2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "qemu/osdep.h"
29 #include "qemu/main-loop.h"
31 #include "exec/helper-proto.h"
32 #include "qemu/host-utils.h"
33 #include "exec/exec-all.h"
34 #include "exec/cpu_ldst.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/timer.h"
37 #include "fpu/softfloat.h"
39 #ifndef CONFIG_USER_ONLY
41 void xtensa_cpu_do_unaligned_access(CPUState
*cs
,
42 vaddr addr
, MMUAccessType access_type
,
43 int mmu_idx
, uintptr_t retaddr
)
45 XtensaCPU
*cpu
= XTENSA_CPU(cs
);
46 CPUXtensaState
*env
= &cpu
->env
;
48 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_UNALIGNED_EXCEPTION
) &&
49 !xtensa_option_enabled(env
->config
, XTENSA_OPTION_HW_ALIGNMENT
)) {
50 cpu_restore_state(CPU(cpu
), retaddr
, true);
51 HELPER(exception_cause_vaddr
)(env
,
52 env
->pc
, LOAD_STORE_ALIGNMENT_CAUSE
, addr
);
56 void tlb_fill(CPUState
*cs
, target_ulong vaddr
, int size
,
57 MMUAccessType access_type
, int mmu_idx
, uintptr_t retaddr
)
59 XtensaCPU
*cpu
= XTENSA_CPU(cs
);
60 CPUXtensaState
*env
= &cpu
->env
;
64 int ret
= xtensa_get_physical_addr(env
, true, vaddr
, access_type
, mmu_idx
,
65 &paddr
, &page_size
, &access
);
67 qemu_log_mask(CPU_LOG_MMU
, "%s(%08x, %d, %d) -> %08x, ret = %d\n",
68 __func__
, vaddr
, access_type
, mmu_idx
, paddr
, ret
);
72 vaddr
& TARGET_PAGE_MASK
,
73 paddr
& TARGET_PAGE_MASK
,
74 access
, mmu_idx
, page_size
);
76 cpu_restore_state(cs
, retaddr
, true);
77 HELPER(exception_cause_vaddr
)(env
, env
->pc
, ret
, vaddr
);
81 void xtensa_cpu_do_unassigned_access(CPUState
*cs
, hwaddr addr
,
82 bool is_write
, bool is_exec
, int opaque
,
85 XtensaCPU
*cpu
= XTENSA_CPU(cs
);
86 CPUXtensaState
*env
= &cpu
->env
;
88 HELPER(exception_cause_vaddr
)(env
, env
->pc
,
90 INSTR_PIF_ADDR_ERROR_CAUSE
:
91 LOAD_STORE_PIF_ADDR_ERROR_CAUSE
,
92 is_exec
? addr
: cs
->mem_io_vaddr
);
95 static void tb_invalidate_virtual_addr(CPUXtensaState
*env
, uint32_t vaddr
)
100 int ret
= xtensa_get_physical_addr(env
, false, vaddr
, 2, 0,
101 &paddr
, &page_size
, &access
);
103 tb_invalidate_phys_addr(&address_space_memory
, paddr
,
104 MEMTXATTRS_UNSPECIFIED
);
110 static void tb_invalidate_virtual_addr(CPUXtensaState
*env
, uint32_t vaddr
)
112 tb_invalidate_phys_addr(vaddr
);
117 void HELPER(exception
)(CPUXtensaState
*env
, uint32_t excp
)
119 CPUState
*cs
= CPU(xtensa_env_get_cpu(env
));
121 cs
->exception_index
= excp
;
122 if (excp
== EXCP_YIELD
) {
123 env
->yield_needed
= 0;
125 if (excp
== EXCP_DEBUG
) {
126 env
->exception_taken
= 0;
131 void HELPER(exception_cause
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t cause
)
136 if (env
->sregs
[PS
] & PS_EXCM
) {
137 if (env
->config
->ndepc
) {
138 env
->sregs
[DEPC
] = pc
;
140 env
->sregs
[EPC1
] = pc
;
144 env
->sregs
[EPC1
] = pc
;
145 vector
= (env
->sregs
[PS
] & PS_UM
) ? EXC_USER
: EXC_KERNEL
;
148 env
->sregs
[EXCCAUSE
] = cause
;
149 env
->sregs
[PS
] |= PS_EXCM
;
151 HELPER(exception
)(env
, vector
);
154 void HELPER(exception_cause_vaddr
)(CPUXtensaState
*env
,
155 uint32_t pc
, uint32_t cause
, uint32_t vaddr
)
157 env
->sregs
[EXCVADDR
] = vaddr
;
