QemuOpts: switch over -device.
[qemu.git] / kqemu.c
blob5611bc89467af4819ce94fa8ea937f0ad4c98465
1 /*
2 * KQEMU support
4 * Copyright (c) 2005-2008 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #include <winioctl.h>
23 #else
24 #include <sys/types.h>
25 #include <sys/mman.h>
26 #include <sys/ioctl.h>
27 #endif
28 #ifdef CONFIG_SOLARIS
29 #include <sys/ioccom.h>
30 #endif
31 #include <stdlib.h>
32 #include <stdio.h>
33 #include <stdarg.h>
34 #include <string.h>
35 #include <errno.h>
36 #include <unistd.h>
37 #include <inttypes.h>
39 #include "cpu.h"
40 #include "exec-all.h"
41 #include "qemu-common.h"
43 #ifdef CONFIG_KQEMU
45 #define DEBUG
46 //#define PROFILE
49 #ifdef DEBUG
50 # define LOG_INT(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
51 # define LOG_INT_STATE(env) log_cpu_state_mask(CPU_LOG_INT, (env), 0)
52 #else
53 # define LOG_INT(...) do { } while (0)
54 # define LOG_INT_STATE(env) do { } while (0)
55 #endif
57 #include <unistd.h>
58 #include <fcntl.h>
59 #include "kqemu.h"
61 #ifdef _WIN32
62 #define KQEMU_DEVICE "\\\\.\\kqemu"
63 #else
64 #define KQEMU_DEVICE "/dev/kqemu"
65 #endif
67 static void qpi_init(void);
69 #ifdef _WIN32
70 #define KQEMU_INVALID_FD INVALID_HANDLE_VALUE
71 HANDLE kqemu_fd = KQEMU_INVALID_FD;
72 #define kqemu_closefd(x) CloseHandle(x)
73 #else
74 #define KQEMU_INVALID_FD -1
75 int kqemu_fd = KQEMU_INVALID_FD;
76 #define kqemu_closefd(x) close(x)
77 #endif
79 /* 0 = not allowed
80 1 = user kqemu
81 2 = kernel kqemu
83 int kqemu_allowed = 0;
84 uint64_t *pages_to_flush;
85 unsigned int nb_pages_to_flush;
86 uint64_t *ram_pages_to_update;
87 unsigned int nb_ram_pages_to_update;
88 uint64_t *modified_ram_pages;
89 unsigned int nb_modified_ram_pages;
90 uint8_t *modified_ram_pages_table;
91 int qpi_io_memory;
92 uint32_t kqemu_comm_base; /* physical address of the QPI communication page */
93 ram_addr_t kqemu_phys_ram_size;
94 uint8_t *kqemu_phys_ram_base;
96 #define cpuid(index, eax, ebx, ecx, edx) \
97 asm volatile ("cpuid" \
98 : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) \
99 : "0" (index))
101 #ifdef __x86_64__
102 static int is_cpuid_supported(void)
104 return 1;
106 #else
107 static int is_cpuid_supported(void)
109 int v0, v1;
110 asm volatile ("pushf\n"
111 "popl %0\n"
112 "movl %0, %1\n"
113 "xorl $0x00200000, %0\n"
114 "pushl %0\n"
115 "popf\n"
116 "pushf\n"
117 "popl %0\n"
118 : "=a" (v0), "=d" (v1)
120 : "cc");
121 return (v0 != v1);
123 #endif
125 static void kqemu_update_cpuid(CPUState *env)
127 int critical_features_mask, features, ext_features, ext_features_mask;
128 uint32_t eax, ebx, ecx, edx;
130 /* the following features are kept identical on the host and
131 target cpus because they are important for user code. Strictly
132 speaking, only SSE really matters because the OS must support
133 it if the user code uses it. */
134 critical_features_mask =
135 CPUID_CMOV | CPUID_CX8 |
136 CPUID_FXSR | CPUID_MMX | CPUID_SSE |
137 CPUID_SSE2 | CPUID_SEP;
138 ext_features_mask = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR;
139 if (!is_cpuid_supported()) {
140 features = 0;
141 ext_features = 0;
142 } else {
143 cpuid(1, eax, ebx, ecx, edx);
144 features = edx;
