2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "kvm-consts.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 # define ELF_MACHINE EM_AARCH64
31 # define TARGET_LONG_BITS 32
32 # define ELF_MACHINE EM_ARM
35 #define CPUArchState struct CPUARMState
37 #include "qemu-common.h"
38 #include "exec/cpu-defs.h"
40 #include "fpu/softfloat.h"
42 #define TARGET_HAS_ICE 1
44 #define EXCP_UDEF 1 /* undefined instruction */
45 #define EXCP_SWI 2 /* software interrupt */
46 #define EXCP_PREFETCH_ABORT 3
47 #define EXCP_DATA_ABORT 4
51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
55 #define ARMV7M_EXCP_RESET 1
56 #define ARMV7M_EXCP_NMI 2
57 #define ARMV7M_EXCP_HARD 3
58 #define ARMV7M_EXCP_MEM 4
59 #define ARMV7M_EXCP_BUS 5
60 #define ARMV7M_EXCP_USAGE 6
61 #define ARMV7M_EXCP_SVC 11
62 #define ARMV7M_EXCP_DEBUG 12
63 #define ARMV7M_EXCP_PENDSV 14
64 #define ARMV7M_EXCP_SYSTICK 15
66 /* ARM-specific interrupt pending bits. */
67 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
69 /* Meanings of the ARMCPU object's two inbound GPIO lines */
73 typedef void ARMWriteCPFunc(void *opaque
, int cp_info
,
74 int srcreg
, int operand
, uint32_t value
);
75 typedef uint32_t ARMReadCPFunc(void *opaque
, int cp_info
,
76 int dstreg
, int operand
);
80 #define NB_MMU_MODES 2
82 /* We currently assume float and double are IEEE single and double
83 precision respectively.
84 Doing runtime conversions is tricky because VFP registers may contain
85 integer values (eg. as the result of a FTOSI instruction).
86 s<2n> maps to the least significant half of d<n>
87 s<2n+1> maps to the most significant half of d<n>
90 /* CPU state for each instance of a generic timer (in cp15 c14) */
91 typedef struct ARMGenericTimer
{
92 uint64_t cval
; /* Timer CompareValue register */
93 uint32_t ctl
; /* Timer Control register */
100 /* Scale factor for generic timers, ie number of ns per tick.
101 * This gives a 62.5MHz timer.
103 #define GTIMER_SCALE 16
105 typedef struct CPUARMState
{
106 /* Regs for current mode. */
109 /* 32/64 switch only happens when taking and returning from
110 * exceptions so the overlap semantics are taken care of then
111 * instead of having a complicated union.
113 /* Regs for A64 mode. */
116 /* TODO: pstate doesn't correspond to an architectural register;
117 * it would be better modelled as the underlying fields.
120 uint32_t aarch64
; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
122 /* Frequently accessed CPSR bits are stored separately for efficiency.
