2 * Win32 implementation for mutex/cond/thread functions
4 * Copyright Red Hat, Inc. 2010
7 * Paolo Bonzini <pbonzini@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "qemu-common.h"
14 #include "qemu-thread.h"
19 static void error_exit(int err
, const char *msg
)
23 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM
| FORMAT_MESSAGE_ALLOCATE_BUFFER
,
24 NULL
, err
, 0, (LPTSTR
)&pstr
, 2, NULL
);
25 fprintf(stderr
, "qemu: %s: %s\n", msg
, pstr
);
30 void qemu_mutex_init(QemuMutex
*mutex
)
33 InitializeCriticalSection(&mutex
->lock
);
36 void qemu_mutex_lock(QemuMutex
*mutex
)
38 EnterCriticalSection(&mutex
->lock
);
40 /* Win32 CRITICAL_SECTIONs are recursive. Assert that we're not
43 assert(mutex
->owner
== 0);
44 mutex
->owner
= GetCurrentThreadId();
47 int qemu_mutex_trylock(QemuMutex
*mutex
)
51 owned
= TryEnterCriticalSection(&mutex
->lock
);
53 assert(mutex
->owner
== 0);
54 mutex
->owner
= GetCurrentThreadId();
59 void qemu_mutex_unlock(QemuMutex
*mutex
)
61 assert(mutex
->owner
== GetCurrentThreadId());
63 LeaveCriticalSection(&mutex
->lock
);
66 void qemu_cond_init(QemuCond
*cond
)
68 memset(cond
, 0, sizeof(*cond
));
70 cond
->sema
= CreateSemaphore(NULL
, 0, LONG_MAX
, NULL
);
72 error_exit(GetLastError(), __func__
);
74 cond
->continue_event
= CreateEvent(NULL
, /* security */
75 FALSE
, /* auto-reset */
76 FALSE
, /* not signaled */
78 if (!cond
->continue_event
) {
79 error_exit(GetLastError(), __func__
);
83 void qemu_cond_signal(QemuCond
*cond
)
88 * Signal only when there are waiters. cond->waiters is
89 * incremented by pthread_cond_wait under the external lock,
90 * so we are safe about that.
92 if (cond
->waiters
== 0) {
97 * Waiting threads decrement it outside the external lock, but
98 * only if another thread is executing pthread_cond_broadcast and
99 * has the mutex. So, it also cannot be decremented concurrently
100 * with this particular access.
102 cond
->target
= cond
->waiters
- 1;
103 result
= SignalObjectAndWait(cond
->sema
, cond
->continue_event
,
105 if (result
== WAIT_ABANDONED
|| result
== WAIT_FAILED
) {
106 error_exit(GetLastError(), __func__
);
110 void qemu_cond_broadcast(QemuCond
*cond
)
114 * As in pthread_cond_signal, access to cond->waiters and
115 * cond->target is locked via the external mutex.
117 if (cond
->waiters
== 0) {
122 result
= ReleaseSemaphore(cond
->sema
, cond
->waiters
, NULL
);
124 error_exit(GetLastError(), __func__
);
128 * At this point all waiters continue. Each one takes its
129 * slice of the semaphore. Now it's our turn to wait: Since
130 * the external mutex is held, no thread can leave cond_wait,
131 * yet. For this reason, we can be sure that no thread gets
132 * a chance to eat *more* than one slice. OTOH, it means
133 * that the last waiter must send us a wake-up.
135 WaitForSingleObject(cond
->continue_event
, INFINITE
);
138 void qemu_cond_wait(QemuCond
*cond
, QemuMutex
*mutex
)
141 * This access is protected under the mutex.
146 * Unlock external mutex and wait for signal.
147 * NOTE: we've held mutex locked long enough to increment
148 * waiters count above, so there's no problem with
149 * leaving mutex unlocked before we wait on semaphore.
151 qemu_mutex_unlock(mutex
);
152 WaitForSingleObject(cond
->sema
, INFINITE
);
154 /* Now waiters must rendez-vous with the signaling thread and
155 * let it continue. For cond_broadcast this has heavy contention
156 * and triggers thundering herd. So goes life.
158 * Decrease waiters count. The mutex is not taken, so we have
159 * to do this atomically.
161 * All waiters contend for the mutex at the end of this function
162 * until the signaling thread relinquishes it. To ensure
163 * each waiter consumes exactly one slice of the semaphore,
164 * the signaling thread stops until it is told by the last
165 * waiter that it can go on.
167 if (InterlockedDecrement(&cond
->waiters
) == cond
->target
) {
168 SetEvent(cond
->continue_event
);
171 qemu_mutex_lock(mutex
);
174 struct QemuThreadData
{
176 void *(*start_routine
)(void *);
180 static int qemu_thread_tls_index
= TLS_OUT_OF_INDEXES
;
182 static unsigned __stdcall
win32_start_routine(void *arg
)
184 struct QemuThreadData data
= *(struct QemuThreadData
*) arg
;
185 QemuThread
*thread
= data
.thread
;
188 TlsSetValue(qemu_thread_tls_index
, thread
);
191 * Use DuplicateHandle instead of assigning thread->thread in the
192 * creating thread to avoid races. It's simpler this way than with
195 DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
196 GetCurrentProcess(), &thread
->thread
,
197 0, FALSE
, DUPLICATE_SAME_ACCESS
);
199 qemu_thread_exit(data
.start_routine(data
.arg
));
203 void qemu_thread_exit(void *arg
)
205 QemuThread
*thread
= TlsGetValue(qemu_thread_tls_index
);
207 CloseHandle(thread
->thread
);
208 thread
->thread
= NULL
;
212 static inline void qemu_thread_init(void)
214 if (qemu_thread_tls_index
== TLS_OUT_OF_INDEXES
) {
215 qemu_thread_tls_index
= TlsAlloc();
216 if (qemu_thread_tls_index
== TLS_OUT_OF_INDEXES
) {
217 error_exit(ERROR_NO_SYSTEM_RESOURCES
, __func__
);
223 void qemu_thread_create(QemuThread
*thread
,
224 void *(*start_routine
)(void *),
229 struct QemuThreadData
*data
;
231 data
= qemu_malloc(sizeof *data
);
232 data
->thread
= thread
;
233 data
->start_routine
= start_routine
;
236 hThread
= (HANDLE
) _beginthreadex(NULL
, 0, win32_start_routine
,
239 error_exit(GetLastError(), __func__
);
241 CloseHandle(hThread
);
244 void qemu_thread_get_self(QemuThread
*thread
)
246 if (!thread
->thread
) {
247 /* In the main thread of the process. Initialize the QemuThread
248 pointer in TLS, and use the dummy GetCurrentThread handle as
249 the identifier for qemu_thread_is_self. */
251 TlsSetValue(qemu_thread_tls_index
, thread
);
252 thread
->thread
= GetCurrentThread();
256 int qemu_thread_is_self(QemuThread
*thread
)
258 QemuThread
*this_thread
= TlsGetValue(qemu_thread_tls_index
);
259 return this_thread
->thread
== thread
->thread
;