4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
34 /* Needed early to override system queue definitions on BSD */
35 #include "sys-queue.h"
40 #include <sys/times.h>
44 #include <sys/ioctl.h>
45 #include <sys/resource.h>
46 #include <sys/socket.h>
47 #include <netinet/in.h>
49 #if defined(__NetBSD__)
50 #include <net/if_tap.h>
53 #include <linux/if_tun.h>
55 #include <arpa/inet.h>
58 #include <sys/select.h>
61 #if defined(__FreeBSD__) || defined(__DragonFly__)
66 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
67 #include <freebsd/stdlib.h>
72 #include <linux/rtc.h>
73 #include <sys/prctl.h>
75 /* For the benefit of older linux systems which don't supply it,
76 we use a local copy of hpet.h. */
77 /* #include <linux/hpet.h> */
80 #include <linux/ppdev.h>
81 #include <linux/parport.h>
85 #include <sys/ethernet.h>
86 #include <sys/sockio.h>
87 #include <netinet/arp.h>
88 #include <netinet/in.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #include <netinet/ip_icmp.h> // must come after ip.h
92 #include <netinet/udp.h>
93 #include <netinet/tcp.h>
101 #if defined(__OpenBSD__)
105 #if defined(CONFIG_VDE)
106 #include <libvdeplug.h>
111 #include <mmsystem.h>
115 #if defined(__APPLE__) || defined(main)
117 int qemu_main(int argc
, char **argv
, char **envp
);
118 int main(int argc
, char **argv
)
120 return qemu_main(argc
, argv
, NULL
);
123 #define main qemu_main
125 #endif /* CONFIG_SDL */
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
133 #include "hw/boards.h"
135 #include "hw/pcmcia.h"
137 #include "hw/audiodev.h"
141 #include "hw/watchdog.h"
142 #include "hw/smbios.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
156 #include "audio/audio.h"
157 #include "migration.h"
160 #include "qemu-option.h"
161 #include "qemu-config.h"
165 #include "exec-all.h"
167 #include "qemu_socket.h"
169 #include "slirp/libslirp.h"
172 //#define DEBUG_SLIRP
174 #define DEFAULT_RAM_SIZE 128
176 static const char *data_dir
;
177 const char *bios_name
= NULL
;
178 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
179 to store the VM snapshots */
180 struct drivelist drives
= TAILQ_HEAD_INITIALIZER(drives
);
181 struct driveoptlist driveopts
= TAILQ_HEAD_INITIALIZER(driveopts
);
182 enum vga_retrace_method vga_retrace_method
= VGA_RETRACE_DUMB
;
183 static DisplayState
*display_state
;
184 DisplayType display_type
= DT_DEFAULT
;
185 const char* keyboard_layout
= NULL
;
186 int64_t ticks_per_sec
;
189 NICInfo nd_table
[MAX_NICS
];
192 static int rtc_utc
= 1;
193 static int rtc_date_offset
= -1; /* -1 means no change */
194 int cirrus_vga_enabled
= 1;
195 int std_vga_enabled
= 0;
196 int vmsvga_enabled
= 0;
197 int xenfb_enabled
= 0;
199 int graphic_width
= 1024;
200 int graphic_height
= 768;
201 int graphic_depth
= 8;
203 int graphic_width
= 800;
204 int graphic_height
= 600;
205 int graphic_depth
= 15;
207 static int full_screen
= 0;
209 static int no_frame
= 0;
212 CharDriverState
*serial_hds
[MAX_SERIAL_PORTS
];
213 CharDriverState
*parallel_hds
[MAX_PARALLEL_PORTS
];
214 CharDriverState
*virtcon_hds
[MAX_VIRTIO_CONSOLES
];
216 int win2k_install_hack
= 0;
223 const char *vnc_display
;
224 int acpi_enabled
= 1;
226 int virtio_balloon
= 1;
227 const char *virtio_balloon_devaddr
;
232 int graphic_rotate
= 0;
236 WatchdogTimerModel
*watchdog
= NULL
;
237 int watchdog_action
= WDT_RESET
;
238 const char *option_rom
[MAX_OPTION_ROMS
];
240 int semihosting_enabled
= 0;
244 const char *qemu_name
;
246 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
247 unsigned int nb_prom_envs
= 0;
248 const char *prom_envs
[MAX_PROM_ENVS
];
253 uint64_t node_mem
[MAX_NODES
];
254 uint64_t node_cpumask
[MAX_NODES
];
256 static CPUState
*cur_cpu
;
257 static CPUState
*next_cpu
;
258 static int timer_alarm_pending
= 1;
259 /* Conversion factor from emulated instructions to virtual clock ticks. */
260 static int icount_time_shift
;
261 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
262 #define MAX_ICOUNT_SHIFT 10
263 /* Compensate for varying guest execution speed. */
264 static int64_t qemu_icount_bias
;
265 static QEMUTimer
*icount_rt_timer
;
266 static QEMUTimer
*icount_vm_timer
;
267 static QEMUTimer
*nographic_timer
;
269 uint8_t qemu_uuid
[16];
271 static QEMUBootSetHandler
*boot_set_handler
;
272 static void *boot_set_opaque
;
274 /***********************************************************/
275 /* x86 ISA bus support */
277 target_phys_addr_t isa_mem_base
= 0;
280 /***********************************************************/
281 void hw_error(const char *fmt
, ...)
287 fprintf(stderr
, "qemu: hardware error: ");
288 vfprintf(stderr
, fmt
, ap
);
289 fprintf(stderr
, "\n");
290 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
291 fprintf(stderr
, "CPU #%d:\n", env
->cpu_index
);
293 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
);
295 cpu_dump_state(env
, stderr
, fprintf
, 0);
302 static void set_proc_name(const char *s
)
308 name
[sizeof(name
) - 1] = 0;
309 strncpy(name
, s
, sizeof(name
));
310 /* Could rewrite argv[0] too, but that's a bit more complicated.
311 This simple way is enough for `top'. */
312 prctl(PR_SET_NAME
, name
);
319 static QEMUBalloonEvent
*qemu_balloon_event
;
320 void *qemu_balloon_event_opaque
;
322 void qemu_add_balloon_handler(QEMUBalloonEvent
*func
, void *opaque
)
324 qemu_balloon_event
= func
;
325 qemu_balloon_event_opaque
= opaque
;
328 void qemu_balloon(ram_addr_t target
)
330 if (qemu_balloon_event
)
331 qemu_balloon_event(qemu_balloon_event_opaque
, target
);
334 ram_addr_t
qemu_balloon_status(void)
336 if (qemu_balloon_event
)
337 return qemu_balloon_event(qemu_balloon_event_opaque
, 0);
341 /***********************************************************/
344 static QEMUPutKBDEvent
*qemu_put_kbd_event
;
345 static void *qemu_put_kbd_event_opaque
;
346 static QEMUPutMouseEntry
*qemu_put_mouse_event_head
;
347 static QEMUPutMouseEntry
*qemu_put_mouse_event_current
;
349 void qemu_add_kbd_event_handler(QEMUPutKBDEvent
*func
, void *opaque
)
351 qemu_put_kbd_event_opaque
= opaque
;
352 qemu_put_kbd_event
= func
;
355 QEMUPutMouseEntry
*qemu_add_mouse_event_handler(QEMUPutMouseEvent
*func
,
356 void *opaque
, int absolute
,
359 QEMUPutMouseEntry
*s
, *cursor
;
361 s
= qemu_mallocz(sizeof(QEMUPutMouseEntry
));
363 s
->qemu_put_mouse_event
= func
;
364 s
->qemu_put_mouse_event_opaque
= opaque
;
365 s
->qemu_put_mouse_event_absolute
= absolute
;
366 s
->qemu_put_mouse_event_name
= qemu_strdup(name
);
369 if (!qemu_put_mouse_event_head
) {
370 qemu_put_mouse_event_head
= qemu_put_mouse_event_current
= s
;
374 cursor
= qemu_put_mouse_event_head
;
375 while (cursor
->next
!= NULL
)
376 cursor
= cursor
->next
;
379 qemu_put_mouse_event_current
= s
;
384 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry
*entry
)
386 QEMUPutMouseEntry
*prev
= NULL
, *cursor
;
388 if (!qemu_put_mouse_event_head
|| entry
== NULL
)
391 cursor
= qemu_put_mouse_event_head
;
392 while (cursor
!= NULL
&& cursor
!= entry
) {
394 cursor
= cursor
->next
;
397 if (cursor
== NULL
) // does not exist or list empty
399 else if (prev
== NULL
) { // entry is head
400 qemu_put_mouse_event_head
= cursor
->next
;
401 if (qemu_put_mouse_event_current
== entry
)
402 qemu_put_mouse_event_current
= cursor
->next
;
403 qemu_free(entry
->qemu_put_mouse_event_name
);
408 prev
->next
= entry
->next
;
410 if (qemu_put_mouse_event_current
== entry
)
411 qemu_put_mouse_event_current
= prev
;
413 qemu_free(entry
->qemu_put_mouse_event_name
);
417 void kbd_put_keycode(int keycode
)
419 if (qemu_put_kbd_event
) {
420 qemu_put_kbd_event(qemu_put_kbd_event_opaque
, keycode
);
424 void kbd_mouse_event(int dx
, int dy
, int dz
, int buttons_state
)
426 QEMUPutMouseEvent
*mouse_event
;
427 void *mouse_event_opaque
;
430 if (!qemu_put_mouse_event_current
) {
435 qemu_put_mouse_event_current
->qemu_put_mouse_event
;
437 qemu_put_mouse_event_current
->qemu_put_mouse_event_opaque
;
440 if (graphic_rotate
) {
441 if (qemu_put_mouse_event_current
->qemu_put_mouse_event_absolute
)
444 width
= graphic_width
- 1;
445 mouse_event(mouse_event_opaque
,
446 width
- dy
, dx
, dz
, buttons_state
);
448 mouse_event(mouse_event_opaque
,
449 dx
, dy
, dz
, buttons_state
);
453 int kbd_mouse_is_absolute(void)
455 if (!qemu_put_mouse_event_current
)
458 return qemu_put_mouse_event_current
->qemu_put_mouse_event_absolute
;
461 void do_info_mice(Monitor
*mon
)
463 QEMUPutMouseEntry
*cursor
;
466 if (!qemu_put_mouse_event_head
) {
467 monitor_printf(mon
, "No mouse devices connected\n");
471 monitor_printf(mon
, "Mouse devices available:\n");
472 cursor
= qemu_put_mouse_event_head
;
473 while (cursor
!= NULL
) {
474 monitor_printf(mon
, "%c Mouse #%d: %s\n",
475 (cursor
== qemu_put_mouse_event_current
? '*' : ' '),
476 index
, cursor
->qemu_put_mouse_event_name
);
478 cursor
= cursor
->next
;
482 void do_mouse_set(Monitor
*mon
, int index
)
484 QEMUPutMouseEntry
*cursor
;
487 if (!qemu_put_mouse_event_head
) {
488 monitor_printf(mon
, "No mouse devices connected\n");
492 cursor
= qemu_put_mouse_event_head
;
493 while (cursor
!= NULL
&& index
!= i
) {
495 cursor
= cursor
->next
;
499 qemu_put_mouse_event_current
= cursor
;
501 monitor_printf(mon
, "Mouse at given index not found\n");
504 /* compute with 96 bit intermediate result: (a*b)/c */
505 uint64_t muldiv64(uint64_t a
, uint32_t b
, uint32_t c
)
510 #ifdef HOST_WORDS_BIGENDIAN
520 rl
= (uint64_t)u
.l
.low
* (uint64_t)b
;
521 rh
= (uint64_t)u
.l
.high
* (uint64_t)b
;
524 res
.l
.low
= (((rh
% c
) << 32) + (rl
& 0xffffffff)) / c
;
528 /***********************************************************/
529 /* real time host monotonic timer */
531 #define QEMU_TIMER_BASE 1000000000LL
535 static int64_t clock_freq
;
537 static void init_get_clock(void)
541 ret
= QueryPerformanceFrequency(&freq
);
543 fprintf(stderr
, "Could not calibrate ticks\n");
546 clock_freq
= freq
.QuadPart
;
549 static int64_t get_clock(void)
552 QueryPerformanceCounter(&ti
);
553 return muldiv64(ti
.QuadPart
, QEMU_TIMER_BASE
, clock_freq
);
558 static int use_rt_clock
;
560 static void init_get_clock(void)
563 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
564 || defined(__DragonFly__)
567 if (clock_gettime(CLOCK_MONOTONIC
, &ts
) == 0) {
574 static int64_t get_clock(void)
576 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
577 || defined(__DragonFly__)
580 clock_gettime(CLOCK_MONOTONIC
, &ts
);
581 return ts
.tv_sec
* 1000000000LL + ts
.tv_nsec
;
585 /* XXX: using gettimeofday leads to problems if the date
586 changes, so it should be avoided. */
588 gettimeofday(&tv
, NULL
);
589 return tv
.tv_sec
* 1000000000LL + (tv
.tv_usec
* 1000);
594 /* Return the virtual CPU time, based on the instruction counter. */
595 static int64_t cpu_get_icount(void)
598 CPUState
*env
= cpu_single_env
;;
599 icount
= qemu_icount
;
602 fprintf(stderr
, "Bad clock read\n");
603 icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
605 return qemu_icount_bias
+ (icount
<< icount_time_shift
);
608 /***********************************************************/
609 /* guest cycle counter */
611 static int64_t cpu_ticks_prev
;
612 static int64_t cpu_ticks_offset
;
613 static int64_t cpu_clock_offset
;
614 static int cpu_ticks_enabled
;
616 /* return the host CPU cycle counter and handle stop/restart */
617 int64_t cpu_get_ticks(void)
620 return cpu_get_icount();
622 if (!cpu_ticks_enabled
) {
623 return cpu_ticks_offset
;
626 ticks
= cpu_get_real_ticks();
627 if (cpu_ticks_prev
> ticks
) {
628 /* Note: non increasing ticks may happen if the host uses
630 cpu_ticks_offset
+= cpu_ticks_prev
- ticks
;
632 cpu_ticks_prev
= ticks
;
633 return ticks
+ cpu_ticks_offset
;
637 /* return the host CPU monotonic timer and handle stop/restart */
638 static int64_t cpu_get_clock(void)
641 if (!cpu_ticks_enabled
) {
642 return cpu_clock_offset
;
645 return ti
+ cpu_clock_offset
;
649 /* enable cpu_get_ticks() */
650 void cpu_enable_ticks(void)
652 if (!cpu_ticks_enabled
) {
653 cpu_ticks_offset
-= cpu_get_real_ticks();
654 cpu_clock_offset
-= get_clock();
655 cpu_ticks_enabled
= 1;
659 /* disable cpu_get_ticks() : the clock is stopped. You must not call
660 cpu_get_ticks() after that. */
661 void cpu_disable_ticks(void)
663 if (cpu_ticks_enabled
) {
664 cpu_ticks_offset
= cpu_get_ticks();
665 cpu_clock_offset
= cpu_get_clock();
666 cpu_ticks_enabled
= 0;
670 /***********************************************************/
673 #define QEMU_TIMER_REALTIME 0
674 #define QEMU_TIMER_VIRTUAL 1
678 /* XXX: add frequency */
686 struct QEMUTimer
*next
;
689 struct qemu_alarm_timer
{
693 int (*start
)(struct qemu_alarm_timer
*t
);
694 void (*stop
)(struct qemu_alarm_timer
*t
);
695 void (*rearm
)(struct qemu_alarm_timer
*t
);
699 #define ALARM_FLAG_DYNTICKS 0x1
700 #define ALARM_FLAG_EXPIRED 0x2
702 static inline int alarm_has_dynticks(struct qemu_alarm_timer
*t
)
704 return t
&& (t
->flags
& ALARM_FLAG_DYNTICKS
);
707 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer
*t
)
709 if (!alarm_has_dynticks(t
))
715 /* TODO: MIN_TIMER_REARM_US should be optimized */
716 #define MIN_TIMER_REARM_US 250
718 static struct qemu_alarm_timer
*alarm_timer
;
722 struct qemu_alarm_win32
{
725 } alarm_win32_data
= {0, -1};
727 static int win32_start_timer(struct qemu_alarm_timer
*t
);
728 static void win32_stop_timer(struct qemu_alarm_timer
*t
);
729 static void win32_rearm_timer(struct qemu_alarm_timer
*t
);
733 static int unix_start_timer(struct qemu_alarm_timer
*t
);
734 static void unix_stop_timer(struct qemu_alarm_timer
*t
);
738 static int dynticks_start_timer(struct qemu_alarm_timer
*t
);
739 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
);
740 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
);
742 static int hpet_start_timer(struct qemu_alarm_timer
*t
);
743 static void hpet_stop_timer(struct qemu_alarm_timer
*t
);
745 static int rtc_start_timer(struct qemu_alarm_timer
*t
);
746 static void rtc_stop_timer(struct qemu_alarm_timer
*t
);
748 #endif /* __linux__ */
752 /* Correlation between real and virtual time is always going to be
753 fairly approximate, so ignore small variation.
754 When the guest is idle real and virtual time will be aligned in
756 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
758 static void icount_adjust(void)
763 static int64_t last_delta
;
764 /* If the VM is not running, then do nothing. */
768 cur_time
= cpu_get_clock();
769 cur_icount
= qemu_get_clock(vm_clock
);
770 delta
= cur_icount
- cur_time
;
771 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
773 && last_delta
+ ICOUNT_WOBBLE
< delta
* 2
774 && icount_time_shift
> 0) {
775 /* The guest is getting too far ahead. Slow time down. */
779 && last_delta
- ICOUNT_WOBBLE
> delta
* 2
780 && icount_time_shift
< MAX_ICOUNT_SHIFT
) {
781 /* The guest is getting too far behind. Speed time up. */
785 qemu_icount_bias
= cur_icount
- (qemu_icount
<< icount_time_shift
);
788 static void icount_adjust_rt(void * opaque
)
790 qemu_mod_timer(icount_rt_timer
,
791 qemu_get_clock(rt_clock
) + 1000);
795 static void icount_adjust_vm(void * opaque
)
797 qemu_mod_timer(icount_vm_timer
,
798 qemu_get_clock(vm_clock
) + QEMU_TIMER_BASE
/ 10);
802 static void init_icount_adjust(void)
804 /* Have both realtime and virtual time triggers for speed adjustment.
