2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
35 #include "qemu-timer.h"
36 #if defined(CONFIG_USER_ONLY)
38 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
39 #include <sys/param.h>
40 #if __FreeBSD_version >= 700104
41 #define HAVE_KINFO_GETVMMAP
42 #define sigqueue sigqueue_freebsd /* avoid redefinition */
45 #include <machine/profile.h>
53 #else /* !CONFIG_USER_ONLY */
54 #include "xen-mapcache.h"
58 //#define DEBUG_TB_INVALIDATE
61 //#define DEBUG_UNASSIGNED
63 /* make various TB consistency checks */
64 //#define DEBUG_TB_CHECK
65 //#define DEBUG_TLB_CHECK
67 //#define DEBUG_IOPORT
68 //#define DEBUG_SUBPAGE
70 #if !defined(CONFIG_USER_ONLY)
71 /* TB consistency checks only implemented for usermode emulation. */
75 #define SMC_BITMAP_USE_THRESHOLD 10
77 static TranslationBlock
*tbs
;
78 static int code_gen_max_blocks
;
79 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
81 /* any access to the tbs or the page table must use this lock */
82 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
84 #if defined(__arm__) || defined(__sparc_v9__)
85 /* The prologue must be reachable with a direct jump. ARM and Sparc64
86 have limited branch ranges (possibly also PPC) so place it in a
87 section close to code segment. */
88 #define code_gen_section \
89 __attribute__((__section__(".gen_code"))) \
90 __attribute__((aligned (32)))
92 /* Maximum alignment for Win32 is 16. */
93 #define code_gen_section \
94 __attribute__((aligned (16)))
96 #define code_gen_section \
97 __attribute__((aligned (32)))
100 uint8_t code_gen_prologue
[1024] code_gen_section
;
101 static uint8_t *code_gen_buffer
;
102 static unsigned long code_gen_buffer_size
;
103 /* threshold to flush the translated code buffer */
104 static unsigned long code_gen_buffer_max_size
;
105 static uint8_t *code_gen_ptr
;
107 #if !defined(CONFIG_USER_ONLY)
109 static int in_migration
;
111 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
) };
115 /* current CPU in the current thread. It is only valid inside
117 CPUState
*cpu_single_env
;
118 /* 0 = Do not count executed instructions.
119 1 = Precise instruction counting.
120 2 = Adaptive rate instruction counting. */
122 /* Current instruction counter. While executing translated code this may
123 include some instructions that have not yet been executed. */
126 typedef struct PageDesc
{
127 /* list of TBs intersecting this ram page */
128 TranslationBlock
*first_tb
;
129 /* in order to optimize self modifying code, we count the number
130 of lookups we do to a given page to use a bitmap */
131 unsigned int code_write_count
;
132 uint8_t *code_bitmap
;
133 #if defined(CONFIG_USER_ONLY)
138 /* In system mode we want L1_MAP to be based on ram offsets,
139 while in user mode we want it to be based on virtual addresses. */
140 #if !defined(CONFIG_USER_ONLY)
141 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
142 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
144 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
147 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
150 /* Size of the L2 (and L3, etc) page tables. */
152 #define L2_SIZE (1 << L2_BITS)
154 /* The bits remaining after N lower levels of page tables. */
155 #define P_L1_BITS_REM \
156 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
157 #define V_L1_BITS_REM \
158 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
160 /* Size of the L1 page table. Avoid silly small sizes. */
161 #if P_L1_BITS_REM < 4
162 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
164 #define P_L1_BITS P_L1_BITS_REM
167 #if V_L1_BITS_REM < 4
168 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
170 #define V_L1_BITS V_L1_BITS_REM
173 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
174 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
176 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
177 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
179 unsigned long qemu_real_host_page_size
;
180 unsigned long qemu_host_page_bits
;
181 unsigned long qemu_host_page_size
;
182 unsigned long qemu_host_page_mask
;
184 /* This is a multi-level map on the virtual address space.
185 The bottom level has pointers to PageDesc. */
186 static void *l1_map
[V_L1_SIZE
];
188 #if !defined(CONFIG_USER_ONLY)
189 typedef struct PhysPageDesc
{
190 /* offset in host memory of the page + io_index in the low bits */
191 ram_addr_t phys_offset
;
192 ram_addr_t region_offset
;
195 /* This is a multi-level map on the physical address space.
196 The bottom level has pointers to PhysPageDesc. */
197 static void *l1_phys_map
[P_L1_SIZE
];
199 static void io_mem_init(void);
201 /* io memory support */
202 CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
203 CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
204 void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
205 static char io_mem_used
[IO_MEM_NB_ENTRIES
];
206 static int io_mem_watch
;
211 static const char *logfilename
= "qemu.log";
213 static const char *logfilename
= "/tmp/qemu.log";
217 static int log_append
= 0;
220 #if !defined(CONFIG_USER_ONLY)
221 static int tlb_flush_count
;
223 static int tb_flush_count
;
224 static int tb_phys_invalidate_count
;
227 static void map_exec(void *addr
, long size
)
230 VirtualProtect(addr
, size
,
231 PAGE_EXECUTE_READWRITE
, &old_protect
);
235 static void map_exec(void *addr
, long size
)
237 unsigned long start
, end
, page_size
;
239 page_size
= getpagesize();
240 start
= (unsigned long)addr
;
241 start
&= ~(page_size
- 1);
243 end
= (unsigned long)addr
+ size
;
244 end
+= page_size
- 1;
245 end
&= ~(page_size
- 1);
247 mprotect((void *)start
, end
- start
,
248 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
252 static void page_init(void)
254 /* NOTE: we can always suppose that qemu_host_page_size >=
258 SYSTEM_INFO system_info
;
260 GetSystemInfo(&system_info
);
261 qemu_real_host_page_size
= system_info
.dwPageSize
;
264 qemu_real_host_page_size
= getpagesize();
266 if (qemu_host_page_size
== 0)
267 qemu_host_page_size
= qemu_real_host_page_size
;
268 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
269 qemu_host_page_size
= TARGET_PAGE_SIZE
;
270 qemu_host_page_bits
= 0;
271 while ((1 << qemu_host_page_bits
) < qemu_host_page_size
)
272 qemu_host_page_bits
++;
273 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
275 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
277 #ifdef HAVE_KINFO_GETVMMAP
278 struct kinfo_vmentry
*freep
;
281 freep
= kinfo_getvmmap(getpid(), &cnt
);
284 for (i
= 0; i
< cnt
; i
++) {
285 unsigned long startaddr
, endaddr
;
287 startaddr
= freep
[i
].kve_start
;
288 endaddr
= freep
[i
].kve_end
;
289 if (h2g_valid(startaddr
)) {
290 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
292 if (h2g_valid(endaddr
)) {
293 endaddr
= h2g(endaddr
);
294 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
296 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
298 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
309 last_brk
= (unsigned long)sbrk(0);
311 f
= fopen("/compat/linux/proc/self/maps", "r");
316 unsigned long startaddr
, endaddr
;
319 n
= fscanf (f
, "%lx-%lx %*[^\n]\n", &startaddr
, &endaddr
);
321 if (n
== 2 && h2g_valid(startaddr
)) {
322 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
324 if (h2g_valid(endaddr
)) {
325 endaddr
= h2g(endaddr
);
329 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
341 static PageDesc
*page_find_alloc(tb_page_addr_t index
, int alloc
)
347 #if defined(CONFIG_USER_ONLY)
348 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
349 # define ALLOC(P, SIZE) \
351 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
352 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
355 # define ALLOC(P, SIZE) \
356 do { P = qemu_mallocz(SIZE); } while (0)
359 /* Level 1. Always allocated. */
360 lp
= l1_map
+ ((index
>> V_L1_SHIFT
) & (V_L1_SIZE
- 1));
363 for (i
= V_L1_SHIFT
/ L2_BITS
- 1; i
> 0; i
--) {
370 ALLOC(p
, sizeof(void *) * L2_SIZE
);
374 lp
= p
+ ((index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1));
382 ALLOC(pd
, sizeof(PageDesc
) * L2_SIZE
);
388 return pd
+ (index
& (L2_SIZE
- 1));
391 static inline PageDesc
*page_find(tb_page_addr_t index
)
393 return page_find_alloc(index
, 0);
396 #if !defined(CONFIG_USER_ONLY)
397 static PhysPageDesc
*phys_page_find_alloc(target_phys_addr_t index
, int alloc
)
403 /* Level 1. Always allocated. */
404 lp
= l1_phys_map
+ ((index
>> P_L1_SHIFT
) & (P_L1_SIZE
- 1));
407 for (i
= P_L1_SHIFT
/ L2_BITS
- 1; i
> 0; i
--) {
413 *lp
= p
= qemu_mallocz(sizeof(void *) * L2_SIZE
);
415 lp
= p
+ ((index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1));
426 *lp
= pd
= qemu_malloc(sizeof(PhysPageDesc
) * L2_SIZE
);
428 for (i
= 0; i
< L2_SIZE
; i
++) {
429 pd
[i
].phys_offset
= IO_MEM_UNASSIGNED
;
430 pd
[i
].region_offset
= (index
+ i
) << TARGET_PAGE_BITS
;
434 return pd
+ (index
& (L2_SIZE
- 1));
437 static inline PhysPageDesc
*phys_page_find(target_phys_addr_t index
)
439 return phys_page_find_alloc(index
, 0);
442 static void tlb_protect_code(ram_addr_t ram_addr
);
443 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
445 #define mmap_lock() do { } while(0)
446 #define mmap_unlock() do { } while(0)
449 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
451 #if defined(CONFIG_USER_ONLY)
452 /* Currently it is not recommended to allocate big chunks of data in
453 user mode. It will change when a dedicated libc will be used */
454 #define USE_STATIC_CODE_GEN_BUFFER
457 #ifdef USE_STATIC_CODE_GEN_BUFFER
458 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
]
459 __attribute__((aligned (CODE_GEN_ALIGN
)));
462 static void code_gen_alloc(unsigned long tb_size
)
464 #ifdef USE_STATIC_CODE_GEN_BUFFER
465 code_gen_buffer
= static_code_gen_buffer
;
466 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
467 map_exec(code_gen_buffer
, code_gen_buffer_size
);
469 code_gen_buffer_size
= tb_size
;
470 if (code_gen_buffer_size
== 0) {
471 #if defined(CONFIG_USER_ONLY)
472 /* in user mode, phys_ram_size is not meaningful */
473 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
475 /* XXX: needs adjustments */
476 code_gen_buffer_size
= (unsigned long)(ram_size
/ 4);
479 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
480 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
481 /* The code gen buffer location may have constraints depending on
482 the host cpu and OS */
483 #if defined(__linux__)
488 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
489 #if defined(__x86_64__)
491 /* Cannot map more than that */
492 if (code_gen_buffer_size
> (800 * 1024 * 1024))
493 code_gen_buffer_size
= (800 * 1024 * 1024);
494 #elif defined(__sparc_v9__)
495 // Map the buffer below 2G, so we can use direct calls and branches
497 start
= (void *) 0x60000000UL
;
498 if (code_gen_buffer_size
> (512 * 1024 * 1024))
499 code_gen_buffer_size
= (512 * 1024 * 1024);
500 #elif defined(__arm__)
501 /* Map the buffer below 32M, so we can use direct calls and branches */
503 start
= (void *) 0x01000000UL
;
504 if (code_gen_buffer_size
> 16 * 1024 * 1024)
505 code_gen_buffer_size
= 16 * 1024 * 1024;
506 #elif defined(__s390x__)
507 /* Map the buffer so that we can use direct calls and branches. */
508 /* We have a +- 4GB range on the branches; leave some slop. */
509 if (code_gen_buffer_size
> (3ul * 1024 * 1024 * 1024)) {
510 code_gen_buffer_size
= 3ul * 1024 * 1024 * 1024;
512 start
= (void *)0x90000000UL
;
514 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
515 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
517 if (code_gen_buffer
== MAP_FAILED
) {
518 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
522 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
523 || defined(__DragonFly__) || defined(__OpenBSD__)
527 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
528 #if defined(__x86_64__)
529 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
530 * 0x40000000 is free */
532 addr
= (void *)0x40000000;
533 /* Cannot map more than that */
534 if (code_gen_buffer_size
> (800 * 1024 * 1024))
535 code_gen_buffer_size
= (800 * 1024 * 1024);
536 #elif defined(__sparc_v9__)
537 // Map the buffer below 2G, so we can use direct calls and branches
539 addr
= (void *) 0x60000000UL
;
540 if (code_gen_buffer_size
> (512 * 1024 * 1024)) {
541 code_gen_buffer_size
= (512 * 1024 * 1024);
544 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
545 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
547 if (code_gen_buffer
== MAP_FAILED
) {
548 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
553 code_gen_buffer
= qemu_malloc(code_gen_buffer_size
);
554 map_exec(code_gen_buffer
, code_gen_buffer_size
);
556 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
557 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
558 code_gen_buffer_max_size
= code_gen_buffer_size
-
559 (TCG_MAX_OP_SIZE
* OPC_MAX_SIZE
);
560 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
561 tbs
= qemu_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
564 /* Must be called before using the QEMU cpus. 'tb_size' is the size