123 This contains all the other bits. Use cpsr_{read,write} to access
125 uint32_t uncached_cpsr
;
128 /* Banked registers. */
129 uint32_t banked_spsr
[6];
130 uint32_t banked_r13
[6];
131 uint32_t banked_r14
[6];
133 /* These hold r8-r12. */
134 uint32_t usr_regs
[5];
135 uint32_t fiq_regs
[5];
137 /* cpsr flag cache for faster execution */
138 uint32_t CF
; /* 0 or 1 */
139 uint32_t VF
; /* V is the bit 31. All other bits are undefined */
140 uint32_t NF
; /* N is bit 31. All other bits are undefined. */
141 uint32_t ZF
; /* Z set if zero. */
142 uint32_t QF
; /* 0 or 1 */
143 uint32_t GE
; /* cpsr[19:16] */
144 uint32_t thumb
; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
145 uint32_t condexec_bits
; /* IT bits. cpsr[15:10,26:25]. */
147 /* System control coprocessor (cp15) */
150 uint32_t c0_cssel
; /* Cache size selection. */
151 uint32_t c1_sys
; /* System control register. */
152 uint32_t c1_coproc
; /* Coprocessor access register. */
153 uint32_t c1_xscaleauxcr
; /* XScale auxiliary control register. */
154 uint32_t c1_scr
; /* secure config register. */
155 uint32_t c2_base0
; /* MMU translation table base 0. */
156 uint32_t c2_base0_hi
; /* MMU translation table base 0, high 32 bits */
157 uint32_t c2_base1
; /* MMU translation table base 0. */
158 uint32_t c2_base1_hi
; /* MMU translation table base 1, high 32 bits */
159 uint32_t c2_control
; /* MMU translation table base control. */
160 uint32_t c2_mask
; /* MMU translation table base selection mask. */
161 uint32_t c2_base_mask
; /* MMU translation table base 0 mask. */
162 uint32_t c2_data
; /* MPU data cachable bits. */
163 uint32_t c2_insn
; /* MPU instruction cachable bits. */
164 uint32_t c3
; /* MMU domain access control register
165 MPU write buffer control. */
166 uint32_t c5_insn
; /* Fault status registers. */
168 uint32_t c6_region
[8]; /* MPU base/size registers. */
169 uint32_t c6_insn
; /* Fault address registers. */
171 uint32_t c7_par
; /* Translation result. */
172 uint32_t c7_par_hi
; /* Translation result, high 32 bits */
173 uint32_t c9_insn
; /* Cache lockdown registers. */
175 uint32_t c9_pmcr
; /* performance monitor control register */
176 uint32_t c9_pmcnten
; /* perf monitor counter enables */
177 uint32_t c9_pmovsr
; /* perf monitor overflow status */
178 uint32_t c9_pmxevtyper
; /* perf monitor event type */
179 uint32_t c9_pmuserenr
; /* perf monitor user enable */
180 uint32_t c9_pminten
; /* perf monitor interrupt enables */
181 uint32_t c12_vbar
; /* vector base address register */
182 uint32_t c13_fcse
; /* FCSE PID. */
183 uint32_t c13_context
; /* Context ID. */
184 uint32_t c13_tls1
; /* User RW Thread register. */
185 uint32_t c13_tls2
; /* User RO Thread register. */
186 uint32_t c13_tls3
; /* Privileged Thread register. */
187 uint32_t c14_cntfrq
; /* Counter Frequency register */
188 uint32_t c14_cntkctl
; /* Timer Control register */
189 ARMGenericTimer c14_timer
[NUM_GTIMERS
];
190 uint32_t c15_cpar
; /* XScale Coprocessor Access Register */
191 uint32_t c15_ticonfig
; /* TI925T configuration byte. */
192 uint32_t c15_i_max
; /* Maximum D-cache dirty line index. */
193 uint32_t c15_i_min
; /* Minimum D-cache dirty line index. */
194 uint32_t c15_threadid
; /* TI debugger thread-ID. */
195 uint32_t c15_config_base_address
; /* SCU base address. */
196 uint32_t c15_diagnostic
; /* diagnostic register */
197 uint32_t c15_power_diagnostic
;
198 uint32_t c15_power_control
; /* power control */
201 /* System registers (AArch64) */
213 int pending_exception
;
216 /* Thumb-2 EE state. */
220 /* VFP coprocessor state. */
222 /* VFP/Neon register state. Note that the mapping between S, D and Q
223 * views of the register bank differs between AArch64 and AArch32:
225 * Qn = regs[2n+1]:regs[2n]
227 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
228 * (and regs[32] to regs[63] are inaccessible)
230 * Qn = regs[2n+1]:regs[2n]
232 * Sn = regs[2n] bits 31..0
233 * This corresponds to the architecturally defined mapping between
234 * the two execution states, and means we do not need to explicitly
235 * map these registers when changing states.
240 /* We store these fpcsr fields separately for convenience. */
244 /* scratch space when Tn are not sufficient. */
247 /* fp_status is the "normal" fp status. standard_fp_status retains
248 * values corresponding to the ARM "Standard FPSCR Value", ie
249 * default-NaN, flush-to-zero, round-to-nearest and is used by
250 * any operations (generally Neon) which the architecture defines
251 * as controlled by the standard FPSCR value rather than the FPSCR.