805 The realtime trigger catches emulated time passing too slowly,
806 the virtual time trigger catches emulated time passing too fast.
807 Realtime triggers occur even when idle, so use them less frequently
809 icount_rt_timer
= qemu_new_timer(rt_clock
, icount_adjust_rt
, NULL
);
810 qemu_mod_timer(icount_rt_timer
,
811 qemu_get_clock(rt_clock
) + 1000);
812 icount_vm_timer
= qemu_new_timer(vm_clock
, icount_adjust_vm
, NULL
);
813 qemu_mod_timer(icount_vm_timer
,
814 qemu_get_clock(vm_clock
) + QEMU_TIMER_BASE
/ 10);
817 static struct qemu_alarm_timer alarm_timers
[] = {
820 {"dynticks", ALARM_FLAG_DYNTICKS
, dynticks_start_timer
,
821 dynticks_stop_timer
, dynticks_rearm_timer
, NULL
},
822 /* HPET - if available - is preferred */
823 {"hpet", 0, hpet_start_timer
, hpet_stop_timer
, NULL
, NULL
},
824 /* ...otherwise try RTC */
825 {"rtc", 0, rtc_start_timer
, rtc_stop_timer
, NULL
, NULL
},
827 {"unix", 0, unix_start_timer
, unix_stop_timer
, NULL
, NULL
},
829 {"dynticks", ALARM_FLAG_DYNTICKS
, win32_start_timer
,
830 win32_stop_timer
, win32_rearm_timer
, &alarm_win32_data
},
831 {"win32", 0, win32_start_timer
,
832 win32_stop_timer
, NULL
, &alarm_win32_data
},
837 static void show_available_alarms(void)
841 printf("Available alarm timers, in order of precedence:\n");
842 for (i
= 0; alarm_timers
[i
].name
; i
++)
843 printf("%s\n", alarm_timers
[i
].name
);
846 static void configure_alarms(char const *opt
)
850 int count
= ARRAY_SIZE(alarm_timers
) - 1;
853 struct qemu_alarm_timer tmp
;
855 if (!strcmp(opt
, "?")) {
856 show_available_alarms();
862 /* Reorder the array */
863 name
= strtok(arg
, ",");
865 for (i
= 0; i
< count
&& alarm_timers
[i
].name
; i
++) {
866 if (!strcmp(alarm_timers
[i
].name
, name
))
871 fprintf(stderr
, "Unknown clock %s\n", name
);
880 tmp
= alarm_timers
[i
];
881 alarm_timers
[i
] = alarm_timers
[cur
];
882 alarm_timers
[cur
] = tmp
;
886 name
= strtok(NULL
, ",");
892 /* Disable remaining timers */
893 for (i
= cur
; i
< count
; i
++)
894 alarm_timers
[i
].name
= NULL
;
896 show_available_alarms();
904 static QEMUTimer
*active_timers
[2];
906 static QEMUClock
*qemu_new_clock(int type
)
909 clock
= qemu_mallocz(sizeof(QEMUClock
));
914 QEMUTimer
*qemu_new_timer(QEMUClock
*clock
, QEMUTimerCB
*cb
, void *opaque
)
918 ts
= qemu_mallocz(sizeof(QEMUTimer
));
925 void qemu_free_timer(QEMUTimer
*ts
)
930 /* stop a timer, but do not dealloc it */
931 void qemu_del_timer(QEMUTimer
*ts
)
935 /* NOTE: this code must be signal safe because
936 qemu_timer_expired() can be called from a signal. */
937 pt
= &active_timers
[ts
->clock
->type
];
950 /* modify the current timer so that it will be fired when current_time
951 >= expire_time. The corresponding callback will be called. */
952 void qemu_mod_timer(QEMUTimer
*ts
, int64_t expire_time
)
958 /* add the timer in the sorted list */
959 /* NOTE: this code must be signal safe because
960 qemu_timer_expired() can be called from a signal. */
961 pt
= &active_timers
[ts
->clock
->type
];
966 if (t
->expire_time
> expire_time
)
970 ts
->expire_time
= expire_time
;
974 /* Rearm if necessary */
975 if (pt
== &active_timers
[ts
->clock
->type
]) {
976 if ((alarm_timer
->flags
& ALARM_FLAG_EXPIRED
) == 0) {
977 qemu_rearm_alarm_timer(alarm_timer
);
979 /* Interrupt execution to force deadline recalculation. */
985 int qemu_timer_pending(QEMUTimer
*ts
)
988 for(t
= active_timers
[ts
->clock
->type
]; t
!= NULL
; t
= t
->next
) {
995 static inline int qemu_timer_expired(QEMUTimer
*timer_head
, int64_t current_time
)
999 return (timer_head
->expire_time
<= current_time
);
1002 static void qemu_run_timers(QEMUTimer
**ptimer_head
, int64_t current_time
)
1008 if (!ts
|| ts
->expire_time
> current_time
)
1010 /* remove timer from the list before calling the callback */
1011 *ptimer_head
= ts
->next
;
1014 /* run the callback (the timer list can be modified) */
1019 int64_t qemu_get_clock(QEMUClock
*clock
)
1021 switch(clock
->type
) {
1022 case QEMU_TIMER_REALTIME
:
1023 return get_clock() / 1000000;
1025 case QEMU_TIMER_VIRTUAL
:
1027 return cpu_get_icount();
1029 return cpu_get_clock();
1034 static void init_timers(void)
1037 ticks_per_sec
= QEMU_TIMER_BASE
;
1038 rt_clock
= qemu_new_clock(QEMU_TIMER_REALTIME
);
1039 vm_clock
= qemu_new_clock(QEMU_TIMER_VIRTUAL
);
1043 void qemu_put_timer(QEMUFile
*f
, QEMUTimer
*ts
)
1045 uint64_t expire_time
;
1047 if (qemu_timer_pending(ts
)) {
1048 expire_time
= ts
->expire_time
;
1052 qemu_put_be64(f
, expire_time
);
1055 void qemu_get_timer(QEMUFile
*f
, QEMUTimer
*ts
)
1057 uint64_t expire_time
;
1059 expire_time
= qemu_get_be64(f
);
1060 if (expire_time
!= -1) {
1061 qemu_mod_timer(ts
, expire_time
);
1067 static void timer_save(QEMUFile
*f
, void *opaque
)
1069 if (cpu_ticks_enabled
) {
1070 hw_error("cannot save state if virtual timers are running");
1072 qemu_put_be64(f
, cpu_ticks_offset
);
1073 qemu_put_be64(f
, ticks_per_sec
);
1074 qemu_put_be64(f
, cpu_clock_offset
);
1077 static int timer_load(QEMUFile
*f
, void *opaque
, int version_id
)
1079 if (version_id
!= 1 && version_id
!= 2)
1081 if (cpu_ticks_enabled
) {
1084 cpu_ticks_offset
=qemu_get_be64(f
);
1085 ticks_per_sec
=qemu_get_be64(f
);
1086 if (version_id
== 2) {
1087 cpu_clock_offset
=qemu_get_be64(f
);
1092 static void qemu_event_increment(void);
1095 static void CALLBACK
host_alarm_handler(UINT uTimerID
, UINT uMsg
,
1096 DWORD_PTR dwUser
, DWORD_PTR dw1
,
1099 static void host_alarm_handler(int host_signum
)
1103 #define DISP_FREQ 1000
1105 static int64_t delta_min
= INT64_MAX
;
1106 static int64_t delta_max
, delta_cum
, last_clock
, delta
, ti
;
1108 ti
= qemu_get_clock(vm_clock
);
1109 if (last_clock
!= 0) {
1110 delta
= ti
- last_clock
;
1111 if (delta
< delta_min
)
1113 if (delta
> delta_max
)
1116 if (++count
== DISP_FREQ
) {
1117 printf("timer: min=%" PRId64
" us max=%" PRId64
" us avg=%" PRId64
" us avg_freq=%0.3f Hz\n",
1118 muldiv64(delta_min
, 1000000, ticks_per_sec
),
1119 muldiv64(delta_max
, 1000000, ticks_per_sec
),
1120 muldiv64(delta_cum
, 1000000 / DISP_FREQ
, ticks_per_sec
),
1121 (double)ticks_per_sec
/ ((double)delta_cum
/ DISP_FREQ
));
1123 delta_min
= INT64_MAX
;
1131 if (alarm_has_dynticks(alarm_timer
) ||
1133 qemu_timer_expired(active_timers
[QEMU_TIMER_VIRTUAL
],
1134 qemu_get_clock(vm_clock
))) ||
1135 qemu_timer_expired(active_timers
[QEMU_TIMER_REALTIME
],
1136 qemu_get_clock(rt_clock
))) {
1137 qemu_event_increment();
1138 if (alarm_timer
) alarm_timer
->flags
|= ALARM_FLAG_EXPIRED
;
1140 #ifndef CONFIG_IOTHREAD
1142 /* stop the currently executing cpu because a timer occured */
1145 if (next_cpu
->kqemu_enabled
) {
1146 kqemu_cpu_interrupt(next_cpu
);
1151 timer_alarm_pending
= 1;
1152 qemu_notify_event();
1156 static int64_t qemu_next_deadline(void)
1160 if (active_timers
[QEMU_TIMER_VIRTUAL
]) {
1161 delta
= active_timers
[QEMU_TIMER_VIRTUAL
]->expire_time
-
1162 qemu_get_clock(vm_clock
);
1164 /* To avoid problems with overflow limit this to 2^32. */
1174 #if defined(__linux__) || defined(_WIN32)
1175 static uint64_t qemu_next_deadline_dyntick(void)
1183 delta
= (qemu_next_deadline() + 999) / 1000;
1185 if (active_timers
[QEMU_TIMER_REALTIME
]) {
1186 rtdelta
= (active_timers
[QEMU_TIMER_REALTIME
]->expire_time
-
1187 qemu_get_clock(rt_clock
))*1000;
1188 if (rtdelta
< delta
)
1192 if (delta
< MIN_TIMER_REARM_US
)
1193 delta
= MIN_TIMER_REARM_US
;
1201 /* Sets a specific flag */
1202 static int fcntl_setfl(int fd
, int flag
)
1206 flags
= fcntl(fd
, F_GETFL
);
1210 if (fcntl(fd
, F_SETFL
, flags
| flag
) == -1)
1216 #if defined(__linux__)
1218 #define RTC_FREQ 1024
1220 static void enable_sigio_timer(int fd
)
1222 struct sigaction act
;
1225 sigfillset(&act
.sa_mask
);
1227 act
.sa_handler
= host_alarm_handler
;
1229 sigaction(SIGIO
, &act
, NULL
);
1230 fcntl_setfl(fd
, O_ASYNC
);
1231 fcntl(fd
, F_SETOWN
, getpid());
1234 static int hpet_start_timer(struct qemu_alarm_timer
*t
)
1236 struct hpet_info info
;
1239 fd
= open("/dev/hpet", O_RDONLY
);
1244 r
= ioctl(fd
, HPET_IRQFREQ
, RTC_FREQ
);
1246 fprintf(stderr
, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1247 "error, but for better emulation accuracy type:\n"
1248 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1252 /* Check capabilities */
1253 r
= ioctl(fd
, HPET_INFO
, &info
);
1257 /* Enable periodic mode */
1258 r
= ioctl(fd
, HPET_EPI
, 0);
1259 if (info
.hi_flags
&& (r
< 0))
1262 /* Enable interrupt */
1263 r
= ioctl(fd
, HPET_IE_ON
, 0);
1267 enable_sigio_timer(fd
);
1268 t
->priv
= (void *)(long)fd
;
1276 static void hpet_stop_timer(struct qemu_alarm_timer
*t
)
1278 int fd
= (long)t
->priv
;
1283 static int rtc_start_timer(struct qemu_alarm_timer
*t
)
1286 unsigned long current_rtc_freq
= 0;
1288 TFR(rtc_fd
= open("/dev/rtc", O_RDONLY
));
1291 ioctl(rtc_fd
, RTC_IRQP_READ
, ¤t_rtc_freq
);
1292 if (current_rtc_freq
!= RTC_FREQ
&&
1293 ioctl(rtc_fd
, RTC_IRQP_SET
, RTC_FREQ
) < 0) {
1294 fprintf(stderr
, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1295 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1296 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1299 if (ioctl(rtc_fd
, RTC_PIE_ON
, 0) < 0) {
1305 enable_sigio_timer(rtc_fd
);
1307 t
->priv
= (void *)(long)rtc_fd
;
1312 static void rtc_stop_timer(struct qemu_alarm_timer
*t
)
1314 int rtc_fd
= (long)t
->priv
;
1319 static int dynticks_start_timer(struct qemu_alarm_timer
*t
)
1323 struct sigaction act
;
1325 sigfillset(&act
.sa_mask
);
1327 act
.sa_handler
= host_alarm_handler
;
1329 sigaction(SIGALRM
, &act
, NULL
);
1332 * Initialize ev struct to 0 to avoid valgrind complaining
1333 * about uninitialized data in timer_create call
1335 memset(&ev
, 0, sizeof(ev
));
1336 ev
.sigev_value
.sival_int
= 0;
1337 ev
.sigev_notify
= SIGEV_SIGNAL
;
1338 ev
.sigev_signo
= SIGALRM
;
1340 if (timer_create(CLOCK_REALTIME
, &ev
, &host_timer
)) {
1341 perror("timer_create");
1343 /* disable dynticks */
1344 fprintf(stderr
, "Dynamic Ticks disabled\n");
1349 t
->priv
= (void *)(long)host_timer
;
1354 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
)
1356 timer_t host_timer
= (timer_t
)(long)t
->priv
;
1358 timer_delete(host_timer
);
1361 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
)
1363 timer_t host_timer
= (timer_t
)(long)t
->priv
;
1364 struct itimerspec timeout
;
1365 int64_t nearest_delta_us
= INT64_MAX
;
1368 if (!active_timers
[QEMU_TIMER_REALTIME
] &&
1369 !active_timers
[QEMU_TIMER_VIRTUAL
])
1372 nearest_delta_us
= qemu_next_deadline_dyntick();
1374 /* check whether a timer is already running */
1375 if (timer_gettime(host_timer
, &timeout
)) {
1377 fprintf(stderr
, "Internal timer error: aborting\n");
1380 current_us
= timeout
.it_value
.tv_sec
* 1000000 + timeout
.it_value
.tv_nsec
/1000;
1381 if (current_us
&& current_us
<= nearest_delta_us
)
1384 timeout
.it_interval
.tv_sec
= 0;
1385 timeout
.it_interval
.tv_nsec
= 0; /* 0 for one-shot timer */
1386 timeout
.it_value
.tv_sec
= nearest_delta_us
/ 1000000;
1387 timeout
.it_value
.tv_nsec
= (nearest_delta_us
% 1000000) * 1000;
1388 if (timer_settime(host_timer
, 0 /* RELATIVE */, &timeout
, NULL
)) {
1390 fprintf(stderr
, "Internal timer error: aborting\n");
1395 #endif /* defined(__linux__) */
1397 static int unix_start_timer(struct qemu_alarm_timer
*t
)
1399 struct sigaction act
;
1400 struct itimerval itv
;
1404 sigfillset(&act
.sa_mask
);
1406 act
.sa_handler
= host_alarm_handler
;
1408 sigaction(SIGALRM
, &act
, NULL
);
1410 itv
.it_interval
.tv_sec
= 0;
1411 /* for i386 kernel 2.6 to get 1 ms */
1412 itv
.it_interval
.tv_usec
= 999;
1413 itv
.it_value
.tv_sec
= 0;
1414 itv
.it_value
.tv_usec
= 10 * 1000;
1416 err
= setitimer(ITIMER_REAL
, &itv
, NULL
);
1423 static void unix_stop_timer(struct qemu_alarm_timer
*t
)
1425 struct itimerval itv
;
1427 memset(&itv
, 0, sizeof(itv
));
1428 setitimer(ITIMER_REAL
, &itv
, NULL
);
1431 #endif /* !defined(_WIN32) */
1436 static int win32_start_timer(struct qemu_alarm_timer
*t
)
1439 struct qemu_alarm_win32
*data
= t
->priv
;
1442 memset(&tc
, 0, sizeof(tc
));
1443 timeGetDevCaps(&tc
, sizeof(tc
));
1445 if (data
->period
< tc
.wPeriodMin
)
1446 data
->period
= tc
.wPeriodMin
;
1448 timeBeginPeriod(data
->period
);
1450 flags
= TIME_CALLBACK_FUNCTION
;
1451 if (alarm_has_dynticks(t
))
1452 flags
|= TIME_ONESHOT
;
1454 flags
|= TIME_PERIODIC
;
1456 data
->timerId
= timeSetEvent(1, // interval (ms)
1457 data
->period
, // resolution
1458 host_alarm_handler
, // function
1459 (DWORD
)t
, // parameter
1462 if (!data
->timerId
) {
1463 perror("Failed to initialize win32 alarm timer");
1464 timeEndPeriod(data
->period
);
1471 static void win32_stop_timer(struct qemu_alarm_timer
*t
)
1473 struct qemu_alarm_win32
*data
= t
->priv
;
1475 timeKillEvent(data
->timerId
);
1476 timeEndPeriod(data
->period
);
1479 static void win32_rearm_timer(struct qemu_alarm_timer
*t
)
1481 struct qemu_alarm_win32
*data
= t
->priv
;
1482 uint64_t nearest_delta_us
