
[irq
]);
499 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
500 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
501 /* Note that we can't use setprop_string because of the embedded NUL */
502 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible",
503 compat
, sizeof(compat
));
504 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
506 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
507 GIC_FDT_IRQ_TYPE_SPI
, irq
,
508 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
509 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "clocks",
510 vbi
->clock_phandle
, vbi
->clock_phandle
);
511 qemu_fdt_setprop(vbi
->fdt
, nodename
, "clock-names",
512 clocknames
, sizeof(clocknames
));
514 qemu_fdt_setprop_string(vbi
->fdt
, "/chosen", "stdout-path", nodename
);
518 static void create_rtc(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
521 hwaddr base
= vbi
->memmap
[VIRT_RTC
].base
;
522 hwaddr size
= vbi
->memmap
[VIRT_RTC
].size
;
523 int irq
= vbi
->irqmap
[VIRT_RTC
];
524 const char compat
[] = "arm,pl031\0arm,primecell";
526 sysbus_create_simple("pl031", base
, pic
[irq
]);
528 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
529 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
530 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
531 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
533 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
534 GIC_FDT_IRQ_TYPE_SPI
, irq
,
535 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
536 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "clocks", vbi
->clock_phandle
);
537 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "clock-names", "apb_pclk");
541 static void create_virtio_devices(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
544 hwaddr size
= vbi
->memmap
[VIRT_MMIO
].size
;
546 /* We create the transports in forwards order. Since qbus_realize()
547 * prepends (not appends) new child buses, the incrementing loop below will
548 * create a list of virtio-mmio buses with decreasing base addresses.
550 * When a -device option is processed from the command line,
551 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
552 * order. The upshot is that -device options in increasing command line
553 * order are mapped to virtio-mmio buses with decreasing base addresses.
555 * When this code was originally written, that arrangement ensured that the
556 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
557 * the first -device on the command line. (The end-to-end order is a
558 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
559 * guest kernel's name-to-address assignment strategy.)
561 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
562 * the message, if not necessarily the code, of commit 70161ff336.
563 * Therefore the loop now establishes the inverse of the original intent.
565 * Unfortunately, we can't counteract the kernel change by reversing the
566 * loop; it would break existing command lines.
568 * In any case, the kernel makes no guarantee about the stability of
569 * enumeration order of virtio devices (as demonstrated by it changing
570 * between kernel versions). For reliable and stable identification
571 * of disks users must use UUIDs or similar mechanisms.
573 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
574 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
575 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
577 sysbus_create_simple("virtio-mmio", base
, pic
[irq
]);
580 /* We add dtb nodes in reverse order so that they appear in the finished
581 * device tree lowest address first.
583 * Note that this mapping is independent of the loop above. The previous
584 * loop influences virtio device to virtio transport assignment, whereas
585 * this loop controls how virtio transports are laid out in the dtb.
587 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
589 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
590 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
592 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
593 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
594 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
595 "compatible", "virtio,mmio");
596 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
598 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
599 GIC_FDT_IRQ_TYPE_SPI
, irq
,
600 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
605 static void create_one_flash(const char *name
, hwaddr flashbase
,
608 /* Create and map a single flash device. We use the same
609 * parameters as the flash devices on the Versatile Express board.
611 DriveInfo
*dinfo
= drive_get_next(IF_PFLASH
);
612 DeviceState
*dev
= qdev_create(NULL
, "cfi.pflash01");
613 const uint64_t sectorlength
= 256 * 1024;
616 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
620 qdev_prop_set_uint32(dev
, "num-blocks", flashsize
/ sectorlength
);
621 qdev_prop_set_uint64(dev
, "sector-length", sectorlength
);
622 qdev_prop_set_uint8(dev
, "width", 4);
623 qdev_prop_set_uint8(dev
, "device-width", 2);
624 qdev_prop_set_bit(dev
, "big-endian", false);
625 qdev_prop_set_uint16(dev
, "id0", 0x89);
626 qdev_prop_set_uint16(dev
, "id1", 0x18);
627 qdev_prop_set_uint16(dev
, "id2", 0x00);
628 qdev_prop_set_uint16(dev
, "id3", 0x00);
629 qdev_prop_set_string(dev
, "name", name
);
630 qdev_init_nofail(dev
);
632 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, flashbase
);
635 static void create_flash(const VirtBoardInfo
*vbi
)
637 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
638 * Any file passed via -bios goes in the first of these.