253 * To avoid having to transfer exception bits around, we simply
254 * say that the FPSCR cumulative exception flags are the logical
255 * OR of the flags in the two fp statuses. This relies on the
256 * only thing which needs to read the exception flags being
257 * an explicit FPSCR read.
259 float_status fp_status
;
260 float_status standard_fp_status
;
262 uint32_t exclusive_addr
;
263 uint32_t exclusive_val
;
264 uint32_t exclusive_high
;
265 #if defined(CONFIG_USER_ONLY)
266 uint32_t exclusive_test
;
267 uint32_t exclusive_info
;
270 /* iwMMXt coprocessor state. */
278 /* For mixed endian mode. */
281 #if defined(CONFIG_USER_ONLY)
282 /* For usermode syscall translation. */
288 /* These fields after the common ones so they are preserved on reset. */
290 /* Internal CPU feature flags. */
294 const struct arm_boot_info
*boot_info
;
299 ARMCPU
*cpu_arm_init(const char *cpu_model
);
300 void arm_translate_init(void);
301 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
);
302 int cpu_arm_exec(CPUARMState
*s
);
303 int bank_number(int mode
);
304 void switch_mode(CPUARMState
*, int);
305 uint32_t do_arm_semihosting(CPUARMState
*env
);
307 static inline bool is_a64(CPUARMState
*env
)
312 #define PSTATE_N_SHIFT 3
313 #define PSTATE_N (1 << PSTATE_N_SHIFT)
314 #define PSTATE_Z_SHIFT 2
315 #define PSTATE_Z (1 << PSTATE_Z_SHIFT)
316 #define PSTATE_C_SHIFT 1
317 #define PSTATE_C (1 << PSTATE_C_SHIFT)
318 #define PSTATE_V_SHIFT 0
319 #define PSTATE_V (1 << PSTATE_V_SHIFT)
321 /* you can call this signal handler from your SIGBUS and SIGSEGV
322 signal handlers to inform the virtual CPU of exceptions. non zero
323 is returned if the signal was handled by the virtual CPU. */
324 int cpu_arm_signal_handler(int host_signum
, void *pinfo
,
326 int cpu_arm_handle_mmu_fault (CPUARMState
*env
, target_ulong address
, int rw
,
328 #define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
330 #define CPSR_M (0x1fU)
331 #define CPSR_T (1U << 5)
332 #define CPSR_F (1U << 6)
333 #define CPSR_I (1U << 7)
334 #define CPSR_A (1U << 8)
335 #define CPSR_E (1U << 9)
336 #define CPSR_IT_2_7 (0xfc00U)
337 #define CPSR_GE (0xfU << 16)
338 #define CPSR_RESERVED (0xfU << 20)
339 #define CPSR_J (1U << 24)
340 #define CPSR_IT_0_1 (3U << 25)
341 #define CPSR_Q (1U << 27)
342 #define CPSR_V (1U << 28)
343 #define CPSR_C (1U << 29)
344 #define CPSR_Z (1U << 30)
345 #define CPSR_N (1U << 31)
346 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
348 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
349 #define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
350 /* Bits writable in user mode. */
351 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
352 /* Execution state bits. MRS read as zero, MSR writes ignored. */
353 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
355 /* Return the current CPSR value. */
356 uint32_t cpsr_read(CPUARMState
*env
);
357 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
358 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
);
360 /* Return the current xPSR value. */
361 static inline uint32_t xpsr_read(CPUARMState
*env
)
365 return (env
->NF
& 0x80000000) | (ZF
<< 30)
366 | (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
367 | (env
->thumb
<< 24) | ((env
->condexec_bits
& 3) << 25)
368 | ((env
->condexec_bits