158 HELPER(exception_cause
)(env
, pc
, cause
);
161 void debug_exception_env(CPUXtensaState
*env
, uint32_t cause
)
163 if (xtensa_get_cintlevel(env
) < env
->config
->debug_level
) {
164 HELPER(debug_exception
)(env
, env
->pc
, cause
);
168 void HELPER(debug_exception
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t cause
)
170 unsigned level
= env
->config
->debug_level
;
173 env
->sregs
[DEBUGCAUSE
] = cause
;
174 env
->sregs
[EPC1
+ level
- 1] = pc
;
175 env
->sregs
[EPS2
+ level
- 2] = env
->sregs
[PS
];
176 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_INTLEVEL
) | PS_EXCM
|
177 (level
<< PS_INTLEVEL_SHIFT
);
178 HELPER(exception
)(env
, EXC_DEBUG
);
181 static void copy_window_from_phys(CPUXtensaState
*env
,
182 uint32_t window
, uint32_t phys
, uint32_t n
)
184 assert(phys
< env
->config
->nareg
);
185 if (phys
+ n
<= env
->config
->nareg
) {
186 memcpy(env
->regs
+ window
, env
->phys_regs
+ phys
,
187 n
* sizeof(uint32_t));
189 uint32_t n1
= env
->config
->nareg
- phys
;
190 memcpy(env
->regs
+ window
, env
->phys_regs
+ phys
,
191 n1
* sizeof(uint32_t));
192 memcpy(env
->regs
+ window
+ n1
, env
->phys_regs
,
193 (n
- n1
) * sizeof(uint32_t));
197 static void copy_phys_from_window(CPUXtensaState
*env
,
198 uint32_t phys
, uint32_t window
, uint32_t n
)
200 assert(phys
< env
->config
->nareg
);
201 if (phys
+ n
<= env
->config
->nareg
) {
202 memcpy(env
->phys_regs
+ phys
, env
->regs
+ window
,
203 n
* sizeof(uint32_t));
205 uint32_t n1
= env
->config
->nareg
- phys
;
206 memcpy(env
->phys_regs
+ phys
, env
->regs
+ window
,
207 n1
* sizeof(uint32_t));
208 memcpy(env
->phys_regs
, env
->regs
+ window
+ n1
,
209 (n
- n1
) * sizeof(uint32_t));
214 static inline unsigned windowbase_bound(unsigned a
, const CPUXtensaState
*env
)
216 return a
& (env
->config
->nareg
/ 4 - 1);
219 static inline unsigned windowstart_bit(unsigned a
, const CPUXtensaState
*env
)
221 return 1 << windowbase_bound(a
, env
);
224 void xtensa_sync_window_from_phys(CPUXtensaState
*env
)
226 copy_window_from_phys(env
, 0, env
->sregs
[WINDOW_BASE
] * 4, 16);
229 void xtensa_sync_phys_from_window(CPUXtensaState
*env
)
231 copy_phys_from_window(env
, env
->sregs
[WINDOW_BASE
] * 4, 0, 16);
234 static void xtensa_rotate_window_abs(CPUXtensaState
*env
, uint32_t position
)
236 xtensa_sync_phys_from_window(env
);
237 env
->sregs
[WINDOW_BASE
] = windowbase_bound(position
, env
);
238 xtensa_sync_window_from_phys(env
);
241 void xtensa_rotate_window(CPUXtensaState
*env
, uint32_t delta
)
243 xtensa_rotate_window_abs(env
, env
->sregs
[WINDOW_BASE
] + delta
);
246 void HELPER(wsr_windowbase
)(CPUXtensaState
*env
, uint32_t v
)
248 xtensa_rotate_window_abs(env
, v
);
251 void HELPER(entry
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t s
, uint32_t imm
)
253 int callinc
= (env
->sregs
[PS
] & PS_CALLINC
) >> PS_CALLINC_SHIFT
;
254 if (s
> 3 || ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) != 0) {
255 qemu_log_mask(LOG_GUEST_ERROR
, "Illegal entry instruction(pc = %08x), PS = %08x\n",
257 HELPER(exception_cause
)(env
, pc
, ILLEGAL_INSTRUCTION_CAUSE
);
259 uint32_t windowstart