565 (in bytes) allocated to the translation buffer. Zero means default
567 void cpu_exec_init_all(unsigned long tb_size
)
570 code_gen_alloc(tb_size
);
571 code_gen_ptr
= code_gen_buffer
;
573 #if !defined(CONFIG_USER_ONLY)
576 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
577 /* There's no guest base to take into account, so go ahead and
578 initialize the prologue now. */
579 tcg_prologue_init(&tcg_ctx
);
583 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
585 static int cpu_common_post_load(void *opaque
, int version_id
)
587 CPUState
*env
= opaque
;
589 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
590 version_id is increased. */
591 env
->interrupt_request
&= ~0x01;
597 static const VMStateDescription vmstate_cpu_common
= {
598 .name
= "cpu_common",
600 .minimum_version_id
= 1,
601 .minimum_version_id_old
= 1,
602 .post_load
= cpu_common_post_load
,
603 .fields
= (VMStateField
[]) {
604 VMSTATE_UINT32(halted
, CPUState
),
605 VMSTATE_UINT32(interrupt_request
, CPUState
),
606 VMSTATE_END_OF_LIST()
611 CPUState
*qemu_get_cpu(int cpu
)
613 CPUState
*env
= first_cpu
;
616 if (env
->cpu_index
== cpu
)
624 void cpu_exec_init(CPUState
*env
)
629 #if defined(CONFIG_USER_ONLY)
632 env
->next_cpu
= NULL
;
635 while (*penv
!= NULL
) {
636 penv
= &(*penv
)->next_cpu
;
639 env
->cpu_index
= cpu_index
;
641 QTAILQ_INIT(&env
->breakpoints
);
642 QTAILQ_INIT(&env
->watchpoints
);
643 #ifndef CONFIG_USER_ONLY
644 env
->thread_id
= qemu_get_thread_id();
647 #if defined(CONFIG_USER_ONLY)
650 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
651 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, env
);
652 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
653 cpu_save
, cpu_load
, env
);
657 /* Allocate a new translation block. Flush the translation buffer if
658 too many translation blocks or too much generated code. */
659 static TranslationBlock
*tb_alloc(target_ulong pc
)
661 TranslationBlock
*tb
;
663 if (nb_tbs
>= code_gen_max_blocks
||
664 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
672 void tb_free(TranslationBlock
*tb
)
674 /* In practice this is mostly used for single use temporary TB
675 Ignore the hard cases and just back up if this TB happens to
676 be the last one generated. */
677 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
678 code_gen_ptr
= tb
->tc_ptr
;
683 static inline void invalidate_page_bitmap(PageDesc
*p
)
685 if (p
->code_bitmap
) {
686 qemu_free(p
->code_bitmap
);
687 p
->code_bitmap
= NULL
;
689 p
->code_write_count
= 0;
692 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
694 static void page_flush_tb_1 (int level
, void **lp
)
703 for (i
= 0; i
< L2_SIZE
; ++i
) {
704 pd
[i
].first_tb
= NULL
;
705 invalidate_page_bitmap(pd
+ i
);
709 for (i
= 0; i
< L2_SIZE
; ++i
) {
710 page_flush_tb_1 (level
- 1, pp
+ i
);
715 static void page_flush_tb(void)
718 for (i
= 0; i
< V_L1_SIZE
; i
++) {
719 page_flush_tb_1(V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
723 /* flush all the translation blocks */
724 /* XXX: tb_flush is currently not thread safe */
725 void tb_flush(CPUState
*env1
)
728 #if defined(DEBUG_FLUSH)
729 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
730 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
732 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
734 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
735 cpu_abort(env1
, "Internal error: code buffer overflow\n");
739 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
740 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
743 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
746 code_gen_ptr
= code_gen_buffer
;
747 /* XXX: flush processor icache at this point if cache flush is
752 #ifdef DEBUG_TB_CHECK
754 static void tb_invalidate_check(target_ulong address
)
756 TranslationBlock
*tb
;
758 address
&= TARGET_PAGE_MASK
;
759 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
760 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
761 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
762 address
>= tb
->pc
+ tb
->size
)) {
763 printf("ERROR invalidate: address=" TARGET_FMT_lx
764 " PC=%08lx size=%04x\n",
765 address
, (long)tb
->pc
, tb
->size
);
771 /* verify that all the pages have correct rights for code */
772 static void tb_page_check(void)
774 TranslationBlock
*tb
;
775 int i
, flags1
, flags2
;
777 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
778 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
779 flags1
= page_get_flags(tb
->pc
);
780 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
781 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
782 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
783 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
791 /* invalidate one TB */
792 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
795 TranslationBlock
*tb1
;
799 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
802 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
806 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
808 TranslationBlock
*tb1
;
814 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
816 *ptb
= tb1
->page_next
[n1
];
819 ptb
= &tb1
->page_next
[n1
];
823 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
825 TranslationBlock
*tb1
, **ptb
;
828 ptb
= &tb
->jmp_next
[n
];
831 /* find tb(n) in circular list */
835 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
836 if (n1
== n
&& tb1
== tb
)
839 ptb
= &tb1
->jmp_first
;
841 ptb
= &tb1
->jmp_next
[n1
];
844 /* now we can suppress tb(n) from the list */
845 *ptb
= tb
->jmp_next
[n
];
847 tb
->jmp_next
[n
] = NULL
;
851 /* reset the jump entry 'n' of a TB so that it is not chained to
853 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
855 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
858 void tb_phys_invalidate(TranslationBlock
*tb
, tb_page_addr_t page_addr
)
863 tb_page_addr_t phys_pc
;
864 TranslationBlock
*tb1
, *tb2
;
866 /* remove the TB from the hash list */
867 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
868 h
= tb_phys_hash_func(phys_pc
);
869 tb_remove(&tb_phys_hash
[h
], tb
,
870 offsetof(TranslationBlock
, phys_hash_next
));
872 /* remove the TB from the page list */
873 if (tb
->page_addr
[0] != page_addr
) {
874 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
875 tb_page_remove(&p
->first_tb
, tb
);
876 invalidate_page_bitmap(p
);
878 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
879 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
880 tb_page_remove(&p
->first_tb
, tb
);
881 invalidate_page_bitmap(p
);
884 tb_invalidated_flag
= 1;
886 /* remove the TB from the hash list */
887 h
= tb_jmp_cache_hash_func(tb
->pc
);
888 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
889 if (env
->tb_jmp_cache
[h
] == tb
)
890 env
->tb_jmp_cache
[h
] = NULL
;
893 /* suppress this TB from the two jump lists */
894 tb_jmp_remove(tb
, 0);
895 tb_jmp_remove(tb
, 1);
897 /* suppress any remaining jumps to this TB */
903 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
904 tb2
= tb1
->jmp_next
[n1
];
905 tb_reset_jump(tb1
, n1
);
906 tb1
->jmp_next
[n1
] = NULL
;
909 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
911 tb_phys_invalidate_count
++;
914 static inline void set_bits(uint8_t *tab
, int start
, int len
)
920 mask
= 0xff << (start
& 7);
921 if ((start
& ~7) == (end
& ~7)) {
923 mask
&= ~(0xff << (end
& 7));
928 start
= (start
+ 8) & ~7;
930 while (start
< end1
) {
935 mask
= ~(0xff << (end
& 7));
941 static void build_page_bitmap(PageDesc
*p
)
943 int n
, tb_start
, tb_end
;
944 TranslationBlock
*tb
;
946 p
->code_bitmap
= qemu_mallocz(TARGET_PAGE_SIZE
/ 8);
951 tb
= (TranslationBlock
*)((long)tb
& ~3);
952 /* NOTE: this is subtle as a TB may span two physical pages */
954 /* NOTE: tb_end may be after the end of the page, but
955 it is not a problem */
956 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
957 tb_end
= tb_start
+ tb
->size
;
958 if (tb_end
> TARGET_PAGE_SIZE
)
959 tb_end
= TARGET_PAGE_SIZE
;
962 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
964 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
965 tb
= tb
->page_next
[n
];
969 TranslationBlock
*tb_gen_code(CPUState
*env
,
970 target_ulong pc
, target_ulong cs_base
,
971 int flags
, int cflags
)
973 TranslationBlock
*tb
;
975 tb_page_addr_t phys_pc
, phys_page2
;
976 target_ulong virt_page2
;
979 phys_pc
= get_page_addr_code(env
, pc
);
982 /* flush must be done */
984 /* cannot fail at this point */
986 /* Don't forget to invalidate previous TB info. */
987 tb_invalidated_flag
= 1;
989 tc_ptr
= code_gen_ptr
;
991 tb
->cs_base
= cs_base
;
994 cpu_gen_code(env
, tb
, &code_gen_size
);
995 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
997 /* check next page if needed */
998 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
1000 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
1001 phys_page2
= get_page_addr_code(env
, virt_page2
);
1003 tb_link_page(tb
, phys_pc
, phys_page2
);
1007 /* invalidate all TBs which intersect with the target physical page
1008 starting in range [start;end[. NOTE: start and end must refer to
1009 the same physical page. 'is_cpu_write_access' should be true if called
1010 from a real cpu write access: the virtual CPU will exit the current
1011 TB if code is modified inside this TB. */
1012 void tb_invalidate_phys_page_range(tb_page_addr_t start
, tb_page_addr_t end
,
1013 int is_cpu_write_access
)
1015 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
1016 CPUState
*env
= cpu_single_env
;
1017 tb_page_addr_t tb_start
, tb_end
;
1020 #ifdef TARGET_HAS_PRECISE_SMC
1021 int current_tb_not_found
= is_cpu_write_access
;
1022 TranslationBlock
*current_tb
= NULL
;
1023 int current_tb_modified
= 0;
1024 target_ulong current_pc
= 0;
1025 target_ulong current_cs_base
= 0;
1026 int current_flags
= 0;
1027 #endif /* TARGET_HAS_PRECISE_SMC */
1029 p
= page_find(start
>> TARGET_PAGE_BITS
);
1032 if (!p
->code_bitmap
&&
1033 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
1034 is_cpu_write_access
) {
1035 /* build code bitmap */
1036 build_page_bitmap(p
);
1039 /* we remove all the TBs in the range [start, end[ */
1040 /* XXX: see if in some cases it could be faster to invalidate all the code */
1042 while (tb
!= NULL
) {
1044 tb
= (TranslationBlock
*)((long)tb
& ~3);
1045 tb_next
= tb
->page_next
[n
];
1046 /* NOTE: this is subtle as a TB may span two physical pages */
1048 /* NOTE: tb_end may be after the end of the page, but
1049 it is not a problem */
1050 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1051 tb_end
= tb_start
+ tb
->size
;
1053 tb_start
= tb
->page_addr
[1];
1054 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1056 if (!(tb_end
<= start
|| tb_start
>= end
)) {
1057 #ifdef TARGET_HAS_PRECISE_SMC
1058 if (current_tb_not_found
) {
1059 current_tb_not_found
= 0;
1061 if (env
->mem_io_pc
) {
1062 /* now we have a real cpu fault */
1063 current_tb
= tb_find_pc(env
->mem_io_pc
);
1066 if (current_tb
== tb
&&
1067 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1068 /* If we are modifying the current TB, we must stop
1069 its execution. We could be more precise by checking
1070 that the modification is after the current PC, but it
1071 would require a specialized function to partially
1072 restore the CPU state */
1074 current_tb_modified
= 1;
1075 cpu_restore_state(current_tb
, env
, env
->mem_io_pc
);
1076 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1079 #endif /* TARGET_HAS_PRECISE_SMC */
1080 /* we need to do that to handle the case where a signal
1081 occurs while doing tb_phys_invalidate() */
1084 saved_tb
= env
->current_tb
;
1085 env
->current_tb
= NULL
;
1087 tb_phys_invalidate(tb
, -1);
1089 env
->current_tb
= saved_tb
;
1090 if (env
->interrupt_request
&& env
->current_tb
)
1091 cpu_interrupt(env
, env
->interrupt_request
);
1096 #if !defined(CONFIG_USER_ONLY)
1097 /* if no code remaining, no need to continue to use slow writes */
1099 invalidate_page_bitmap(p
);
1100 if (is_cpu_write_access
) {
1101 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
1105 #ifdef TARGET_HAS_PRECISE_SMC
1106 if (current_tb_modified
) {
1107 /* we generate a block containing just the instruction
1108 modifying the memory. It will ensure that it cannot modify
1110 env
->current_tb
= NULL
;
1111 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1112 cpu_resume_from_signal(env
, NULL
);
1117 /* len must be <= 8 and start must be a multiple of len */
1118 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start
, int len
)
1124 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1125 cpu_single_env
->mem_io_vaddr
, len
,
1126 cpu_single_env
->eip
,
1127 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
1130 p
= page_find(start
>> TARGET_PAGE_BITS
);
1133 if (p
->code_bitmap
) {
1134 offset
= start
& ~TARGET_PAGE_MASK
;
1135 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1136 if (b
& ((1 << len
) - 1))
1140 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1144 #if !defined(CONFIG_SOFTMMU)
1145 static void tb_invalidate_phys_page(tb_page_addr_t addr
,