& 0xfc) << 8)
369 | env
->v7m
.exception
;
372 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
373 static inline void xpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
375 if (mask
& CPSR_NZCV
) {
376 env
->ZF
= (~val
) & CPSR_Z
;
378 env
->CF
= (val
>> 29) & 1;
379 env
->VF
= (val
<< 3) & 0x80000000;
382 env
->QF
= ((val
& CPSR_Q
) != 0);
383 if (mask
& (1 << 24))
384 env
->thumb
= ((val
& (1 << 24)) != 0);
385 if (mask
& CPSR_IT_0_1
) {
386 env
->condexec_bits
&= ~3;
387 env
->condexec_bits
|= (val
>> 25) & 3;
389 if (mask
& CPSR_IT_2_7
) {
390 env
->condexec_bits
&= 3;
391 env
->condexec_bits
|= (val
>> 8) & 0xfc;
394 env
->v7m
.exception
= val
& 0x1ff;
398 /* Return the current FPSCR value. */
399 uint32_t vfp_get_fpscr(CPUARMState
*env
);
400 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
);
403 ARM_CPU_MODE_USR
= 0x10,
404 ARM_CPU_MODE_FIQ
= 0x11,
405 ARM_CPU_MODE_IRQ
= 0x12,
406 ARM_CPU_MODE_SVC
= 0x13,
407 ARM_CPU_MODE_ABT
= 0x17,
408 ARM_CPU_MODE_UND
= 0x1b,
409 ARM_CPU_MODE_SYS
= 0x1f
412 /* VFP system registers. */
413 #define ARM_VFP_FPSID 0
414 #define ARM_VFP_FPSCR 1
415 #define ARM_VFP_MVFR1 6
416 #define ARM_VFP_MVFR0 7
417 #define ARM_VFP_FPEXC 8
418 #define ARM_VFP_FPINST 9
419 #define ARM_VFP_FPINST2 10
421 /* iwMMXt coprocessor control registers. */
422 #define ARM_IWMMXT_wCID 0
423 #define ARM_IWMMXT_wCon 1
424 #define ARM_IWMMXT_wCSSF 2
425 #define ARM_IWMMXT_wCASF 3
426 #define ARM_IWMMXT_wCGR0 8
427 #define ARM_IWMMXT_wCGR1 9
428 #define ARM_IWMMXT_wCGR2 10
429 #define ARM_IWMMXT_wCGR3 11
431 /* If adding a feature bit which corresponds to a Linux ELF
432 * HWCAP bit, remember to update the feature-bit-to-hwcap
433 * mapping in linux-user/elfload.c:get_elf_hwcap().
437 ARM_FEATURE_AUXCR
, /* ARM1026 Auxiliary control register. */
438 ARM_FEATURE_XSCALE
, /* Intel XScale extensions. */
439 ARM_FEATURE_IWMMXT
, /* Intel iwMMXt extension. */
444 ARM_FEATURE_MPU
, /* Only has Memory Protection Unit, not full MMU. */
446 ARM_FEATURE_VFP_FP16
,
448 ARM_FEATURE_THUMB_DIV
, /* divide supported in Thumb encoding */
449 ARM_FEATURE_M
, /* Microcontroller profile. */
450 ARM_FEATURE_OMAPCP
, /* OMAP specific CP15 ops handling. */
451 ARM_FEATURE_THUMB2EE
,
452 ARM_FEATURE_V7MP
, /* v7 Multiprocessing Extensions */
455 ARM_FEATURE_STRONGARM
,
456 ARM_FEATURE_VAPA
, /* cp15 VA to PA lookups */
457 ARM_FEATURE_ARM_DIV
, /* divide supported in ARM encoding */
458 ARM_FEATURE_VFP4
, /* VFPv4 (implies that NEON is v2) */
459 ARM_FEATURE_GENERIC_TIMER
,
460 ARM_FEATURE_MVFR
, /* Media and VFP Feature Registers 0 and 1 */
461 ARM_FEATURE_DUMMY_C15_REGS
, /* RAZ/WI all of cp15 crn=15 */
462 ARM_FEATURE_CACHE_TEST_CLEAN
, /* 926/1026 style test-and-clean ops */
463 ARM_FEATURE_CACHE_DIRTY_REG
, /* 1136/1176 cache dirty status register */
464 ARM_FEATURE_CACHE_BLOCK_OPS
, /* v6 optional cache block operations */
465 ARM_FEATURE_MPIDR
, /* has cp15 MPIDR */
466 ARM_FEATURE_PXN
, /* has Privileged Execute Never bit */
467 ARM_FEATURE_LPAE
, /* has Large Physical Address Extension */
469 ARM_FEATURE_AARCH64
, /* supports 64 bit mode */
470 ARM_FEATURE_V8_AES
, /* implements AES part of v8 Crypto Extensions */
471 ARM_FEATURE_CBAR
, /* has cp15 CBAR */
474 static inline int arm_feature(CPUARMState
*env
, int feature
)