= xtensa_replicate_windowstart(env
) >>
260 (env
->sregs
[WINDOW_BASE
] + 1);
262 if (windowstart
& ((1 << callinc
) - 1)) {
263 HELPER(window_check
)(env
, pc
, callinc
);
265 env
->regs
[(callinc
<< 2) | (s
& 3)] = env
->regs
[s
] - imm
;
266 xtensa_rotate_window(env
, callinc
);
267 env
->sregs
[WINDOW_START
] |=
268 windowstart_bit(env
->sregs
[WINDOW_BASE
], env
);
272 void HELPER(window_check
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t w
)
274 uint32_t windowbase
= windowbase_bound(env
->sregs
[WINDOW_BASE
], env
);
275 uint32_t windowstart
= xtensa_replicate_windowstart(env
) >>
276 (env
->sregs
[WINDOW_BASE
] + 1);
277 uint32_t n
= ctz32(windowstart
) + 1;
281 xtensa_rotate_window(env
, n
);
282 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_OWB
) |
283 (windowbase
<< PS_OWB_SHIFT
) | PS_EXCM
;
284 env
->sregs
[EPC1
] = env
->pc
= pc
;
286 switch (ctz32(windowstart
>> n
)) {
288 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW4
);
291 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW8
);
294 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW12
);
299 uint32_t HELPER(retw
)(CPUXtensaState
*env
, uint32_t pc
)
301 int n
= (env
->regs
[0] >> 30) & 0x3;
303 uint32_t windowbase
= windowbase_bound(env
->sregs
[WINDOW_BASE
], env
);
304 uint32_t windowstart
= env
->sregs
[WINDOW_START
];
307 if (windowstart
& windowstart_bit(windowbase
- 1, env
)) {
309 } else if (windowstart
& windowstart_bit(windowbase
- 2, env
)) {
311 } else if (windowstart
& windowstart_bit(windowbase
- 3, env
)) {
315 if (n
== 0 || (m
!= 0 && m
!= n
) ||
316 ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) != 0) {
317 qemu_log_mask(LOG_GUEST_ERROR
, "Illegal retw instruction(pc = %08x), "
318 "PS = %08x, m = %d, n = %d\n",
319 pc
, env
->sregs
[PS
], m
, n
);
320 HELPER(exception_cause
)(env
, pc
, ILLEGAL_INSTRUCTION_CAUSE
);
322 int owb
= windowbase
;
324 ret_pc
= (pc
& 0xc0000000) | (env
->regs
[0] & 0x3fffffff);
326 xtensa_rotate_window(env
, -n
);
327 if (windowstart
& windowstart_bit(env
->sregs
[WINDOW_BASE
], env
)) {
328 env
->sregs
[WINDOW_START
] &= ~windowstart_bit(owb
, env
);
330 /* window underflow */
331 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_OWB
) |
332 (windowbase
<< PS_OWB_SHIFT
) | PS_EXCM
;
333 env
->sregs
[EPC1
] = env
->pc
= pc
;
336 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW4
);
338 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW8
);
340 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW12
);
347 void HELPER(rotw
)(CPUXtensaState
*env
, uint32_t imm4
)
349 xtensa_rotate_window(env
, imm4
);
352 void xtensa_restore_owb(CPUXtensaState
*env
)
354 xtensa_rotate_window_abs(env
, (env
->sregs
[PS
] & PS_OWB
) >> PS_OWB_SHIFT
);
357 void HELPER(restore_owb
)(CPUXtensaState
*env
)
359 xtensa_restore_owb(env
);
362 void HELPER(movsp
)(CPUXtensaState
*env
, uint32_t pc
)
364 if ((env
->sregs
[WINDOW_START
] &
365 (windowstart_bit(env
->sregs
[WINDOW_BASE
] - 3, env
) |
366 windowstart_bit(env
->sregs
[WINDOW_BASE
] - 2, env
) |
367 windowstart_bit(env
->sregs
[WINDOW_BASE
] - 1, env
))) == 0) {
368 HELPER(exception_cause