640 hwaddr flashsize
= vbi
->memmap
[VIRT_FLASH
].size
/ 2;
641 hwaddr flashbase
= vbi
->memmap
[VIRT_FLASH
].base
;
648 if (drive_get(IF_PFLASH
, 0, 0)) {
649 error_report("The contents of the first flash device may be "
650 "specified with -bios or with -drive if=pflash... "
651 "but you cannot use both options at once");
654 fn
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
656 error_report("Could not find ROM image '%s'", bios_name
);
659 image_size
= load_image_targphys(fn
, flashbase
, flashsize
);
661 if (image_size
< 0) {
662 error_report("Could not load ROM image '%s'", bios_name
);
667 create_one_flash("virt.flash0", flashbase
, flashsize
);
668 create_one_flash("virt.flash1", flashbase
+ flashsize
, flashsize
);
670 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
671 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
672 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible", "cfi-flash");
673 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
674 2, flashbase
, 2, flashsize
,
675 2, flashbase
+ flashsize
, 2, flashsize
);
676 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "bank-width", 4);
680 static void create_fw_cfg(const VirtBoardInfo
*vbi
, AddressSpace
*as
)
682 hwaddr base
= vbi
->memmap
[VIRT_FW_CFG
].base
;
683 hwaddr size
= vbi
->memmap
[VIRT_FW_CFG
].size
;
686 fw_cfg_init_mem_wide(base
+ 8, base
, 8, base
+ 16, as
);
688 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
689 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
690 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
691 "compatible", "qemu,fw-cfg-mmio");
692 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
697 static void create_pcie_irq_map(const VirtBoardInfo
*vbi
, uint32_t gic_phandle
,
698 int first_irq
, const char *nodename
)
701 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
702 uint32_t *irq_map
= full_irq_map
;
704 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
705 for (pin
= 0; pin
< 4; pin
++) {
706 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
707 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
708 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
712 devfn
<< 8, 0, 0, /* devfn */
713 pin
+ 1, /* PCI pin */
714 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
716 /* Convert map to big endian */
717 for (i
= 0; i
< 10; i
++) {
718 irq_map
[i
] = cpu_to_be32(map
[i
]);
724 qemu_fdt_setprop(vbi
->fdt
, nodename
, "interrupt-map",
725 full_irq_map
, sizeof(full_irq_map
));
727 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupt-map-mask",
728 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
732 static void create_pcie(const VirtBoardInfo
*vbi
, qemu_irq
*pic
,
735 hwaddr base_mmio
= vbi
->memmap
[VIRT_PCIE_MMIO
].base
;
736 hwaddr size_mmio
= vbi
->memmap
[VIRT_PCIE_MMIO
].size
;
737 hwaddr base_mmio_high
= vbi
->memmap
[VIRT_PCIE_MMIO_HIGH
].base
;
738 hwaddr size_mmio_high
= vbi
->memmap
[VIRT_PCIE_MMIO_HIGH
].size
;
739 hwaddr base_pio
= vbi
->memmap
[VIRT_PCIE_PIO
].base
;
740 hwaddr size_pio
= vbi
->memmap
[VIRT_PCIE_PIO
].size
;
741 hwaddr base_ecam
= vbi
->memmap
[VIRT_PCIE_ECAM
].base
;
742 hwaddr size_ecam
= vbi
->memmap
[VIRT_PCIE_ECAM
].size
;
743 hwaddr base
= base_mmio
;
744 int nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
745 int irq
= vbi
->irqmap
[VIRT_PCIE
];
746 MemoryRegion
*mmio_alias
;
747 MemoryRegion
*mmio_reg
;
748 MemoryRegion
*ecam_alias
;
749 MemoryRegion
*ecam_reg
;
754 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
755 qdev_init_nofail(dev
);
757 /* Map only the first size_ecam bytes of ECAM space */
758 ecam_alias
= g_new0(MemoryRegion
, 1);
759 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
760 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
761 ecam_reg
, 0, size_ecam
);
762 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
764 /* Map the MMIO window into system address space so as to expose
765 * the section of PCI MMIO space which starts at the same base address
766 * (ie 1:1 mapping for that part of PCI MMIO space visible through
769 mmio_alias
= g_new0(MemoryRegion
, 1);
770 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
771 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
772 mmio_reg
, base_mmio
, size_mmio
);
773 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
776 /* Map high MMIO space */
777 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
779 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
780 mmio_reg
, base_mmio_high
, size_mmio_high
);
781 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
785 /* Map IO port space */
786 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
788 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
789 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
792 nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
793 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
794 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
795 "compatible", "pci-host-ecam-generic");