476 return (env
->features
& (1ULL << feature
)) != 0;
479 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
);
481 /* Interface between CPU and Interrupt controller. */
482 void armv7m_nvic_set_pending(void *opaque
, int irq
);
483 int armv7m_nvic_acknowledge_irq(void *opaque
);
484 void armv7m_nvic_complete_irq(void *opaque
, int irq
);
486 /* Interface for defining coprocessor registers.
487 * Registers are defined in tables of arm_cp_reginfo structs
488 * which are passed to define_arm_cp_regs().
491 /* When looking up a coprocessor register we look for it
492 * via an integer which encodes all of:
494 * Crn, Crm, opc1, opc2 fields
495 * 32 or 64 bit register (ie is it accessed via MRC/MCR
497 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
498 * (In this case crn and opc2 should be zero.)
500 #define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
501 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
502 ((crm) << 7) | ((opc1) << 3) | (opc2))
504 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
505 * version used as a key for the coprocessor register hashtable
507 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid
)
509 uint32_t cpregid
= kvmid
;
510 if ((kvmid
& CP_REG_SIZE_MASK
) == CP_REG_SIZE_U64
) {
511 cpregid
|= (1 << 15);
516 /* Convert a truncated 32 bit hashtable key into the full
517 * 64 bit KVM register ID.
519 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid
)
521 uint64_t kvmid
= cpregid
& ~(1 << 15);
522 if (cpregid
& (1 << 15)) {
523 kvmid
|= CP_REG_SIZE_U64
| CP_REG_ARM
;
525 kvmid
|= CP_REG_SIZE_U32
| CP_REG_ARM
;
530 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
531 * special-behaviour cp reg and bits [15..8] indicate what behaviour
532 * it has. Otherwise it is a simple cp reg, where CONST indicates that
533 * TCG can assume the value to be constant (ie load at translate time)
534 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
535 * indicates that the TB should not be ended after a write to this register
536 * (the default is that the TB ends after cp writes). OVERRIDE permits
537 * a register definition to override a previous definition for the
538 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
539 * old must have the OVERRIDE bit set.
540 * NO_MIGRATE indicates that this register should be ignored for migration;
541 * (eg because any state is accessed via some other coprocessor register).
542 * IO indicates that this register does I/O and therefore its accesses
543 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
544 * registers which implement clocks or timers require this.
546 #define ARM_CP_SPECIAL 1
547 #define ARM_CP_CONST 2
548 #define ARM_CP_64BIT 4
549 #define ARM_CP_SUPPRESS_TB_END 8
550 #define ARM_CP_OVERRIDE 16
551 #define ARM_CP_NO_MIGRATE 32
553 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
554 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
555 #define ARM_LAST_SPECIAL ARM_CP_WFI
556 /* Used only as a terminator for ARMCPRegInfo lists */
557 #define ARM_CP_SENTINEL 0xffff
558 /* Mask of only the flag bits in a type field */
559 #define ARM_CP_FLAG_MASK 0x7f
561 /* Return true if cptype is a valid type field. This is used to try to
562 * catch errors where the sentinel has been accidentally left off the end
563 * of a list of registers.