;
1484 if (!active_timers
[QEMU_TIMER_REALTIME
] &&
1485 !active_timers
[QEMU_TIMER_VIRTUAL
])
1488 nearest_delta_us
= qemu_next_deadline_dyntick();
1489 nearest_delta_us
/= 1000;
1491 timeKillEvent(data
->timerId
);
1493 data
->timerId
= timeSetEvent(1,
1497 TIME_ONESHOT
| TIME_PERIODIC
);
1499 if (!data
->timerId
) {
1500 perror("Failed to re-arm win32 alarm timer");
1502 timeEndPeriod(data
->period
);
1509 static int init_timer_alarm(void)
1511 struct qemu_alarm_timer
*t
= NULL
;
1514 for (i
= 0; alarm_timers
[i
].name
; i
++) {
1515 t
= &alarm_timers
[i
];
1535 static void quit_timers(void)
1537 alarm_timer
->stop(alarm_timer
);
1541 /***********************************************************/
1542 /* host time/date access */
1543 void qemu_get_timedate(struct tm
*tm
, int offset
)
1550 if (rtc_date_offset
== -1) {
1554 ret
= localtime(&ti
);
1556 ti
-= rtc_date_offset
;
1560 memcpy(tm
, ret
, sizeof(struct tm
));
1563 int qemu_timedate_diff(struct tm
*tm
)
1567 if (rtc_date_offset
== -1)
1569 seconds
= mktimegm(tm
);
1571 seconds
= mktime(tm
);
1573 seconds
= mktimegm(tm
) + rtc_date_offset
;
1575 return seconds
- time(NULL
);
1579 static void socket_cleanup(void)
1584 static int socket_init(void)
1589 ret
= WSAStartup(MAKEWORD(2,2), &Data
);
1591 err
= WSAGetLastError();
1592 fprintf(stderr
, "WSAStartup: %d\n", err
);
1595 atexit(socket_cleanup
);
1600 /***********************************************************/
1601 /* Bluetooth support */
1604 static struct HCIInfo
*hci_table
[MAX_NICS
];
1606 static struct bt_vlan_s
{
1607 struct bt_scatternet_s net
;
1609 struct bt_vlan_s
*next
;
1612 /* find or alloc a new bluetooth "VLAN" */
1613 static struct bt_scatternet_s
*qemu_find_bt_vlan(int id
)
1615 struct bt_vlan_s
**pvlan
, *vlan
;
1616 for (vlan
= first_bt_vlan
; vlan
!= NULL
; vlan
= vlan
->next
) {
1620 vlan
= qemu_mallocz(sizeof(struct bt_vlan_s
));
1622 pvlan
= &first_bt_vlan
;
1623 while (*pvlan
!= NULL
)
1624 pvlan
= &(*pvlan
)->next
;
1629 static void null_hci_send(struct HCIInfo
*hci
, const uint8_t *data
, int len
)
1633 static int null_hci_addr_set(struct HCIInfo
*hci
, const uint8_t *bd_addr
)
1638 static struct HCIInfo null_hci
= {
1639 .cmd_send
= null_hci_send
,
1640 .sco_send
= null_hci_send
,
1641 .acl_send
= null_hci_send
,
1642 .bdaddr_set
= null_hci_addr_set
,
1645 struct HCIInfo
*qemu_next_hci(void)
1647 if (cur_hci
== nb_hcis
)
1650 return hci_table
[cur_hci
++];
1653 static struct HCIInfo
*hci_init(const char *str
)
1656 struct bt_scatternet_s
*vlan
= 0;
1658 if (!strcmp(str
, "null"))
1661 else if (!strncmp(str
, "host", 4) && (str
[4] == '\0' || str
[4] == ':'))
1663 return bt_host_hci(str
[4] ? str
+ 5 : "hci0");
1664 else if (!strncmp(str
, "hci", 3)) {
1667 if (!strncmp(str
+ 3, ",vlan=", 6)) {
1668 vlan
= qemu_find_bt_vlan(strtol(str
+ 9, &endp
, 0));
1673 vlan
= qemu_find_bt_vlan(0);
1675 return bt_new_hci(vlan
);
1678 fprintf(stderr
, "qemu: Unknown bluetooth HCI `%s'.\n", str
);
1683 static int bt_hci_parse(const char *str
)
1685 struct HCIInfo
*hci
;
1688 if (nb_hcis
>= MAX_NICS
) {
1689 fprintf(stderr
, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS
);
1693 hci
= hci_init(str
);
1702 bdaddr
.b
[5] = 0x56 + nb_hcis
;
1703 hci
->bdaddr_set(hci
, bdaddr
.b
);
1705 hci_table
[nb_hcis
++] = hci
;
1710 static void bt_vhci_add(int vlan_id
)
1712 struct bt_scatternet_s
*vlan
= qemu_find_bt_vlan(vlan_id
);
1715 fprintf(stderr
, "qemu: warning: adding a VHCI to "
1716 "an empty scatternet %i\n", vlan_id
);
1718 bt_vhci_init(bt_new_hci(vlan
));
1721 static struct bt_device_s
*bt_device_add(const char *opt
)
1723 struct bt_scatternet_s
*vlan
;
1725 char *endp
= strstr(opt
, ",vlan=");
1726 int len
= (endp
? endp
- opt
: strlen(opt
)) + 1;
1729 pstrcpy(devname
, MIN(sizeof(devname
), len
), opt
);
1732 vlan_id
= strtol(endp
+ 6, &endp
, 0);
1734 fprintf(stderr
, "qemu: unrecognised bluetooth vlan Id\n");
1739 vlan
= qemu_find_bt_vlan(vlan_id
);
1742 fprintf(stderr
, "qemu: warning: adding a slave device to "
1743 "an empty scatternet %i\n", vlan_id
);
1745 if (!strcmp(devname
, "keyboard"))
1746 return bt_keyboard_init(vlan
);
1748 fprintf(stderr
, "qemu: unsupported bluetooth device `%s'\n", devname
);
1752 static int bt_parse(const char *opt
)
1754 const char *endp
, *p
;
1757 if (strstart(opt
, "hci", &endp
)) {
1758 if (!*endp
|| *endp
== ',') {
1760 if (!strstart(endp
, ",vlan=", 0))
1763 return bt_hci_parse(opt
);
1765 } else if (strstart(opt
, "vhci", &endp
)) {
1766 if (!*endp
|| *endp
== ',') {
1768 if (strstart(endp
, ",vlan=", &p
)) {
1769 vlan
= strtol(p
, (char **) &endp
, 0);
1771 fprintf(stderr
, "qemu: bad scatternet '%s'\n", p
);
1775 fprintf(stderr
, "qemu: bad parameter '%s'\n", endp
+ 1);
1784 } else if (strstart(opt
, "device:", &endp
))
1785 return !bt_device_add(endp
);
1787 fprintf(stderr
, "qemu: bad bluetooth parameter '%s'\n", opt
);
1791 /***********************************************************/
1792 /* QEMU Block devices */
1794 #define HD_ALIAS "index=%d,media=disk"
1795 #define CDROM_ALIAS "index=2,media=cdrom"
1796 #define FD_ALIAS "index=%d,if=floppy"
1797 #define PFLASH_ALIAS "if=pflash"
1798 #define MTD_ALIAS "if=mtd"
1799 #define SD_ALIAS "index=0,if=sd"
1801 QemuOpts
*drive_add(const char *file
, const char *fmt
, ...)
1808 vsnprintf(optstr
, sizeof(optstr
), fmt
, ap
);
1811 opts
= qemu_opts_parse(&qemu_drive_opts
, optstr
, NULL
);
1813 fprintf(stderr
, "%s: huh? duplicate? (%s)\n",
1814 __FUNCTION__
, optstr
);
1818 qemu_opt_set(opts
, "file", file
);
1822 DriveInfo
*drive_get(BlockInterfaceType type
, int bus
, int unit
)
1826 /* seek interface, bus and unit */
1828 TAILQ_FOREACH(dinfo
, &drives
, next
) {
1829 if (dinfo
->type
== type
&&
1830 dinfo
->bus
== bus
&&
1831 dinfo
->unit
== unit
)
1838 DriveInfo
*drive_get_by_id(char *id
)
1842 TAILQ_FOREACH(dinfo
, &drives
, next
) {
1843 if (strcmp(id
, dinfo
->id
))
1850 int drive_get_max_bus(BlockInterfaceType type
)
1856 TAILQ_FOREACH(dinfo
, &drives
, next
) {
1857 if(dinfo
->type
== type
&&
1858 dinfo
->bus
> max_bus
)
1859 max_bus
= dinfo
->bus
;
1864 const char *drive_get_serial(BlockDriverState
*bdrv
)
1868 TAILQ_FOREACH(dinfo
, &drives
, next
) {
1869 if (dinfo
->bdrv
== bdrv
)
1870 return dinfo
->serial
;
1876 BlockInterfaceErrorAction
drive_get_onerror(BlockDriverState
*bdrv
)
1880 TAILQ_FOREACH(dinfo
, &drives
, next
) {
1881 if (dinfo
->bdrv
== bdrv
)
1882 return dinfo
->onerror
;
1885 return BLOCK_ERR_STOP_ENOSPC
;
1888 static void bdrv_format_print(void *opaque
, const char *name
)
1890 fprintf(stderr
, " %s", name
);
1893 void drive_uninit(BlockDriverState
*bdrv
)
1897 TAILQ_FOREACH(dinfo
, &drives
, next
) {
1898 if (dinfo
->bdrv
!= bdrv
)
1900 qemu_opts_del(dinfo
->opts
);
1901 TAILQ_REMOVE(&drives
, dinfo
, next
);
1907 DriveInfo
*drive_init(QemuOpts
*opts
, void *opaque
,
1911 const char *file
= NULL
;
1914 const char *mediastr
= "";
1915 BlockInterfaceType type
;
1916 enum { MEDIA_DISK
, MEDIA_CDROM
} media
;
1917 int bus_id
, unit_id
;
1918 int cyls
, heads
, secs
, translation
;
1919 BlockDriver
*drv
= NULL
;
1920 QEMUMachine
*machine
= opaque
;
1924 int bdrv_flags
, onerror
;
1925 const char *devaddr
;
1931 translation
= BIOS_ATA_TRANSLATION_AUTO
;
1934 if (machine
->use_scsi
) {
1936 max_devs
= MAX_SCSI_DEVS
;
1937 pstrcpy(devname
, sizeof(devname
), "scsi");
1940 max_devs
= MAX_IDE_DEVS
;
1941 pstrcpy(devname
, sizeof(devname
), "ide");
1945 /* extract parameters */
1946 bus_id
= qemu_opt_get_number(opts
, "bus", 0);
1947 unit_id
= qemu_opt_get_number(opts
, "unit", -1);
1948 index
= qemu_opt_get_number(opts
, "index", -1);
1950 cyls
= qemu_opt_get_number(opts
, "cyls", 0);
1951 heads
= qemu_opt_get_number(opts
, "heads", 0);
1952 secs
= qemu_opt_get_number(opts
, "secs", 0);
1954 snapshot
= qemu_opt_get_bool(opts
, "snapshot", 0);
1956 file
= qemu_opt_get(opts
, "file");
1957 serial
= qemu_opt_get(opts
, "serial");
1959 if ((buf
= qemu_opt_get(opts
, "if")) != NULL
) {
1960 pstrcpy(devname
, sizeof(devname
), buf
);
1961 if (!strcmp(buf
, "ide")) {
1963 max_devs
= MAX_IDE_DEVS
;
1964 } else if (!strcmp(buf
, "scsi")) {
1966 max_devs
= MAX_SCSI_DEVS
;
1967 } else if (!strcmp(buf
, "floppy")) {
1970 } else if (!strcmp(buf
, "pflash")) {
1973 } else if (!strcmp(buf
, "mtd")) {
1976 } else if (!strcmp(buf
, "sd")) {
1979 } else if (!strcmp(buf
, "virtio")) {
1982 } else if (!strcmp(buf
, "xen")) {
1986 fprintf(stderr
, "qemu: unsupported bus type '%s'\n", buf
);
1991 if (cyls
|| heads
|| secs
) {
1992 if (cyls
< 1 || cyls
> 16383) {
1993 fprintf(stderr
, "qemu: '%s' invalid physical cyls number\n", buf
);
1996 if (heads
< 1 || heads
> 16) {
1997 fprintf(stderr
, "qemu: '%s' invalid physical heads number\n", buf
);
2000 if (secs
< 1 || secs
> 63) {
2001 fprintf(stderr
, "qemu: '%s' invalid physical secs number\n", buf
);
2006 if ((buf
= qemu_opt_get(opts
, "trans")) != NULL
) {
2009 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2013 if (!strcmp(buf
, "none"))
2014 translation
= BIOS_ATA_TRANSLATION_NONE
;
2015 else if (!strcmp(buf
, "lba"))
2016 translation
= BIOS_ATA_TRANSLATION_LBA
;
2017 else if (!strcmp(buf
, "auto"))
2018 translation
= BIOS_ATA_TRANSLATION_AUTO
;
2020 fprintf(stderr
, "qemu: '%s' invalid translation type\n", buf
);
2025 if ((buf
= qemu_opt_get(opts
, "media")) != NULL
) {
2026 if (!strcmp(buf
, "disk")) {
2028 } else if (!strcmp(buf
, "cdrom")) {
2029 if (cyls
|| secs
|| heads
) {
2031 "qemu: '%s' invalid physical CHS format\n", buf
);
2034 media
= MEDIA_CDROM
;
2036 fprintf(stderr
, "qemu: '%s' invalid media\n", buf
);
2041 if ((buf
= qemu_opt_get(opts
, "cache")) != NULL
) {
2042 if (!strcmp(buf
, "off") || !strcmp(buf
, "none"))
2044 else if (!strcmp(buf
, "writethrough"))
2046 else if (!strcmp(buf
, "writeback"))
2049 fprintf(stderr
, "qemu: invalid cache option\n");
2054 if ((buf
= qemu_opt_get(opts
, "format")) != NULL
) {
2055 if (strcmp(buf
, "?") == 0) {
2056 fprintf(stderr
, "qemu: Supported formats:");
2057 bdrv_iterate_format(bdrv_format_print
, NULL
);
2058 fprintf(stderr
, "\n");
2061 drv
= bdrv_find_format(buf
);
2063 fprintf(stderr
, "qemu: '%s' invalid format\n", buf
);
2068 onerror
= BLOCK_ERR_STOP_ENOSPC
;
2069 if ((buf
= qemu_opt_get(opts
, "werror")) != NULL
) {
2070 if (type
!= IF_IDE
&& type
!= IF_SCSI
&& type
!= IF_VIRTIO
) {
2071 fprintf(stderr
, "werror is no supported by this format\n");
2074 if (!strcmp(buf
, "ignore"))
2075 onerror
= BLOCK_ERR_IGNORE
;
2076 else if (!strcmp(buf
, "enospc"))
2077 onerror
= BLOCK_ERR_STOP_ENOSPC
;
2078 else if (!strcmp(buf
, "stop"))
2079 onerror
= BLOCK_ERR_STOP_ANY
;
2080 else if (!strcmp(buf
, "report"))
2081 onerror
= BLOCK_ERR_REPORT
;
2083 fprintf(stderr
, "qemu: '%s' invalid write error action\n", buf
);
2088 if ((devaddr
= qemu_opt_get(opts
, "addr")) != NULL
) {
2089 if (type
!= IF_VIRTIO
) {
2090 fprintf(stderr
, "addr is not supported\n");
2095 /* compute bus and unit according index */
2098 if (bus_id
!= 0 || unit_id
!= -1) {
2100 "qemu: index cannot be used with bus and unit\n");
2108 unit_id
= index
% max_devs
;
2109 bus_id
= index
/ max_devs
;
2113 /* if user doesn't specify a unit_id,
2114 * try to find the first free
2117 if (unit_id
== -1) {
2119 while (drive_get(type
, bus_id
, unit_id
) != NULL
) {
2121 if (max_devs
&& unit_id
>= max_devs
) {
2122 unit_id
-= max_devs
;
2130 if (max_devs
&& unit_id
>= max_devs
) {
2131 fprintf(stderr
, "qemu: unit %d too big (max is %d)\n",
2132 unit_id
, max_devs
- 1);
2137 * ignore multiple definitions
2140 if (drive_get(type
, bus_id
, unit_id
) != NULL
) {
2147 dinfo
= qemu_mallocz(sizeof(*dinfo
));
2148 if ((buf
= qemu_opts_id(opts
)) != NULL
) {
2149 dinfo
->id
= qemu_strdup(buf
);
2151 /* no id supplied -> create one */
2152 dinfo
->id
= qemu_mallocz(32);
2153 if (type
== IF_IDE
|| type
== IF_SCSI
)
2154 mediastr
= (media
== MEDIA_CDROM
) ? "-cd" : "-hd";
2156 snprintf(dinfo
->id
, 32, "%s%i%s%i",
2157 devname
, bus_id
, mediastr
, unit_id
);
2159 snprintf(dinfo
->id
, 32, "%s%s%i",
2160 devname
, mediastr
, unit_id
);
2162 dinfo
->bdrv
= bdrv_new(dinfo
->id
);
2163 dinfo
->devaddr
= devaddr
;
2165 dinfo
->bus
= bus_id
;
2166 dinfo
->unit
= unit_id
;
2167 dinfo
->onerror
= onerror
;
2170 strncpy(dinfo
->serial
, serial
, sizeof(serial
));
2171 TAILQ_INSERT_TAIL(&drives
, dinfo
, next
);
2180 bdrv_set_geometry_hint(dinfo
->bdrv
, cyls
, heads
, secs
);
2181 bdrv_set_translation_hint(dinfo
->bdrv
, translation
);
2185 bdrv_set_type_hint(dinfo
->bdrv
, BDRV_TYPE_CDROM
);
2190 /* FIXME: This isn't really a floppy, but it's a reasonable
2193 bdrv_set_type_hint(dinfo
->bdrv
, BDRV_TYPE_FLOPPY
);
2208 bdrv_flags
|= BDRV_O_SNAPSHOT
;
2209 cache
= 2; /* always use write-back with snapshot */
2211 if (cache
== 0) /* no caching */
2212 bdrv_flags
|= BDRV_O_NOCACHE
;
2213 else if (cache
== 2) /* write-back */
2214 bdrv_flags
|= BDRV_O_CACHE_WB
;
2215 if (bdrv_open2(dinfo
->bdrv
, file