145 ext_features = ecx;
147 #ifdef __x86_64__
148 /* NOTE: on x86_64 CPUs, SYSENTER is not supported in
149 compatibility mode, so in order to have the best performances
150 it is better not to use it */
151 features &= ~CPUID_SEP;
152 #endif
153 env->cpuid_features = (env->cpuid_features & ~critical_features_mask) |
154 (features & critical_features_mask);
155 env->cpuid_ext_features = (env->cpuid_ext_features & ~ext_features_mask) |
156 (ext_features & ext_features_mask);
157 /* XXX: we could update more of the target CPUID state so that the
158 non accelerated code sees exactly the same CPU features as the
159 accelerated code */
162 int kqemu_init(CPUState *env)
164 struct kqemu_init kinit;
165 int ret, version;
166 #ifdef _WIN32
167 DWORD temp;
168 #endif
170 if (!kqemu_allowed)
171 return -1;
173 #ifdef _WIN32
174 kqemu_fd = CreateFile(KQEMU_DEVICE, GENERIC_WRITE | GENERIC_READ,
175 FILE_SHARE_READ | FILE_SHARE_WRITE,
176 NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
177 NULL);
178 if (kqemu_fd == KQEMU_INVALID_FD) {
179 fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %lu\n",
180 KQEMU_DEVICE, GetLastError());
181 return -1;
183 #else
184 kqemu_fd = open(KQEMU_DEVICE, O_RDWR);
185 if (kqemu_fd == KQEMU_INVALID_FD) {
186 fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %s\n",
187 KQEMU_DEVICE, strerror(errno));
188 return -1;
190 #endif
191 version = 0;
192 #ifdef _WIN32
193 DeviceIoControl(kqemu_fd, KQEMU_GET_VERSION, NULL, 0,
194 &version, sizeof(version), &temp, NULL);
195 #else
196 ioctl(kqemu_fd, KQEMU_GET_VERSION, &version);
197 #endif
198 if (version != KQEMU_VERSION) {
199 fprintf(stderr, "Version mismatch between kqemu module and qemu (%08x %08x) - disabling kqemu use\n",
200 version, KQEMU_VERSION);
201 goto fail;
204 pages_to_flush = qemu_vmalloc(KQEMU_MAX_PAGES_TO_FLUSH *
205 sizeof(uint64_t));
206 if (!pages_to_flush)
207 goto fail;
209 ram_pages_to_update = qemu_vmalloc(KQEMU_MAX_RAM_PAGES_TO_UPDATE *
210 sizeof(uint64_t));
211 if (!ram_pages_to_update)
212 goto fail;
214 modified_ram_pages = qemu_vmalloc(KQEMU_MAX_MODIFIED_RAM_PAGES *
215 sizeof(uint64_t));
216 if (!modified_ram_pages)
217 goto fail;
218 modified_ram_pages_table =
219 qemu_mallocz(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
220 if (!modified_ram_pages_table)
221 goto fail;
223 memset(&kinit, 0, sizeof(kinit)); /* set the paddings to zero */
224 kinit.ram_base = kqemu_phys_ram_base;
225 kinit.ram_size = kqemu_phys_ram_size;
226 kinit.ram_dirty = phys_ram_dirty;
227 kinit.pages_to_flush = pages_to_flush;
228 kinit.ram_pages_to_update = ram_pages_to_update;
229 kinit.modified_ram_pages = modified_ram_pages;
230 #ifdef _WIN32
231 ret = DeviceIoControl(kqemu_fd, KQEMU_INIT, &kinit, sizeof(kinit),
232 NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
233 #else
234 ret = ioctl(kqemu_fd, KQEMU_INIT, &kinit);
235 #endif
236 if (ret < 0) {
237 fprintf(stderr, "Error %d while initializing QEMU acceleration layer - disabling it for now\n", ret);
238 fail:
239 kqemu_closefd(kqemu_fd);
240 kqemu_fd = KQEMU_INVALID_FD;
241 return -1;
243 kqemu_update_cpuid(env);
244 env->kqemu_enabled = kqemu_allowed;
245 nb_pages_to_flush = 0;