1146 unsigned long pc
, void *puc
)
1148 TranslationBlock
*tb
;
1151 #ifdef TARGET_HAS_PRECISE_SMC
1152 TranslationBlock
*current_tb
= NULL
;
1153 CPUState
*env
= cpu_single_env
;
1154 int current_tb_modified
= 0;
1155 target_ulong current_pc
= 0;
1156 target_ulong current_cs_base
= 0;
1157 int current_flags
= 0;
1160 addr
&= TARGET_PAGE_MASK
;
1161 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1165 #ifdef TARGET_HAS_PRECISE_SMC
1166 if (tb
&& pc
!= 0) {
1167 current_tb
= tb_find_pc(pc
);
1170 while (tb
!= NULL
) {
1172 tb
= (TranslationBlock
*)((long)tb
& ~3);
1173 #ifdef TARGET_HAS_PRECISE_SMC
1174 if (current_tb
== tb
&&
1175 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1176 /* If we are modifying the current TB, we must stop
1177 its execution. We could be more precise by checking
1178 that the modification is after the current PC, but it
1179 would require a specialized function to partially
1180 restore the CPU state */
1182 current_tb_modified
= 1;
1183 cpu_restore_state(current_tb
, env
, pc
);
1184 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1187 #endif /* TARGET_HAS_PRECISE_SMC */
1188 tb_phys_invalidate(tb
, addr
);
1189 tb
= tb
->page_next
[n
];
1192 #ifdef TARGET_HAS_PRECISE_SMC
1193 if (current_tb_modified
) {
1194 /* we generate a block containing just the instruction
1195 modifying the memory. It will ensure that it cannot modify
1197 env
->current_tb
= NULL
;
1198 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1199 cpu_resume_from_signal(env
, puc
);
1205 /* add the tb in the target page and protect it if necessary */
1206 static inline void tb_alloc_page(TranslationBlock
*tb
,
1207 unsigned int n
, tb_page_addr_t page_addr
)
1210 TranslationBlock
*last_first_tb
;
1212 tb
->page_addr
[n
] = page_addr
;
1213 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
, 1);
1214 tb
->page_next
[n
] = p
->first_tb
;
1215 last_first_tb
= p
->first_tb
;
1216 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1217 invalidate_page_bitmap(p
);
1219 #if defined(TARGET_HAS_SMC) || 1
1221 #if defined(CONFIG_USER_ONLY)
1222 if (p
->flags
& PAGE_WRITE
) {
1227 /* force the host page as non writable (writes will have a
1228 page fault + mprotect overhead) */
1229 page_addr
&= qemu_host_page_mask
;
1231 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1232 addr
+= TARGET_PAGE_SIZE
) {
1234 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1238 p2
->flags
&= ~PAGE_WRITE
;
1240 mprotect(g2h(page_addr
), qemu_host_page_size
,
1241 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1242 #ifdef DEBUG_TB_INVALIDATE
1243 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1248 /* if some code is already present, then the pages are already
1249 protected. So we handle the case where only the first TB is
1250 allocated in a physical page */
1251 if (!last_first_tb
) {
1252 tlb_protect_code(page_addr
);
1256 #endif /* TARGET_HAS_SMC */
1259 /* add a new TB and link it to the physical page tables. phys_page2 is
1260 (-1) to indicate that only one page contains the TB. */
1261 void tb_link_page(TranslationBlock
*tb
,
1262 tb_page_addr_t phys_pc
, tb_page_addr_t phys_page2
)
1265 TranslationBlock
**ptb
;
1267 /* Grab the mmap lock to stop another thread invalidating this TB
1268 before we are done. */
1270 /* add in the physical hash table */
1271 h
= tb_phys_hash_func(phys_pc
);
1272 ptb
= &tb_phys_hash
[h
];
1273 tb
->phys_hash_next
= *ptb
;
1276 /* add in the page list */
1277 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1278 if (phys_page2
!= -1)
1279 tb_alloc_page(tb
, 1, phys_page2
);
1281 tb
->page_addr
[1] = -1;
1283 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1284 tb
->jmp_next
[0] = NULL
;
1285 tb
->jmp_next
[1] = NULL
;
1287 /* init original jump addresses */
1288 if (tb
->tb_next_offset
[0] != 0xffff)
1289 tb_reset_jump(tb
, 0);
1290 if (tb
->tb_next_offset
[1] != 0xffff)
1291 tb_reset_jump(tb
, 1);
1293 #ifdef DEBUG_TB_CHECK
1299 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1300 tb[1].tc_ptr. Return NULL if not found */
1301 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1303 int m_min
, m_max
, m
;
1305 TranslationBlock
*tb
;
1309 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1310 tc_ptr
>= (unsigned long)code_gen_ptr
)
1312 /* binary search (cf Knuth) */
1315 while (m_min
<= m_max
) {
1316 m
= (m_min
+ m_max
) >> 1;
1318 v
= (unsigned long)tb
->tc_ptr
;
1321 else if (tc_ptr
< v
) {
1330 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1332 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1334 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1337 tb1
= tb
->jmp_next
[n
];
1339 /* find head of list */
1342 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1345 tb1
= tb1
->jmp_next
[n1
];
1347 /* we are now sure now that tb jumps to tb1 */
1350 /* remove tb from the jmp_first list */
1351 ptb
= &tb_next
->jmp_first
;
1355 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1356 if (n1
== n
&& tb1
== tb
)
1358 ptb
= &tb1
->jmp_next
[n1
];
1360 *ptb
= tb
->jmp_next
[n
];
1361 tb
->jmp_next
[n
] = NULL
;
1363 /* suppress the jump to next tb in generated code */
1364 tb_reset_jump(tb
, n
);
1366 /* suppress jumps in the tb on which we could have jumped */
1367 tb_reset_jump_recursive(tb_next
);
1371 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1373 tb_reset_jump_recursive2(tb
, 0);
1374 tb_reset_jump_recursive2(tb
, 1);
1377 #if defined(TARGET_HAS_ICE)
1378 #if defined(CONFIG_USER_ONLY)
1379 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1381 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
1384 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1386 target_phys_addr_t addr
;
1388 ram_addr_t ram_addr
;
1391 addr
= cpu_get_phys_page_debug(env
, pc
);
1392 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1394 pd
= IO_MEM_UNASSIGNED
;
1396 pd
= p
->phys_offset
;
1398 ram_addr
= (pd
& TARGET_PAGE_MASK
) | (pc
& ~TARGET_PAGE_MASK
);
1399 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1402 #endif /* TARGET_HAS_ICE */
1404 #if defined(CONFIG_USER_ONLY)
1405 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1410 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1411 int flags
, CPUWatchpoint
**watchpoint
)
1416 /* Add a watchpoint. */
1417 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1418 int flags
, CPUWatchpoint
**watchpoint
)
1420 target_ulong len_mask
= ~(len
- 1);
1423 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1424 if ((len
!= 1 && len
!= 2 && len
!= 4 && len
!= 8) || (addr
& ~len_mask
)) {
1425 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1426 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1429 wp
= qemu_malloc(sizeof(*wp
));
1432 wp
->len_mask
= len_mask
;
1435 /* keep all GDB-injected watchpoints in front */
1437 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1439 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1441 tlb_flush_page(env
, addr
);
1448 /* Remove a specific watchpoint. */
1449 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
, target_ulong len
,
1452 target_ulong len_mask
= ~(len
- 1);
1455 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1456 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1457 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1458 cpu_watchpoint_remove_by_ref(env
, wp
);
1465 /* Remove a specific watchpoint by reference. */
1466 void cpu_watchpoint_remove_by_ref(CPUState
*env
, CPUWatchpoint
*watchpoint
)
1468 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1470 tlb_flush_page(env
, watchpoint
->vaddr
);
1472 qemu_free(watchpoint
);
1475 /* Remove all matching watchpoints. */
1476 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1478 CPUWatchpoint
*wp
, *next
;
1480 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1481 if (wp
->flags
& mask
)
1482 cpu_watchpoint_remove_by_ref(env
, wp
);
1487 /* Add a breakpoint. */
1488 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
, int flags
,
1489 CPUBreakpoint
**breakpoint
)
1491 #if defined(TARGET_HAS_ICE)
1494 bp
= qemu_malloc(sizeof(*bp
));
1499 /* keep all GDB-injected breakpoints in front */
1501 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1503 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1505 breakpoint_invalidate(env
, pc
);
1515 /* Remove a specific breakpoint. */
1516 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
, int flags
)
1518 #if defined(TARGET_HAS_ICE)
1521 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1522 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1523 cpu_breakpoint_remove_by_ref(env
, bp
);
1533 /* Remove a specific breakpoint by reference. */
1534 void cpu_breakpoint_remove_by_ref(CPUState
*env
, CPUBreakpoint
*breakpoint
)
1536 #if defined(TARGET_HAS_ICE)
1537 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1539 breakpoint_invalidate(env
, breakpoint
->pc
);
1541 qemu_free(breakpoint
);
1545 /* Remove all matching breakpoints. */
1546 void cpu_breakpoint_remove_all(CPUState
*env
, int mask
)
1548 #if defined(TARGET_HAS_ICE)
1549 CPUBreakpoint
*bp
, *next
;
1551 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1552 if (bp
->flags
& mask
)
1553 cpu_breakpoint_remove_by_ref(env
, bp
);
1558 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1559 CPU loop after each instruction */
1560 void cpu_single_step(CPUState
*env
, int enabled
)
1562 #if defined(TARGET_HAS_ICE)
1563 if (env
->singlestep_enabled
!= enabled
) {
1564 env
->singlestep_enabled
= enabled
;
1566 kvm_update_guest_debug(env
, 0);
1568 /* must flush all the translated code to avoid inconsistencies */
1569 /* XXX: only flush what is necessary */
1576 /* enable or disable low levels log */
1577 void cpu_set_log(int log_flags
)
1579 loglevel
= log_flags
;
1580 if (loglevel
&& !logfile
) {
1581 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1583 perror(logfilename
);
1586 #if !defined(CONFIG_SOFTMMU)
1587 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1589 static char logfile_buf
[4096];
1590 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1592 #elif !defined(_WIN32)
1593 /* Win32 doesn't support line-buffering and requires size >= 2 */
1594 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1598 if (!loglevel
&& logfile
) {
1604 void cpu_set_log_filename(const char *filename
)
1606 logfilename
= strdup(filename
);
1611 cpu_set_log(loglevel
);
1614 static void cpu_unlink_tb(CPUState
*env
)
1616 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1617 problem and hope the cpu will stop of its own accord. For userspace
1618 emulation this often isn't actually as bad as it sounds. Often
1619 signals are used primarily to interrupt blocking syscalls. */
1620 TranslationBlock
*tb
;
1621 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1623 spin_lock(&interrupt_lock
);
1624 tb
= env
->current_tb
;
1625 /* if the cpu is currently executing code, we must unlink it and
1626 all the potentially executing TB */
1628 env
->current_tb
= NULL
;
1629 tb_reset_jump_recursive(tb
);
1631 spin_unlock(&interrupt_lock
);
1634 #ifndef CONFIG_USER_ONLY
1635 /* mask must never be zero, except for A20 change call */
1636 static void tcg_handle_interrupt(CPUState
*env
, int mask
)
1640 old_mask
= env
->interrupt_request
;
1641 env
->interrupt_request
|= mask
;
1644 * If called from iothread context, wake the target cpu in
1647 if (!qemu_cpu_is_self(env
)) {
1653 env
->icount_decr
.u16
.high
= 0xffff;
1655 && (mask
& ~old_mask
) != 0) {
1656 cpu_abort(env
, "Raised interrupt while not in I/O function");
1663 CPUInterruptHandler cpu_interrupt_handler
= tcg_handle_interrupt
;
1665 #else /* CONFIG_USER_ONLY */
1667 void cpu_interrupt(CPUState
*env
, int mask
)
1669 env
->interrupt_request
|= mask
;
1672 #endif /* CONFIG_USER_ONLY */
1674 void cpu_reset_interrupt(CPUState
*env
, int mask
)
1676 env
->interrupt_request
&= ~mask
;
1679 void cpu_exit(CPUState
*env
)
1681 env
->exit_request
= 1;
1685 const CPULogItem cpu_log_items
[] = {
1686 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1687 "show generated host assembly code for each compiled TB" },
1688 { CPU_LOG_TB_IN_ASM
, "in_asm",
1689 "show target assembly code for each compiled TB" },
1690 { CPU_LOG_TB_OP
, "op",
1691 "show micro ops for each compiled TB" },
1692 { CPU_LOG_TB_OP_OPT
, "op_opt",
1695 "before eflags optimization and "
1697 "after liveness analysis" },
1698 { CPU_LOG_INT
, "int",
1699 "show interrupts/exceptions in short format" },
1700 { CPU_LOG_EXEC
, "exec",
1701 "show trace before each executed TB (lots of logs)" },
1702 { CPU_LOG_TB_CPU
, "cpu",
1703 "show CPU state before block translation" },
1705 { CPU_LOG_PCALL
, "pcall",
1706 "show protected mode far calls/returns/exceptions" },
1707 { CPU_LOG_RESET
, "cpu_reset",
1708 "show CPU state before CPU resets" },
1711 { CPU_LOG_IOPORT
, "ioport",
1712 "show all i/o ports accesses" },
1717 #ifndef CONFIG_USER_ONLY
1718 static QLIST_HEAD(memory_client_list
, CPUPhysMemoryClient
) memory_client_list
1719 = QLIST_HEAD_INITIALIZER(memory_client_list
);
1721 static void cpu_notify_set_memory(target_phys_addr_t start_addr
,
1723 ram_addr_t phys_offset