)(env
, pc
, ALLOCA_CAUSE
);
372 void HELPER(wsr_lbeg
)(CPUXtensaState
*env
, uint32_t v
)
374 if (env
->sregs
[LBEG
] != v
) {
375 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
376 env
->sregs
[LBEG
] = v
;
380 void HELPER(wsr_lend
)(CPUXtensaState
*env
, uint32_t v
)
382 if (env
->sregs
[LEND
] != v
) {
383 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
384 env
->sregs
[LEND
] = v
;
385 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
389 void HELPER(dump_state
)(CPUXtensaState
*env
)
391 XtensaCPU
*cpu
= xtensa_env_get_cpu(env
);
393 cpu_dump_state(CPU(cpu
), stderr
, fprintf
, 0);
396 #ifndef CONFIG_USER_ONLY
398 void HELPER(waiti
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t intlevel
)
403 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_INTLEVEL
) |
404 (intlevel
<< PS_INTLEVEL_SHIFT
);
406 qemu_mutex_lock_iothread();
407 check_interrupts(env
);
408 qemu_mutex_unlock_iothread();
410 if (env
->pending_irq_level
) {
411 cpu_loop_exit(CPU(xtensa_env_get_cpu(env
)));
415 cpu
= CPU(xtensa_env_get_cpu(env
));
417 HELPER(exception
)(env
, EXCP_HLT
);
420 void HELPER(update_ccount
)(CPUXtensaState
*env
)
422 uint64_t now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
424 env
->ccount_time
= now
;
425 env
->sregs
[CCOUNT
] = env
->ccount_base
+
426 (uint32_t)((now
- env
->time_base
) *
427 env
->config
->clock_freq_khz
/ 1000000);
430 void HELPER(wsr_ccount
)(CPUXtensaState
*env
, uint32_t v
)
434 HELPER(update_ccount
)(env
);
435 env
->ccount_base
+= v
- env
->sregs
[CCOUNT
];
436 for (i
= 0; i
< env
->config
->nccompare
; ++i
) {
437 HELPER(update_ccompare
)(env
, i
);
441 void HELPER(update_ccompare
)(CPUXtensaState
*env
, uint32_t i
)
445 HELPER(update_ccount
)(env
);
446 dcc
= (uint64_t)(env
->sregs
[CCOMPARE
+ i
] - env
->sregs
[CCOUNT
] - 1) + 1;
447 timer_mod(env
->ccompare
[i
].timer
,
448 env
->ccount_time
+ (dcc
* 1000000) / env
->config
->clock_freq_khz
);
449 env
->yield_needed
= 1;
452 void HELPER(check_interrupts
)(CPUXtensaState
*env
)
454 qemu_mutex_lock_iothread();
455 check_interrupts(env
);
456 qemu_mutex_unlock_iothread();
459 void HELPER(itlb_hit_test
)(CPUXtensaState
*env
, uint32_t vaddr
)
461 get_page_addr_code(env
, vaddr
);
465 * Check vaddr accessibility/cache attributes and raise an exception if
466 * specified by the ATOMCTL SR.
468 * Note: local memory exclusion is not implemented
470 void HELPER(check_atomctl
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t vaddr
)
472 uint32_t paddr
, page_size
, access
;
473 uint32_t atomctl
= env
->sregs
[ATOMCTL
];
474 int rc
= xtensa_get_physical_addr(env
, true, vaddr
, 1,
475 xtensa_get_cring(env
), &paddr
, &page_size
, &access
);
478 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
479 * see opcode description in the ISA
482 (access
& (PAGE_READ
| PAGE_WRITE
)) != (PAGE_READ
| PAGE_WRITE
)) {
483 rc
= STORE_PROHIBITED_CAUSE
;
487 HELPER(exception_cause_vaddr
)(env
, pc
, rc
, vaddr
);
491 * When data cache is not configured use ATOMCTL bypass field.
492 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
493 * under the Conditional Store Option.