246 nb_ram_pages_to_update = 0;
248 qpi_init();
249 return 0;
252 void kqemu_flush_page(CPUState *env, target_ulong addr)
254 LOG_INT("kqemu_flush_page: addr=" TARGET_FMT_lx "\n", addr);
255 if (nb_pages_to_flush >= KQEMU_MAX_PAGES_TO_FLUSH)
256 nb_pages_to_flush = KQEMU_FLUSH_ALL;
257 else
258 pages_to_flush[nb_pages_to_flush++] = addr;
261 void kqemu_flush(CPUState *env, int global)
263 LOG_INT("kqemu_flush:\n");
264 nb_pages_to_flush = KQEMU_FLUSH_ALL;
267 void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr)
269 LOG_INT("kqemu_set_notdirty: addr=%08lx\n",
270 (unsigned long)ram_addr);
271 /* we only track transitions to dirty state */
272 if (phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] != 0xff)
273 return;
274 if (nb_ram_pages_to_update >= KQEMU_MAX_RAM_PAGES_TO_UPDATE)
275 nb_ram_pages_to_update = KQEMU_RAM_PAGES_UPDATE_ALL;
276 else
277 ram_pages_to_update[nb_ram_pages_to_update++] = ram_addr;
280 static void kqemu_reset_modified_ram_pages(void)
282 int i;
283 unsigned long page_index;
285 for(i = 0; i < nb_modified_ram_pages; i++) {
286 page_index = modified_ram_pages[i] >> TARGET_PAGE_BITS;
287 modified_ram_pages_table[page_index] = 0;
289 nb_modified_ram_pages = 0;
292 void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr)
294 unsigned long page_index;
295 int ret;
296 #ifdef _WIN32
297 DWORD temp;
298 #endif
300 page_index = ram_addr >> TARGET_PAGE_BITS;
301 if (!modified_ram_pages_table[page_index]) {
302 #if 0
303 printf("%d: modify_page=%08lx\n", nb_modified_ram_pages, ram_addr);
304 #endif
305 modified_ram_pages_table[page_index] = 1;
306 modified_ram_pages[nb_modified_ram_pages++] = ram_addr;
307 if (nb_modified_ram_pages >= KQEMU_MAX_MODIFIED_RAM_PAGES) {
308 /* flush */
309 #ifdef _WIN32
310 ret = DeviceIoControl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
311 &nb_modified_ram_pages,
312 sizeof(nb_modified_ram_pages),
313 NULL, 0, &temp, NULL);
314 #else
315 ret = ioctl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
316 &nb_modified_ram_pages);
317 #endif
318 kqemu_reset_modified_ram_pages();
323 void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size,
324 ram_addr_t phys_offset)
326 struct kqemu_phys_mem kphys_mem1, *kphys_mem = &kphys_mem1;
327 uint64_t end;
328 int ret, io_index;
330 end = (start_addr + size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
331 start_addr &= TARGET_PAGE_MASK;
332 kphys_mem->phys_addr = start_addr;
333 kphys_mem->size = end - start_addr;
334 kphys_mem->ram_addr = phys_offset & TARGET_PAGE_MASK;
335 io_index = phys_offset & ~TARGET_PAGE_MASK;
336 switch(io_index) {
337 case IO_MEM_RAM:
338 kphys_mem->io_index = KQEMU_IO_MEM_RAM;
339 break;
340 case IO_MEM_ROM:
341 kphys_mem->io_index = KQEMU_IO_MEM_ROM;
342 break;
343 default:
344 if (qpi_io_memory == io_index) {
345 kphys_mem->io_index = KQEMU_IO_MEM_COMM;
346 } else {
347 kphys_mem->io_index = KQEMU_IO_MEM_UNASSIGNED;
349 break;
351 #ifdef _WIN32
353 DWORD temp;
354 ret = DeviceIoControl(kqemu_fd, KQEMU_SET_PHYS_MEM,
355 kphys_mem, sizeof(*kphys_mem),
356 NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
358 #else
359 ret = ioctl(kqemu_fd, KQEMU_SET_PHYS_MEM, kphys_mem);