,
1726 CPUPhysMemoryClient
*client
;
1727 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1728 client
->set_memory(client
, start_addr
, size
, phys_offset
, log_dirty
);
1732 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start
,
1733 target_phys_addr_t end
)
1735 CPUPhysMemoryClient
*client
;
1736 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1737 int r
= client
->sync_dirty_bitmap(client
, start
, end
);
1744 static int cpu_notify_migration_log(int enable
)
1746 CPUPhysMemoryClient
*client
;
1747 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1748 int r
= client
->migration_log(client
, enable
);
1756 target_phys_addr_t start_addr
;
1758 ram_addr_t phys_offset
;
1761 /* The l1_phys_map provides the upper P_L1_BITs of the guest physical
1762 * address. Each intermediate table provides the next L2_BITs of guest
1763 * physical address space. The number of levels vary based on host and
1764 * guest configuration, making it efficient to build the final guest
1765 * physical address by seeding the L1 offset and shifting and adding in
1766 * each L2 offset as we recurse through them. */
1767 static void phys_page_for_each_1(CPUPhysMemoryClient
*client
, int level
,
1768 void **lp
, target_phys_addr_t addr
,
1769 struct last_map
*map
)
1777 PhysPageDesc
*pd
= *lp
;
1778 addr
<<= L2_BITS
+ TARGET_PAGE_BITS
;
1779 for (i
= 0; i
< L2_SIZE
; ++i
) {
1780 if (pd
[i
].phys_offset
!= IO_MEM_UNASSIGNED
) {
1781 target_phys_addr_t start_addr
= addr
| i
<< TARGET_PAGE_BITS
;
1784 start_addr
== map
->start_addr
+ map
->size
&&
1785 pd
[i
].phys_offset
== map
->phys_offset
+ map
->size
) {
1787 map
->size
+= TARGET_PAGE_SIZE
;
1789 } else if (map
->size
) {
1790 client
->set_memory(client
, map
->start_addr
,
1791 map
->size
, map
->phys_offset
, false);
1794 map
->start_addr
= start_addr
;
1795 map
->size
= TARGET_PAGE_SIZE
;
1796 map
->phys_offset
= pd
[i
].phys_offset
;
1801 for (i
= 0; i
< L2_SIZE
; ++i
) {
1802 phys_page_for_each_1(client
, level
- 1, pp
+ i
,
1803 (addr
<< L2_BITS
) | i
, map
);
1808 static void phys_page_for_each(CPUPhysMemoryClient
*client
)
1811 struct last_map map
= { };
1813 for (i
= 0; i
< P_L1_SIZE
; ++i
) {
1814 phys_page_for_each_1(client
, P_L1_SHIFT
/ L2_BITS
- 1,
1815 l1_phys_map
+ i
, i
, &map
);
1818 client
->set_memory(client
, map
.start_addr
, map
.size
, map
.phys_offset
,
1823 void cpu_register_phys_memory_client(CPUPhysMemoryClient
*client
)
1825 QLIST_INSERT_HEAD(&memory_client_list
, client
, list
);
1826 phys_page_for_each(client
);
1829 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient
*client
)
1831 QLIST_REMOVE(client
, list
);
1835 static int cmp1(const char *s1
, int n
, const char *s2
)
1837 if (strlen(s2
) != n
)
1839 return memcmp(s1
, s2
, n
) == 0;
1842 /* takes a comma separated list of log masks. Return 0 if error. */
1843 int cpu_str_to_log_mask(const char *str
)
1845 const CPULogItem
*item
;
1852 p1
= strchr(p
, ',');
1855 if(cmp1(p
,p1
-p
,"all")) {
1856 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1860 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1861 if (cmp1(p
, p1
- p
, item
->name
))
1875 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
1882 fprintf(stderr
, "qemu: fatal: ");
1883 vfprintf(stderr
, fmt
, ap
);
1884 fprintf(stderr
, "\n");
1886 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1888 cpu_dump_state(env
, stderr
, fprintf
, 0);
1890 if (qemu_log_enabled()) {
1891 qemu_log("qemu: fatal: ");
1892 qemu_log_vprintf(fmt
, ap2
);
1895 log_cpu_state(env
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1897 log_cpu_state(env
, 0);
1904 #if defined(CONFIG_USER_ONLY)
1906 struct sigaction act
;
1907 sigfillset(&act
.sa_mask
);
1908 act
.sa_handler
= SIG_DFL
;
1909 sigaction(SIGABRT
, &act
, NULL
);
1915 CPUState
*cpu_copy(CPUState
*env
)
1917 CPUState
*new_env
= cpu_init(env
->cpu_model_str
);
1918 CPUState
*next_cpu
= new_env
->next_cpu
;
1919 int cpu_index
= new_env
->cpu_index
;
1920 #if defined(TARGET_HAS_ICE)
1925 memcpy(new_env
, env
, sizeof(CPUState
));
1927 /* Preserve chaining and index. */
1928 new_env
->next_cpu
= next_cpu
;
1929 new_env
->cpu_index
= cpu_index
;
1931 /* Clone all break/watchpoints.
1932 Note: Once we support ptrace with hw-debug register access, make sure
1933 BP_CPU break/watchpoints are handled correctly on clone. */
1934 QTAILQ_INIT(&env
->breakpoints
);
1935 QTAILQ_INIT(&env
->watchpoints
);
1936 #if defined(TARGET_HAS_ICE)
1937 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1938 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
1940 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1941 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
1949 #if !defined(CONFIG_USER_ONLY)
1951 static inline void tlb_flush_jmp_cache(CPUState
*env
, target_ulong addr
)
1955 /* Discard jump cache entries for any tb which might potentially
1956 overlap the flushed page. */
1957 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1958 memset (&env
->tb_jmp_cache
[i
], 0,
1959 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1961 i
= tb_jmp_cache_hash_page(addr
);
1962 memset (&env
->tb_jmp_cache
[i
], 0,
1963 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1966 static CPUTLBEntry s_cputlb_empty_entry
= {
1973 /* NOTE: if flush_global is true, also flush global entries (not
1975 void tlb_flush(CPUState
*env
, int flush_global
)
1979 #if defined(DEBUG_TLB)
1980 printf("tlb_flush:\n");
1982 /* must reset current TB so that interrupts cannot modify the
1983 links while we are modifying them */
1984 env
->current_tb
= NULL
;
1986 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
1988 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1989 env
->tlb_table
[mmu_idx
][i
] = s_cputlb_empty_entry
;
1993 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
1995 env
->tlb_flush_addr
= -1;
1996 env
->tlb_flush_mask
= 0;
2000 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
2002 if (addr
== (tlb_entry
->addr_read
&
2003 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
2004 addr
== (tlb_entry
->addr_write
&
2005 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
2006 addr
== (tlb_entry
->addr_code
&
2007 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
2008 *tlb_entry
= s_cputlb_empty_entry
;
2012 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
2017 #if defined(DEBUG_TLB)
2018 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
2020 /* Check if we need to flush due to large pages. */
2021 if ((addr
& env
->tlb_flush_mask
) == env
->tlb_flush_addr
) {
2022 #if defined(DEBUG_TLB)
2023 printf("tlb_flush_page: forced full flush ("
2024 TARGET_FMT_lx
"/" TARGET_FMT_lx
")\n",
2025 env
->tlb_flush_addr
, env
->tlb_flush_mask
);
2030 /* must reset current TB so that interrupts cannot modify the
2031 links while we are modifying them */
2032 env
->current_tb
= NULL
;
2034 addr
&= TARGET_PAGE_MASK
;
2035 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2036 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
2037 tlb_flush_entry(&env
->tlb_table
[mmu_idx
][i
], addr
);
2039 tlb_flush_jmp_cache(env
, addr
);
2042 /* update the TLBs so that writes to code in the virtual page 'addr'
2044 static void tlb_protect_code(ram_addr_t ram_addr
)
2046 cpu_physical_memory_reset_dirty(ram_addr
,
2047 ram_addr
+ TARGET_PAGE_SIZE
,
2051 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2052 tested for self modifying code */
2053 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
2056 cpu_physical_memory_set_dirty_flags(ram_addr
, CODE_DIRTY_FLAG
);
2059 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
2060 unsigned long start
, unsigned long length
)
2063 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
2064 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
2065 if ((addr
- start
) < length
) {
2066 tlb_entry
->addr_write
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) | TLB_NOTDIRTY
;
2071 /* Note: start and end must be within the same ram block. */
2072 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
2076 unsigned long length
, start1
;
2079 start
&= TARGET_PAGE_MASK
;
2080 end
= TARGET_PAGE_ALIGN(end
);
2082 length
= end
- start
;
2085 cpu_physical_memory_mask_dirty_range(start
, length
, dirty_flags
);
2087 /* we modify the TLB cache so that the dirty bit will be set again
2088 when accessing the range */
2089 start1
= (unsigned long)qemu_safe_ram_ptr(start
);
2090 /* Check that we don't span multiple blocks - this breaks the
2091 address comparisons below. */
2092 if ((unsigned long)qemu_safe_ram_ptr(end
- 1) - start1
2093 != (end
- 1) - start
) {
2097 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2099 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
2100 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
2101 tlb_reset_dirty_range(&env
->tlb_table
[mmu_idx
][i
],
2107 int cpu_physical_memory_set_dirty_tracking(int enable
)
2110 in_migration
= enable
;
2111 ret
= cpu_notify_migration_log(!!enable
);
2115 int cpu_physical_memory_get_dirty_tracking(void)
2117 return in_migration
;
2120 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
2121 target_phys_addr_t end_addr
)
2125 ret
= cpu_notify_sync_dirty_bitmap(start_addr
, end_addr
);
2129 int cpu_physical_log_start(target_phys_addr_t start_addr
,
2132 CPUPhysMemoryClient
*client
;
2133 QLIST_FOREACH(client
, &memory_client_list
, list
) {
2134 if (client
->log_start
) {
2135 int r
= client
->log_start(client
, start_addr
, size
);
2144 int cpu_physical_log_stop(target_phys_addr_t start_addr
,
2147 CPUPhysMemoryClient
*client
;
2148 QLIST_FOREACH(client
, &memory_client_list
, list
) {
2149 if (client
->log_stop
) {
2150 int r
= client
->log_stop(client
, start_addr
, size
);
2159 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
2161 ram_addr_t ram_addr
;
2164 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
2165 p
= (void *)(unsigned long)((tlb_entry
->addr_write
& TARGET_PAGE_MASK
)
2166 + tlb_entry
->addend
);
2167 ram_addr
= qemu_ram_addr_from_host_nofail(p
);
2168 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
2169 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
2174 /* update the TLB according to the current state of the dirty bits */
2175 void cpu_tlb_update_dirty(CPUState
*env
)
2179 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
2180 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
2181 tlb_update_dirty(&env
->tlb_table
[mmu_idx
][i
]);
2185 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
2187 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
2188 tlb_entry
->addr_write
= vaddr
;
2191 /* update the TLB corresponding to virtual page vaddr
2192 so that it is no longer dirty */
2193 static inline void tlb_set_dirty(CPUState
*env
, target_ulong vaddr
)
2198 vaddr
&= TARGET_PAGE_MASK
;
2199 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2200 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
2201 tlb_set_dirty1(&env
->tlb_table
[mmu_idx
][i
], vaddr
);
2204 /* Our TLB does not support large pages, so remember the area covered by
2205 large pages and trigger a full TLB flush if these are invalidated. */
2206 static void tlb_add_large_page(CPUState
*env
, target_ulong vaddr
,
2209 target_ulong mask
= ~(size
- 1);
2211 if (env
->tlb_flush_addr
== (target_ulong
)-1) {
2212 env
->tlb_flush_addr
= vaddr
& mask
;
2213 env
->tlb_flush_mask
= mask
;
2216 /* Extend the existing region to include the new page.
2217 This is a compromise between unnecessary flushes and the cost
2218 of maintaining a full variable size TLB. */
2219 mask
&= env
->tlb_flush_mask
;
2220 while (((env
->tlb_flush_addr
^ vaddr
) & mask
) != 0) {
2223 env
->tlb_flush_addr
&= mask
;
2224 env
->tlb_flush_mask
= mask
;
2227 /* Add a new TLB entry. At most one entry for a given virtual address
2228 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2229 supplied size is only used by tlb_flush_page. */
2230 void tlb_set_page(CPUState
*env
, target_ulong vaddr
,
2231 target_phys_addr_t paddr
, int prot
,
2232 int mmu_idx
, target_ulong size
)
2237 target_ulong address
;
2238 target_ulong code_address
;
2239 unsigned long addend
;
2242 target_phys_addr_t iotlb
;
2244 assert(size
>= TARGET_PAGE_SIZE
);
2245 if (size
!= TARGET_PAGE_SIZE
) {
2246 tlb_add_large_page(env
, vaddr
, size
);
2248 p
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
2250 pd
= IO_MEM_UNASSIGNED
;
2252 pd
= p
->phys_offset
;
2254 #if defined(DEBUG_TLB)
2255 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x" TARGET_FMT_plx
2256 " prot=%x idx=%d pd=0x%08lx\n",
2257 vaddr
, paddr
, prot
, mmu_idx
, pd
);
2261 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
2262 /* IO memory case (romd handled later) */
2263 address
|= TLB_MMIO
;
2265 addend
= (unsigned long)qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
);
2266 if ((pd
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
) {
2268 iotlb
= pd
& TARGET_PAGE_MASK
;
2269 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
2270 iotlb
|= IO_MEM_NOTDIRTY
;
2272 iotlb
|= IO_MEM_ROM
;
2274 /* IO handlers are currently passed a physical address.