796 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "pci");
797 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#address-cells", 3);
798 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#size-cells", 2);
799 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "bus-range", 0,
802 if (vbi
->v2m_phandle
) {
803 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "msi-parent",
807 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
808 2, base_ecam
, 2, size_ecam
);
811 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "ranges",
812 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
813 2, base_pio
, 2, size_pio
,
814 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
815 2, base_mmio
, 2, size_mmio
,
816 1, FDT_PCI_RANGE_MMIO_64BIT
,
818 2, base_mmio_high
, 2, size_mmio_high
);
820 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "ranges",
821 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
822 2, base_pio
, 2, size_pio
,
823 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
824 2, base_mmio
, 2, size_mmio
);
827 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#interrupt-cells", 1);
828 create_pcie_irq_map(vbi
, vbi
->gic_phandle
, irq
, nodename
);
833 static void create_platform_bus(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
838 ARMPlatformBusFDTParams
*fdt_params
= g_new(ARMPlatformBusFDTParams
, 1);
839 MemoryRegion
*sysmem
= get_system_memory();
841 platform_bus_params
.platform_bus_base
= vbi
->memmap
[VIRT_PLATFORM_BUS
].base
;
842 platform_bus_params
.platform_bus_size
= vbi
->memmap
[VIRT_PLATFORM_BUS
].size
;
843 platform_bus_params
.platform_bus_first_irq
= vbi
->irqmap
[VIRT_PLATFORM_BUS
];
844 platform_bus_params
.platform_bus_num_irqs
= PLATFORM_BUS_NUM_IRQS
;
846 fdt_params
->system_params
= &platform_bus_params
;
847 fdt_params
->binfo
= &vbi
->bootinfo
;
848 fdt_params
->intc
= "/intc";
850 * register a machine init done notifier that creates the device tree
851 * nodes of the platform bus and its children dynamic sysbus devices
853 arm_register_platform_bus_fdt_creator(fdt_params
);
855 dev
= qdev_create(NULL
, TYPE_PLATFORM_BUS_DEVICE
);
856 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
857 qdev_prop_set_uint32(dev
, "num_irqs",
858 platform_bus_params
.platform_bus_num_irqs
);
859 qdev_prop_set_uint32(dev
, "mmio_size",
860 platform_bus_params
.platform_bus_size
);
861 qdev_init_nofail(dev
);
862 s
= SYS_BUS_DEVICE(dev
);
864 for (i
= 0; i
< platform_bus_params
.platform_bus_num_irqs
; i
++) {
865 int irqn
= platform_bus_params
.platform_bus_first_irq
+ i
;
866 sysbus_connect_irq(s
, i
, pic
[irqn
]);
869 memory_region_add_subregion(sysmem
,
870 platform_bus_params
.platform_bus_base
,
871 sysbus_mmio_get_region(s
, 0));
874 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
876 const VirtBoardInfo
*board
= (const VirtBoardInfo
*)binfo
;
878 *fdt_size
= board
->fdt_size
;
882 static void virt_build_smbios(VirtGuestInfo
*guest_info
)
884 FWCfgState
*fw_cfg
= guest_info
->fw_cfg
;
885 uint8_t *smbios_tables
, *smbios_anchor
;
886 size_t smbios_tables_len
, smbios_anchor_len
;
887 const char *product
= "QEMU Virtual Machine";
894 product
= "KVM Virtual Machine";
897 smbios_set_defaults("QEMU", product
,
898 "1.0", false, true, SMBIOS_ENTRY_POINT_30
);
900 smbios_get_tables(NULL
, 0, &smbios_tables
, &smbios_tables_len
,
901 &smbios_anchor
, &smbios_anchor_len
);
904 fw_cfg_add_file(fw_cfg
, "etc/smbios/smbios-tables",
905 smbios_tables
, smbios_tables_len
);
906 fw_cfg_add_file(fw_cfg
, "etc/smbios/smbios-anchor",
907 smbios_anchor
, smbios_anchor_len
);
912 void virt_guest_info_machine_done(Notifier
*notifier
, void *data
)
914 VirtGuestInfoState
*guest_info_state
= container_of(notifier
,
915 VirtGuestInfoState
, machine_done
);
916 virt_acpi_setup(&guest_info_state
->info
);
917 virt_build_smbios(&guest_info_state
->info
);
920 static void machvirt_init(MachineState
*machine
)
922 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
923 qemu_irq pic
[NUM_IRQS
];
924 MemoryRegion
*sysmem
= get_system_memory();
925 int gic_version
= vms
->gic_version
;
927 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
928 const char *cpu_model
= machine
->cpu_model
;
930 VirtGuestInfoState
*guest_info_state
= g_malloc0(sizeof *guest_info_state
);
931 VirtGuestInfo
*guest_info
= &guest_info_state
->info
;
935 cpu_model
= "cortex-a15";
938 /* We can probe only here because during property set
939 * KVM is not available yet
942 gic_version
= kvm_arm_vgic_probe();
944 error_report("Unable to determine GIC version supported by host\n"
945 "Probably KVM acceleration is not supported\n");
950 /* Separate the actual CPU model name from any appended features */
951 cpustr
= g_strsplit(cpu_model
, ",", 2);
953 vbi
= find_machine_info(cpustr
[0]);
956 error_report("mach-virt: CPU %s not supported", cpustr
[0]);
960 /* The maximum number of CPUs depends on the GIC version, or on how
961 * many redistributors we can fit into the memory map.