360 #endif
361 if (ret < 0) {
362 fprintf(stderr, "kqemu: KQEMU_SET_PHYS_PAGE error=%d: start_addr=0x%016" PRIx64 " size=0x%08lx phys_offset=0x%08lx\n",
363 ret, start_addr,
364 (unsigned long)size, (unsigned long)phys_offset);
368 struct fpstate {
369 uint16_t fpuc;
370 uint16_t dummy1;
371 uint16_t fpus;
372 uint16_t dummy2;
373 uint16_t fptag;
374 uint16_t dummy3;
376 uint32_t fpip;
377 uint32_t fpcs;
378 uint32_t fpoo;
379 uint32_t fpos;
380 uint8_t fpregs1[8 * 10];
383 struct fpxstate {
384 uint16_t fpuc;
385 uint16_t fpus;
386 uint16_t fptag;
387 uint16_t fop;
388 uint32_t fpuip;
389 uint16_t cs_sel;
390 uint16_t dummy0;
391 uint32_t fpudp;
392 uint16_t ds_sel;
393 uint16_t dummy1;
394 uint32_t mxcsr;
395 uint32_t mxcsr_mask;
396 uint8_t fpregs1[8 * 16];
397 uint8_t xmm_regs[16 * 16];
398 uint8_t dummy2[96];
401 static struct fpxstate fpx1 __attribute__((aligned(16)));
403 static void restore_native_fp_frstor(CPUState *env)
405 int fptag, i, j;
406 struct fpstate fp1, *fp = &fp1;
408 fp->fpuc = env->fpuc;
409 fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
410 fptag = 0;
411 for (i=7; i>=0; i--) {
412 fptag <<= 2;
413 if (env->fptags[i]) {
414 fptag |= 3;
415 } else {
416 /* the FPU automatically computes it */
419 fp->fptag = fptag;
420 j = env->fpstt;
421 for(i = 0;i < 8; i++) {
422 memcpy(&fp->fpregs1[i * 10], &env->fpregs[j].d, 10);
423 j = (j + 1) & 7;
425 asm volatile ("frstor %0" : "=m" (*fp));
428 static void save_native_fp_fsave(CPUState *env)
430 int fptag, i, j;
431 uint16_t fpuc;
432 struct fpstate fp1, *fp = &fp1;
434 asm volatile ("fsave %0" : : "m" (*fp));
435 env->fpuc = fp->fpuc;
436 env->fpstt = (fp->fpus >> 11) & 7;
437 env->fpus = fp->fpus & ~0x3800;
438 fptag = fp->fptag;
439 for(i = 0;i < 8; i++) {
440 env->fptags[i] = ((fptag & 3) == 3);
441 fptag >>= 2;
443 j = env->fpstt;
444 for(i = 0;i < 8; i++) {
445 memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 10], 10);
446 j = (j + 1) & 7;
448 /* we must restore the default rounding state */
449 fpuc = 0x037f | (env->fpuc & (3 << 10));
450 asm volatile("fldcw %0" : : "m" (fpuc));
453 static void restore_native_fp_fxrstor(CPUState *env)
455 struct fpxstate *fp = &fpx1;
456 int i, j, fptag;
458 fp->fpuc = env->fpuc;
459 fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
460 fptag = 0;
461 for(i = 0; i < 8; i++)
462 fptag |= (env->fptags[i] << i);
463 fp->fptag = fptag ^ 0xff;
465 j = env->fpstt;
466 for(i = 0;i < 8; i++) {
467 memcpy(&fp->fpregs1[i * 16], &env->fpregs[j].d, 10);
468 j = (j + 1) & 7;
470 if (env->cpuid_features & CPUID_SSE) {
471 fp->mxcsr = env->mxcsr;
472 /* XXX: check if DAZ is not available */
473 fp->mxcsr_mask = 0xffff;
474 memcpy(fp->xmm_regs, env->xmm_regs, CPU_NB_REGS * 16);
476 asm volatile ("fxrstor %0" : "=m" (*fp));
479 static void save_native_fp_fxsave(CPUState *env)
481 struct fpxstate *fp = &fpx1;
482 int fptag, i, j;
483 uint16_t fpuc;
485 asm volatile ("fxsave %0" : : "m" (*fp));
486 env->fpuc = fp->fpuc;
487 env->fpstt = (fp->fpus >> 11) & 7;
488 env->fpus = fp->fpus & ~0x3800;
489 fptag = fp->fptag ^ 0xff;
490 for(i = 0;i < 8; i++) {
491 env->fptags[i] = (fptag >> i) & 1;
493 j = env->fpstt;