2275 It would be nice to pass an offset from the base address
2276 of that region. This would avoid having to special case RAM,
2277 and avoid full address decoding in every device.
2278 We can't use the high bits of pd for this because
2279 IO_MEM_ROMD uses these as a ram address. */
2280 iotlb
= (pd
& ~TARGET_PAGE_MASK
);
2282 iotlb
+= p
->region_offset
;
2288 code_address
= address
;
2289 /* Make accesses to pages with watchpoints go via the
2290 watchpoint trap routines. */
2291 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2292 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
2293 /* Avoid trapping reads of pages with a write breakpoint. */
2294 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
2295 iotlb
= io_mem_watch
+ paddr
;
2296 address
|= TLB_MMIO
;
2302 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2303 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
2304 te
= &env
->tlb_table
[mmu_idx
][index
];
2305 te
->addend
= addend
- vaddr
;
2306 if (prot
& PAGE_READ
) {
2307 te
->addr_read
= address
;
2312 if (prot
& PAGE_EXEC
) {
2313 te
->addr_code
= code_address
;
2317 if (prot
& PAGE_WRITE
) {
2318 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_ROM
||
2319 (pd
& IO_MEM_ROMD
)) {
2320 /* Write access calls the I/O callback. */
2321 te
->addr_write
= address
| TLB_MMIO
;
2322 } else if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
&&
2323 !cpu_physical_memory_is_dirty(pd
)) {
2324 te
->addr_write
= address
| TLB_NOTDIRTY
;
2326 te
->addr_write
= address
;
2329 te
->addr_write
= -1;
2335 void tlb_flush(CPUState
*env
, int flush_global
)
2339 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
2344 * Walks guest process memory "regions" one by one
2345 * and calls callback function 'fn' for each region.
2348 struct walk_memory_regions_data
2350 walk_memory_regions_fn fn
;
2352 unsigned long start
;
2356 static int walk_memory_regions_end(struct walk_memory_regions_data
*data
,
2357 abi_ulong end
, int new_prot
)
2359 if (data
->start
!= -1ul) {
2360 int rc
= data
->fn(data
->priv
, data
->start
, end
, data
->prot
);
2366 data
->start
= (new_prot
? end
: -1ul);
2367 data
->prot
= new_prot
;
2372 static int walk_memory_regions_1(struct walk_memory_regions_data
*data
,
2373 abi_ulong base
, int level
, void **lp
)
2379 return walk_memory_regions_end(data
, base
, 0);
2384 for (i
= 0; i
< L2_SIZE
; ++i
) {
2385 int prot
= pd
[i
].flags
;
2387 pa
= base
| (i
<< TARGET_PAGE_BITS
);
2388 if (prot
!= data
->prot
) {
2389 rc
= walk_memory_regions_end(data
, pa
, prot
);
2397 for (i
= 0; i
< L2_SIZE
; ++i
) {
2398 pa
= base
| ((abi_ulong
)i
<<
2399 (TARGET_PAGE_BITS
+ L2_BITS
* level
));
2400 rc
= walk_memory_regions_1(data
, pa
, level
- 1, pp
+ i
);
2410 int walk_memory_regions(void *priv
, walk_memory_regions_fn fn
)
2412 struct walk_memory_regions_data data
;
2420 for (i
= 0; i
< V_L1_SIZE
; i
++) {
2421 int rc
= walk_memory_regions_1(&data
, (abi_ulong
)i
<< V_L1_SHIFT
,
2422 V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
2428 return walk_memory_regions_end(&data
, 0, 0);
2431 static int dump_region(void *priv
, abi_ulong start
,
2432 abi_ulong end
, unsigned long prot
)
2434 FILE *f
= (FILE *)priv
;
2436 (void) fprintf(f
, TARGET_ABI_FMT_lx
"-"TARGET_ABI_FMT_lx
2437 " "TARGET_ABI_FMT_lx
" %c%c%c\n",
2438 start
, end
, end
- start
,
2439 ((prot
& PAGE_READ
) ? 'r' : '-'),
2440 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
2441 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
2446 /* dump memory mappings */
2447 void page_dump(FILE *f
)
2449 (void) fprintf(f
, "%-8s %-8s %-8s %s\n",
2450 "start", "end", "size", "prot");
2451 walk_memory_regions(f
, dump_region
);
2454 int page_get_flags(target_ulong address
)
2458 p
= page_find(address
>> TARGET_PAGE_BITS
);
2464 /* Modify the flags of a page and invalidate the code if necessary.
2465 The flag PAGE_WRITE_ORG is positioned automatically depending
2466 on PAGE_WRITE. The mmap_lock should already be held. */
2467 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2469 target_ulong addr
, len
;
2471 /* This function should never be called with addresses outside the
2472 guest address space. If this assert fires, it probably indicates
2473 a missing call to h2g_valid. */
2474 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2475 assert(end
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2477 assert(start
< end
);
2479 start
= start
& TARGET_PAGE_MASK
;
2480 end
= TARGET_PAGE_ALIGN(end
);
2482 if (flags
& PAGE_WRITE
) {
2483 flags
|= PAGE_WRITE_ORG
;
2486 for (addr
= start
, len
= end
- start
;
2488 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2489 PageDesc
*p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2491 /* If the write protection bit is set, then we invalidate
2493 if (!(p
->flags
& PAGE_WRITE
) &&
2494 (flags
& PAGE_WRITE
) &&
2496 tb_invalidate_phys_page(addr
, 0, NULL
);
2502 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2508 /* This function should never be called with addresses outside the
2509 guest address space. If this assert fires, it probably indicates
2510 a missing call to h2g_valid. */
2511 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2512 assert(start
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2518 if (start
+ len
- 1 < start
) {
2519 /* We've wrapped around. */
2523 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2524 start
= start
& TARGET_PAGE_MASK
;
2526 for (addr
= start
, len
= end
- start
;
2528 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2529 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2532 if( !(p
->flags
& PAGE_VALID
) )
2535 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2537 if (flags
& PAGE_WRITE
) {
2538 if (!(p
->flags
& PAGE_WRITE_ORG
))
2540 /* unprotect the page if it was put read-only because it
2541 contains translated code */
2542 if (!(p
->flags
& PAGE_WRITE
)) {
2543 if (!page_unprotect(addr
, 0, NULL
))
2552 /* called from signal handler: invalidate the code and unprotect the
2553 page. Return TRUE if the fault was successfully handled. */
2554 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2558 target_ulong host_start
, host_end
, addr
;
2560 /* Technically this isn't safe inside a signal handler. However we
2561 know this only ever happens in a synchronous SEGV handler, so in
2562 practice it seems to be ok. */
2565 p
= page_find(address
>> TARGET_PAGE_BITS
);
2571 /* if the page was really writable, then we change its
2572 protection back to writable */
2573 if ((p
->flags
& PAGE_WRITE_ORG
) && !(p
->flags
& PAGE_WRITE
)) {
2574 host_start
= address
& qemu_host_page_mask
;
2575 host_end
= host_start
+ qemu_host_page_size
;
2578 for (addr
= host_start
; addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2579 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2580 p
->flags
|= PAGE_WRITE
;
2583 /* and since the content will be modified, we must invalidate
2584 the corresponding translated code. */
2585 tb_invalidate_phys_page(addr
, pc
, puc
);
2586 #ifdef DEBUG_TB_CHECK
2587 tb_invalidate_check(addr
);
2590 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2600 static inline void tlb_set_dirty(CPUState
*env
,
2601 unsigned long addr
, target_ulong vaddr
)
2604 #endif /* defined(CONFIG_USER_ONLY) */
2606 #if !defined(CONFIG_USER_ONLY)
2608 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2609 typedef struct subpage_t
{
2610 target_phys_addr_t base
;
2611 ram_addr_t sub_io_index
[TARGET_PAGE_SIZE
];
2612 ram_addr_t region_offset
[TARGET_PAGE_SIZE
];
2615 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2616 ram_addr_t memory
, ram_addr_t region_offset
);
2617 static subpage_t
*subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2618 ram_addr_t orig_memory
,
2619 ram_addr_t region_offset
);
2620 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2623 if (addr > start_addr) \
2626 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2627 if (start_addr2 > 0) \
2631 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2632 end_addr2 = TARGET_PAGE_SIZE - 1; \
2634 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2635 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2640 /* register physical memory.
2641 For RAM, 'size' must be a multiple of the target page size.
2642 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2643 io memory page. The address used when calling the IO function is
2644 the offset from the start of the region, plus region_offset. Both
2645 start_addr and region_offset are rounded down to a page boundary
2646 before calculating this offset. This should not be a problem unless
2647 the low bits of start_addr and region_offset differ. */
2648 void cpu_register_physical_memory_log(target_phys_addr_t start_addr
,
2650 ram_addr_t phys_offset
,
2651 ram_addr_t region_offset
,
2654 target_phys_addr_t addr
, end_addr
;
2657 ram_addr_t orig_size
= size
;
2661 cpu_notify_set_memory(start_addr
, size
, phys_offset
, log_dirty
);
2663 if (phys_offset
== IO_MEM_UNASSIGNED
) {
2664 region_offset
= start_addr
;
2666 region_offset
&= TARGET_PAGE_MASK
;
2667 size
= (size
+ TARGET_PAGE_SIZE
- 1) & TARGET_PAGE_MASK
;
2668 end_addr
= start_addr
+ (target_phys_addr_t
)size
;
2672 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2673 if (p
&& p
->phys_offset
!= IO_MEM_UNASSIGNED
) {
2674 ram_addr_t orig_memory
= p
->phys_offset
;
2675 target_phys_addr_t start_addr2
, end_addr2
;
2676 int need_subpage
= 0;
2678 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
, end_addr2
,
2681 if (!(orig_memory
& IO_MEM_SUBPAGE
)) {
2682 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2683 &p
->phys_offset
, orig_memory
,
2686 subpage
= io_mem_opaque
[(orig_memory
& ~TARGET_PAGE_MASK
)
2689 subpage_register(subpage
, start_addr2
, end_addr2
, phys_offset
,
2691 p
->region_offset
= 0;
2693 p
->phys_offset
= phys_offset
;
2694 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2695 (phys_offset
& IO_MEM_ROMD
))
2696 phys_offset
+= TARGET_PAGE_SIZE
;
2699 p
= phys_page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2700 p
->phys_offset
= phys_offset
;
2701 p
->region_offset
= region_offset
;
2702 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2703 (phys_offset
& IO_MEM_ROMD
)) {
2704 phys_offset
+= TARGET_PAGE_SIZE
;
2706 target_phys_addr_t start_addr2
, end_addr2
;
2707 int need_subpage
= 0;
2709 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
,
2710 end_addr2
, need_subpage
);
2713 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2714 &p
->phys_offset
, IO_MEM_UNASSIGNED
,
2715 addr
& TARGET_PAGE_MASK
);
2716 subpage_register(subpage
, start_addr2
, end_addr2
,
2717 phys_offset
, region_offset
);
2718 p
->region_offset
= 0;
2722 region_offset
+= TARGET_PAGE_SIZE
;
2723 addr
+= TARGET_PAGE_SIZE
;
2724 } while (addr
!= end_addr
);
2726 /* since each CPU stores ram addresses in its TLB cache, we must
2727 reset the modified entries */
2729 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2734 /* XXX: temporary until new memory mapping API */
2735 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
)
2739 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2741 return IO_MEM_UNASSIGNED
;
2742 return p
->phys_offset
;
2745 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2748 kvm_coalesce_mmio_region(addr
, size
);
2751 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2754 kvm_uncoalesce_mmio_region(addr
, size
);
2757 void qemu_flush_coalesced_mmio_buffer(void)
2760 kvm_flush_coalesced_mmio_buffer();
2763 #if defined(__linux__) && !defined(TARGET_S390X)
2765 #include <sys/vfs.h>
2767 #define HUGETLBFS_MAGIC 0x958458f6
2769 static long gethugepagesize(const char *path
)
2775 ret
= statfs(path
, &fs
);
2776 } while (ret
!= 0 && errno
== EINTR
);
2783 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
2784 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
2789 static void *file_ram_alloc(RAMBlock
*block
,
2799 unsigned long hpagesize
;
2801 hpagesize
= gethugepagesize(path
);
2806 if (memory
< hpagesize
) {
2810 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2811 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2815 if (asprintf(&filename
, "%s/qemu_back_mem.XXXXXX", path
) == -1) {
2819 fd
= mkstemp(filename
);
2821 perror("unable to create backing store for hugepages");
2828 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
2831 * ftruncate is not supported by hugetlbfs in older
2832 * hosts, so don't bother bailing out on errors.