, bdrv_flags
, drv
) < 0) {
2216 fprintf(stderr
, "qemu: could not open disk image %s\n",
2220 if (bdrv_key_required(dinfo
->bdrv
))
2226 static int drive_init_func(QemuOpts
*opts
, void *opaque
)
2228 QEMUMachine
*machine
= opaque
;
2229 int fatal_error
= 0;
2231 if (drive_init(opts
, machine
, &fatal_error
) == NULL
) {
2238 static int drive_enable_snapshot(QemuOpts
*opts
, void *opaque
)
2240 if (NULL
== qemu_opt_get(opts
, "snapshot")) {
2241 qemu_opt_set(opts
, "snapshot", "on");
2246 void qemu_register_boot_set(QEMUBootSetHandler
*func
, void *opaque
)
2248 boot_set_handler
= func
;
2249 boot_set_opaque
= opaque
;
2252 int qemu_boot_set(const char *boot_devices
)
2254 if (!boot_set_handler
) {
2257 return boot_set_handler(boot_set_opaque
, boot_devices
);
2260 static int parse_bootdevices(char *devices
)
2262 /* We just do some generic consistency checks */
2266 for (p
= devices
; *p
!= '\0'; p
++) {
2267 /* Allowed boot devices are:
2268 * a-b: floppy disk drives
2269 * c-f: IDE disk drives
2270 * g-m: machine implementation dependant drives
2271 * n-p: network devices
2272 * It's up to each machine implementation to check if the given boot
2273 * devices match the actual hardware implementation and firmware
2276 if (*p
< 'a' || *p
> 'p') {
2277 fprintf(stderr
, "Invalid boot device '%c'\n", *p
);
2280 if (bitmap
& (1 << (*p
- 'a'))) {
2281 fprintf(stderr
, "Boot device '%c' was given twice\n", *p
);
2284 bitmap
|= 1 << (*p
- 'a');
2289 static void restore_boot_devices(void *opaque
)
2291 char *standard_boot_devices
= opaque
;
2293 qemu_boot_set(standard_boot_devices
);
2295 qemu_unregister_reset(restore_boot_devices
, standard_boot_devices
);
2296 qemu_free(standard_boot_devices
);
2299 static void numa_add(const char *optarg
)
2303 unsigned long long value
, endvalue
;
2306 optarg
= get_opt_name(option
, 128, optarg
, ',') + 1;
2307 if (!strcmp(option
, "node")) {
2308 if (get_param_value(option
, 128, "nodeid", optarg
) == 0) {
2309 nodenr
= nb_numa_nodes
;
2311 nodenr
= strtoull(option
, NULL
, 10);
2314 if (get_param_value(option
, 128, "mem", optarg
) == 0) {
2315 node_mem
[nodenr
] = 0;
2317 value
= strtoull(option
, &endptr
, 0);
2319 case 0: case 'M': case 'm':
2326 node_mem
[nodenr
] = value
;
2328 if (get_param_value(option
, 128, "cpus", optarg
) == 0) {
2329 node_cpumask
[nodenr
] = 0;
2331 value
= strtoull(option
, &endptr
, 10);
2334 fprintf(stderr
, "only 64 CPUs in NUMA mode supported.\n");
2336 if (*endptr
== '-') {
2337 endvalue
= strtoull(endptr
+1, &endptr
, 10);
2338 if (endvalue
>= 63) {
2341 "only 63 CPUs in NUMA mode supported.\n");
2343 value
= (1 << (endvalue
+ 1)) - (1 << value
);
2348 node_cpumask
[nodenr
] = value
;
2355 /***********************************************************/
2358 static USBPort
*used_usb_ports
;
2359 static USBPort
*free_usb_ports
;
2361 /* ??? Maybe change this to register a hub to keep track of the topology. */
2362 void qemu_register_usb_port(USBPort
*port
, void *opaque
, int index
,
2363 usb_attachfn attach
)
2365 port
->opaque
= opaque
;
2366 port
->index
= index
;
2367 port
->attach
= attach
;
2368 port
->next
= free_usb_ports
;
2369 free_usb_ports
= port
;
2372 int usb_device_add_dev(USBDevice
*dev
)
2376 /* Find a USB port to add the device to. */
2377 port
= free_usb_ports
;
2381 /* Create a new hub and chain it on. */
2382 free_usb_ports
= NULL
;
2383 port
->next
= used_usb_ports
;
2384 used_usb_ports
= port
;
2386 hub
= usb_hub_init(VM_USB_HUB_SIZE
);
2387 usb_attach(port
, hub
);
2388 port
= free_usb_ports
;
2391 free_usb_ports
= port
->next
;
2392 port
->next
= used_usb_ports
;
2393 used_usb_ports
= port
;
2394 usb_attach(port
, dev
);
2398 static void usb_msd_password_cb(void *opaque
, int err
)
2400 USBDevice
*dev
= opaque
;
2403 usb_device_add_dev(dev
);
2405 dev
->handle_destroy(dev
);
2408 static int usb_device_add(const char *devname
, int is_hotplug
)
2413 if (!free_usb_ports
)
2416 if (strstart(devname
, "host:", &p
)) {
2417 dev
= usb_host_device_open(p
);
2418 } else if (!strcmp(devname
, "mouse")) {
2419 dev
= usb_mouse_init();
2420 } else if (!strcmp(devname
, "tablet")) {
2421 dev
= usb_tablet_init();
2422 } else if (!strcmp(devname
, "keyboard")) {
2423 dev
= usb_keyboard_init();
2424 } else if (strstart(devname
, "disk:", &p
)) {
2425 BlockDriverState
*bs
;
2427 dev
= usb_msd_init(p
);
2430 bs
= usb_msd_get_bdrv(dev
);
2431 if (bdrv_key_required(bs
)) {
2434 monitor_read_bdrv_key_start(cur_mon
, bs
, usb_msd_password_cb
,
2439 } else if (!strcmp(devname
, "wacom-tablet")) {
2440 dev
= usb_wacom_init();
2441 } else if (strstart(devname
, "serial:", &p
)) {
2442 dev
= usb_serial_init(p
);
2443 #ifdef CONFIG_BRLAPI
2444 } else if (!strcmp(devname
, "braille")) {
2445 dev
= usb_baum_init();
2447 } else if (strstart(devname
, "net:", &p
)) {
2450 if (net_client_init(NULL
, "nic", p
) < 0)
2452 nd_table
[nic
].model
= "usb";
2453 dev
= usb_net_init(&nd_table
[nic
]);
2454 } else if (!strcmp(devname
, "bt") || strstart(devname
, "bt:", &p
)) {
2455 dev
= usb_bt_init(devname
[2] ? hci_init(p
) :
2456 bt_new_hci(qemu_find_bt_vlan(0)));
2463 return usb_device_add_dev(dev
);
2466 int usb_device_del_addr(int bus_num
, int addr
)
2472 if (!used_usb_ports
)
2478 lastp
= &used_usb_ports
;
2479 port
= used_usb_ports
;
2480 while (port
&& port
->dev
->addr
!= addr
) {
2481 lastp
= &port
->next
;
2489 *lastp
= port
->next
;
2490 usb_attach(port
, NULL
);
2491 dev
->handle_destroy(dev
);
2492 port
->next
= free_usb_ports
;
2493 free_usb_ports
= port
;
2497 static int usb_device_del(const char *devname
)
2502 if (strstart(devname
, "host:", &p
))
2503 return usb_host_device_close(p
);
2505 if (!used_usb_ports
)
2508 p
= strchr(devname
, '.');
2511 bus_num
= strtoul(devname
, NULL
, 0);
2512 addr
= strtoul(p
+ 1, NULL
, 0);
2514 return usb_device_del_addr(bus_num
, addr
);
2517 static int usb_parse(const char *cmdline
)
2519 return usb_device_add(cmdline
, 0);
2522 void do_usb_add(Monitor
*mon
, const char *devname
)
2524 usb_device_add(devname
, 1);
2527 void do_usb_del(Monitor
*mon
, const char *devname
)
2529 usb_device_del(devname
);
2532 void usb_info(Monitor
*mon
)
2536 const char *speed_str
;
2539 monitor_printf(mon
, "USB support not enabled\n");
2543 for (port
= used_usb_ports
; port
; port
= port
->next
) {
2547 switch(dev
->speed
) {
2551 case USB_SPEED_FULL
:
2554 case USB_SPEED_HIGH
:
2561 monitor_printf(mon
, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2562 0, dev
->addr
, speed_str
, dev
->devname
);
2566 /***********************************************************/
2567 /* PCMCIA/Cardbus */
2569 static struct pcmcia_socket_entry_s
{
2570 PCMCIASocket
*socket
;
2571 struct pcmcia_socket_entry_s
*next
;
2572 } *pcmcia_sockets
= 0;
2574 void pcmcia_socket_register(PCMCIASocket
*socket
)
2576 struct pcmcia_socket_entry_s
*entry
;
2578 entry
= qemu_malloc(sizeof(struct pcmcia_socket_entry_s
));
2579 entry
->socket
= socket
;
2580 entry
->next
= pcmcia_sockets
;
2581 pcmcia_sockets
= entry
;
2584 void pcmcia_socket_unregister(PCMCIASocket
*socket
)
2586 struct pcmcia_socket_entry_s
*entry
, **ptr
;
2588 ptr
= &pcmcia_sockets
;
2589 for (entry
= *ptr
; entry
; ptr
= &entry
->next
, entry
= *ptr
)
2590 if (entry
->socket
== socket
) {
2596 void pcmcia_info(Monitor
*mon
)
2598 struct pcmcia_socket_entry_s
*iter
;
2600 if (!pcmcia_sockets
)
2601 monitor_printf(mon
, "No PCMCIA sockets\n");
2603 for (iter
= pcmcia_sockets
; iter
; iter
= iter
->next
)
2604 monitor_printf(mon
, "%s: %s\n", iter
->socket
->slot_string
,
2605 iter
->socket
->attached
? iter
->socket
->card_string
:
2609 /***********************************************************/
2610 /* register display */
2612 struct DisplayAllocator default_allocator
= {
2613 defaultallocator_create_displaysurface
,
2614 defaultallocator_resize_displaysurface
,
2615 defaultallocator_free_displaysurface
2618 void register_displaystate(DisplayState
*ds
)
2628 DisplayState
*get_displaystate(void)
2630 return display_state
;
2633 DisplayAllocator
*register_displayallocator(DisplayState
*ds
, DisplayAllocator
*da
)
2635 if(ds
->allocator
== &default_allocator
) ds
->allocator
= da
;
2636 return ds
->allocator
;
2641 static void dumb_display_init(void)
2643 DisplayState
*ds
= qemu_mallocz(sizeof(DisplayState
));
2644 ds
->allocator
= &default_allocator
;
2645 ds
->surface
= qemu_create_displaysurface(ds
, 640, 480);
2646 register_displaystate(ds
);
2649 /***********************************************************/
2652 typedef struct IOHandlerRecord
{
2654 IOCanRWHandler
*fd_read_poll
;
2656 IOHandler
*fd_write
;
2659 /* temporary data */
2661 struct IOHandlerRecord
*next
;
2664 static IOHandlerRecord
*first_io_handler
;
2666 /* XXX: fd_read_poll should be suppressed, but an API change is
2667 necessary in the character devices to suppress fd_can_read(). */
2668 int qemu_set_fd_handler2(int fd
,
2669 IOCanRWHandler
*fd_read_poll
,
2671 IOHandler
*fd_write
,
2674 IOHandlerRecord
**pioh
, *ioh
;
2676 if (!fd_read
&& !fd_write
) {
2677 pioh
= &first_io_handler
;
2682 if (ioh
->fd
== fd
) {
2689 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
2693 ioh
= qemu_mallocz(sizeof(IOHandlerRecord
));
2694 ioh
->next
= first_io_handler
;
2695 first_io_handler
= ioh
;
2698 ioh
->fd_read_poll
= fd_read_poll
;
2699 ioh
->fd_read
= fd_read
;
2700 ioh
->fd_write
= fd_write
;
2701 ioh
->opaque
= opaque
;
2707 int qemu_set_fd_handler(int fd
,
2709 IOHandler
*fd_write
,
2712 return qemu_set_fd_handler2(fd
, NULL
, fd_read
, fd_write
, opaque
);
2716 /***********************************************************/
2717 /* Polling handling */
2719 typedef struct PollingEntry
{
2722 struct PollingEntry
*next
;
2725 static PollingEntry
*first_polling_entry
;
2727 int qemu_add_polling_cb(PollingFunc
*func
, void *opaque
)
2729 PollingEntry
**ppe
, *pe
;
2730 pe
= qemu_mallocz(sizeof(PollingEntry
));
2732 pe
->opaque
= opaque
;
2733 for(ppe
= &first_polling_entry
; *ppe
!= NULL
; ppe
= &(*ppe
)->next
);
2738 void qemu_del_polling_cb(PollingFunc
*func
, void *opaque
)
2740 PollingEntry
**ppe
, *pe
;
2741 for(ppe
= &first_polling_entry
; *ppe
!= NULL
; ppe
= &(*ppe
)->next
) {
2743 if (pe
->func
== func
&& pe
->opaque
== opaque
) {
2751 /***********************************************************/
2752 /* Wait objects support */
2753 typedef struct WaitObjects
{
2755 HANDLE events
[MAXIMUM_WAIT_OBJECTS
+ 1];
2756 WaitObjectFunc
*func
[MAXIMUM_WAIT_OBJECTS
+ 1];
2757 void *opaque
[MAXIMUM_WAIT_OBJECTS
+ 1];
2760 static WaitObjects wait_objects
= {0};
2762 int qemu_add_wait_object(HANDLE handle
, WaitObjectFunc
*func
, void *opaque
)
2764 WaitObjects
*w
= &wait_objects
;
2766 if (w
->num
>= MAXIMUM_WAIT_OBJECTS
)
2768 w
->events
[w
->num
] = handle
;
2769 w
->func
[w
->num
] = func
;
2770 w
->opaque
[w
->num
] = opaque
;
2775 void qemu_del_wait_object(HANDLE handle
, WaitObjectFunc
*func
, void *opaque
)
2778 WaitObjects
*w
= &wait_objects
;
2781 for (i
= 0; i
< w
->num
; i
++) {
2782 if (w
->events
[i
] == handle
)
2785 w
->events
[i
] = w
->events
[i
+ 1];
2786 w
->func
[i
] = w
->func
[i
+ 1];
2787 w
->opaque
[i
] = w
->opaque
[i
+ 1];
2795 /***********************************************************/
2796 /* ram save/restore */
2798 static int ram_get_page(QEMUFile
*f
, uint8_t *buf
, int len
)
2802 v
= qemu_get_byte(f
);
2805 if (qemu_get_buffer(f
, buf
, len
) != len
)
2809 v
= qemu_get_byte(f
);
2810 memset(buf
, v
, len
);
2816 if (qemu_file_has_error(f
))
2822 static int ram_load_v1(QEMUFile
*f
, void *opaque
)
2827 if (qemu_get_be32(f
) != last_ram_offset
)
2829 for(i
= 0; i
< last_ram_offset
; i
+= TARGET_PAGE_SIZE
) {
2830 ret
= ram_get_page(f
, qemu_get_ram_ptr(i
), TARGET_PAGE_SIZE
);
2837 #define BDRV_HASH_BLOCK_SIZE 1024
2838 #define IOBUF_SIZE 4096
2839 #define RAM_CBLOCK_MAGIC 0xfabe
2841 typedef struct RamDecompressState
{
2844 uint8_t buf
[IOBUF_SIZE
];
2845 } RamDecompressState
;
2847 static int ram_decompress_open(RamDecompressState
*s
, QEMUFile
*f
)
2850 memset(s
, 0, sizeof(*s
));
2852 ret
= inflateInit(&s
->zstream
);
2858 static int ram_decompress_buf(RamDecompressState
*s
, uint8_t *buf
, int len
)
2862 s
->zstream
.avail_out
= len
;
2863 s
->zstream
.next_out
= buf
;
2864 while (s
->zstream
.avail_out
> 0) {
2865 if (s
->zstream
.avail_in
== 0) {
2866 if (qemu_get_be16(s
->f
) != RAM_CBLOCK_MAGIC
)
2868 clen
= qemu_get_be16(s
->f
);
2869 if (clen
> IOBUF_SIZE
)
2871 qemu_get_buffer(s
->f
, s
->buf
, clen
);
2872 s
->zstream
.avail_in
= clen
;
2873 s
->zstream
.next_in
= s
->buf
;
2875 ret
= inflate(&s
->zstream
, Z_PARTIAL_FLUSH
);
2876 if (ret
!= Z_OK
&& ret
!= Z_STREAM_END
) {
2883 static void ram_decompress_close(RamDecompressState
*s
)
2885 inflateEnd(&s
->zstream
);
2888 #define RAM_SAVE_FLAG_FULL 0x01
2889 #define RAM_SAVE_FLAG_COMPRESS 0x02
2890 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2891 #define RAM_SAVE_FLAG_PAGE 0x08