494 for(i = 0;i < 8; i++) {
495 memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 16], 10);
496 j = (j + 1) & 7;
498 if (env->cpuid_features & CPUID_SSE) {
499 env->mxcsr = fp->mxcsr;
500 memcpy(env->xmm_regs, fp->xmm_regs, CPU_NB_REGS * 16);
503 /* we must restore the default rounding state */
504 asm volatile ("fninit");
505 fpuc = 0x037f | (env->fpuc & (3 << 10));
506 asm volatile("fldcw %0" : : "m" (fpuc));
509 static int do_syscall(CPUState *env,
510 struct kqemu_cpu_state *kenv)
512 int selector;
514 selector = (env->star >> 32) & 0xffff;
515 #ifdef TARGET_X86_64
516 if (env->hflags & HF_LMA_MASK) {
517 int code64;
519 env->regs[R_ECX] = kenv->next_eip;
520 env->regs[11] = env->eflags;
522 code64 = env->hflags & HF_CS64_MASK;
524 cpu_x86_set_cpl(env, 0);
525 cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
526 0, 0xffffffff,
527 DESC_G_MASK | DESC_P_MASK |
528 DESC_S_MASK |
529 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
530 cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
531 0, 0xffffffff,
532 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
533 DESC_S_MASK |
534 DESC_W_MASK | DESC_A_MASK);
535 env->eflags &= ~env->fmask;
536 if (code64)
537 env->eip = env->lstar;
538 else
539 env->eip = env->cstar;
540 } else
541 #endif
543 env->regs[R_ECX] = (uint32_t)kenv->next_eip;
545 cpu_x86_set_cpl(env, 0);
546 cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
547 0, 0xffffffff,
548 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
549 DESC_S_MASK |
550 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
551 cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
552 0, 0xffffffff,
553 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
554 DESC_S_MASK |
555 DESC_W_MASK | DESC_A_MASK);
556 env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
557 env->eip = (uint32_t)env->star;
559 return 2;
562 #ifdef CONFIG_PROFILER
564 #define PC_REC_SIZE 1
565 #define PC_REC_HASH_BITS 16
566 #define PC_REC_HASH_SIZE (1 << PC_REC_HASH_BITS)
568 typedef struct PCRecord {
569 unsigned long pc;
570 int64_t count;
571 struct PCRecord *next;
572 } PCRecord;
574 static PCRecord *pc_rec_hash[PC_REC_HASH_SIZE];
575 static int nb_pc_records;
577 static void kqemu_record_pc(unsigned long pc)
579 unsigned long h;
580 PCRecord **pr, *r;
582 h = pc / PC_REC_SIZE;
583 h = h ^ (h >> PC_REC_HASH_BITS);
584 h &= (PC_REC_HASH_SIZE - 1);
585 pr = &pc_rec_hash[h];
586 for(;;) {
587 r = *pr;
588 if (r == NULL)
589 break;
590 if (r->pc == pc) {
591 r->count++;
592 return;
594 pr = &r->next;
596 r = malloc(sizeof(PCRecord));
597 r->count = 1;
598 r->pc = pc;
599 r->next = NULL;
600 *pr = r;
601 nb_pc_records++;
604 static int pc_rec_cmp(const void *p1, const void *p2)
606 PCRecord *r1 = *(PCRecord **)p1;
607 PCRecord *r2 = *(PCRecord **)p2;
608 if (r1->count < r2->count)
609 return 1;
610 else if (r1->count == r2->count)
611 return 0;
612 else
613 return -1;
616 static void kqemu_record_flush(void)
618 PCRecord *r, *r_next;
619 int h;
621 for(h = 0; h < PC_REC_HASH_SIZE; h++) {
622 for(r = pc_rec_hash[h]; r != NULL; r = r_next) {
623 r_next = r->next;
624 free(r);
626 pc_rec_hash[h] = NULL;
628 nb_pc_records = 0;