2833 * If anything goes wrong with it under other filesystems,
2836 if (ftruncate(fd
, memory
))
2837 perror("ftruncate");
2840 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2841 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2842 * to sidestep this quirk.
2844 flags
= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
: MAP_PRIVATE
;
2845 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, flags
, fd
, 0);
2847 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
2849 if (area
== MAP_FAILED
) {
2850 perror("file_ram_alloc: can't mmap RAM pages");
2859 static ram_addr_t
find_ram_offset(ram_addr_t size
)
2861 RAMBlock
*block
, *next_block
;
2862 ram_addr_t offset
= 0, mingap
= ULONG_MAX
;
2864 if (QLIST_EMPTY(&ram_list
.blocks
))
2867 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2868 ram_addr_t end
, next
= ULONG_MAX
;
2870 end
= block
->offset
+ block
->length
;
2872 QLIST_FOREACH(next_block
, &ram_list
.blocks
, next
) {
2873 if (next_block
->offset
>= end
) {
2874 next
= MIN(next
, next_block
->offset
);
2877 if (next
- end
>= size
&& next
- end
< mingap
) {
2879 mingap
= next
- end
;
2885 static ram_addr_t
last_ram_offset(void)
2888 ram_addr_t last
= 0;
2890 QLIST_FOREACH(block
, &ram_list
.blocks
, next
)
2891 last
= MAX(last
, block
->offset
+ block
->length
);
2896 ram_addr_t
qemu_ram_alloc_from_ptr(DeviceState
*dev
, const char *name
,
2897 ram_addr_t size
, void *host
)
2899 RAMBlock
*new_block
, *block
;
2901 size
= TARGET_PAGE_ALIGN(size
);
2902 new_block
= qemu_mallocz(sizeof(*new_block
));
2904 if (dev
&& dev
->parent_bus
&& dev
->parent_bus
->info
->get_dev_path
) {
2905 char *id
= dev
->parent_bus
->info
->get_dev_path(dev
);
2907 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
2911 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
2913 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2914 if (!strcmp(block
->idstr
, new_block
->idstr
)) {
2915 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
2921 new_block
->offset
= find_ram_offset(size
);
2923 new_block
->host
= host
;
2924 new_block
->flags
|= RAM_PREALLOC_MASK
;
2927 #if defined (__linux__) && !defined(TARGET_S390X)
2928 new_block
->host
= file_ram_alloc(new_block
, size
, mem_path
);
2929 if (!new_block
->host
) {
2930 new_block
->host
= qemu_vmalloc(size
);
2931 qemu_madvise(new_block
->host
, size
, QEMU_MADV_MERGEABLE
);
2934 fprintf(stderr
, "-mem-path option unsupported\n");
2938 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2939 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2940 an system defined value, which is at least 256GB. Larger systems
2941 have larger values. We put the guest between the end of data
2942 segment (system break) and this value. We use 32GB as a base to
2943 have enough room for the system break to grow. */
2944 new_block
->host
= mmap((void*)0x800000000, size
,
2945 PROT_EXEC
|PROT_READ
|PROT_WRITE
,
2946 MAP_SHARED
| MAP_ANONYMOUS
| MAP_FIXED
, -1, 0);
2947 if (new_block
->host
== MAP_FAILED
) {
2948 fprintf(stderr
, "Allocating RAM failed\n");
2952 if (xen_mapcache_enabled()) {
2953 xen_ram_alloc(new_block
->offset
, size
);
2955 new_block
->host
= qemu_vmalloc(size
);
2958 qemu_madvise(new_block
->host
, size
, QEMU_MADV_MERGEABLE
);
2961 new_block
->length
= size
;
2963 QLIST_INSERT_HEAD(&ram_list
.blocks
, new_block
, next
);
2965 ram_list
.phys_dirty
= qemu_realloc(ram_list
.phys_dirty
,
2966 last_ram_offset() >> TARGET_PAGE_BITS
);
2967 memset(ram_list
.phys_dirty
+ (new_block
->offset
>> TARGET_PAGE_BITS
),
2968 0xff, size
>> TARGET_PAGE_BITS
);
2971 kvm_setup_guest_memory(new_block
->host
, size
);
2973 return new_block
->offset
;
2976 ram_addr_t
qemu_ram_alloc(DeviceState
*dev
, const char *name
, ram_addr_t size
)
2978 return qemu_ram_alloc_from_ptr(dev
, name
, size
, NULL
);
2981 void qemu_ram_free_from_ptr(ram_addr_t addr
)
2985 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2986 if (addr
== block
->offset
) {
2987 QLIST_REMOVE(block
, next
);
2994 void qemu_ram_free(ram_addr_t addr
)
2998 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2999 if (addr
== block
->offset
) {
3000 QLIST_REMOVE(block
, next
);
3001 if (block
->flags
& RAM_PREALLOC_MASK
) {
3003 } else if (mem_path
) {
3004 #if defined (__linux__) && !defined(TARGET_S390X)
3006 munmap(block
->host
, block
->length
);
3009 qemu_vfree(block
->host
);
3015 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3016 munmap(block
->host
, block
->length
);
3018 if (xen_mapcache_enabled()) {
3019 qemu_invalidate_entry(block
->host
);
3021 qemu_vfree(block
->host
);
3033 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
3040 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3041 offset
= addr
- block
->offset
;
3042 if (offset
< block
->length
) {
3043 vaddr
= block
->host
+ offset
;
3044 if (block
->flags
& RAM_PREALLOC_MASK
) {
3048 munmap(vaddr
, length
);
3050 #if defined(__linux__) && !defined(TARGET_S390X)
3053 flags
|= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
:
3056 flags
|= MAP_PRIVATE
;
3058 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
3059 flags
, block
->fd
, offset
);
3061 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
3062 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
3069 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3070 flags
|= MAP_SHARED
| MAP_ANONYMOUS
;
3071 area
= mmap(vaddr
, length
, PROT_EXEC
|PROT_READ
|PROT_WRITE
,
3074 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
3075 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
3079 if (area
!= vaddr
) {
3080 fprintf(stderr
, "Could not remap addr: %lx@%lx\n",
3084 qemu_madvise(vaddr
, length
, QEMU_MADV_MERGEABLE
);
3090 #endif /* !_WIN32 */
3092 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3093 With the exception of the softmmu code in this file, this should
3094 only be used for local memory (e.g. video ram) that the device owns,
3095 and knows it isn't going to access beyond the end of the block.
3097 It should not be used for general purpose DMA.
3098 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3100 void *qemu_get_ram_ptr(ram_addr_t addr
)
3104 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3105 if (addr
- block
->offset
< block
->length
) {
3106 /* Move this entry to to start of the list. */
3107 if (block
!= QLIST_FIRST(&ram_list
.blocks
)) {
3108 QLIST_REMOVE(block
, next
);
3109 QLIST_INSERT_HEAD(&ram_list
.blocks
, block
, next
);
3111 if (xen_mapcache_enabled()) {
3112 /* We need to check if the requested address is in the RAM
3113 * because we don't want to map the entire memory in QEMU.
3114 * In that case just map until the end of the page.
3116 if (block
->offset
== 0) {
3117 return qemu_map_cache(addr
, 0, 0);
3118 } else if (block
->host
== NULL
) {
3119 block
->host
= qemu_map_cache(block
->offset
, block
->length
, 1);
3122 return block
->host
+ (addr
- block
->offset
);
3126 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
3132 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3133 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3135 void *qemu_safe_ram_ptr(ram_addr_t addr
)
3139 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3140 if (addr
- block
->offset
< block
->length
) {
3141 if (xen_mapcache_enabled()) {
3142 /* We need to check if the requested address is in the RAM
3143 * because we don't want to map the entire memory in QEMU.
3144 * In that case just map until the end of the page.
3146 if (block
->offset
== 0) {
3147 return qemu_map_cache(addr
, 0, 0);
3148 } else if (block
->host
== NULL
) {
3149 block
->host
= qemu_map_cache(block
->offset
, block
->length
, 1);
3152 return block
->host
+ (addr
- block
->offset
);
3156 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
3162 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3163 * but takes a size argument */
3164 void *qemu_ram_ptr_length(target_phys_addr_t addr
, target_phys_addr_t
*size
)
3166 if (xen_mapcache_enabled())
3167 return qemu_map_cache(addr
, *size
, 1);
3171 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3172 if (addr
- block
->offset
< block
->length
) {
3173 if (addr
- block
->offset
+ *size
> block
->length
)
3174 *size
= block
->length
- addr
+ block
->offset
;
3175 return block
->host
+ (addr
- block
->offset
);
3179 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
3187 void qemu_put_ram_ptr(void *addr
)
3189 trace_qemu_put_ram_ptr(addr
);
3192 int qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
3195 uint8_t *host
= ptr
;
3197 if (xen_mapcache_enabled()) {
3198 *ram_addr
= qemu_ram_addr_from_mapcache(ptr
);
3202 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3203 /* This case append when the block is not mapped. */
3204 if (block
->host
== NULL
) {
3207 if (host
- block
->host
< block
->length
) {
3208 *ram_addr
= block
->offset
+ (host
- block
->host
);
3216 /* Some of the softmmu routines need to translate from a host pointer
3217 (typically a TLB entry) back to a ram offset. */
3218 ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
)
3220 ram_addr_t ram_addr
;
3222 if (qemu_ram_addr_from_host(ptr
, &ram_addr
)) {
3223 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
3229 static uint32_t unassigned_mem_readb(void *opaque
, target_phys_addr_t addr
)
3231 #ifdef DEBUG_UNASSIGNED
3232 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
3234 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3235 do_unassigned_access(addr
, 0, 0, 0, 1);
3240 static uint32_t unassigned_mem_readw(void *opaque
, target_phys_addr_t addr
)
3242 #ifdef DEBUG_UNASSIGNED
3243 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
3245 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3246 do_unassigned_access(addr
, 0, 0, 0, 2);
3251 static uint32_t unassigned_mem_readl(void *opaque
, target_phys_addr_t addr
)
3253 #ifdef DEBUG_UNASSIGNED
3254 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
3256 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3257 do_unassigned_access(addr
, 0, 0, 0, 4);
3262 static void unassigned_mem_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
3264 #ifdef DEBUG_UNASSIGNED
3265 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
3267 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3268 do_unassigned_access(addr
, 1, 0, 0, 1);
3272 static void unassigned_mem_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
3274 #ifdef DEBUG_UNASSIGNED
3275 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
3277 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3278 do_unassigned_access(addr
, 1, 0, 0, 2);
3282 static void unassigned_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
3284 #ifdef DEBUG_UNASSIGNED
3285 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
3287 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3288 do_unassigned_access(addr
, 1, 0, 0, 4);
3292 static CPUReadMemoryFunc
* const unassigned_mem_read
[3] = {
3293 unassigned_mem_readb
,
3294 unassigned_mem_readw
,
3295 unassigned_mem_readl
,
3298 static CPUWriteMemoryFunc
* const unassigned_mem_write
[3] = {
3299 unassigned_mem_writeb
,
3300 unassigned_mem_writew
,
3301 unassigned_mem_writel
,
3304 static void notdirty_mem_writeb(void *opaque
, target_phys_addr_t ram_addr
,
3308 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3309 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
3310 #if !defined(CONFIG_USER_ONLY)
3311 tb_invalidate_phys_page_fast(ram_addr
, 1);
3312 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3315 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
3316 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
3317 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
3318 /* we remove the notdirty callback only if the code has been
3320 if (dirty_flags
== 0xff)
3321 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3324 static void notdirty_mem_writew(void *opaque
, target_phys_addr_t ram_addr
,
3328 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3329 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
3330 #if !defined(CONFIG_USER_ONLY)
3331 tb_invalidate_phys_page_fast(ram_addr
, 2);
3332 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3335 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
3336 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
3337 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
3338 /* we remove the notdirty callback only if the code has been
3340 if (dirty_flags
== 0xff)
3341 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3344 static void notdirty_mem_writel(void *opaque
, target_phys_addr_t ram_addr
,
3348 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3349 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
3350 #if !defined(CONFIG_USER_ONLY)
3351 tb_invalidate_phys_page_fast(ram_addr
, 4);
3352 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3355 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
3356 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
3357 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
3358 /* we remove the notdirty callback only if the code has been
3360 if (dirty_flags
== 0xff)
3361 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3364 static CPUReadMemoryFunc
* const error_mem_read
[3] = {
3365 NULL
, /* never used */
3366 NULL
, /* never used */
3367 NULL
, /* never used */
3370 static CPUWriteMemoryFunc
* const notdirty_mem_write
[3] = {
3371 notdirty_mem_writeb
,
3372 notdirty_mem_writew
,
3373 notdirty_mem_writel
,
3376 /* Generate a debug exception if a watchpoint has been hit. */
3377 static void check_watchpoint(int offset
, int len_mask
, int flags
)
3379 CPUState
*env
= cpu_single_env
;
3380 target_ulong pc
, cs_base
;
3381 TranslationBlock
*tb
;
3386 if (env
->watchpoint_hit
) {
3387 /* We re-entered the check after replacing the TB. Now raise
3388 * the debug interrupt so that is will trigger after the
3389 * current instruction. */
3390 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
3393 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
3394 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
3395 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
3396 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
3397 wp
->flags
|= BP_WATCHPOINT_HIT
;
3398 if (!env
->watchpoint_hit
) {
3399 env
->watchpoint_hit
= wp
;
3400 tb
= tb_find_pc(env
->mem_io_pc
);
3402 cpu_abort(env
, "check_watchpoint: could not find TB for "
3403 "pc=%p", (void *)env
->mem_io_pc
);
3405 cpu_restore_state(tb