495 if (!xtensa_option_enabled(env
->config
, XTENSA_OPTION_DCACHE
)) {
496 access
= PAGE_CACHE_BYPASS
;
499 switch (access
& PAGE_CACHE_MASK
) {
506 case PAGE_CACHE_BYPASS
:
507 if ((atomctl
& 0x3) == 0) {
508 HELPER(exception_cause_vaddr
)(env
, pc
,
509 LOAD_STORE_ERROR_CAUSE
, vaddr
);
513 case PAGE_CACHE_ISOLATE
:
514 HELPER(exception_cause_vaddr
)(env
, pc
,
515 LOAD_STORE_ERROR_CAUSE
, vaddr
);
523 void HELPER(wsr_memctl
)(CPUXtensaState
*env
, uint32_t v
)
525 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_ICACHE
)) {
526 if (extract32(v
, MEMCTL_IUSEWAYS_SHIFT
, MEMCTL_IUSEWAYS_LEN
) >
527 env
->config
->icache_ways
) {
528 deposit32(v
, MEMCTL_IUSEWAYS_SHIFT
, MEMCTL_IUSEWAYS_LEN
,
529 env
->config
->icache_ways
);
532 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_DCACHE
)) {
533 if (extract32(v
, MEMCTL_DUSEWAYS_SHIFT
, MEMCTL_DUSEWAYS_LEN
) >
534 env
->config
->dcache_ways
) {
535 deposit32(v
, MEMCTL_DUSEWAYS_SHIFT
, MEMCTL_DUSEWAYS_LEN
,
536 env
->config
->dcache_ways
);
538 if (extract32(v
, MEMCTL_DALLOCWAYS_SHIFT
, MEMCTL_DALLOCWAYS_LEN
) >
539 env
->config
->dcache_ways
) {
540 deposit32(v
, MEMCTL_DALLOCWAYS_SHIFT
, MEMCTL_DALLOCWAYS_LEN
,
541 env
->config
->dcache_ways
);
544 env
->sregs
[MEMCTL
] = v
& env
->config
->memctl_mask
;
547 void HELPER(wsr_rasid
)(CPUXtensaState
*env
, uint32_t v
)
549 XtensaCPU
*cpu
= xtensa_env_get_cpu(env
);
551 v
= (v
& 0xffffff00) | 0x1;
552 if (v
!= env
->sregs
[RASID
]) {
553 env
->sregs
[RASID
] = v
;
558 static uint32_t get_page_size(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
560 uint32_t tlbcfg
= env
->sregs
[dtlb
? DTLBCFG
: ITLBCFG
];
564 return (tlbcfg
>> 16) & 0x3;
567 return (tlbcfg
>> 20) & 0x1;
570 return (tlbcfg
>> 24) & 0x1;
578 * Get bit mask for the virtual address bits translated by the TLB way
580 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
582 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
583 bool varway56
= dtlb
?
584 env
->config
->dtlb
.varway56
:
585 env
->config
->itlb
.varway56
;
589 return 0xfff00000 << get_page_size(env
, dtlb
, way
) * 2;
593 return 0xf8000000 << get_page_size(env
, dtlb
, way
);
600 return 0xf0000000 << (1 - get_page_size(env
, dtlb
, way
));
609 return REGION_PAGE_MASK
;
614 * Get bit mask for the 'VPN without index' field.
615 * See ISA, 4.6.5.6, data format for RxTLB0
617 static uint32_t get_vpn_mask(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
621 env
->config
->dtlb
.nrefillentries
:
622 env
->config
->itlb
.nrefillentries
) == 32;
623 return is32
? 0xffff8000 : 0xffffc000;
624 } else if (way
== 4) {
625 return xtensa_tlb_get_addr_mask(env
, dtlb
, way
) << 2;
626 } else if (way
<= 6) {
627 uint32_t mask
= xtensa_tlb_get_addr_mask(env
, dtlb
, way
);
628 bool varway56
= dtlb
?
629 env
->config
->dtlb
.varway56
:
630 env
->config
->itlb
.varway56
;
633 return mask
<< (way
== 5 ? 2 : 3);
643 * Split virtual address into VPN (with index) and entry index
644 * for the given TLB way
646 void split_tlb_entry_spec_way(const CPUXtensaState
*env
, uint32_t v
, bool dtlb
,
647 uint32_t *vpn
, uint32_t wi
, uint32_t *ei
)
649 bool varway56
= dtlb
?