2892 #define RAM_SAVE_FLAG_EOS 0x10
2894 static int is_dup_page(uint8_t *page
, uint8_t ch
)
2896 uint32_t val
= ch
<< 24 | ch
<< 16 | ch
<< 8 | ch
;
2897 uint32_t *array
= (uint32_t *)page
;
2900 for (i
= 0; i
< (TARGET_PAGE_SIZE
/ 4); i
++) {
2901 if (array
[i
] != val
)
2908 static int ram_save_block(QEMUFile
*f
)
2910 static ram_addr_t current_addr
= 0;
2911 ram_addr_t saved_addr
= current_addr
;
2912 ram_addr_t addr
= 0;
2915 while (addr
< last_ram_offset
) {
2916 if (cpu_physical_memory_get_dirty(current_addr
, MIGRATION_DIRTY_FLAG
)) {
2919 cpu_physical_memory_reset_dirty(current_addr
,
2920 current_addr
+ TARGET_PAGE_SIZE
,
2921 MIGRATION_DIRTY_FLAG
);
2923 p
= qemu_get_ram_ptr(current_addr
);
2925 if (is_dup_page(p
, *p
)) {
2926 qemu_put_be64(f
, current_addr
| RAM_SAVE_FLAG_COMPRESS
);
2927 qemu_put_byte(f
, *p
);
2929 qemu_put_be64(f
, current_addr
| RAM_SAVE_FLAG_PAGE
);
2930 qemu_put_buffer(f
, p
, TARGET_PAGE_SIZE
);
2936 addr
+= TARGET_PAGE_SIZE
;
2937 current_addr
= (saved_addr
+ addr
) % last_ram_offset
;
2943 static uint64_t bytes_transferred
= 0;
2945 static ram_addr_t
ram_save_remaining(void)
2948 ram_addr_t count
= 0;
2950 for (addr
= 0; addr
< last_ram_offset
; addr
+= TARGET_PAGE_SIZE
) {
2951 if (cpu_physical_memory_get_dirty(addr
, MIGRATION_DIRTY_FLAG
))
2958 uint64_t ram_bytes_remaining(void)
2960 return ram_save_remaining() * TARGET_PAGE_SIZE
;
2963 uint64_t ram_bytes_transferred(void)
2965 return bytes_transferred
;
2968 uint64_t ram_bytes_total(void)
2970 return last_ram_offset
;
2973 static int ram_save_live(QEMUFile
*f
, int stage
, void *opaque
)
2976 uint64_t bytes_transferred_last
;
2978 uint64_t expected_time
= 0;
2980 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX
) != 0) {
2981 qemu_file_set_error(f
);
2986 /* Make sure all dirty bits are set */
2987 for (addr
= 0; addr
< last_ram_offset
; addr
+= TARGET_PAGE_SIZE
) {
2988 if (!cpu_physical_memory_get_dirty(addr
, MIGRATION_DIRTY_FLAG
))
2989 cpu_physical_memory_set_dirty(addr
);
2992 /* Enable dirty memory tracking */
2993 cpu_physical_memory_set_dirty_tracking(1);
2995 qemu_put_be64(f
, last_ram_offset
| RAM_SAVE_FLAG_MEM_SIZE
);
2998 bytes_transferred_last
= bytes_transferred
;
2999 bwidth
= get_clock();
3001 while (!qemu_file_rate_limit(f
)) {
3004 ret
= ram_save_block(f
);
3005 bytes_transferred
+= ret
* TARGET_PAGE_SIZE
;
3006 if (ret
== 0) /* no more blocks */
3010 bwidth
= get_clock() - bwidth
;
3011 bwidth
= (bytes_transferred
- bytes_transferred_last
) / bwidth
;
3013 /* if we haven't transferred anything this round, force expected_time to a
3014 * a very high value, but without crashing */
3018 /* try transferring iterative blocks of memory */
3022 /* flush all remaining blocks regardless of rate limiting */
3023 while (ram_save_block(f
) != 0) {
3024 bytes_transferred
+= TARGET_PAGE_SIZE
;
3026 cpu_physical_memory_set_dirty_tracking(0);
3029 qemu_put_be64(f
, RAM_SAVE_FLAG_EOS
);
3031 expected_time
= ram_save_remaining() * TARGET_PAGE_SIZE
/ bwidth
;
3033 return (stage
== 2) && (expected_time
<= migrate_max_downtime());
3036 static int ram_load_dead(QEMUFile
*f
, void *opaque
)
3038 RamDecompressState s1
, *s
= &s1
;
3042 if (ram_decompress_open(s
, f
) < 0)
3044 for(i
= 0; i
< last_ram_offset
; i
+= BDRV_HASH_BLOCK_SIZE
) {
3045 if (ram_decompress_buf(s
, buf
, 1) < 0) {
3046 fprintf(stderr
, "Error while reading ram block header\n");
3050 if (ram_decompress_buf(s
, qemu_get_ram_ptr(i
),
3051 BDRV_HASH_BLOCK_SIZE
) < 0) {
3052 fprintf(stderr
, "Error while reading ram block address=0x%08" PRIx64
, (uint64_t)i
);
3057 printf("Error block header\n");
3061 ram_decompress_close(s
);
3066 static int ram_load(QEMUFile
*f
, void *opaque
, int version_id
)
3071 if (version_id
== 1)
3072 return ram_load_v1(f
, opaque
);
3074 if (version_id
== 2) {
3075 if (qemu_get_be32(f
) != last_ram_offset
)
3077 return ram_load_dead(f
, opaque
);
3080 if (version_id
!= 3)
3084 addr
= qemu_get_be64(f
);
3086 flags
= addr
& ~TARGET_PAGE_MASK
;
3087 addr
&= TARGET_PAGE_MASK
;
3089 if (flags
& RAM_SAVE_FLAG_MEM_SIZE
) {
3090 if (addr
!= last_ram_offset
)
3094 if (flags
& RAM_SAVE_FLAG_FULL
) {
3095 if (ram_load_dead(f
, opaque
) < 0)
3099 if (flags
& RAM_SAVE_FLAG_COMPRESS
) {
3100 uint8_t ch
= qemu_get_byte(f
);
3101 memset(qemu_get_ram_ptr(addr
), ch
, TARGET_PAGE_SIZE
);
3104 (!kvm_enabled() || kvm_has_sync_mmu())) {
3105 madvise(qemu_get_ram_ptr(addr
), TARGET_PAGE_SIZE
, MADV_DONTNEED
);
3108 } else if (flags
& RAM_SAVE_FLAG_PAGE
)
3109 qemu_get_buffer(f
, qemu_get_ram_ptr(addr
), TARGET_PAGE_SIZE
);
3110 } while (!(flags
& RAM_SAVE_FLAG_EOS
));
3115 void qemu_service_io(void)
3117 qemu_notify_event();
3120 /***********************************************************/
3121 /* bottom halves (can be seen as timers which expire ASAP) */
3132 static QEMUBH
*first_bh
= NULL
;
3134 QEMUBH
*qemu_bh_new(QEMUBHFunc
*cb
, void *opaque
)
3137 bh
= qemu_mallocz(sizeof(QEMUBH
));
3139 bh
->opaque
= opaque
;
3140 bh
->next
= first_bh
;
3145 int qemu_bh_poll(void)
3151 for (bh
= first_bh
; bh
; bh
= bh
->next
) {
3152 if (!bh
->deleted
&& bh
->scheduled
) {
3161 /* remove deleted bhs */
3175 void qemu_bh_schedule_idle(QEMUBH
*bh
)
3183 void qemu_bh_schedule(QEMUBH
*bh
)
3189 /* stop the currently executing CPU to execute the BH ASAP */
3190 qemu_notify_event();
3193 void qemu_bh_cancel(QEMUBH
*bh
)
3198 void qemu_bh_delete(QEMUBH
*bh
)
3204 static void qemu_bh_update_timeout(int *timeout
)
3208 for (bh
= first_bh
; bh
; bh
= bh
->next
) {
3209 if (!bh
->deleted
&& bh
->scheduled
) {
3211 /* idle bottom halves will be polled at least
3213 *timeout
= MIN(10, *timeout
);
3215 /* non-idle bottom halves will be executed
3224 /***********************************************************/
3225 /* machine registration */
3227 static QEMUMachine
*first_machine
= NULL
;
3228 QEMUMachine
*current_machine
= NULL
;
3230 int qemu_register_machine(QEMUMachine
*m
)
3233 pm
= &first_machine
;
3241 static QEMUMachine
*find_machine(const char *name
)
3245 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
3246 if (!strcmp(m
->name
, name
))
3248 if (m
->alias
&& !strcmp(m
->alias
, name
))
3254 static QEMUMachine
*find_default_machine(void)
3258 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
3259 if (m
->is_default
) {
3266 /***********************************************************/
3267 /* main execution loop */
3269 static void gui_update(void *opaque
)
3271 uint64_t interval
= GUI_REFRESH_INTERVAL
;
3272 DisplayState
*ds
= opaque
;
3273 DisplayChangeListener
*dcl
= ds
->listeners
;
3277 while (dcl
!= NULL
) {
3278 if (dcl
->gui_timer_interval
&&
3279 dcl
->gui_timer_interval
< interval
)
3280 interval
= dcl
->gui_timer_interval
;
3283 qemu_mod_timer(ds
->gui_timer
, interval
+ qemu_get_clock(rt_clock
));
3286 static void nographic_update(void *opaque
)
3288 uint64_t interval
= GUI_REFRESH_INTERVAL
;
3290 qemu_mod_timer(nographic_timer
, interval
+ qemu_get_clock(rt_clock
));
3293 struct vm_change_state_entry
{
3294 VMChangeStateHandler
*cb
;
3296 LIST_ENTRY (vm_change_state_entry
) entries
;
3299 static LIST_HEAD(vm_change_state_head
, vm_change_state_entry
) vm_change_state_head
;
3301 VMChangeStateEntry
*qemu_add_vm_change_state_handler(VMChangeStateHandler
*cb
,
3304 VMChangeStateEntry
*e
;
3306 e
= qemu_mallocz(sizeof (*e
));
3310 LIST_INSERT_HEAD(&vm_change_state_head
, e
, entries
);
3314 void qemu_del_vm_change_state_handler(VMChangeStateEntry
*e
)
3316 LIST_REMOVE (e
, entries
);
3320 static void vm_state_notify(int running
, int reason
)
3322 VMChangeStateEntry
*e
;
3324 for (e
= vm_change_state_head
.lh_first
; e
; e
= e
->entries
.le_next
) {
3325 e
->cb(e
->opaque
, running
, reason
);
3329 static void resume_all_vcpus(void);
3330 static void pause_all_vcpus(void);
3337 vm_state_notify(1, 0);
3338 qemu_rearm_alarm_timer(alarm_timer
);
3343 /* reset/shutdown handler */
3345 typedef struct QEMUResetEntry
{
3346 TAILQ_ENTRY(QEMUResetEntry
) entry
;
3347 QEMUResetHandler
*func
;
3351 static TAILQ_HEAD(reset_handlers
, QEMUResetEntry
) reset_handlers
=
3352 TAILQ_HEAD_INITIALIZER(reset_handlers
);
3353 static int reset_requested
;
3354 static int shutdown_requested
;
3355 static int powerdown_requested
;
3356 static int debug_requested
;
3357 static int vmstop_requested
;
3359 int qemu_shutdown_requested(void)
3361 int r
= shutdown_requested
;
3362 shutdown_requested
= 0;
3366 int qemu_reset_requested(void)
3368 int r
= reset_requested
;
3369 reset_requested
= 0;
3373 int qemu_powerdown_requested(void)
3375 int r
= powerdown_requested
;
3376 powerdown_requested
= 0;
3380 static int qemu_debug_requested(void)
3382 int r
= debug_requested
;
3383 debug_requested
= 0;
3387 static int qemu_vmstop_requested(void)
3389 int r
= vmstop_requested
;
3390 vmstop_requested
= 0;
3394 static void do_vm_stop(int reason
)
3397 cpu_disable_ticks();
3400 vm_state_notify(0, reason
);
3404 void qemu_register_reset(QEMUResetHandler
*func
, void *opaque
)
3406 QEMUResetEntry
*re
= qemu_mallocz(sizeof(QEMUResetEntry
));
3409 re
->opaque
= opaque
;
3410 TAILQ_INSERT_TAIL(&reset_handlers
, re
, entry
);
3413 void qemu_unregister_reset(QEMUResetHandler
*func
, void *opaque
)
3417 TAILQ_FOREACH(re
, &reset_handlers
, entry
) {
3418 if (re
->func
== func
&& re
->opaque
== opaque
) {
3419 TAILQ_REMOVE(&reset_handlers
, re
, entry
);
3426 void qemu_system_reset(void)
3428 QEMUResetEntry
*re
, *nre
;
3430 /* reset all devices */
3431 TAILQ_FOREACH_SAFE(re
, &reset_handlers
, entry
, nre
) {
3432 re
->func(re
->opaque
);
3436 void qemu_system_reset_request(void)
3439 shutdown_requested
= 1;
3441 reset_requested
= 1;
3443 qemu_notify_event();
3446 void qemu_system_shutdown_request(void)
3448 shutdown_requested
= 1;
3449 qemu_notify_event();
3452 void qemu_system_powerdown_request(void)
3454 powerdown_requested
= 1;
3455 qemu_notify_event();
3458 #ifdef CONFIG_IOTHREAD
3459 static void qemu_system_vmstop_request(int reason
)
3461 vmstop_requested
= reason
;
3462 qemu_notify_event();
3467 static int io_thread_fd
= -1;
3469 static void qemu_event_increment(void)
3471 static const char byte
= 0;
3473 if (io_thread_fd
== -1)
3476 write(io_thread_fd
, &byte
, sizeof(byte
));
3479 static void qemu_event_read(void *opaque
)
3481 int fd
= (unsigned long)opaque
;
3484 /* Drain the notify pipe */
3487 len
= read(fd
, buffer
, sizeof(buffer
));
3488 } while ((len
== -1 && errno
== EINTR
) || len
> 0);
3491 static int qemu_event_init(void)
3500 err
= fcntl_setfl(fds
[0], O_NONBLOCK
);
3504 err
= fcntl_setfl(fds
[1], O_NONBLOCK
);
3508 qemu_set_fd_handler2(fds
[0], NULL
, qemu_event_read
, NULL
,
3509 (void *)(unsigned long)fds
[0]);
3511 io_thread_fd
= fds
[1];
3520 HANDLE qemu_event_handle
;
3522 static void dummy_event_handler(void *opaque
)
3526 static int qemu_event_init(void)
3528 qemu_event_handle
= CreateEvent(NULL
, FALSE
, FALSE
, NULL
);
3529 if (!qemu_event_handle
) {
3530 perror("Failed CreateEvent");
3533 qemu_add_wait_object(qemu_event_handle
, dummy_event_handler
, NULL
);
3537 static void qemu_event_increment(void)
3539 SetEvent(qemu_event_handle
);
3543 static int cpu_can_run(CPUState
*env
)
3552 #ifndef CONFIG_IOTHREAD
3553 static int qemu_init_main_loop(void)
3555 return qemu_event_init();
3558 void qemu_init_vcpu(void *_env
)
3560 CPUState
*env
= _env
;
3567 int qemu_cpu_self(void *env
)
3572 static void resume_all_vcpus(void)
3576 static void pause_all_vcpus(void)
3580 void qemu_cpu_kick(void *env
)
3585 void qemu_notify_event(void)
3587 CPUState
*env
= cpu_single_env
;
3592 if (env
->kqemu_enabled
)
3593 kqemu_cpu_interrupt(env
);
3598 #define qemu_mutex_lock_iothread() do { } while (0)
3599 #define qemu_mutex_unlock_iothread() do { } while (0)
3601 void vm_stop(int reason
)
3606 #else /* CONFIG_IOTHREAD */
3608 #include "qemu-thread.h"
3610 QemuMutex qemu_global_mutex
;
3611 static QemuMutex qemu_fair_mutex
;
3613 static QemuThread io_thread
;
3615 static QemuThread
*tcg_cpu_thread
;
3616 static QemuCond
*tcg_halt_cond
;
3618 static int qemu_system_ready
;
3620 static QemuCond qemu_cpu_cond
;
3622 static QemuCond qemu_system_cond
;
3623 static QemuCond qemu_pause_cond
;
3625 static void block_io_signals(void);
3626 static void unblock_io_signals(void);
3627 static int tcg_has_work(void);
3629 static int qemu_init_main_loop(void)
3633 ret
= qemu_event_init();
3637 qemu_cond_init(&qemu_pause_cond
);
3638 qemu_mutex_init(&qemu_fair_mutex
);
3639 qemu_mutex_init(&qemu_global_mutex
);
3640 qemu_mutex_lock(&qemu_global_mutex
);
3642 unblock_io_signals();
3643 qemu_thread_self(&io_thread
);
3648 static void qemu_wait_io_event(CPUState
*env
)
3650 while (!tcg_has_work())
3651 qemu_cond_timedwait(env
->halt_cond
, &qemu_global_mutex
, 1000);
3653 qemu_mutex_unlock(&qemu_global_mutex
);
3656 * Users of qemu_global_mutex can be starved, having no chance
3657 * to acquire it since this path will get to it first.
3658 * So use another lock to provide fairness.