, env
, env
->mem_io_pc
);
3406 tb_phys_invalidate(tb
, -1);
3407 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
3408 env
->exception_index
= EXCP_DEBUG
;
3410 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
3411 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
3413 cpu_resume_from_signal(env
, NULL
);
3416 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
3421 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3422 so these check for a hit then pass through to the normal out-of-line
3424 static uint32_t watch_mem_readb(void *opaque
, target_phys_addr_t addr
)
3426 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_READ
);
3427 return ldub_phys(addr
);
3430 static uint32_t watch_mem_readw(void *opaque
, target_phys_addr_t addr
)
3432 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_READ
);
3433 return lduw_phys(addr
);
3436 static uint32_t watch_mem_readl(void *opaque
, target_phys_addr_t addr
)
3438 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_READ
);
3439 return ldl_phys(addr
);
3442 static void watch_mem_writeb(void *opaque
, target_phys_addr_t addr
,
3445 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_WRITE
);
3446 stb_phys(addr
, val
);
3449 static void watch_mem_writew(void *opaque
, target_phys_addr_t addr
,
3452 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_WRITE
);
3453 stw_phys(addr
, val
);
3456 static void watch_mem_writel(void *opaque
, target_phys_addr_t addr
,
3459 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_WRITE
);
3460 stl_phys(addr
, val
);
3463 static CPUReadMemoryFunc
* const watch_mem_read
[3] = {
3469 static CPUWriteMemoryFunc
* const watch_mem_write
[3] = {
3475 static inline uint32_t subpage_readlen (subpage_t
*mmio
,
3476 target_phys_addr_t addr
,
3479 unsigned int idx
= SUBPAGE_IDX(addr
);
3480 #if defined(DEBUG_SUBPAGE)
3481 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
3482 mmio
, len
, addr
, idx
);
3485 addr
+= mmio
->region_offset
[idx
];
3486 idx
= mmio
->sub_io_index
[idx
];
3487 return io_mem_read
[idx
][len
](io_mem_opaque
[idx
], addr
);
3490 static inline void subpage_writelen (subpage_t
*mmio
, target_phys_addr_t addr
,
3491 uint32_t value
, unsigned int len
)
3493 unsigned int idx
= SUBPAGE_IDX(addr
);
3494 #if defined(DEBUG_SUBPAGE)
3495 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %08x\n",
3496 __func__
, mmio
, len
, addr
, idx
, value
);
3499 addr
+= mmio
->region_offset
[idx
];
3500 idx
= mmio
->sub_io_index
[idx
];
3501 io_mem_write
[idx
][len
](io_mem_opaque
[idx
], addr
, value
);
3504 static uint32_t subpage_readb (void *opaque
, target_phys_addr_t addr
)
3506 return subpage_readlen(opaque
, addr
, 0);
3509 static void subpage_writeb (void *opaque
, target_phys_addr_t addr
,
3512 subpage_writelen(opaque
, addr
, value
, 0);
3515 static uint32_t subpage_readw (void *opaque
, target_phys_addr_t addr
)
3517 return subpage_readlen(opaque
, addr
, 1);
3520 static void subpage_writew (void *opaque
, target_phys_addr_t addr
,
3523 subpage_writelen(opaque
, addr
, value
, 1);
3526 static uint32_t subpage_readl (void *opaque
, target_phys_addr_t addr
)
3528 return subpage_readlen(opaque
, addr
, 2);
3531 static void subpage_writel (void *opaque
, target_phys_addr_t addr
,
3534 subpage_writelen(opaque
, addr
, value
, 2);
3537 static CPUReadMemoryFunc
* const subpage_read
[] = {
3543 static CPUWriteMemoryFunc
* const subpage_write
[] = {
3549 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
3550 ram_addr_t memory
, ram_addr_t region_offset
)
3554 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
3556 idx
= SUBPAGE_IDX(start
);
3557 eidx
= SUBPAGE_IDX(end
);
3558 #if defined(DEBUG_SUBPAGE)
3559 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
3560 mmio
, start
, end
, idx
, eidx
, memory
);
3562 if ((memory
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
3563 memory
= IO_MEM_UNASSIGNED
;
3564 memory
= (memory
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3565 for (; idx
<= eidx
; idx
++) {
3566 mmio
->sub_io_index
[idx
] = memory
;
3567 mmio
->region_offset
[idx
] = region_offset
;
3573 static subpage_t
*subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
3574 ram_addr_t orig_memory
,
3575 ram_addr_t region_offset
)
3580 mmio
= qemu_mallocz(sizeof(subpage_t
));
3583 subpage_memory
= cpu_register_io_memory(subpage_read
, subpage_write
, mmio
,
3584 DEVICE_NATIVE_ENDIAN
);
3585 #if defined(DEBUG_SUBPAGE)
3586 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
3587 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
3589 *phys
= subpage_memory
| IO_MEM_SUBPAGE
;
3590 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, orig_memory
, region_offset
);
3595 static int get_free_io_mem_idx(void)
3599 for (i
= 0; i
<IO_MEM_NB_ENTRIES
; i
++)
3600 if (!io_mem_used
[i
]) {
3604 fprintf(stderr
, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES
);
3609 * Usually, devices operate in little endian mode. There are devices out
3610 * there that operate in big endian too. Each device gets byte swapped
3611 * mmio if plugged onto a CPU that does the other endianness.
3621 typedef struct SwapEndianContainer
{
3622 CPUReadMemoryFunc
*read
[3];
3623 CPUWriteMemoryFunc
*write
[3];
3625 } SwapEndianContainer
;
3627 static uint32_t swapendian_mem_readb (void *opaque
, target_phys_addr_t addr
)
3630 SwapEndianContainer
*c
= opaque
;
3631 val
= c
->read
[0](c
->opaque
, addr
);
3635 static uint32_t swapendian_mem_readw(void *opaque
, target_phys_addr_t addr
)
3638 SwapEndianContainer
*c
= opaque
;
3639 val
= bswap16(c
->read
[1](c
->opaque
, addr
));
3643 static uint32_t swapendian_mem_readl(void *opaque
, target_phys_addr_t addr
)
3646 SwapEndianContainer
*c
= opaque
;
3647 val
= bswap32(c
->read
[2](c
->opaque
, addr
));
3651 static CPUReadMemoryFunc
* const swapendian_readfn
[3]={
3652 swapendian_mem_readb
,
3653 swapendian_mem_readw
,
3654 swapendian_mem_readl
3657 static void swapendian_mem_writeb(void *opaque
, target_phys_addr_t addr
,
3660 SwapEndianContainer
*c
= opaque
;
3661 c
->write
[0](c
->opaque
, addr
, val
);
3664 static void swapendian_mem_writew(void *opaque
, target_phys_addr_t addr
,
3667 SwapEndianContainer
*c
= opaque
;
3668 c
->write
[1](c
->opaque
, addr
, bswap16(val
));
3671 static void swapendian_mem_writel(void *opaque
, target_phys_addr_t addr
,
3674 SwapEndianContainer
*c
= opaque
;
3675 c
->write
[2](c
->opaque
, addr
, bswap32(val
));
3678 static CPUWriteMemoryFunc
* const swapendian_writefn
[3]={
3679 swapendian_mem_writeb
,
3680 swapendian_mem_writew
,
3681 swapendian_mem_writel
3684 static void swapendian_init(int io_index
)
3686 SwapEndianContainer
*c
= qemu_malloc(sizeof(SwapEndianContainer
));
3689 /* Swap mmio for big endian targets */
3690 c
->opaque
= io_mem_opaque
[io_index
];
3691 for (i
= 0; i
< 3; i
++) {
3692 c
->read
[i
] = io_mem_read
[io_index
][i
];
3693 c
->write
[i
] = io_mem_write
[io_index
][i
];
3695 io_mem_read
[io_index
][i
] = swapendian_readfn
[i
];
3696 io_mem_write
[io_index
][i
] = swapendian_writefn
[i
];
3698 io_mem_opaque
[io_index
] = c
;
3701 static void swapendian_del(int io_index
)
3703 if (io_mem_read
[io_index
][0] == swapendian_readfn
[0]) {
3704 qemu_free(io_mem_opaque
[io_index
]);
3708 /* mem_read and mem_write are arrays of functions containing the
3709 function to access byte (index 0), word (index 1) and dword (index
3710 2). Functions can be omitted with a NULL function pointer.
3711 If io_index is non zero, the corresponding io zone is
3712 modified. If it is zero, a new io zone is allocated. The return
3713 value can be used with cpu_register_physical_memory(). (-1) is
3714 returned if error. */
3715 static int cpu_register_io_memory_fixed(int io_index
,
3716 CPUReadMemoryFunc
* const *mem_read
,
3717 CPUWriteMemoryFunc
* const *mem_write
,
3718 void *opaque
, enum device_endian endian
)
3722 if (io_index
<= 0) {
3723 io_index
= get_free_io_mem_idx();
3727 io_index
>>= IO_MEM_SHIFT
;
3728 if (io_index
>= IO_MEM_NB_ENTRIES
)
3732 for (i
= 0; i
< 3; ++i
) {
3733 io_mem_read
[io_index
][i
]
3734 = (mem_read
[i
] ? mem_read
[i
] : unassigned_mem_read
[i
]);
3736 for (i
= 0; i
< 3; ++i
) {
3737 io_mem_write
[io_index
][i
]
3738 = (mem_write
[i
] ? mem_write
[i
] : unassigned_mem_write
[i
]);
3740 io_mem_opaque
[io_index
] = opaque
;
3743 case DEVICE_BIG_ENDIAN
:
3744 #ifndef TARGET_WORDS_BIGENDIAN
3745 swapendian_init(io_index
);
3748 case DEVICE_LITTLE_ENDIAN
:
3749 #ifdef TARGET_WORDS_BIGENDIAN
3750 swapendian_init(io_index
);
3753 case DEVICE_NATIVE_ENDIAN
:
3758 return (io_index
<< IO_MEM_SHIFT
);
3761 int cpu_register_io_memory(CPUReadMemoryFunc
* const *mem_read
,
3762 CPUWriteMemoryFunc
* const *mem_write
,
3763 void *opaque
, enum device_endian endian
)
3765 return cpu_register_io_memory_fixed(0, mem_read
, mem_write
, opaque
, endian
);
3768 void cpu_unregister_io_memory(int io_table_address
)
3771 int io_index
= io_table_address
>> IO_MEM_SHIFT
;
3773 swapendian_del(io_index
);
3775 for (i
=0;i
< 3; i
++) {
3776 io_mem_read
[io_index
][i
] = unassigned_mem_read
[i
];
3777 io_mem_write
[io_index
][i
] = unassigned_mem_write
[i
];
3779 io_mem_opaque
[io_index
] = NULL
;
3780 io_mem_used
[io_index
] = 0;
3783 static void io_mem_init(void)
3787 cpu_register_io_memory_fixed(IO_MEM_ROM
, error_mem_read
,
3788 unassigned_mem_write
, NULL
,
3789 DEVICE_NATIVE_ENDIAN
);
3790 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED
, unassigned_mem_read
,
3791 unassigned_mem_write
, NULL
,
3792 DEVICE_NATIVE_ENDIAN
);
3793 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY
, error_mem_read
,
3794 notdirty_mem_write
, NULL
,
3795 DEVICE_NATIVE_ENDIAN
);
3799 io_mem_watch
= cpu_register_io_memory(watch_mem_read
,
3800 watch_mem_write
, NULL
,
3801 DEVICE_NATIVE_ENDIAN
);
3804 #endif /* !defined(CONFIG_USER_ONLY) */
3806 /* physical memory access (slow version, mainly for debug) */
3807 #if defined(CONFIG_USER_ONLY)
3808 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3809 uint8_t *buf
, int len
, int is_write
)
3816 page
= addr
& TARGET_PAGE_MASK
;
3817 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3820 flags
= page_get_flags(page
);
3821 if (!(flags
& PAGE_VALID
))
3824 if (!(flags
& PAGE_WRITE
))
3826 /* XXX: this code should not depend on lock_user */
3827 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3830 unlock_user(p
, addr
, l
);
3832 if (!(flags
& PAGE_READ
))
3834 /* XXX: this code should not depend on lock_user */
3835 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3838 unlock_user(p
, addr
, 0);
3848 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
3849 int len
, int is_write
)
3854 target_phys_addr_t page
;
3859 page
= addr
& TARGET_PAGE_MASK
;
3860 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3863 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3865 pd
= IO_MEM_UNASSIGNED
;
3867 pd
= p
->phys_offset
;
3871 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3872 target_phys_addr_t addr1
= addr
;
3873 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3875 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3876 /* XXX: could force cpu_single_env to NULL to avoid
3878 if (l
>= 4 && ((addr1
& 3) == 0)) {
3879 /* 32 bit write access */
3881 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr1
, val
);
3883 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3884 /* 16 bit write access */
3886 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr1
, val
);
3889 /* 8 bit write access */
3891 io_mem_write
[io_index
][0](io_mem_opaque
[io_index
], addr1
, val
);
3895 unsigned long addr1
;
3896 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3898 ptr
= qemu_get_ram_ptr(addr1
);
3899 memcpy(ptr
, buf
, l
);
3900 if (!cpu_physical_memory_is_dirty(addr1
)) {
3901 /* invalidate code */
3902 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3904 cpu_physical_memory_set_dirty_flags(
3905 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
3907 qemu_put_ram_ptr(ptr
);
3910 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3911 !(pd
& IO_MEM_ROMD
)) {
3912 target_phys_addr_t addr1
= addr
;
3914 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3916 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3917 if (l
>= 4 && ((addr1
& 3) == 0)) {
3918 /* 32 bit read access */
3919 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr1
);
3922 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3923 /* 16 bit read access */
3924 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr1
);
3928 /* 8 bit read access */
3929 val
= io_mem_read
[io_index
][0](io_mem_opaque
[io_index
], addr1
);
3935 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
);
3936 memcpy(buf
, ptr
+ (addr
& ~TARGET_PAGE_MASK
), l
);
3937 qemu_put_ram_ptr(ptr
);
3946 /* used for ROM loading : can write in RAM and ROM */
3947 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
3948 const uint8_t *buf
, int len
)
3952 target_phys_addr_t page
;
3957 page
= addr
& TARGET_PAGE_MASK
;
3958 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3961 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3963 pd
= IO_MEM_UNASSIGNED
;
3965 pd
= p
->phys_offset
;
3968 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
&&
3969 (pd
& ~TARGET_PAGE_MASK
) != IO_MEM_ROM
&&
3970 !(pd
& IO_MEM_ROMD
)) {
3973 unsigned long addr1
;
3974 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3976 ptr
= qemu_get_ram_ptr(addr1
);
3977 memcpy(ptr
, buf
, l
);
3978 qemu_put_ram_ptr(ptr
);
3988 target_phys_addr_t addr
;
3989 target_phys_addr_t len
;
3992 static BounceBuffer bounce
;
3994 typedef struct MapClient
{
3996 void (*callback
)(void *opaque
);
3997 QLIST_ENTRY(MapClient
) link
;
4000 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
4001 = QLIST_HEAD_INITIALIZER(map_client_list
);
4003 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
4005 MapClient
*client
= qemu_malloc(sizeof(*client
));
4007 client
->opaque
= opaque
;
4008 client
->callback
= callback
;
4009 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
4013 void cpu_unregister_map_client(void *_client
)
4015 MapClient
*client
= (MapClient
*)_client
;
4017 QLIST_REMOVE(client
, link
);
4021 static void cpu_notify_map_clients(void)
4025 while (!QLIST_EMPTY(&map_client_list
)) {
4026 client
= QLIST_FIRST(&map_client_list
);
4027 client
->callback(client
->opaque
);
4028 cpu_unregister_map_client(client
);
4032 /* Map a physical memory region into a host virtual address.