631 void kqemu_record_dump(void)
633 PCRecord **pr, *r;
634 int i, h;
635 FILE *f;
636 int64_t total, sum;
638 pr = malloc(sizeof(PCRecord *) * nb_pc_records);
639 i = 0;
640 total = 0;
641 for(h = 0; h < PC_REC_HASH_SIZE; h++) {
642 for(r = pc_rec_hash[h]; r != NULL; r = r->next) {
643 pr[i++] = r;
644 total += r->count;
647 qsort(pr, nb_pc_records, sizeof(PCRecord *), pc_rec_cmp);
649 f = fopen("/tmp/kqemu.stats", "w");
650 if (!f) {
651 perror("/tmp/kqemu.stats");
652 exit(1);
654 fprintf(f, "total: %" PRId64 "\n", total);
655 sum = 0;
656 for(i = 0; i < nb_pc_records; i++) {
657 r = pr[i];
658 sum += r->count;
659 fprintf(f, "%08lx: %" PRId64 " %0.2f%% %0.2f%%\n",
660 r->pc,
661 r->count,
662 (double)r->count / (double)total * 100.0,
663 (double)sum / (double)total * 100.0);
665 fclose(f);
666 free(pr);
668 kqemu_record_flush();
670 #endif
672 static inline void kqemu_load_seg(struct kqemu_segment_cache *ksc,
673 const SegmentCache *sc)
675 ksc->selector = sc->selector;
676 ksc->flags = sc->flags;
677 ksc->limit = sc->limit;
678 ksc->base = sc->base;
681 static inline void kqemu_save_seg(SegmentCache *sc,
682 const struct kqemu_segment_cache *ksc)
684 sc->selector = ksc->selector;
685 sc->flags = ksc->flags;
686 sc->limit = ksc->limit;
687 sc->base = ksc->base;
690 int kqemu_cpu_exec(CPUState *env)
692 struct kqemu_cpu_state kcpu_state, *kenv = &kcpu_state;
693 int ret, cpl, i;
694 #ifdef CONFIG_PROFILER
695 int64_t ti;
696 #endif
697 #ifdef _WIN32
698 DWORD temp;
699 #endif
701 #ifdef CONFIG_PROFILER
702 ti = profile_getclock();
703 #endif
704 LOG_INT("kqemu: cpu_exec: enter\n");
705 LOG_INT_STATE(env);
706 for(i = 0; i < CPU_NB_REGS; i++)
707 kenv->regs[i] = env->regs[i];
708 kenv->eip = env->eip;
709 kenv->eflags = env->eflags;
710 for(i = 0; i < 6; i++)
711 kqemu_load_seg(&kenv->segs[i], &env->segs[i]);
712 kqemu_load_seg(&kenv->ldt, &env->ldt);
713 kqemu_load_seg(&kenv->tr, &env->tr);
714 kqemu_load_seg(&kenv->gdt, &env->gdt);
715 kqemu_load_seg(&kenv->idt, &env->idt);
716 kenv->cr0 = env->cr[0];
717 kenv->cr2 = env->cr[2];
718 kenv->cr3 = env->cr[3];
719 kenv->cr4 = env->cr[4];
720 kenv->a20_mask = env->a20_mask;
721 kenv->efer = env->efer;
722 kenv->tsc_offset = 0;
723 kenv->star = env->star;
724 kenv->sysenter_cs = env->sysenter_cs;
725 kenv->sysenter_esp = env->sysenter_esp;
726 kenv->sysenter_eip = env->sysenter_eip;
727 #ifdef TARGET_X86_64
728 kenv->lstar = env->lstar;
729 kenv->cstar = env->cstar;
730 kenv->fmask = env->fmask;
731 kenv->kernelgsbase = env->kernelgsbase;
732 #endif
733 if (env->dr[7] & 0xff) {
734 kenv->dr7 = env->dr[7];
735 kenv->dr0 = env->dr[0];
736 kenv->dr1 = env->dr[1];
737 kenv->dr2 = env->dr[2];
738 kenv->dr3 = env->dr[3];
739 } else {
740 kenv->dr7 = 0;
742 kenv->dr6 = env->dr[6];
743 cpl = (env->hflags & HF_CPL_MASK);
744 kenv->cpl = cpl;
745 kenv->nb_pages_to_flush = nb_pages_to_flush;
746 kenv->user_only = (env->kqemu_enabled == 1);
747 kenv->nb_ram_pages_to_update = nb_ram_pages_to_update;
748 nb_ram_pages_to_update = 0;
749 kenv->nb_modified_ram_pages = nb_modified_ram_pages;
751 kqemu_reset_modified_ram_pages();
753 if (env->cpuid_features & CPUID_FXSR)
754 restore_native_fp_fxrstor(env);
755 else