3660 qemu_mutex_lock(&qemu_fair_mutex
);
3661 qemu_mutex_unlock(&qemu_fair_mutex
);
3663 qemu_mutex_lock(&qemu_global_mutex
);
3667 qemu_cond_signal(&qemu_pause_cond
);
3671 static int qemu_cpu_exec(CPUState
*env
);
3673 static void *kvm_cpu_thread_fn(void *arg
)
3675 CPUState
*env
= arg
;
3678 qemu_thread_self(env
->thread
);
3680 /* signal CPU creation */
3681 qemu_mutex_lock(&qemu_global_mutex
);
3683 qemu_cond_signal(&qemu_cpu_cond
);
3685 /* and wait for machine initialization */
3686 while (!qemu_system_ready
)
3687 qemu_cond_timedwait(&qemu_system_cond
, &qemu_global_mutex
, 100);
3690 if (cpu_can_run(env
))
3692 qemu_wait_io_event(env
);
3698 static void tcg_cpu_exec(void);
3700 static void *tcg_cpu_thread_fn(void *arg
)
3702 CPUState
*env
= arg
;
3705 qemu_thread_self(env
->thread
);
3707 /* signal CPU creation */
3708 qemu_mutex_lock(&qemu_global_mutex
);
3709 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
3711 qemu_cond_signal(&qemu_cpu_cond
);
3713 /* and wait for machine initialization */
3714 while (!qemu_system_ready
)
3715 qemu_cond_timedwait(&qemu_system_cond
, &qemu_global_mutex
, 100);
3719 qemu_wait_io_event(cur_cpu
);
3725 void qemu_cpu_kick(void *_env
)
3727 CPUState
*env
= _env
;
3728 qemu_cond_broadcast(env
->halt_cond
);
3730 qemu_thread_signal(env
->thread
, SIGUSR1
);
3733 int qemu_cpu_self(void *env
)
3735 return (cpu_single_env
!= NULL
);
3738 static void cpu_signal(int sig
)
3741 cpu_exit(cpu_single_env
);
3744 static void block_io_signals(void)
3747 struct sigaction sigact
;
3750 sigaddset(&set
, SIGUSR2
);
3751 sigaddset(&set
, SIGIO
);
3752 sigaddset(&set
, SIGALRM
);
3753 pthread_sigmask(SIG_BLOCK
, &set
, NULL
);
3756 sigaddset(&set
, SIGUSR1
);
3757 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
3759 memset(&sigact
, 0, sizeof(sigact
));
3760 sigact
.sa_handler
= cpu_signal
;
3761 sigaction(SIGUSR1
, &sigact
, NULL
);
3764 static void unblock_io_signals(void)
3769 sigaddset(&set
, SIGUSR2
);
3770 sigaddset(&set
, SIGIO
);
3771 sigaddset(&set
, SIGALRM
);
3772 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
3775 sigaddset(&set
, SIGUSR1
);
3776 pthread_sigmask(SIG_BLOCK
, &set
, NULL
);
3779 static void qemu_signal_lock(unsigned int msecs
)
3781 qemu_mutex_lock(&qemu_fair_mutex
);
3783 while (qemu_mutex_trylock(&qemu_global_mutex
)) {
3784 qemu_thread_signal(tcg_cpu_thread
, SIGUSR1
);
3785 if (!qemu_mutex_timedlock(&qemu_global_mutex
, msecs
))
3788 qemu_mutex_unlock(&qemu_fair_mutex
);
3791 static void qemu_mutex_lock_iothread(void)
3793 if (kvm_enabled()) {
3794 qemu_mutex_lock(&qemu_fair_mutex
);
3795 qemu_mutex_lock(&qemu_global_mutex
);
3796 qemu_mutex_unlock(&qemu_fair_mutex
);
3798 qemu_signal_lock(100);
3801 static void qemu_mutex_unlock_iothread(void)
3803 qemu_mutex_unlock(&qemu_global_mutex
);
3806 static int all_vcpus_paused(void)
3808 CPUState
*penv
= first_cpu
;
3813 penv
= (CPUState
*)penv
->next_cpu
;
3819 static void pause_all_vcpus(void)
3821 CPUState
*penv
= first_cpu
;
3825 qemu_thread_signal(penv
->thread
, SIGUSR1
);
3826 qemu_cpu_kick(penv
);
3827 penv
= (CPUState
*)penv
->next_cpu
;
3830 while (!all_vcpus_paused()) {
3831 qemu_cond_timedwait(&qemu_pause_cond
, &qemu_global_mutex
, 100);
3834 qemu_thread_signal(penv
->thread
, SIGUSR1
);
3835 penv
= (CPUState
*)penv
->next_cpu
;
3840 static void resume_all_vcpus(void)
3842 CPUState
*penv
= first_cpu
;
3847 qemu_thread_signal(penv
->thread
, SIGUSR1
);
3848 qemu_cpu_kick(penv
);
3849 penv
= (CPUState
*)penv
->next_cpu
;
3853 static void tcg_init_vcpu(void *_env
)
3855 CPUState
*env
= _env
;
3856 /* share a single thread for all cpus with TCG */
3857 if (!tcg_cpu_thread
) {
3858 env
->thread
= qemu_mallocz(sizeof(QemuThread
));
3859 env
->halt_cond
= qemu_mallocz(sizeof(QemuCond
));
3860 qemu_cond_init(env
->halt_cond
);
3861 qemu_thread_create(env
->thread
, tcg_cpu_thread_fn
, env
);
3862 while (env
->created
== 0)
3863 qemu_cond_timedwait(&qemu_cpu_cond
, &qemu_global_mutex
, 100);
3864 tcg_cpu_thread
= env
->thread
;
3865 tcg_halt_cond
= env
->halt_cond
;
3867 env
->thread
= tcg_cpu_thread
;
3868 env
->halt_cond
= tcg_halt_cond
;
3872 static void kvm_start_vcpu(CPUState
*env
)
3875 env
->thread
= qemu_mallocz(sizeof(QemuThread
));
3876 env
->halt_cond
= qemu_mallocz(sizeof(QemuCond
));
3877 qemu_cond_init(env
->halt_cond
);
3878 qemu_thread_create(env
->thread
, kvm_cpu_thread_fn
, env
);
3879 while (env
->created
== 0)
3880 qemu_cond_timedwait(&qemu_cpu_cond
, &qemu_global_mutex
, 100);
3883 void qemu_init_vcpu(void *_env
)
3885 CPUState
*env
= _env
;
3888 kvm_start_vcpu(env
);
3893 void qemu_notify_event(void)
3895 qemu_event_increment();
3898 void vm_stop(int reason
)
3901 qemu_thread_self(&me
);
3903 if (!qemu_thread_equal(&me
, &io_thread
)) {
3904 qemu_system_vmstop_request(reason
);
3906 * FIXME: should not return to device code in case
3907 * vm_stop() has been requested.
3909 if (cpu_single_env
) {
3910 cpu_exit(cpu_single_env
);
3911 cpu_single_env
->stop
= 1;
3922 static void host_main_loop_wait(int *timeout
)
3928 /* XXX: need to suppress polling by better using win32 events */
3930 for(pe
= first_polling_entry
; pe
!= NULL
; pe
= pe
->next
) {
3931 ret
|= pe
->func(pe
->opaque
);
3935 WaitObjects
*w
= &wait_objects
;
3937 ret
= WaitForMultipleObjects(w
->num
, w
->events
, FALSE
, *timeout
);
3938 if (WAIT_OBJECT_0
+ 0 <= ret
&& ret
<= WAIT_OBJECT_0
+ w
->num
- 1) {
3939 if (w
->func
[ret
- WAIT_OBJECT_0
])
3940 w
->func
[ret
- WAIT_OBJECT_0
](w
->opaque
[ret
- WAIT_OBJECT_0
]);
3942 /* Check for additional signaled events */
3943 for(i
= (ret
- WAIT_OBJECT_0
+ 1); i
< w
->num
; i
++) {
3945 /* Check if event is signaled */
3946 ret2
= WaitForSingleObject(w
->events
[i
], 0);
3947 if(ret2
== WAIT_OBJECT_0
) {
3949 w
->func
[i
](w
->opaque
[i
]);
3950 } else if (ret2
== WAIT_TIMEOUT
) {
3952 err
= GetLastError();
3953 fprintf(stderr
, "WaitForSingleObject error %d %d\n", i
, err
);
3956 } else if (ret
== WAIT_TIMEOUT
) {
3958 err
= GetLastError();
3959 fprintf(stderr
, "WaitForMultipleObjects error %d %d\n", ret
, err
);
3966 static void host_main_loop_wait(int *timeout
)
3971 void main_loop_wait(int timeout
)
3973 IOHandlerRecord
*ioh
;
3974 fd_set rfds
, wfds
, xfds
;
3978 qemu_bh_update_timeout(&timeout
);
3980 host_main_loop_wait(&timeout
);
3982 /* poll any events */
3983 /* XXX: separate device handlers from system ones */
3988 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
3992 (!ioh
->fd_read_poll
||
3993 ioh
->fd_read_poll(ioh
->opaque
) != 0)) {
3994 FD_SET(ioh
->fd
, &rfds
);
3998 if (ioh
->fd_write
) {
3999 FD_SET(ioh
->fd
, &wfds
);
4005 tv
.tv_sec
= timeout
/ 1000;
4006 tv
.tv_usec
= (timeout
% 1000) * 1000;
4008 slirp_select_fill(&nfds
, &rfds
, &wfds
, &xfds
);
4010 qemu_mutex_unlock_iothread();
4011 ret
= select(nfds
+ 1, &rfds
, &wfds
, &xfds
, &tv
);
4012 qemu_mutex_lock_iothread();
4014 IOHandlerRecord
**pioh
;
4016 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
4017 if (!ioh
->deleted
&& ioh
->fd_read
&& FD_ISSET(ioh
->fd
, &rfds
)) {
4018 ioh
->fd_read(ioh
->opaque
);
4020 if (!ioh
->deleted
&& ioh
->fd_write
&& FD_ISSET(ioh
->fd
, &wfds
)) {
4021 ioh
->fd_write(ioh
->opaque
);
4025 /* remove deleted IO handlers */
4026 pioh
= &first_io_handler
;
4037 slirp_select_poll(&rfds
, &wfds
, &xfds
, (ret
< 0));
4039 /* rearm timer, if not periodic */
4040 if (alarm_timer
->flags
& ALARM_FLAG_EXPIRED
) {
4041 alarm_timer
->flags
&= ~ALARM_FLAG_EXPIRED
;
4042 qemu_rearm_alarm_timer(alarm_timer
);
4045 /* vm time timers */
4047 if (!cur_cpu
|| likely(!(cur_cpu
->singlestep_enabled
& SSTEP_NOTIMER
)))
4048 qemu_run_timers(&active_timers
[QEMU_TIMER_VIRTUAL
],
4049 qemu_get_clock(vm_clock
));
4052 /* real time timers */
4053 qemu_run_timers(&active_timers
[QEMU_TIMER_REALTIME
],
4054 qemu_get_clock(rt_clock
));
4056 /* Check bottom-halves last in case any of the earlier events triggered
4062 static int qemu_cpu_exec(CPUState
*env
)
4065 #ifdef CONFIG_PROFILER
4069 #ifdef CONFIG_PROFILER
4070 ti
= profile_getclock();
4075 qemu_icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
4076 env
->icount_decr
.u16
.low
= 0;
4077 env
->icount_extra
= 0;
4078 count
= qemu_next_deadline();
4079 count
= (count
+ (1 << icount_time_shift
) - 1)
4080 >> icount_time_shift
;
4081 qemu_icount
+= count
;
4082 decr
= (count
> 0xffff) ? 0xffff : count
;
4084 env
->icount_decr
.u16
.low
= decr
;
4085 env
->icount_extra
= count
;
4087 ret
= cpu_exec(env
);
4088 #ifdef CONFIG_PROFILER
4089 qemu_time
+= profile_getclock() - ti
;
4092 /* Fold pending instructions back into the
4093 instruction counter, and clear the interrupt flag. */
4094 qemu_icount
-= (env
->icount_decr
.u16
.low
4095 + env
->icount_extra
);
4096 env
->icount_decr
.u32
= 0;
4097 env
->icount_extra
= 0;
4102 static void tcg_cpu_exec(void)
4106 if (next_cpu
== NULL
)
4107 next_cpu
= first_cpu
;
4108 for (; next_cpu
!= NULL
; next_cpu
= next_cpu
->next_cpu
) {
4109 CPUState
*env
= cur_cpu
= next_cpu
;
4113 if (timer_alarm_pending
) {
4114 timer_alarm_pending
= 0;
4117 if (cpu_can_run(env
))
4118 ret
= qemu_cpu_exec(env
);
4119 if (ret
== EXCP_DEBUG
) {
4120 gdb_set_stop_cpu(env
);
4121 debug_requested
= 1;
4127 static int cpu_has_work(CPUState
*env
)
4135 if (qemu_cpu_has_work(env
))
4140 static int tcg_has_work(void)
4144 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
4145 if (cpu_has_work(env
))
4150 static int qemu_calculate_timeout(void)
4152 #ifndef CONFIG_IOTHREAD
4157 else if (tcg_has_work())
4159 else if (!use_icount
)
4162 /* XXX: use timeout computed from timers */
4165 /* Advance virtual time to the next event. */
4166 if (use_icount
== 1) {
4167 /* When not using an adaptive execution frequency
4168 we tend to get badly out of sync with real time,
4169 so just delay for a reasonable amount of time. */
4172 delta
= cpu_get_icount() - cpu_get_clock();
4175 /* If virtual time is ahead of real time then just
4177 timeout
= (delta
/ 1000000) + 1;
4179 /* Wait for either IO to occur or the next
4181 add
= qemu_next_deadline();
4182 /* We advance the timer before checking for IO.
4183 Limit the amount we advance so that early IO
4184 activity won't get the guest too far ahead. */
4188 add
= (add
+ (1 << icount_time_shift
) - 1)
4189 >> icount_time_shift
;
4191 timeout
= delta
/ 1000000;
4198 #else /* CONFIG_IOTHREAD */
4203 static int vm_can_run(void)
4205 if (powerdown_requested
)
4207 if (reset_requested
)
4209 if (shutdown_requested
)
4211 if (debug_requested
)
4216 qemu_irq qemu_system_powerdown
;
4218 static void main_loop(void)
4222 #ifdef CONFIG_IOTHREAD
4223 qemu_system_ready
= 1;
4224 qemu_cond_broadcast(&qemu_system_cond
);
4229 #ifdef CONFIG_PROFILER
4232 #ifndef CONFIG_IOTHREAD
4235 #ifdef CONFIG_PROFILER
4236 ti
= profile_getclock();
4238 main_loop_wait(qemu_calculate_timeout());
4239 #ifdef CONFIG_PROFILER
4240 dev_time
+= profile_getclock() - ti
;
4242 } while (vm_can_run());
4244 if (qemu_debug_requested())
4245 vm_stop(EXCP_DEBUG
);
4246 if (qemu_shutdown_requested()) {
4253 if (qemu_reset_requested()) {
4255 qemu_system_reset();
4258 if (qemu_powerdown_requested()) {
4259 qemu_irq_raise(qemu_system_powerdown
);
4261 if ((r
= qemu_vmstop_requested()))
4267 static void version(void)
4269 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION
", Copyright (c) 2003-2008 Fabrice Bellard\n");
4272 static void help(int exitcode
)
4275 printf("usage: %s [options] [disk_image]\n"
4277 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4279 #define DEF(option, opt_arg, opt_enum, opt_help) \
4281 #define DEFHEADING(text) stringify(text) "\n"
4282 #include "qemu-options.h"
4287 "During emulation, the following keys are useful:\n"
4288 "ctrl-alt-f toggle full screen\n"
4289 "ctrl-alt-n switch to virtual console 'n'\n"
4290 "ctrl-alt toggle mouse and keyboard grab\n"
4292 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4297 DEFAULT_NETWORK_SCRIPT
,
4298 DEFAULT_NETWORK_DOWN_SCRIPT
,
4300 DEFAULT_GDBSTUB_PORT
,
4305 #define HAS_ARG 0x0001
4308 #define DEF(option, opt_arg, opt_enum, opt_help) \
4310 #define DEFHEADING(text)
4311 #include "qemu-options.h"
4317 typedef struct QEMUOption
{
4323 static const QEMUOption qemu_options
[] = {
4324 { "h", 0, QEMU_OPTION_h
},
4325 #define DEF(option, opt_arg, opt_enum, opt_help) \
4326 { option, opt_arg, opt_enum },
4327 #define DEFHEADING(text)
4328 #include "qemu-options.h"
4336 struct soundhw soundhw
[] = {
4337 #ifdef HAS_AUDIO_CHOICE
4338 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4344 { .init_isa
= pcspk_audio_init
}
4351 "Creative Sound Blaster 16",
4354 { .init_isa
= SB16_init
}
4358 #ifdef CONFIG_CS4231A
4364 { .init_isa
= cs4231a_init
}
4372 "Yamaha YMF262 (OPL3)",
4374 "Yamaha YM3812 (OPL2)",
4378 { .init_isa
= Adlib_init
}
4385 "Gravis Ultrasound GF1",
4388 { .init_isa
= GUS_init
}
4395 "Intel 82801AA AC97 Audio",
4398 { .init_pci
= ac97_init
}
4402 #ifdef CONFIG_ES1370
4405 "ENSONIQ AudioPCI ES1370",
4408 { .init_pci
= es1370_init
}
4412 #endif /* HAS_AUDIO_CHOICE */
4414 { NULL
, NULL
, 0, 0, { NULL
} }
4417 static void select_soundhw (const char *optarg
)
4421 if (*optarg
== '?') {
4424 printf ("Valid sound card names (comma separated):\n");
4425 for (c
= soundhw
; c
->name
; ++c
) {
4426 printf ("%-11s %s\n", c
->name
, c
->descr
);
4428 printf ("\n-soundhw all will enable all of the above\n");
4429 exit (*optarg
!= '?');
4437 if (!strcmp (optarg
, "all")) {
4438 for (c
= soundhw
; c
->name
; ++c
) {
4446 e
= strchr (p
, ',');
4447 l
= !e
? strlen (p
) : (size_t) (e
- p
);
4449 for (c
= soundhw
; c
->name
; ++c
) {
4450 if (!strncmp (c
->name
, p
, l
)) {
4459 "Unknown sound card name (too big to show)\n");
4462 fprintf (stderr
, "Unknown sound card name `%.*s'\n",
4467 p
+= l
+ (e
!= NULL
);
4471 goto show_valid_cards
;
4476 static void select_vgahw (const char *p
)
4480 cirrus_vga_enabled
= 0;
4481 std_vga_enabled
= 0;
4484 if (strstart(p
, "std", &opts
)) {
4485 std_vga_enabled
= 1;
4486 } else if (strstart(p
, "cirrus", &opts
)) {
4487 cirrus_vga_enabled
= 1;
4488 } else if (strstart(p
, "vmware", &opts
)) {
4490 } else if (strstart(p
, "xenfb", &opts
)) {
4492 } else if (!strstart(p
, "none", &opts
)) {
4494 fprintf(stderr
, "Unknown vga type: %s\n", p
);
4498 const char *nextopt
;
4500 if (strstart(opts
, ",retrace=", &nextopt
)) {
4502 if (strstart(opts
, "dumb", &nextopt
))
4503 vga_retrace_method
= VGA_RETRACE_DUMB
;
4504 else if (strstart(opts
, "precise", &nextopt
))
4505 vga_retrace_method
= VGA_RETRACE_PRECISE
;
4506 else goto invalid_vga
;
4507 } else goto invalid_vga
;
4513 static int balloon_parse(const char *arg
)
4518 if (!strcmp(arg
, "none")) {
4520 } else if (!strncmp(arg
, "virtio", 6)) {
4522 if (arg
[6] == ',') {
4524 if (get_param_value(buf
, sizeof(buf
), "addr", p
)) {
4525 virtio_balloon_devaddr
= strdup(buf
);
4536 static BOOL WINAPI
qemu_ctrl_handler(DWORD type
)
4538 exit(STATUS_CONTROL_C_EXIT
);
4543 int qemu_uuid_parse(const char *str
, uint8_t *uuid
)
4547 if(strlen(str
) != 36)
4550 ret
= sscanf(str
, UUID_FMT
, &uuid
[0], &uuid
[1], &uuid
[2], &uuid
[3],
4551 &uuid
[4], &uuid
[5], &uuid
[6], &uuid
[7], &uuid
[8], &uuid
[9],
4552 &uuid
[10], &uuid
[11], &uuid
[12], &uuid
[13], &uuid
[14], &uuid
[15]);
4558 smbios_add_field(1, offsetof(struct smbios_type_1
, uuid
), 16, uuid
);
4564 #define MAX_NET_CLIENTS 32
4568 static void termsig_handler(int signal
)
4570 qemu_system_shutdown_request();
4573 static void sigchld_handler(int signal
)
4575 waitpid(-1, NULL
, WNOHANG
);
4578 static void sighandler_setup(void)
4580 struct sigaction act
;
4582 memset(&act
, 0, sizeof(act
));
4583 act
.sa_handler
= termsig_handler
;
4584 sigaction(SIGINT
, &act
, NULL
);
4585 sigaction(SIGHUP
, &act
, NULL
);
4586 sigaction(SIGTERM
, &act
, NULL
);
4588 act
.sa_handler
= sigchld_handler
;
4589 act
.sa_flags
= SA_NOCLDSTOP
;
4590 sigaction(SIGCHLD
, &act
, NULL
);
4596 /* Look for support files in the same directory as the executable. */
4597 static char *find_datadir(const char *argv0
)
4603 len
= GetModuleFileName(NULL
, buf
, sizeof(buf
) - 1);
4610 while (p
!= buf
&& *p
!= '\\')
4613 if (access(buf
, R_OK
) == 0) {
4614 return qemu_strdup(buf
);
4620 /* Find a likely location for support files using the location of the binary.