4033 * May map a subset of the requested range, given by and returned in *plen.
4034 * May return NULL if resources needed to perform the mapping are exhausted.
4035 * Use only for reads OR writes - not for read-modify-write operations.
4036 * Use cpu_register_map_client() to know when retrying the map operation is
4037 * likely to succeed.
4039 void *cpu_physical_memory_map(target_phys_addr_t addr
,
4040 target_phys_addr_t
*plen
,
4043 target_phys_addr_t len
= *plen
;
4044 target_phys_addr_t todo
= 0;
4046 target_phys_addr_t page
;
4049 target_phys_addr_t addr1
= addr
;
4052 page
= addr
& TARGET_PAGE_MASK
;
4053 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
4056 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
4058 pd
= IO_MEM_UNASSIGNED
;
4060 pd
= p
->phys_offset
;
4063 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4064 if (todo
|| bounce
.buffer
) {
4067 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
4071 cpu_physical_memory_read(addr
, bounce
.buffer
, l
);
4075 return bounce
.buffer
;
4083 return qemu_ram_ptr_length(addr1
, plen
);
4086 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4087 * Will also mark the memory as dirty if is_write == 1. access_len gives
4088 * the amount of memory that was actually read or written by the caller.
4090 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
4091 int is_write
, target_phys_addr_t access_len
)
4093 if (buffer
!= bounce
.buffer
) {
4095 ram_addr_t addr1
= qemu_ram_addr_from_host_nofail(buffer
);
4096 while (access_len
) {
4098 l
= TARGET_PAGE_SIZE
;
4101 if (!cpu_physical_memory_is_dirty(addr1
)) {
4102 /* invalidate code */
4103 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
4105 cpu_physical_memory_set_dirty_flags(
4106 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
4112 if (xen_mapcache_enabled()) {
4113 qemu_invalidate_entry(buffer
);
4118 cpu_physical_memory_write(bounce
.addr
, bounce
.buffer
, access_len
);
4120 qemu_vfree(bounce
.buffer
);
4121 bounce
.buffer
= NULL
;
4122 cpu_notify_map_clients();
4125 /* warning: addr must be aligned */
4126 uint32_t ldl_phys(target_phys_addr_t addr
)
4134 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4136 pd
= IO_MEM_UNASSIGNED
;
4138 pd
= p
->phys_offset
;
4141 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
4142 !(pd
& IO_MEM_ROMD
)) {
4144 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4146 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4147 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
4150 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
4151 (addr
& ~TARGET_PAGE_MASK
);
4157 /* warning: addr must be aligned */
4158 uint64_t ldq_phys(target_phys_addr_t addr
)
4166 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4168 pd
= IO_MEM_UNASSIGNED
;
4170 pd
= p
->phys_offset
;
4173 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
4174 !(pd
& IO_MEM_ROMD
)) {
4176 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4178 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4179 #ifdef TARGET_WORDS_BIGENDIAN
4180 val
= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
) << 32;
4181 val
|= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4);
4183 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
4184 val
|= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4) << 32;
4188 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
4189 (addr
& ~TARGET_PAGE_MASK
);
4196 uint32_t ldub_phys(target_phys_addr_t addr
)
4199 cpu_physical_memory_read(addr
, &val
, 1);
4203 /* warning: addr must be aligned */
4204 uint32_t lduw_phys(target_phys_addr_t addr
)
4212 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4214 pd
= IO_MEM_UNASSIGNED
;
4216 pd
= p
->phys_offset
;
4219 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
4220 !(pd
& IO_MEM_ROMD
)) {
4222 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4224 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4225 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr
);
4228 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
4229 (addr
& ~TARGET_PAGE_MASK
);
4235 /* warning: addr must be aligned. The ram page is not masked as dirty
4236 and the code inside is not invalidated. It is useful if the dirty
4237 bits are used to track modified PTEs */
4238 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
4245 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4247 pd
= IO_MEM_UNASSIGNED
;
4249 pd
= p
->phys_offset
;
4252 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4253 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4255 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4256 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
4258 unsigned long addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
4259 ptr
= qemu_get_ram_ptr(addr1
);
4262 if (unlikely(in_migration
)) {
4263 if (!cpu_physical_memory_is_dirty(addr1
)) {
4264 /* invalidate code */
4265 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
4267 cpu_physical_memory_set_dirty_flags(
4268 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
4274 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
4281 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4283 pd
= IO_MEM_UNASSIGNED
;
4285 pd
= p
->phys_offset
;
4288 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4289 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4291 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4292 #ifdef TARGET_WORDS_BIGENDIAN
4293 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
>> 32);
4294 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
);
4296 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
4297 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
>> 32);
4300 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
4301 (addr
& ~TARGET_PAGE_MASK
);
4306 /* warning: addr must be aligned */
4307 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
4314 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4316 pd
= IO_MEM_UNASSIGNED
;
4318 pd
= p
->phys_offset
;
4321 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4322 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4324 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4325 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
4327 unsigned long addr1
;
4328 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
4330 ptr
= qemu_get_ram_ptr(addr1
);
4332 if (!cpu_physical_memory_is_dirty(addr1
)) {
4333 /* invalidate code */
4334 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
4336 cpu_physical_memory_set_dirty_flags(addr1
,
4337 (0xff & ~CODE_DIRTY_FLAG
));
4343 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
4346 cpu_physical_memory_write(addr
, &v
, 1);
4349 /* warning: addr must be aligned */
4350 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
4357 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4359 pd
= IO_MEM_UNASSIGNED
;
4361 pd
= p
->phys_offset
;
4364 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4365 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4367 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4368 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr
, val
);
4370 unsigned long addr1
;
4371 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
4373 ptr
= qemu_get_ram_ptr(addr1
);
4375 if (!cpu_physical_memory_is_dirty(addr1
)) {
4376 /* invalidate code */
4377 tb_invalidate_phys_page_range(addr1
, addr1
+ 2, 0);
4379 cpu_physical_memory_set_dirty_flags(addr1
,
4380 (0xff & ~CODE_DIRTY_FLAG
));
4386 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
4389 cpu_physical_memory_write(addr
, &val
, 8);
4392 /* virtual memory access for debug (includes writing to ROM) */
4393 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
4394 uint8_t *buf
, int len
, int is_write
)
4397 target_phys_addr_t phys_addr
;
4401 page
= addr
& TARGET_PAGE_MASK
;
4402 phys_addr
= cpu_get_phys_page_debug(env
, page
);
4403 /* if no physical page mapped, return an error */
4404 if (phys_addr
== -1)
4406 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
4409 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
4411 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
4413 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
4422 /* in deterministic execution mode, instructions doing device I/Os
4423 must be at the end of the TB */
4424 void cpu_io_recompile(CPUState
*env
, void *retaddr
)
4426 TranslationBlock
*tb
;
4428 target_ulong pc
, cs_base
;
4431 tb
= tb_find_pc((unsigned long)retaddr
);
4433 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
4436 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
4437 cpu_restore_state(tb
, env
, (unsigned long)retaddr
);
4438 /* Calculate how many instructions had been executed before the fault
4440 n
= n
- env
->icount_decr
.u16
.low
;
4441 /* Generate a new TB ending on the I/O insn. */
4443 /* On MIPS and SH, delay slot instructions can only be restarted if
4444 they were already the first instruction in the TB. If this is not
4445 the first instruction in a TB then re-execute the preceding
4447 #if defined(TARGET_MIPS)
4448 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
4449 env
->active_tc
.PC
-= 4;
4450 env
->icount_decr
.u16
.low
++;
4451 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
4453 #elif defined(TARGET_SH4)
4454 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
4457 env
->icount_decr
.u16
.low
++;
4458 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
4461 /* This should never happen. */
4462 if (n
> CF_COUNT_MASK
)
4463 cpu_abort(env
, "TB too big during recompile");
4465 cflags
= n
| CF_LAST_IO
;
4467 cs_base
= tb
->cs_base
;
4469 tb_phys_invalidate(tb
, -1);
4470 /* FIXME: In theory this could raise an exception. In practice
4471 we have already translated the block once so it's probably ok. */
4472 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
4473 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4474 the first in the TB) then we end up generating a whole new TB and
4475 repeating the fault, which is horribly inefficient.
4476 Better would be to execute just this insn uncached, or generate a
4478 cpu_resume_from_signal(env
, NULL
);
4481 #if !defined(CONFIG_USER_ONLY)
4483 void dump_exec_info(FILE *f
, fprintf_function cpu_fprintf
)
4485 int i
, target_code_size
, max_target_code_size
;
4486 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
4487 TranslationBlock
*tb
;
4489 target_code_size
= 0;
4490 max_target_code_size
= 0;
4492 direct_jmp_count
= 0;
4493 direct_jmp2_count
= 0;
4494 for(i
= 0; i
< nb_tbs
; i
++) {
4496 target_code_size
+= tb
->size
;
4497 if (tb
->size
> max_target_code_size
)
4498 max_target_code_size
= tb
->size
;
4499 if (tb
->page_addr
[1] != -1)
4501 if (tb
->tb_next_offset
[0] != 0xffff) {
4503 if (tb
->tb_next_offset
[1] != 0xffff) {
4504 direct_jmp2_count
++;
4508 /* XXX: avoid using doubles ? */
4509 cpu_fprintf(f
, "Translation buffer state:\n");
4510 cpu_fprintf(f
, "gen code size %td/%ld\n",
4511 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
4512 cpu_fprintf(f
, "TB count %d/%d\n",
4513 nb_tbs
, code_gen_max_blocks
);
4514 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
4515 nb_tbs
? target_code_size
/ nb_tbs
: 0,
4516 max_target_code_size
);
4517 cpu_fprintf(f
, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4518 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
4519 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
4520 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
4522 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
4523 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4525 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
4527 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
4528 cpu_fprintf(f
, "\nStatistics:\n");
4529 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
4530 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
4531 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
4532 tcg_dump_info(f
, cpu_fprintf
);
4535 #define MMUSUFFIX _cmmu
4536 #define GETPC() NULL
4537 #define env cpu_single_env
4538 #define SOFTMMU_CODE_ACCESS
4541 #include "softmmu_template.h"
4544 #include "softmmu_template.h"
4547 #include "softmmu_template.h"
4550 #include "softmmu_template.h"