963 if (gic_version
== 3) {
964 max_cpus
= vbi
->memmap
[VIRT_GIC_REDIST
].size
/ 0x20000;
969 if (smp_cpus
> max_cpus
) {
970 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
971 "supported by machine 'mach-virt' (%d)",
976 vbi
->smp_cpus
= smp_cpus
;
978 if (machine
->ram_size
> vbi
->memmap
[VIRT_MEM
].size
) {
979 error_report("mach-virt: cannot model more than 30GB RAM");
985 for (n
= 0; n
< smp_cpus
; n
++) {
986 ObjectClass
*oc
= cpu_class_by_name(TYPE_ARM_CPU
, cpustr
[0]);
987 CPUClass
*cc
= CPU_CLASS(oc
);
990 char *cpuopts
= g_strdup(cpustr
[1]);
993 fprintf(stderr
, "Unable to find CPU definition\n");
996 cpuobj
= object_new(object_class_get_name(oc
));
998 /* Handle any CPU options specified by the user */
999 cc
->parse_features(CPU(cpuobj
), cpuopts
, &err
);
1002 error_report_err(err
);
1007 object_property_set_bool(cpuobj
, false, "has_el3", NULL
);
1010 object_property_set_int(cpuobj
, QEMU_PSCI_CONDUIT_HVC
, "psci-conduit",
1013 /* Secondary CPUs start in PSCI powered-down state */
1015 object_property_set_bool(cpuobj
, true, "start-powered-off", NULL
);
1018 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
1019 object_property_set_int(cpuobj
, vbi
->memmap
[VIRT_CPUPERIPHS
].base
,
1020 "reset-cbar", &error_abort
);
1023 object_property_set_bool(cpuobj
, true, "realized", NULL
);
1026 fdt_add_timer_nodes(vbi
, gic_version
);
1027 fdt_add_cpu_nodes(vbi
);
1028 fdt_add_psci_node(vbi
);
1030 memory_region_allocate_system_memory(ram
, NULL
, "mach-virt.ram",
1032 memory_region_add_subregion(sysmem
, vbi
->memmap
[VIRT_MEM
].base
, ram
);
1036 create_gic(vbi
, pic
, gic_version
, vms
->secure
);
1038 create_uart(vbi
, pic
);
1040 create_rtc(vbi
, pic
);
1042 create_pcie(vbi
, pic
, vms
->highmem
);
1044 /* Create mmio transports, so the user can create virtio backends
1045 * (which will be automatically plugged in to the transports). If
1046 * no backend is created the transport will just sit harmlessly idle.