756 restore_native_fp_frstor(env);
758 #ifdef _WIN32
759 if (DeviceIoControl(kqemu_fd, KQEMU_EXEC,
760 kenv, sizeof(struct kqemu_cpu_state),
761 kenv, sizeof(struct kqemu_cpu_state),
762 &temp, NULL)) {
763 ret = kenv->retval;
764 } else {
765 ret = -1;
767 #else
768 ioctl(kqemu_fd, KQEMU_EXEC, kenv);
769 ret = kenv->retval;
770 #endif
771 if (env->cpuid_features & CPUID_FXSR)
772 save_native_fp_fxsave(env);
773 else
774 save_native_fp_fsave(env);
776 for(i = 0; i < CPU_NB_REGS; i++)
777 env->regs[i] = kenv->regs[i];
778 env->eip = kenv->eip;
779 env->eflags = kenv->eflags;
780 for(i = 0; i < 6; i++)
781 kqemu_save_seg(&env->segs[i], &kenv->segs[i]);
782 cpu_x86_set_cpl(env, kenv->cpl);
783 kqemu_save_seg(&env->ldt, &kenv->ldt);
784 env->cr[0] = kenv->cr0;
785 env->cr[4] = kenv->cr4;
786 env->cr[3] = kenv->cr3;
787 env->cr[2] = kenv->cr2;
788 env->dr[6] = kenv->dr6;
789 #ifdef TARGET_X86_64
790 env->kernelgsbase = kenv->kernelgsbase;
791 #endif
793 /* flush pages as indicated by kqemu */
794 if (kenv->nb_pages_to_flush >= KQEMU_FLUSH_ALL) {
795 tlb_flush(env, 1);
796 } else {
797 for(i = 0; i < kenv->nb_pages_to_flush; i++) {
798 tlb_flush_page(env, pages_to_flush[i]);
801 nb_pages_to_flush = 0;
803 #ifdef CONFIG_PROFILER
804 kqemu_time += profile_getclock() - ti;
805 kqemu_exec_count++;
806 #endif
808 if (kenv->nb_ram_pages_to_update > 0) {
809 cpu_tlb_update_dirty(env);
812 if (kenv->nb_modified_ram_pages > 0) {
813 for(i = 0; i < kenv->nb_modified_ram_pages; i++) {
814 unsigned long addr;
815 addr = modified_ram_pages[i];
816 tb_invalidate_phys_page_range(addr, addr + TARGET_PAGE_SIZE, 0);
820 /* restore the hidden flags */
822 unsigned int new_hflags;
823 #ifdef TARGET_X86_64
824 if ((env->hflags & HF_LMA_MASK) &&
825 (env->segs[R_CS].flags & DESC_L_MASK)) {
826 /* long mode */
827 new_hflags = HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
828 } else
829 #endif
831 /* legacy / compatibility case */
832 new_hflags = (env->segs[R_CS].flags & DESC_B_MASK)
833 >> (DESC_B_SHIFT - HF_CS32_SHIFT);
834 new_hflags |= (env->segs[R_SS].flags & DESC_B_MASK)
835 >> (DESC_B_SHIFT - HF_SS32_SHIFT);
836 if (!(env->cr[0] & CR0_PE_MASK) ||
837 (env->eflags & VM_MASK) ||
838 !(env->hflags & HF_CS32_MASK)) {
839 /* XXX: try to avoid this test. The problem comes from the
840 fact that is real mode or vm86 mode we only modify the
841 'base' and 'selector' fields of the segment cache to go
842 faster. A solution may be to force addseg to one in
843 translate-i386.c. */
844 new_hflags |= HF_ADDSEG_MASK;
845 } else {
846 new_hflags |= ((env->segs[R_DS].base |
847 env->segs[R_ES].base |
848 env->segs[R_SS].base) != 0) <<
849 HF_ADDSEG_SHIFT;
852 env->hflags = (env->hflags &
853 ~(HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)) |
854 new_hflags;
856 /* update FPU flags */
857 env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
858 ((env->cr[0] << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
859 if (env->cr[4] & CR4_OSFXSR_MASK)
860 env->hflags |= HF_OSFXSR_MASK;
861 else
862 env->hflags &= ~HF_OSFXSR_MASK;
864 LOG_INT("kqemu: kqemu_cpu_exec: ret=0x%x\n", ret);
865 if (ret == KQEMU_RET_SYSCALL) {
866 /* syscall instruction */