565 static inline bool cptype_valid(int cptype
)
567 return ((cptype
& ~ARM_CP_FLAG_MASK
) == 0)
568 || ((cptype
& ARM_CP_SPECIAL
) &&
569 ((cptype
& ~ARM_CP_FLAG_MASK
) <= ARM_LAST_SPECIAL
));
573 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
574 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
575 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
576 * (ie any of the privileged modes in Secure state, or Monitor mode).
577 * If a register is accessible in one privilege level it's always accessible
578 * in higher privilege levels too. Since "Secure PL1" also follows this rule
579 * (ie anything visible in PL2 is visible in S-PL1, some things are only
580 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
581 * terminology a little and call this PL3.
583 * If access permissions for a register are more complex than can be
584 * described with these bits, then use a laxer set of restrictions, and
585 * do the more restrictive/complex check inside a helper function.
589 #define PL2_R (0x20 | PL3_R)
590 #define PL2_W (0x10 | PL3_W)
591 #define PL1_R (0x08 | PL2_R)
592 #define PL1_W (0x04 | PL2_W)
593 #define PL0_R (0x02 | PL1_R)
594 #define PL0_W (0x01 | PL1_W)
596 #define PL3_RW (PL3_R | PL3_W)
597 #define PL2_RW (PL2_R | PL2_W)
598 #define PL1_RW (PL1_R | PL1_W)
599 #define PL0_RW (PL0_R | PL0_W)
601 static inline int arm_current_pl(CPUARMState
*env
)
603 if ((env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_USR
) {
606 /* We don't currently implement the Virtualization or TrustZone
607 * extensions, so PL2 and PL3 don't exist for us.
612 typedef struct ARMCPRegInfo ARMCPRegInfo
;
614 /* Access functions for coprocessor registers. These should return
615 * 0 on success, or one of the EXCP_* constants if access should cause
616 * an exception (in which case *value is not written).
618 typedef int CPReadFn(CPUARMState
*env
, const ARMCPRegInfo
*opaque
,
620 typedef int CPWriteFn(CPUARMState
*env
, const ARMCPRegInfo
*opaque
,
622 /* Hook function for register reset */
623 typedef void CPResetFn(CPUARMState
*env
, const ARMCPRegInfo
*opaque
);
627 /* Definition of an ARM coprocessor register */
628 struct ARMCPRegInfo
{
629 /* Name of register (useful mainly for debugging, need not be unique) */
631 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
632 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
633 * 'wildcard' field -- any value of that field in the MRC/MCR insn
634 * will be decoded to this register. The register read and write
635 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
636 * used by the program, so it is possible to register a wildcard and
637 * then behave differently on read/write if necessary.
638 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
646 /* Register type: ARM_CP_* bits/values */
648 /* Access rights: PL*_[RW] */
650 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
651 * this register was defined: can be used to hand data through to the
652 * register read/write functions, since they are passed the ARMCPRegInfo*.
655 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
656 * fieldoffset is non-zero, the reset value of the register.
659 /* Offset of the field in CPUARMState for this register. This is not
661 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
662 * 2. both readfn and writefn are specified
664 ptrdiff_t fieldoffset
; /* offsetof(CPUARMState, field) */
665 /* Function for handling reads of this register. If NULL, then reads
666 * will be done by loading from the offset into CPUARMState specified
670 /* Function for handling writes of this register. If NULL, then writes
671 * will be done by writing to the offset into CPUARMState specified
675 /* Function for doing a "raw" read; used when we need to copy
676 * coprocessor state to the kernel for KVM or out for
677 * migration. This only needs to be provided if there is also a
678 * readfn and it makes an access permission check.
680 CPReadFn
*raw_readfn
;
681 /* Function for doing a "raw" write; used when we need to copy KVM
682 * kernel coprocessor state into userspace, or for inbound
683 * migration. This only needs to be provided if there is also a
684 * writefn and it makes an access permission check or masks out
685 * "unwritable" bits or has write-one-to-clear or similar behaviour.