4621 For installed binaries this will be "$bindir/../share/qemu". When
4622 running from the build tree this will be "$bindir/../pc-bios". */
4623 #define SHARE_SUFFIX "/share/qemu"
4624 #define BUILD_SUFFIX "/pc-bios"
4625 static char *find_datadir(const char *argv0
)
4635 #if defined(__linux__)
4638 len
= readlink("/proc/self/exe", buf
, sizeof(buf
) - 1);
4644 #elif defined(__FreeBSD__)
4647 len
= readlink("/proc/curproc/file", buf
, sizeof(buf
) - 1);
4654 /* If we don't have any way of figuring out the actual executable
4655 location then try argv[0]. */
4660 p
= realpath(argv0
, p
);
4668 max_len
= strlen(dir
) +
4669 MAX(strlen(SHARE_SUFFIX
), strlen(BUILD_SUFFIX
)) + 1;
4670 res
= qemu_mallocz(max_len
);
4671 snprintf(res
, max_len
, "%s%s", dir
, SHARE_SUFFIX
);
4672 if (access(res
, R_OK
)) {
4673 snprintf(res
, max_len
, "%s%s", dir
, BUILD_SUFFIX
);
4674 if (access(res
, R_OK
)) {
4688 char *qemu_find_file(int type
, const char *name
)
4694 /* If name contains path separators then try it as a straight path. */
4695 if ((strchr(name
, '/') || strchr(name
, '\\'))
4696 && access(name
, R_OK
) == 0) {
4697 return strdup(name
);
4700 case QEMU_FILE_TYPE_BIOS
:
4703 case QEMU_FILE_TYPE_KEYMAP
:
4704 subdir
= "keymaps/";
4709 len
= strlen(data_dir
) + strlen(name
) + strlen(subdir
) + 2;
4710 buf
= qemu_mallocz(len
);
4711 snprintf(buf
, len
, "%s/%s%s", data_dir
, subdir
, name
);
4712 if (access(buf
, R_OK
)) {
4719 static int device_init_func(QemuOpts
*opts
, void *opaque
)
4723 dev
= qdev_device_add(opts
);
4729 struct device_config
{
4731 DEV_USB
, /* -usbdevice */
4734 const char *cmdline
;
4735 TAILQ_ENTRY(device_config
) next
;
4737 TAILQ_HEAD(, device_config
) device_configs
= TAILQ_HEAD_INITIALIZER(device_configs
);
4739 static void add_device_config(int type
, const char *cmdline
)
4741 struct device_config
*conf
;
4743 conf
= qemu_mallocz(sizeof(*conf
));
4745 conf
->cmdline
= cmdline
;
4746 TAILQ_INSERT_TAIL(&device_configs
, conf
, next
);
4749 static int foreach_device_config(int type
, int (*func
)(const char *cmdline
))
4751 struct device_config
*conf
;
4754 TAILQ_FOREACH(conf
, &device_configs
, next
) {
4755 if (conf
->type
!= type
)
4757 rc
= func(conf
->cmdline
);
4764 int main(int argc
, char **argv
, char **envp
)
4766 const char *gdbstub_dev
= NULL
;
4767 uint32_t boot_devices_bitmap
= 0;
4769 int snapshot
, linux_boot
, net_boot
;
4770 const char *initrd_filename
;
4771 const char *kernel_filename
, *kernel_cmdline
;
4772 char boot_devices
[33] = "cad"; /* default to HD->floppy->CD-ROM */
4774 DisplayChangeListener
*dcl
;
4775 int cyls
, heads
, secs
, translation
;
4776 const char *net_clients
[MAX_NET_CLIENTS
];
4778 QemuOpts
*hda_opts
= NULL
, *opts
;
4780 const char *r
, *optarg
;
4781 CharDriverState
*monitor_hd
= NULL
;
4782 const char *monitor_device
;
4783 const char *serial_devices
[MAX_SERIAL_PORTS
];
4784 int serial_device_index
;
4785 const char *parallel_devices
[MAX_PARALLEL_PORTS
];
4786 int parallel_device_index
;
4787 const char *virtio_consoles
[MAX_VIRTIO_CONSOLES
];
4788 int virtio_console_index
;
4789 const char *loadvm
= NULL
;
4790 QEMUMachine
*machine
;
4791 const char *cpu_model
;
4796 const char *pid_file
= NULL
;
4797 const char *incoming
= NULL
;
4800 struct passwd
*pwd
= NULL
;
4801 const char *chroot_dir
= NULL
;
4802 const char *run_as
= NULL
;
4805 int show_vnc_port
= 0;
4807 qemu_cache_utils_init(envp
);
4809 LIST_INIT (&vm_change_state_head
);
4812 struct sigaction act
;
4813 sigfillset(&act
.sa_mask
);
4815 act
.sa_handler
= SIG_IGN
;
4816 sigaction(SIGPIPE
, &act
, NULL
);
4819 SetConsoleCtrlHandler(qemu_ctrl_handler
, TRUE
);
4820 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4821 QEMU to run on a single CPU */
4826 h
= GetCurrentProcess();
4827 if (GetProcessAffinityMask(h
, &mask
, &smask
)) {
4828 for(i
= 0; i
< 32; i
++) {
4829 if (mask
& (1 << i
))
4834 SetProcessAffinityMask(h
, mask
);
4840 module_call_init(MODULE_INIT_MACHINE
);
4841 machine
= find_default_machine();
4843 initrd_filename
= NULL
;
4846 kernel_filename
= NULL
;
4847 kernel_cmdline
= "";
4848 cyls
= heads
= secs
= 0;
4849 translation
= BIOS_ATA_TRANSLATION_AUTO
;
4850 monitor_device
= "vc:80Cx24C";
4852 serial_devices
[0] = "vc:80Cx24C";
4853 for(i
= 1; i
< MAX_SERIAL_PORTS
; i
++)
4854 serial_devices
[i
] = NULL
;
4855 serial_device_index
= 0;
4857 parallel_devices
[0] = "vc:80Cx24C";
4858 for(i
= 1; i
< MAX_PARALLEL_PORTS
; i
++)
4859 parallel_devices
[i
] = NULL
;
4860 parallel_device_index
= 0;
4862 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++)
4863 virtio_consoles
[i
] = NULL
;
4864 virtio_console_index
= 0;
4866 for (i
= 0; i
< MAX_NODES
; i
++) {
4868 node_cpumask
[i
] = 0;
4878 register_watchdogs();
4886 hda_opts
= drive_add(argv
[optind
++], HD_ALIAS
, 0);
4888 const QEMUOption
*popt
;
4891 /* Treat --foo the same as -foo. */
4894 popt
= qemu_options
;
4897 fprintf(stderr
, "%s: invalid option -- '%s'\n",
4901 if (!strcmp(popt
->name
, r
+ 1))
4905 if (popt
->flags
& HAS_ARG
) {
4906 if (optind
>= argc
) {
4907 fprintf(stderr
, "%s: option '%s' requires an argument\n",
4911 optarg
= argv
[optind
++];
4916 switch(popt
->index
) {
4918 machine
= find_machine(optarg
);
4921 printf("Supported machines are:\n");
4922 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
4924 printf("%-10s %s (alias of %s)\n",
4925 m
->alias
, m
->desc
, m
->name
);
4926 printf("%-10s %s%s\n",
4928 m
->is_default
? " (default)" : "");
4930 exit(*optarg
!= '?');
4933 case QEMU_OPTION_cpu
:
4934 /* hw initialization will check this */
4935 if (*optarg
== '?') {
4936 /* XXX: implement xxx_cpu_list for targets that still miss it */
4937 #if defined(cpu_list)
4938 cpu_list(stdout
, &fprintf
);
4945 case QEMU_OPTION_initrd
:
4946 initrd_filename
= optarg
;
4948 case QEMU_OPTION_hda
:
4950 hda_opts
= drive_add(optarg
, HD_ALIAS
, 0);
4952 hda_opts
= drive_add(optarg
, HD_ALIAS
4953 ",cyls=%d,heads=%d,secs=%d%s",
4954 0, cyls
, heads
, secs
,
4955 translation
== BIOS_ATA_TRANSLATION_LBA
?
4957 translation
== BIOS_ATA_TRANSLATION_NONE
?
4958 ",trans=none" : "");
4960 case QEMU_OPTION_hdb
:
4961 case QEMU_OPTION_hdc
:
4962 case QEMU_OPTION_hdd
:
4963 drive_add(optarg
, HD_ALIAS
, popt
->index
- QEMU_OPTION_hda
);
4965 case QEMU_OPTION_drive
:
4966 drive_add(NULL
, "%s", optarg
);
4968 case QEMU_OPTION_set
:
4969 if (qemu_set_option(optarg
) != 0)
4972 case QEMU_OPTION_mtdblock
:
4973 drive_add(optarg
, MTD_ALIAS
);
4975 case QEMU_OPTION_sd
:
4976 drive_add(optarg
, SD_ALIAS
);
4978 case QEMU_OPTION_pflash
:
4979 drive_add(optarg
, PFLASH_ALIAS
);
4981 case QEMU_OPTION_snapshot
:
4984 case QEMU_OPTION_hdachs
:
4988 cyls
= strtol(p
, (char **)&p
, 0);
4989 if (cyls
< 1 || cyls
> 16383)
4994 heads
= strtol(p
, (char **)&p
, 0);
4995 if (heads
< 1 || heads
> 16)
5000 secs
= strtol(p
, (char **)&p
, 0);
5001 if (secs
< 1 || secs
> 63)
5005 if (!strcmp(p
, "none"))
5006 translation
= BIOS_ATA_TRANSLATION_NONE
;
5007 else if (!strcmp(p
, "lba"))
5008 translation
= BIOS_ATA_TRANSLATION_LBA
;
5009 else if (!strcmp(p
, "auto"))
5010 translation
= BIOS_ATA_TRANSLATION_AUTO
;
5013 } else if (*p
!= '\0') {
5015 fprintf(stderr
, "qemu: invalid physical CHS format\n");
5018 if (hda_opts
!= NULL
) {
5020 snprintf(num
, sizeof(num
), "%d", cyls
);
5021 qemu_opt_set(hda_opts
, "cyls", num
);
5022 snprintf(num
, sizeof(num
), "%d", heads
);
5023 qemu_opt_set(hda_opts
, "heads", num
);
5024 snprintf(num
, sizeof(num
), "%d", secs
);
5025 qemu_opt_set(hda_opts
, "secs", num
);
5026 if (translation
== BIOS_ATA_TRANSLATION_LBA
)
5027 qemu_opt_set(hda_opts
, "trans", "lba");
5028 if (translation
== BIOS_ATA_TRANSLATION_NONE
)
5029 qemu_opt_set(hda_opts
, "trans", "none");
5033 case QEMU_OPTION_numa
:
5034 if (nb_numa_nodes
>= MAX_NODES
) {
5035 fprintf(stderr
, "qemu: too many NUMA nodes\n");
5040 case QEMU_OPTION_nographic
:
5041 display_type
= DT_NOGRAPHIC
;
5043 #ifdef CONFIG_CURSES
5044 case QEMU_OPTION_curses
:
5045 display_type
= DT_CURSES
;
5048 case QEMU_OPTION_portrait
:
5051 case QEMU_OPTION_kernel
:
5052 kernel_filename
= optarg
;
5054 case QEMU_OPTION_append
:
5055 kernel_cmdline
= optarg
;
5057 case QEMU_OPTION_cdrom
:
5058 drive_add(optarg
, CDROM_ALIAS
);
5060 case QEMU_OPTION_boot
:
5062 static const char * const params
[] = {
5063 "order", "once", "menu", NULL
5065 char buf
[sizeof(boot_devices
)];
5066 char *standard_boot_devices
;
5069 if (!strchr(optarg
, '=')) {
5071 pstrcpy(buf
, sizeof(buf
), optarg
);
5072 } else if (check_params(buf
, sizeof(buf
), params
, optarg
) < 0) {
5074 "qemu: unknown boot parameter '%s' in '%s'\n",
5080 get_param_value(buf
, sizeof(buf
), "order", optarg
)) {
5081 boot_devices_bitmap
= parse_bootdevices(buf
);
5082 pstrcpy(boot_devices
, sizeof(boot_devices
), buf
);
5085 if (get_param_value(buf
, sizeof(buf
),
5087 boot_devices_bitmap
|= parse_bootdevices(buf
);
5088 standard_boot_devices
= qemu_strdup(boot_devices
);
5089 pstrcpy(boot_devices
, sizeof(boot_devices
), buf
);
5090 qemu_register_reset(restore_boot_devices
,
5091 standard_boot_devices
);
5093 if (get_param_value(buf
, sizeof(buf
),
5095 if (!strcmp(buf
, "on")) {
5097 } else if (!strcmp(buf
, "off")) {
5101 "qemu: invalid option value '%s'\n",
5109 case QEMU_OPTION_fda
:
5110 case QEMU_OPTION_fdb
:
5111 drive_add(optarg
, FD_ALIAS
, popt
->index
- QEMU_OPTION_fda
);
5114 case QEMU_OPTION_no_fd_bootchk
:
5118 case QEMU_OPTION_net
:
5119 if (nb_net_clients
>= MAX_NET_CLIENTS
) {
5120 fprintf(stderr
, "qemu: too many network clients\n");
5123 net_clients
[nb_net_clients
] = optarg
;
5127 case QEMU_OPTION_tftp
:
5128 legacy_tftp_prefix
= optarg
;
5130 case QEMU_OPTION_bootp
:
5131 legacy_bootp_filename
= optarg
;
5134 case QEMU_OPTION_smb
:
5135 net_slirp_smb(optarg
);
5138 case QEMU_OPTION_redir
:
5139 net_slirp_redir(optarg
);
5142 case QEMU_OPTION_bt
:
5143 add_device_config(DEV_BT
, optarg
);
5146 case QEMU_OPTION_audio_help
:
5150 case QEMU_OPTION_soundhw
:
5151 select_soundhw (optarg
);
5157 case QEMU_OPTION_version
:
5161 case QEMU_OPTION_m
: {
5165 value
= strtoul(optarg
, &ptr
, 10);
5167 case 0: case 'M': case 'm':
5174 fprintf(stderr
, "qemu: invalid ram size: %s\n", optarg
);
5178 /* On 32-bit hosts, QEMU is limited by virtual address space */
5179 if (value
> (2047 << 20)
5180 #ifndef CONFIG_KQEMU
5181 && HOST_LONG_BITS
== 32
5184 fprintf(stderr
, "qemu: at most 2047 MB RAM can be simulated\n");
5187 if (value
!= (uint64_t)(ram_addr_t
)value
) {
5188 fprintf(stderr
, "qemu: ram size too large\n");
5197 const CPULogItem
*item
;
5199 mask
= cpu_str_to_log_mask(optarg
);
5201 printf("Log items (comma separated):\n");
5202 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
5203 printf("%-10s %s\n", item
->name
, item
->help
);
5211 gdbstub_dev
= "tcp::" DEFAULT_GDBSTUB_PORT
;
5213 case QEMU_OPTION_gdb
:
5214 gdbstub_dev
= optarg
;
5219 case QEMU_OPTION_bios
:
5222 case QEMU_OPTION_singlestep
:
5230 keyboard_layout
= optarg
;
5233 case QEMU_OPTION_localtime
:
5236 case QEMU_OPTION_vga
:
5237 select_vgahw (optarg
);
5239 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5245 w
= strtol(p
, (char **)&p
, 10);
5248 fprintf(stderr
, "qemu: invalid resolution or depth\n");
5254 h
= strtol(p
, (char **)&p
, 10);
5259 depth
= strtol(p
, (char **)&p
, 10);
5260 if (depth
!= 8 && depth
!= 15 && depth
!= 16 &&
5261 depth
!= 24 && depth
!= 32)
5263 } else if (*p
== '\0') {
5264 depth
= graphic_depth
;
5271 graphic_depth
= depth
;
5275 case QEMU_OPTION_echr
:
5278 term_escape_char
= strtol(optarg
, &r
, 0);
5280 printf("Bad argument to echr\n");
5283 case QEMU_OPTION_monitor
:
5284 monitor_device
= optarg
;
5286 case QEMU_OPTION_serial
:
5287 if (serial_device_index
>= MAX_SERIAL_PORTS
) {
5288 fprintf(stderr
, "qemu: too many serial ports\n");
5291 serial_devices
[serial_device_index
] = optarg
;
5292 serial_device_index
++;
5294 case QEMU_OPTION_watchdog
:
5295 i
= select_watchdog(optarg
);
5297 exit (i
== 1 ? 1 : 0);
5299 case QEMU_OPTION_watchdog_action
:
5300 if (select_watchdog_action(optarg
) == -1) {
5301 fprintf(stderr
, "Unknown -watchdog-action parameter\n");
5305 case QEMU_OPTION_virtiocon
:
5306 if (virtio_console_index
>= MAX_VIRTIO_CONSOLES
) {
5307 fprintf(stderr
, "qemu: too many virtio consoles\n");
5310 virtio_consoles
[virtio_console_index
] = optarg
;
5311 virtio_console_index
++;
5313 case QEMU_OPTION_parallel
:
5314 if (parallel_device_index
>= MAX_PARALLEL_PORTS
) {
5315 fprintf(stderr
, "qemu: too many parallel ports\n");
5318 parallel_devices
[parallel_device_index
] = optarg
;
5319 parallel_device_index
++;
5321 case QEMU_OPTION_loadvm
:
5324 case QEMU_OPTION_full_screen
:
5328 case QEMU_OPTION_no_frame
:
5331 case QEMU_OPTION_alt_grab
:
5334 case QEMU_OPTION_no_quit
:
5337 case QEMU_OPTION_sdl
:
5338 display_type
= DT_SDL
;
5341 case QEMU_OPTION_pidfile
:
5345 case QEMU_OPTION_win2k_hack
:
5346 win2k_install_hack
= 1;
5348 case QEMU_OPTION_rtc_td_hack
:
5351 case QEMU_OPTION_acpitable
:
5352 if(acpi_table_add(optarg
) < 0) {
5353 fprintf(stderr
, "Wrong acpi table provided\n");
5357 case QEMU_OPTION_smbios
:
5358 if(smbios_entry_add(optarg
) < 0) {
5359 fprintf(stderr
, "Wrong smbios provided\n");
5365 case QEMU_OPTION_enable_kqemu
:
5368 case QEMU_OPTION_kernel_kqemu
:
5373 case QEMU_OPTION_enable_kvm
:
5380 case QEMU_OPTION_usb
:
5383 case QEMU_OPTION_usbdevice
:
5385 add_device_config(DEV_USB
, optarg
);
5387 case QEMU_OPTION_device
:
5388 opts
= qemu_opts_parse(&qemu_device_opts
, optarg
, "driver");
5390 fprintf(stderr
, "parse error: %s\n", optarg
);
5394 case QEMU_OPTION_smp
:
5398 smp_cpus
= strtol(optarg
, &p
, 10);
5400 fprintf(stderr
, "Invalid number of CPUs\n");
5405 if (get_param_value(option
, 128, "maxcpus", p
))
5406 max_cpus
= strtol(option
, NULL
, 0);
5407 if (max_cpus
< smp_cpus
) {
5408 fprintf(stderr
, "maxcpus must be equal to or greater than "
5412 if (max_cpus
> 255) {
5413 fprintf(stderr
, "Unsupported number of maxcpus\n");
5418 case QEMU_OPTION_vnc
:
5419 display_type
= DT_VNC
;
5420 vnc_display
= optarg
;
5423 case QEMU_OPTION_no_acpi
:
5426 case QEMU_OPTION_no_hpet
:
5429 case QEMU_OPTION_balloon
:
5430 if (balloon_parse(optarg
) < 0) {
5431 fprintf(stderr
, "Unknown -balloon argument %s\n", optarg
);
5436 case QEMU_OPTION_no_reboot
:
5439 case QEMU_OPTION_no_shutdown
:
5442 case QEMU_OPTION_show_cursor
:
5445 case QEMU_OPTION_uuid
:
5446 if(qemu_uuid_parse(optarg
, qemu_uuid
) < 0) {
5447 fprintf(stderr
, "Fail to parse UUID string."