867 return do_syscall(env, kenv);
868 } else
869 if ((ret & 0xff00) == KQEMU_RET_INT) {
870 env->exception_index = ret & 0xff;
871 env->error_code = 0;
872 env->exception_is_int = 1;
873 env->exception_next_eip = kenv->next_eip;
874 #ifdef CONFIG_PROFILER
875 kqemu_ret_int_count++;
876 #endif
877 LOG_INT("kqemu: interrupt v=%02x:\n", env->exception_index);
878 LOG_INT_STATE(env);
879 return 1;
880 } else if ((ret & 0xff00) == KQEMU_RET_EXCEPTION) {
881 env->exception_index = ret & 0xff;
882 env->error_code = kenv->error_code;
883 env->exception_is_int = 0;
884 env->exception_next_eip = 0;
885 #ifdef CONFIG_PROFILER
886 kqemu_ret_excp_count++;
887 #endif
888 LOG_INT("kqemu: exception v=%02x e=%04x:\n",
889 env->exception_index, env->error_code);
890 LOG_INT_STATE(env);
891 return 1;
892 } else if (ret == KQEMU_RET_INTR) {
893 #ifdef CONFIG_PROFILER
894 kqemu_ret_intr_count++;
895 #endif
896 LOG_INT_STATE(env);
897 return 0;
898 } else if (ret == KQEMU_RET_SOFTMMU) {
899 #ifdef CONFIG_PROFILER
901 unsigned long pc = env->eip + env->segs[R_CS].base;
902 kqemu_record_pc(pc);
904 #endif
905 LOG_INT_STATE(env);
906 return 2;
907 } else {
908 cpu_dump_state(env, stderr, fprintf, 0);
909 fprintf(stderr, "Unsupported return value: 0x%x\n", ret);
910 exit(1);
912 return 0;
915 void kqemu_cpu_interrupt(CPUState *env)
917 #if defined(_WIN32)
918 /* cancelling the I/O request causes KQEMU to finish executing the
919 current block and successfully returning. */
920 CancelIo(kqemu_fd);
921 #endif
925 QEMU paravirtualization interface. The current interface only
926 allows to modify the IF and IOPL flags when running in
927 kqemu.
929 At this point it is not very satisfactory. I leave it for reference
930 as it adds little complexity.
933 #define QPI_COMM_PAGE_PHYS_ADDR 0xff000000
935 static uint32_t qpi_mem_readb(void *opaque, target_phys_addr_t addr)
937 return 0;
940 static uint32_t qpi_mem_readw(void *opaque, target_phys_addr_t addr)
942 return 0;
945 static void qpi_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
949 static void qpi_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
953 static uint32_t qpi_mem_readl(void *opaque, target_phys_addr_t addr)
955 CPUState *env;
957 env = cpu_single_env;
958 if (!env)
959 return 0;
960 return env->eflags & (IF_MASK | IOPL_MASK);
963 /* Note: after writing to this address, the guest code must make sure
964 it is exiting the current TB. pushf/popf can be used for that
965 purpose. */
966 static void qpi_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
968 CPUState *env;
970 env = cpu_single_env;
971 if (!env)
972 return;
973 env->eflags = (env->eflags & ~(IF_MASK | IOPL_MASK)) |
974 (val & (IF_MASK | IOPL_MASK));
977 static CPUReadMemoryFunc *qpi_mem_read[3] = {
978 qpi_mem_readb,
979 qpi_mem_readw,
980 qpi_mem_readl,
983 static CPUWriteMemoryFunc *qpi_mem_write[3] = {
984 qpi_mem_writeb,
985 qpi_mem_writew,
986 qpi_mem_writel,
989 static void qpi_init(void)
991 kqemu_comm_base = 0xff000000 | 1;
992 qpi_io_memory = cpu_register_io_memory(
993 qpi_mem_read,
994 qpi_mem_write, NULL);
995 cpu_register_physical_memory(kqemu_comm_base & ~0xfff,
996 0x1000, qpi_io_memory);
998 #endif