687 CPWriteFn
*raw_writefn
;
688 /* Function for resetting the register. If NULL, then reset will be done
689 * by writing resetvalue to the field specified in fieldoffset. If
690 * fieldoffset is 0 then no reset will be done.
695 /* Macros which are lvalues for the field in CPUARMState for the
698 #define CPREG_FIELD32(env, ri) \
699 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
700 #define CPREG_FIELD64(env, ri) \
701 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
703 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
705 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
706 const ARMCPRegInfo
*regs
, void *opaque
);
707 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
708 const ARMCPRegInfo
*regs
, void *opaque
);
709 static inline void define_arm_cp_regs(ARMCPU
*cpu
, const ARMCPRegInfo
*regs
)
711 define_arm_cp_regs_with_opaque(cpu
, regs
, 0);
713 static inline void define_one_arm_cp_reg(ARMCPU
*cpu
, const ARMCPRegInfo
*regs
)
715 define_one_arm_cp_reg_with_opaque(cpu
, regs
, 0);
717 const ARMCPRegInfo
*get_arm_cp_reginfo(ARMCPU
*cpu
, uint32_t encoded_cp
);
719 /* CPWriteFn that can be used to implement writes-ignored behaviour */
720 int arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
722 /* CPReadFn that can be used for read-as-zero behaviour */
723 int arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t *value
);
725 static inline bool cp_access_ok(CPUARMState
*env
,
726 const ARMCPRegInfo
*ri
, int isread
)
728 return (ri
->access
>> ((arm_current_pl(env
) * 2) + isread
)) & 1;
732 * write_list_to_cpustate
735 * For each register listed in the ARMCPU cpreg_indexes list, write
736 * its value from the cpreg_values list into the ARMCPUState structure.
737 * This updates TCG's working data structures from KVM data or
738 * from incoming migration state.
740 * Returns: true if all register values were updated correctly,
741 * false if some register was unknown or could not be written.
742 * Note that we do not stop early on failure -- we will attempt
743 * writing all registers in the list.
745 bool write_list_to_cpustate(ARMCPU
*cpu
);
748 * write_cpustate_to_list:
751 * For each register listed in the ARMCPU cpreg_indexes list, write
752 * its value from the ARMCPUState structure into the cpreg_values list.
753 * This is used to copy info from TCG's working data structures into
754 * KVM or for outbound migration.
756 * Returns: true if all register values were read correctly,
757 * false if some register was unknown or could not be read.
758 * Note that we do not stop early on failure -- we will attempt
759 * reading all registers in the list.
761 bool write_cpustate_to_list(ARMCPU
*cpu
);
763 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
764 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
765 conventional cores (ie. Application or Realtime profile). */
767 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
769 #define ARM_CPUID_TI915T 0x54029152
770 #define ARM_CPUID_TI925T 0x54029252
772 #if defined(CONFIG_USER_ONLY)
773 #define TARGET_PAGE_BITS 12
775 /* The ARM MMU allows 1k pages. */
776 /* ??? Linux doesn't actually use these, and they're deprecated in recent
777 architecture revisions. Maybe a configure option to disable them. */
778 #define TARGET_PAGE_BITS 10
781 #if defined(TARGET_AARCH64)
782 # define TARGET_PHYS_ADDR_SPACE_BITS 48
783 # define TARGET_VIRT_ADDR_SPACE_BITS 64
785 # define TARGET_PHYS_ADDR_SPACE_BITS 40
786 # define TARGET_VIRT_ADDR_SPACE_BITS 32
789 static inline CPUARMState
*cpu_init(const char *cpu_model
)
791 ARMCPU
*cpu
= cpu_arm_init(cpu_model
);
798 #define cpu_exec cpu_arm_exec
799 #define cpu_gen_code cpu_arm_gen_code
800 #define cpu_signal_handler cpu_arm_signal_handler
801 #define cpu_list arm_cpu_list