650 env
->config
->dtlb
.varway56
:
651 env
->config
->itlb
.varway56
;
659 env
->config
->dtlb
.nrefillentries
:
660 env
->config
->itlb
.nrefillentries
) == 32;
661 *ei
= (v
>> 12) & (is32
? 0x7 : 0x3);
666 uint32_t eibase
= 20 + get_page_size(env
, dtlb
, wi
) * 2;
667 *ei
= (v
>> eibase
) & 0x3;
673 uint32_t eibase
= 27 + get_page_size(env
, dtlb
, wi
);
674 *ei
= (v
>> eibase
) & 0x3;
676 *ei
= (v
>> 27) & 0x1;
682 uint32_t eibase
= 29 - get_page_size(env
, dtlb
, wi
);
683 *ei
= (v
>> eibase
) & 0x7;
685 *ei
= (v
>> 28) & 0x1;
694 *vpn
= v
& xtensa_tlb_get_addr_mask(env
, dtlb
, wi
);
698 * Split TLB address into TLB way, entry index and VPN (with index).
699 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
701 static void split_tlb_entry_spec(CPUXtensaState
*env
, uint32_t v
, bool dtlb
,
702 uint32_t *vpn
, uint32_t *wi
, uint32_t *ei
)
704 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
705 *wi
= v
& (dtlb
? 0xf : 0x7);
706 split_tlb_entry_spec_way(env
, v
, dtlb
, vpn
, *wi
, ei
);
708 *vpn
= v
& REGION_PAGE_MASK
;
710 *ei
= (v
>> 29) & 0x7;
714 static xtensa_tlb_entry
*get_tlb_entry(CPUXtensaState
*env
,
715 uint32_t v
, bool dtlb
, uint32_t *pwi
)
721 split_tlb_entry_spec(env
, v
, dtlb
, &vpn
, &wi
, &ei
);
725 return xtensa_tlb_get_entry(env
, dtlb
, wi
, ei
);
728 uint32_t HELPER(rtlb0
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
730 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
732 const xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, &wi
);
733 return (entry
->vaddr
& get_vpn_mask(env
, dtlb
, wi
)) | entry
->asid
;
735 return v
& REGION_PAGE_MASK
;
739 uint32_t HELPER(rtlb1
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
741 const xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, NULL
);
742 return entry
->paddr
| entry
->attr
;
745 void HELPER(itlb
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
747 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
749 xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, &wi
);
750 if (entry
->variable
&& entry
->asid
) {
751 tlb_flush_page(CPU(xtensa_env_get_cpu(env
)), entry
->vaddr
);
757 uint32_t HELPER(ptlb
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
759 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
763 int res
= xtensa_tlb_lookup(env
, v
, dtlb
, &wi
, &ei
, &ring
);
767 if (ring
>= xtensa_get_ring(env
)) {
768 return (v
& 0xfffff000) | wi
| (dtlb
? 0x10 : 0x8);
772 case INST_TLB_MULTI_HIT_CAUSE
:
773 case LOAD_STORE_TLB_MULTI_HIT_CAUSE
:
774 HELPER(exception_cause_vaddr
)(env
, env
->pc
, res
, v
);
779 return (v
& REGION_PAGE_MASK
) | 0x1;
783 void xtensa_tlb_set_entry_mmu(const CPUXtensaState
*env
,
784 xtensa_tlb_entry
*entry
, bool dtlb
,
785 unsigned wi
, unsigned ei
, uint32_t vpn
, uint32_t pte
)
788 entry
->paddr
= pte
& xtensa_tlb_get_addr_mask(env
, dtlb
, wi
);
789 entry
->asid
= (env
->sregs
[RASID
] >> ((pte
>> 1) & 0x18)) & 0xff;
790 entry
->attr
= pte
& 0xf;
793 void xtensa_tlb_set_entry(CPUXtensaState
*env
, bool dtlb
,
794 unsigned wi
, unsigned ei
, uint32_t vpn
, uint32_t pte
)
796 XtensaCPU
*cpu
= xtensa_env_get_cpu(env
);
797 CPUState
*cs
= CPU(cpu
);
798 xtensa_tlb_entry
*entry
= xtensa_tlb_get_entry(env
, dtlb
, wi
, ei
);
800 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
801 if (entry
->variable
) {
803 tlb_flush_page(cs
, entry
->vaddr
);
805 xtensa_tlb_set_entry_mmu(env
, entry
, dtlb