5448 " Wrong format.\n");
5453 case QEMU_OPTION_daemonize
:
5457 case QEMU_OPTION_option_rom
:
5458 if (nb_option_roms
>= MAX_OPTION_ROMS
) {
5459 fprintf(stderr
, "Too many option ROMs\n");
5462 option_rom
[nb_option_roms
] = optarg
;
5465 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5466 case QEMU_OPTION_semihosting
:
5467 semihosting_enabled
= 1;
5470 case QEMU_OPTION_name
:
5471 qemu_name
= qemu_strdup(optarg
);
5473 char *p
= strchr(qemu_name
, ',');
5476 if (strncmp(p
, "process=", 8)) {
5477 fprintf(stderr
, "Unknown subargument %s to -name", p
);
5485 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5486 case QEMU_OPTION_prom_env
:
5487 if (nb_prom_envs
>= MAX_PROM_ENVS
) {
5488 fprintf(stderr
, "Too many prom variables\n");
5491 prom_envs
[nb_prom_envs
] = optarg
;
5496 case QEMU_OPTION_old_param
:
5500 case QEMU_OPTION_clock
:
5501 configure_alarms(optarg
);
5503 case QEMU_OPTION_startdate
:
5506 time_t rtc_start_date
;
5507 if (!strcmp(optarg
, "now")) {
5508 rtc_date_offset
= -1;
5510 if (sscanf(optarg
, "%d-%d-%dT%d:%d:%d",
5518 } else if (sscanf(optarg
, "%d-%d-%d",
5521 &tm
.tm_mday
) == 3) {
5530 rtc_start_date
= mktimegm(&tm
);
5531 if (rtc_start_date
== -1) {
5533 fprintf(stderr
, "Invalid date format. Valid format are:\n"
5534 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5537 rtc_date_offset
= time(NULL
) - rtc_start_date
;
5541 case QEMU_OPTION_tb_size
:
5542 tb_size
= strtol(optarg
, NULL
, 0);
5546 case QEMU_OPTION_icount
:
5548 if (strcmp(optarg
, "auto") == 0) {
5549 icount_time_shift
= -1;
5551 icount_time_shift
= strtol(optarg
, NULL
, 0);
5554 case QEMU_OPTION_incoming
:
5558 case QEMU_OPTION_chroot
:
5559 chroot_dir
= optarg
;
5561 case QEMU_OPTION_runas
:
5566 case QEMU_OPTION_xen_domid
:
5567 xen_domid
= atoi(optarg
);
5569 case QEMU_OPTION_xen_create
:
5570 xen_mode
= XEN_CREATE
;
5572 case QEMU_OPTION_xen_attach
:
5573 xen_mode
= XEN_ATTACH
;
5580 /* If no data_dir is specified then try to find it relative to the
5583 data_dir
= find_datadir(argv
[0]);
5585 /* If all else fails use the install patch specified when building. */
5587 data_dir
= CONFIG_QEMU_SHAREDIR
;
5590 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5591 if (kvm_allowed
&& kqemu_allowed
) {
5593 "You can not enable both KVM and kqemu at the same time\n");
5599 * Default to max_cpus = smp_cpus, in case the user doesn't
5600 * specify a max_cpus value.
5603 max_cpus
= smp_cpus
;
5605 machine
->max_cpus
= machine
->max_cpus
?: 1; /* Default to UP */
5606 if (smp_cpus
> machine
->max_cpus
) {
5607 fprintf(stderr
, "Number of SMP cpus requested (%d), exceeds max cpus "
5608 "supported by machine `%s' (%d)\n", smp_cpus
, machine
->name
,
5613 if (display_type
== DT_NOGRAPHIC
) {
5614 if (serial_device_index
== 0)
5615 serial_devices
[0] = "stdio";
5616 if (parallel_device_index
== 0)
5617 parallel_devices
[0] = "null";
5618 if (strncmp(monitor_device
, "vc", 2) == 0)
5619 monitor_device
= "stdio";
5626 if (pipe(fds
) == -1)
5637 len
= read(fds
[0], &status
, 1);
5638 if (len
== -1 && (errno
== EINTR
))
5643 else if (status
== 1) {
5644 fprintf(stderr
, "Could not acquire pidfile\n");
5661 signal(SIGTSTP
, SIG_IGN
);
5662 signal(SIGTTOU
, SIG_IGN
);
5663 signal(SIGTTIN
, SIG_IGN
);
5666 if (pid_file
&& qemu_create_pidfile(pid_file
) != 0) {
5669 write(fds
[1], &status
, 1);
5671 fprintf(stderr
, "Could not acquire pid file\n");
5680 if (qemu_init_main_loop()) {
5681 fprintf(stderr
, "qemu_init_main_loop failed\n");
5684 linux_boot
= (kernel_filename
!= NULL
);
5686 if (!linux_boot
&& *kernel_cmdline
!= '\0') {
5687 fprintf(stderr
, "-append only allowed with -kernel option\n");
5691 if (!linux_boot
&& initrd_filename
!= NULL
) {
5692 fprintf(stderr
, "-initrd only allowed with -kernel option\n");
5697 /* Win32 doesn't support line-buffering and requires size >= 2 */
5698 setvbuf(stdout
, NULL
, _IOLBF
, 0);
5702 if (init_timer_alarm() < 0) {
5703 fprintf(stderr
, "could not initialize alarm timer\n");
5706 if (use_icount
&& icount_time_shift
< 0) {
5708 /* 125MIPS seems a reasonable initial guess at the guest speed.
5709 It will be corrected fairly quickly anyway. */
5710 icount_time_shift
= 3;
5711 init_icount_adjust();
5718 /* init network clients */
5719 if (nb_net_clients
== 0) {
5720 /* if no clients, we use a default config */
5721 net_clients
[nb_net_clients
++] = "nic";
5723 net_clients
[nb_net_clients
++] = "user";
5727 for(i
= 0;i
< nb_net_clients
; i
++) {
5728 if (net_client_parse(net_clients
[i
]) < 0)
5732 net_boot
= (boot_devices_bitmap
>> ('n' - 'a')) & 0xF;
5733 net_set_boot_mask(net_boot
);
5737 /* init the bluetooth world */
5738 if (foreach_device_config(DEV_BT
, bt_parse
))
5741 /* init the memory */
5743 ram_size
= DEFAULT_RAM_SIZE
* 1024 * 1024;
5746 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5747 guest ram allocation. It needs to go away. */
5748 if (kqemu_allowed
) {
5749 kqemu_phys_ram_size
= ram_size
+ 8 * 1024 * 1024 + 4 * 1024 * 1024;
5750 kqemu_phys_ram_base
= qemu_vmalloc(kqemu_phys_ram_size
);
5751 if (!kqemu_phys_ram_base
) {
5752 fprintf(stderr
, "Could not allocate physical memory\n");
5758 /* init the dynamic translator */
5759 cpu_exec_init_all(tb_size
* 1024 * 1024);
5763 /* we always create the cdrom drive, even if no disk is there */
5764 drive_add(NULL
, CDROM_ALIAS
);
5766 /* we always create at least one floppy */
5767 drive_add(NULL
, FD_ALIAS
, 0);
5769 /* we always create one sd slot, even if no card is in it */
5770 drive_add(NULL
, SD_ALIAS
);
5772 /* open the virtual block devices */
5774 qemu_opts_foreach(&qemu_drive_opts
, drive_enable_snapshot
, NULL
, 0);
5775 if (qemu_opts_foreach(&qemu_drive_opts
, drive_init_func
, machine
, 1) != 0)
5778 register_savevm("timer", 0, 2, timer_save
, timer_load
, NULL
);
5779 register_savevm_live("ram", 0, 3, ram_save_live
, NULL
, ram_load
, NULL
);
5782 /* must be after terminal init, SDL library changes signal handlers */
5786 /* Maintain compatibility with multiple stdio monitors */
5787 if (!strcmp(monitor_device
,"stdio")) {
5788 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
5789 const char *devname
= serial_devices
[i
];
5790 if (devname
&& !strcmp(devname
,"mon:stdio")) {
5791 monitor_device
= NULL
;
5793 } else if (devname
&& !strcmp(devname
,"stdio")) {
5794 monitor_device
= NULL
;
5795 serial_devices
[i
] = "mon:stdio";
5801 if (nb_numa_nodes
> 0) {
5804 if (nb_numa_nodes
> smp_cpus
) {
5805 nb_numa_nodes
= smp_cpus
;
5808 /* If no memory size if given for any node, assume the default case
5809 * and distribute the available memory equally across all nodes
5811 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5812 if (node_mem
[i
] != 0)
5815 if (i
== nb_numa_nodes
) {
5816 uint64_t usedmem
= 0;
5818 /* On Linux, the each node's border has to be 8MB aligned,
5819 * the final node gets the rest.
5821 for (i
= 0; i
< nb_numa_nodes
- 1; i
++) {
5822 node_mem
[i
] = (ram_size
/ nb_numa_nodes
) & ~((1 << 23UL) - 1);
5823 usedmem
+= node_mem
[i
];
5825 node_mem
[i
] = ram_size
- usedmem
;
5828 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5829 if (node_cpumask
[i
] != 0)
5832 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5833 * must cope with this anyway, because there are BIOSes out there in
5834 * real machines which also use this scheme.
5836 if (i
== nb_numa_nodes
) {
5837 for (i
= 0; i
< smp_cpus
; i
++) {
5838 node_cpumask
[i
% nb_numa_nodes
] |= 1 << i
;
5843 if (kvm_enabled()) {
5846 ret
= kvm_init(smp_cpus
);
5848 fprintf(stderr
, "failed to initialize KVM\n");
5853 if (monitor_device
) {
5854 monitor_hd
= qemu_chr_open("monitor", monitor_device
, NULL
);
5856 fprintf(stderr
, "qemu: could not open monitor device '%s'\n", monitor_device
);
5861 for(i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
5862 const char *devname
= serial_devices
[i
];
5863 if (devname
&& strcmp(devname
, "none")) {
5865 snprintf(label
, sizeof(label
), "serial%d", i
);
5866 serial_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
5867 if (!serial_hds
[i
]) {
5868 fprintf(stderr
, "qemu: could not open serial device '%s'\n",
5875 for(i
= 0; i
< MAX_PARALLEL_PORTS
; i
++) {
5876 const char *devname
= parallel_devices
[i
];
5877 if (devname
&& strcmp(devname
, "none")) {
5879 snprintf(label
, sizeof(label
), "parallel%d", i
);
5880 parallel_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
5881 if (!parallel_hds
[i
]) {
5882 fprintf(stderr
, "qemu: could not open parallel device '%s'\n",
5889 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++) {
5890 const char *devname
= virtio_consoles
[i
];
5891 if (devname
&& strcmp(devname
, "none")) {
5893 snprintf(label
, sizeof(label
), "virtcon%d", i
);
5894 virtcon_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
5895 if (!virtcon_hds
[i
]) {
5896 fprintf(stderr
, "qemu: could not open virtio console '%s'\n",
5903 module_call_init(MODULE_INIT_DEVICE
);
5905 if (machine
->compat_props
) {
5906 qdev_prop_register_compat(machine
->compat_props
);
5908 machine
->init(ram_size
, boot_devices
,
5909 kernel_filename
, kernel_cmdline
, initrd_filename
, cpu_model
);
5912 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
5913 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5914 if (node_cpumask
[i
] & (1 << env
->cpu_index
)) {
5920 current_machine
= machine
;
5922 /* init USB devices */
5924 foreach_device_config(DEV_USB
, usb_parse
);
5927 /* init generic devices */
5928 if (qemu_opts_foreach(&qemu_device_opts
, device_init_func
, NULL
, 1) != 0)
5932 dumb_display_init();
5933 /* just use the first displaystate for the moment */
5936 if (display_type
== DT_DEFAULT
) {
5937 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5938 display_type
= DT_SDL
;
5940 display_type
= DT_VNC
;
5941 vnc_display
= "localhost:0,to=99";
5947 switch (display_type
) {
5950 #if defined(CONFIG_CURSES)
5952 curses_display_init(ds
, full_screen
);
5955 #if defined(CONFIG_SDL)
5957 sdl_display_init(ds
, full_screen
, no_frame
);
5959 #elif defined(CONFIG_COCOA)
5961 cocoa_display_init(ds
, full_screen
);
5965 vnc_display_init(ds
);
5966 if (vnc_display_open(ds
, vnc_display
) < 0)
5969 if (show_vnc_port
) {
5970 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds
));
5978 dcl
= ds
->listeners
;
5979 while (dcl
!= NULL
) {
5980 if (dcl
->dpy_refresh
!= NULL
) {
5981 ds
->gui_timer
= qemu_new_timer(rt_clock
, gui_update
, ds
);
5982 qemu_mod_timer(ds
->gui_timer
, qemu_get_clock(rt_clock
));
5987 if (display_type
== DT_NOGRAPHIC
|| display_type
== DT_VNC
) {
5988 nographic_timer
= qemu_new_timer(rt_clock
, nographic_update
, NULL
);
5989 qemu_mod_timer(nographic_timer
, qemu_get_clock(rt_clock
));
5992 text_consoles_set_display(display_state
);
5993 qemu_chr_initial_reset();
5995 if (monitor_device
&& monitor_hd
)
5996 monitor_init(monitor_hd
, MONITOR_USE_READLINE
| MONITOR_IS_DEFAULT
);
5998 for(i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
5999 const char *devname
= serial_devices
[i
];
6000 if (devname
&& strcmp(devname
, "none")) {
6001 if (strstart(devname
, "vc", 0))
6002 qemu_chr_printf(serial_hds
[i
], "serial%d console\r\n", i
);
6006 for(i
= 0; i
< MAX_PARALLEL_PORTS
; i
++) {
6007 const char *devname
= parallel_devices
[i
];
6008 if (devname
&& strcmp(devname
, "none")) {
6009 if (strstart(devname
, "vc", 0))
6010 qemu_chr_printf(parallel_hds
[i
], "parallel%d console\r\n", i
);
6014 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++) {
6015 const char *devname
= virtio_consoles
[i
];
6016 if (virtcon_hds
[i
] && devname
) {
6017 if (strstart(devname
, "vc", 0))
6018 qemu_chr_printf(virtcon_hds
[i
], "virtio console%d\r\n", i
);
6022 if (gdbstub_dev
&& gdbserver_start(gdbstub_dev
) < 0) {
6023 fprintf(stderr
, "qemu: could not open gdbserver on device '%s'\n",
6029 do_loadvm(cur_mon
, loadvm
);
6033 qemu_start_incoming_migration(incoming
);
6045 len
= write(fds
[1], &status
, 1);
6046 if (len
== -1 && (errno
== EINTR
))
6053 TFR(fd
= open("/dev/null", O_RDWR
));
6059 pwd
= getpwnam(run_as
);
6061 fprintf(stderr
, "User \"%s\" doesn't exist\n", run_as
);
6067 if (chroot(chroot_dir
) < 0) {
6068 fprintf(stderr
, "chroot failed\n");
6075 if (setgid(pwd
->pw_gid
) < 0) {
6076 fprintf(stderr
, "Failed to setgid(%d)\n", pwd
->pw_gid
);
6079 if (setuid(pwd
->pw_uid
) < 0) {
6080 fprintf(stderr
, "Failed to setuid(%d)\n", pwd
->pw_uid
);
6083 if (setuid(0) != -1) {
6084 fprintf(stderr
, "Dropping privileges failed\n");