803 /* MMU modes definitions */
804 #define MMU_MODE0_SUFFIX _kernel
805 #define MMU_MODE1_SUFFIX _user
806 #define MMU_USER_IDX 1
807 static inline int cpu_mmu_index (CPUARMState
*env
)
809 return (env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
? 1 : 0;
812 #include "exec/cpu-all.h"
814 /* Bit usage in the TB flags field: bit 31 indicates whether we are
815 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
817 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
818 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
820 /* Bit usage when in AArch32 state: */
821 #define ARM_TBFLAG_THUMB_SHIFT 0
822 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
823 #define ARM_TBFLAG_VECLEN_SHIFT 1
824 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
825 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
826 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
827 #define ARM_TBFLAG_PRIV_SHIFT 6
828 #define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
829 #define ARM_TBFLAG_VFPEN_SHIFT 7
830 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
831 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
832 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
833 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
834 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
836 /* Bit usage when in AArch64 state: currently no bits defined */
838 /* some convenience accessor macros */
839 #define ARM_TBFLAG_AARCH64_STATE(F) \
840 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
841 #define ARM_TBFLAG_THUMB(F) \
842 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
843 #define ARM_TBFLAG_VECLEN(F) \
844 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
845 #define ARM_TBFLAG_VECSTRIDE(F) \
846 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
847 #define ARM_TBFLAG_PRIV(F) \
848 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
849 #define ARM_TBFLAG_VFPEN(F) \
850 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
851 #define ARM_TBFLAG_CONDEXEC(F) \
852 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
853 #define ARM_TBFLAG_BSWAP_CODE(F) \
854 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
856 static inline void cpu_get_tb_cpu_state(CPUARMState
*env
, target_ulong
*pc
,
857 target_ulong
*cs_base
, int *flags
)
861 *flags
= ARM_TBFLAG_AARCH64_STATE_MASK
;
865 *flags
= (env
->thumb
<< ARM_TBFLAG_THUMB_SHIFT
)
866 | (env
->vfp
.vec_len
<< ARM_TBFLAG_VECLEN_SHIFT
)
867 | (env
->vfp
.vec_stride
<< ARM_TBFLAG_VECSTRIDE_SHIFT
)
868 | (env
->condexec_bits
<< ARM_TBFLAG_CONDEXEC_SHIFT
)
869 | (env
->bswap_code
<< ARM_TBFLAG_BSWAP_CODE_SHIFT
);
870 if (arm_feature(env
, ARM_FEATURE_M
)) {
871 privmode
= !((env
->v7m
.exception
== 0) && (env
->v7m
.control
& 1));
873 privmode
= (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
;
876 *flags
|= ARM_TBFLAG_PRIV_MASK
;
878 if (env
->vfp
.xregs
[ARM_VFP_FPEXC
] & (1 << 30)) {
879 *flags
|= ARM_TBFLAG_VFPEN_MASK
;
886 static inline bool cpu_has_work(CPUState
*cpu
)
888 return cpu
->interrupt_request
&
889 (CPU_INTERRUPT_FIQ
| CPU_INTERRUPT_HARD
| CPU_INTERRUPT_EXITTB
);
892 #include "exec/exec-all.h"
894 static inline void cpu_pc_from_tb(CPUARMState
*env
, TranslationBlock
*tb
)
896 if (ARM_TBFLAG_AARCH64_STATE(tb
->flags
)) {
899 env
->regs
[15] = tb
->pc
;
903 /* Load an instruction and return it in the standard little-endian order */
904 static inline uint32_t arm_ldl_code(CPUARMState
*env
, target_ulong addr
,
907 uint32_t insn
= cpu_ldl_code(env
, addr
);
909 return bswap32(insn
);
914 /* Ditto, for a halfword (Thumb) instruction */
915 static inline uint16_t arm_lduw_code(CPUARMState
*env
, target_ulong addr
,
918 uint16_t insn
= cpu_lduw_code(env
, addr
);
920 return bswap16(insn
);