, wi
, ei
, vpn
, pte
);
806 tlb_flush_page(cs
, entry
->vaddr
);
808 qemu_log_mask(LOG_GUEST_ERROR
, "%s %d, %d, %d trying to set immutable entry\n",
809 __func__
, dtlb
, wi
, ei
);
812 tlb_flush_page(cs
, entry
->vaddr
);
813 if (xtensa_option_enabled(env
->config
,
814 XTENSA_OPTION_REGION_TRANSLATION
)) {
815 entry
->paddr
= pte
& REGION_PAGE_MASK
;
817 entry
->attr
= pte
& 0xf;
821 void HELPER(wtlb
)(CPUXtensaState
*env
, uint32_t p
, uint32_t v
, uint32_t dtlb
)
826 split_tlb_entry_spec(env
, v
, dtlb
, &vpn
, &wi
, &ei
);
827 xtensa_tlb_set_entry(env
, dtlb
, wi
, ei
, vpn
, p
);
831 void HELPER(wsr_ibreakenable
)(CPUXtensaState
*env
, uint32_t v
)
833 uint32_t change
= v
^ env
->sregs
[IBREAKENABLE
];
836 for (i
= 0; i
< env
->config
->nibreak
; ++i
) {
837 if (change
& (1 << i
)) {
838 tb_invalidate_virtual_addr(env
, env
->sregs
[IBREAKA
+ i
]);
841 env
->sregs
[IBREAKENABLE
] = v
& ((1 << env
->config
->nibreak
) - 1);
844 void HELPER(wsr_ibreaka
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
846 if (env
->sregs
[IBREAKENABLE
] & (1 << i
) && env
->sregs
[IBREAKA
+ i
] != v
) {
847 tb_invalidate_virtual_addr(env
, env
->sregs
[IBREAKA
+ i
]);
848 tb_invalidate_virtual_addr(env
, v
);
850 env
->sregs
[IBREAKA
+ i
] = v
;
853 static void set_dbreak(CPUXtensaState
*env
, unsigned i
, uint32_t dbreaka
,
856 CPUState
*cs
= CPU(xtensa_env_get_cpu(env
));
857 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
858 uint32_t mask
= dbreakc
| ~DBREAKC_MASK
;
860 if (env
->cpu_watchpoint
[i
]) {
861 cpu_watchpoint_remove_by_ref(cs
, env
->cpu_watchpoint
[i
]);
863 if (dbreakc
& DBREAKC_SB
) {
864 flags
|= BP_MEM_WRITE
;
866 if (dbreakc
& DBREAKC_LB
) {
867 flags
|= BP_MEM_READ
;
869 /* contiguous mask after inversion is one less than some power of 2 */
870 if ((~mask
+ 1) & ~mask
) {
871 qemu_log_mask(LOG_GUEST_ERROR
, "DBREAKC mask is not contiguous: 0x%08x\n", dbreakc
);
872 /* cut mask after the first zero bit */
873 mask
= 0xffffffff << (32 - clo32(mask
));
875 if (cpu_watchpoint_insert(cs
, dbreaka
& mask
, ~mask
+ 1,
876 flags
, &env
->cpu_watchpoint
[i
])) {
877 env
->cpu_watchpoint
[i
] = NULL
;
878 qemu_log_mask(LOG_GUEST_ERROR
, "Failed to set data breakpoint at 0x%08x/%d\n",
879 dbreaka
& mask
, ~mask
+ 1);
883 void HELPER(wsr_dbreaka
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
885 uint32_t dbreakc
= env
->sregs
[DBREAKC
+ i
];
887 if ((dbreakc
& DBREAKC_SB_LB
) &&
888 env
->sregs
[DBREAKA
+ i
] != v
) {
889 set_dbreak(env
, i
, v
, dbreakc
);
891 env
->sregs
[DBREAKA
+ i
] = v
;
894 void HELPER(wsr_dbreakc
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
896 if ((env
->sregs
[DBREAKC
+ i
] ^ v
) & (DBREAKC_SB_LB
| DBREAKC_MASK
)) {
897 if (v
& DBREAKC_SB_LB
) {
898 set_dbreak(env
, i
, env
->sregs
[DBREAKA
+ i
], v
);
900 if (env
->cpu_watchpoint
[i
]) {
901 CPUState
*cs
= CPU(xtensa_env_get_cpu(env
));
903 cpu_watchpoint_remove_by_ref(cs
, env
->cpu_watchpoint
[i
]);
904 env
->cpu_watchpoint
[i
] = NULL
;
908 env
->sregs
[DBREAKC
+ i
] = v
;
912 void HELPER(wur_fcr
)(CPUXtensaState
*env
, uint32_t v
)
914 static const int rounding_mode
[] = {
915 float_round_nearest_even
,
921 env
->uregs
[FCR
] = v
& 0xfffff07f;
922 set_float_rounding_mode(rounding_mode
[v
& 3], &env
->fp_status
);
925 float32
HELPER(abs_s
)(float32 v
)
927 return float32_abs(v
);
930 float32
HELPER(neg_s
)(float32 v
)
932 return float32_chs(v
);
935 float32