1048 create_virtio_devices(vbi
, pic
);
1050 create_fw_cfg(vbi
, &address_space_memory
);
1051 rom_set_fw(fw_cfg_find());
1053 guest_info
->smp_cpus
= smp_cpus
;
1054 guest_info
->fw_cfg
= fw_cfg_find();
1055 guest_info
->memmap
= vbi
->memmap
;
1056 guest_info
->irqmap
= vbi
->irqmap
;
1057 guest_info
->use_highmem
= vms
->highmem
;
1058 guest_info
->gic_version
= gic_version
;
1059 guest_info_state
->machine_done
.notify
= virt_guest_info_machine_done
;
1060 qemu_add_machine_init_done_notifier(&guest_info_state
->machine_done
);
1062 vbi
->bootinfo
.ram_size
= machine
->ram_size
;
1063 vbi
->bootinfo
.kernel_filename
= machine
->kernel_filename
;
1064 vbi
->bootinfo
.kernel_cmdline
= machine
->kernel_cmdline
;
1065 vbi
->bootinfo
.initrd_filename
= machine
->initrd_filename
;
1066 vbi
->bootinfo
.nb_cpus
= smp_cpus
;
1067 vbi
->bootinfo
.board_id
= -1;
1068 vbi
->bootinfo
.loader_start
= vbi
->memmap
[VIRT_MEM
].base
;
1069 vbi
->bootinfo
.get_dtb
= machvirt_dtb
;
1070 vbi
->bootinfo
.firmware_loaded
= bios_name
|| drive_get(IF_PFLASH
, 0, 0);
1071 arm_load_kernel(ARM_CPU(first_cpu
), &vbi
->bootinfo
);
1074 * arm_load_kernel machine init done notifier registration must
1075 * happen before the platform_bus_create call. In this latter,
1076 * another notifier is registered which adds platform bus nodes.
1077 * Notifiers are executed in registration reverse order.
1079 create_platform_bus(vbi
, pic
);
1082 static bool virt_get_secure(Object
*obj
, Error
**errp
)
1084 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1089 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
1091 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1093 vms
->secure
= value
;
1096 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
1098 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1100 return vms
->highmem
;
1103 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
1105 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1107 vms
->highmem
= value
;
1110 static char *virt_get_gic_version(Object
*obj
, Error
**errp
)
1112 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1113 const char *val
= vms
->gic_version
== 3 ? "3" : "2";
1115 return g_strdup(val
);
1118 static void virt_set_gic_version(Object
*obj
, const char *value
, Error
**errp
)
1120 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1122 if (!strcmp(value
, "3")) {
1123 vms
->gic_version
= 3;
1124 } else if (!strcmp(value
, "2")) {
1125 vms
->gic_version
= 2;
1126 } else if (!strcmp(value
, "host")) {
1127 vms
->gic_version
= 0; /* Will probe later */
1129 error_report("Invalid gic-version option value\n"
1130 "Allowed values are: 3, 2, host\n");
1135 static void virt_instance_init(Object
*obj
)
1137 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1139 /* EL3 is disabled by default on virt: this makes us consistent
1140 * between KVM and TCG for this board, and it also allows us to
1141 * boot UEFI blobs which assume no TrustZone support.
1143 vms
->secure
= false;
1144 object_property_add_bool(obj
, "secure", virt_get_secure
,
1145 virt_set_secure
, NULL
);
1146 object_property_set_description(obj
, "secure",
1147 "Set on/off to enable/disable the ARM "
1148 "Security Extensions (TrustZone)",
1151 /* High memory is enabled by default */
1152 vms
->highmem
= true;
1153 object_property_add_bool(obj
, "highmem", virt_get_highmem
,
1154 virt_set_highmem
, NULL
);
1155 object_property_set_description(obj
, "highmem",
1156 "Set on/off to enable/disable using "
1157 "physical address space above 32 bits",
1159 /* Default GIC type is v2 */
1160 vms
->gic_version
= 2;
1161 object_property_add_str(obj
, "gic-version", virt_get_gic_version
,
1162 virt_set_gic_version
, NULL
);
1163 object_property_set_description(obj
, "gic-version",
1165 "Valid values are 2, 3 and host", NULL
);
1168 static void virt_class_init(ObjectClass
*oc
, void *data
)
1170 MachineClass
*mc
= MACHINE_CLASS(oc
);
1172 mc
->desc
= "ARM Virtual Machine",
1173 mc
->init
= machvirt_init
;
1174 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1175 * it later in machvirt_init, where we have more information about the
1176 * configuration of the particular instance.
1178 mc
->max_cpus
= MAX_CPUMASK_BITS
;
1179 mc
->has_dynamic_sysbus
= true;
1180 mc
->block_default_type
= IF_VIRTIO
;
1182 mc
->pci_allow_0_address
= true;
1185 static const TypeInfo machvirt_info
= {
1186 .name
= TYPE_VIRT_MACHINE
,
1187 .parent
= TYPE_MACHINE
,
1188 .instance_size
= sizeof(VirtMachineState
),
1189 .instance_init
= virt_instance_init
,
1190 .class_size
= sizeof(VirtMachineClass
),
1191 .class_init
= virt_class_init
,
1194 static void machvirt_machine_init(void)
1196 type_register_static(&machvirt_info
);
1199 machine_init(machvirt_machine_init
);