HELPER(add_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
937 return float32_add(a
, b
, &env
->fp_status
);
940 float32
HELPER(sub_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
942 return float32_sub(a
, b
, &env
->fp_status
);
945 float32
HELPER(mul_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
947 return float32_mul(a
, b
, &env
->fp_status
);
950 float32
HELPER(madd_s
)(CPUXtensaState
*env
, float32 a
, float32 b
, float32 c
)
952 return float32_muladd(b
, c
, a
, 0,
956 float32
HELPER(msub_s
)(CPUXtensaState
*env
, float32 a
, float32 b
, float32 c
)
958 return float32_muladd(b
, c
, a
, float_muladd_negate_product
,
962 uint32_t HELPER(ftoi
)(float32 v
, uint32_t rounding_mode
, uint32_t scale
)
964 float_status fp_status
= {0};
966 set_float_rounding_mode(rounding_mode
, &fp_status
);
967 return float32_to_int32(
968 float32_scalbn(v
, scale
, &fp_status
), &fp_status
);
971 uint32_t HELPER(ftoui
)(float32 v
, uint32_t rounding_mode
, uint32_t scale
)
973 float_status fp_status
= {0};
976 set_float_rounding_mode(rounding_mode
, &fp_status
);
978 res
= float32_scalbn(v
, scale
, &fp_status
);
980 if (float32_is_neg(v
) && !float32_is_any_nan(v
)) {
981 return float32_to_int32(res
, &fp_status
);
983 return float32_to_uint32(res
, &fp_status
);
987 float32
HELPER(itof
)(CPUXtensaState
*env
, uint32_t v
, uint32_t scale
)
989 return float32_scalbn(int32_to_float32(v
, &env
->fp_status
),
990 (int32_t)scale
, &env
->fp_status
);
993 float32
HELPER(uitof
)(CPUXtensaState
*env
, uint32_t v
, uint32_t scale
)
995 return float32_scalbn(uint32_to_float32(v
, &env
->fp_status
),
996 (int32_t)scale
, &env
->fp_status
);
999 static inline void set_br(CPUXtensaState
*env
, bool v
, uint32_t br
)
1002 env
->sregs
[BR
] |= br
;
1004 env
->sregs
[BR
] &= ~br
;
1008 void HELPER(un_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
1010 set_br(env
, float32_unordered_quiet(a
, b
, &env
->fp_status
), br
);
1013 void HELPER(oeq_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
1015 set_br(env
, float32_eq_quiet(a
, b
, &env
->fp_status
), br
);
1018 void HELPER(ueq_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
1020 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
1021 set_br(env
, v
== float_relation_equal
|| v
== float_relation_unordered
, br
);
1024 void HELPER(olt_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
1026 set_br(env
, float32_lt_quiet(a
, b
, &env
->fp_status
), br
);
1029 void HELPER(ult_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
1031 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
1032 set_br(env
, v
== float_relation_less
|| v
== float_relation_unordered
, br
);
1035 void HELPER(ole_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
1037 set_br(env
, float32_le_quiet(a
, b
, &env
->fp_status
), br
);
1040 void HELPER(ule_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
1042 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
1043 set_br(env
, v
!= float_relation_greater
, br
);
1046 uint32_t HELPER(rer
)(CPUXtensaState
*env
, uint32_t addr
)
1048 #ifndef CONFIG_USER_ONLY
1049 return address_space_ldl(env
->address_space_er
, addr
,
1050 MEMTXATTRS_UNSPECIFIED
, NULL
);
1056 void HELPER(wer
)(CPUXtensaState
*env
, uint32_t data
, uint32_t addr
)
1058 #ifndef CONFIG_USER_ONLY
1059 address_space_stl(env
->address_space_er
, addr
, data
,
1060 MEMTXATTRS_UNSPECIFIED
, NULL
);