postcopy: ram_enable_notify to switch on userfault
[qemu.git] / hw / i386 / pc.c
blob0cb8afd2c28e511327a033b5a3c8746065d4ef32
1 /*
2 * QEMU PC System Emulator
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/i386/topology.h"
29 #include "sysemu/cpus.h"
30 #include "hw/block/fdc.h"
31 #include "hw/ide.h"
32 #include "hw/pci/pci.h"
33 #include "hw/pci/pci_bus.h"
34 #include "hw/nvram/fw_cfg.h"
35 #include "hw/timer/hpet.h"
36 #include "hw/smbios/smbios.h"
37 #include "hw/loader.h"
38 #include "elf.h"
39 #include "multiboot.h"
40 #include "hw/timer/mc146818rtc.h"
41 #include "hw/timer/i8254.h"
42 #include "hw/audio/pcspk.h"
43 #include "hw/pci/msi.h"
44 #include "hw/sysbus.h"
45 #include "sysemu/sysemu.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/kvm.h"
48 #include "sysemu/qtest.h"
49 #include "kvm_i386.h"
50 #include "hw/xen/xen.h"
51 #include "sysemu/block-backend.h"
52 #include "hw/block/block.h"
53 #include "ui/qemu-spice.h"
54 #include "exec/memory.h"
55 #include "exec/address-spaces.h"
56 #include "sysemu/arch_init.h"
57 #include "qemu/bitmap.h"
58 #include "qemu/config-file.h"
59 #include "qemu/error-report.h"
60 #include "hw/acpi/acpi.h"
61 #include "hw/acpi/cpu_hotplug.h"
62 #include "hw/boards.h"
63 #include "hw/pci/pci_host.h"
64 #include "acpi-build.h"
65 #include "hw/mem/pc-dimm.h"
66 #include "qapi/visitor.h"
67 #include "qapi-visit.h"
69 /* debug PC/ISA interrupts */
70 //#define DEBUG_IRQ
72 #ifdef DEBUG_IRQ
73 #define DPRINTF(fmt, ...) \
74 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
75 #else
76 #define DPRINTF(fmt, ...)
77 #endif
79 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
80 * (128K) and other BIOS datastructures (less than 4K reported to be used at
81 * the moment, 32K should be enough for a while). */
82 static unsigned acpi_data_size = 0x20000 + 0x8000;
83 void pc_set_legacy_acpi_data_size(void)
85 acpi_data_size = 0x10000;
88 #define BIOS_CFG_IOPORT 0x510
89 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
90 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
91 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
92 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
93 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
95 #define E820_NR_ENTRIES 16
97 struct e820_entry {
98 uint64_t address;
99 uint64_t length;
100 uint32_t type;
101 } QEMU_PACKED __attribute((__aligned__(4)));
103 struct e820_table {
104 uint32_t count;
105 struct e820_entry entry[E820_NR_ENTRIES];
106 } QEMU_PACKED __attribute((__aligned__(4)));
108 static struct e820_table e820_reserve;
109 static struct e820_entry *e820_table;
110 static unsigned e820_entries;
111 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
113 void gsi_handler(void *opaque, int n, int level)
115 GSIState *s = opaque;
117 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
118 if (n < ISA_NUM_IRQS) {
119 qemu_set_irq(s->i8259_irq[n], level);
121 qemu_set_irq(s->ioapic_irq[n], level);
124 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
125 unsigned size)
129 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
131 return 0xffffffffffffffffULL;
134 /* MSDOS compatibility mode FPU exception support */
135 static qemu_irq ferr_irq;
137 void pc_register_ferr_irq(qemu_irq irq)
139 ferr_irq = irq;
142 /* XXX: add IGNNE support */
143 void cpu_set_ferr(CPUX86State *s)
145 qemu_irq_raise(ferr_irq);
148 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
149 unsigned size)
151 qemu_irq_lower(ferr_irq);
154 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
156 return 0xffffffffffffffffULL;
159 /* TSC handling */
160 uint64_t cpu_get_tsc(CPUX86State *env)
162 return cpu_get_ticks();
165 /* IRQ handling */
166 int cpu_get_pic_interrupt(CPUX86State *env)
168 X86CPU *cpu = x86_env_get_cpu(env);
169 int intno;
171 intno = apic_get_interrupt(cpu->apic_state);
172 if (intno >= 0) {
173 return intno;
175 /* read the irq from the PIC */
176 if (!apic_accept_pic_intr(cpu->apic_state)) {
177 return -1;
180 intno = pic_read_irq(isa_pic);
181 return intno;
184 static void pic_irq_request(void *opaque, int irq, int level)
186 CPUState *cs = first_cpu;
187 X86CPU *cpu = X86_CPU(cs);
189 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
190 if (cpu->apic_state) {
191 CPU_FOREACH(cs) {
192 cpu = X86_CPU(cs);
193 if (apic_accept_pic_intr(cpu->apic_state)) {
194 apic_deliver_pic_intr(cpu->apic_state, level);
197 } else {
198 if (level) {
199 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
200 } else {
201 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
206 /* PC cmos mappings */
208 #define REG_EQUIPMENT_BYTE 0x14
210 static int cmos_get_fd_drive_type(FDriveType fd0)
212 int val;
214 switch (fd0) {
215 case FDRIVE_DRV_144:
216 /* 1.44 Mb 3"5 drive */
217 val = 4;
218 break;
219 case FDRIVE_DRV_288:
220 /* 2.88 Mb 3"5 drive */
221 val = 5;
222 break;
223 case FDRIVE_DRV_120:
224 /* 1.2 Mb 5"5 drive */
225 val = 2;
226 break;
227 case FDRIVE_DRV_NONE:
228 default:
229 val = 0;
230 break;
232 return val;
235 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
236 int16_t cylinders, int8_t heads, int8_t sectors)
238 rtc_set_memory(s, type_ofs, 47);
239 rtc_set_memory(s, info_ofs, cylinders);
240 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
241 rtc_set_memory(s, info_ofs + 2, heads);
242 rtc_set_memory(s, info_ofs + 3, 0xff);
243 rtc_set_memory(s, info_ofs + 4, 0xff);
244 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
245 rtc_set_memory(s, info_ofs + 6, cylinders);
246 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
247 rtc_set_memory(s, info_ofs + 8, sectors);
250 /* convert boot_device letter to something recognizable by the bios */
251 static int boot_device2nibble(char boot_device)
253 switch(boot_device) {
254 case 'a':
255 case 'b':
256 return 0x01; /* floppy boot */
257 case 'c':
258 return 0x02; /* hard drive boot */
259 case 'd':
260 return 0x03; /* CD-ROM boot */
261 case 'n':
262 return 0x04; /* Network boot */
264 return 0;
267 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
269 #define PC_MAX_BOOT_DEVICES 3
270 int nbds, bds[3] = { 0, };
271 int i;
273 nbds = strlen(boot_device);
274 if (nbds > PC_MAX_BOOT_DEVICES) {
275 error_setg(errp, "Too many boot devices for PC");
276 return;
278 for (i = 0; i < nbds; i++) {
279 bds[i] = boot_device2nibble(boot_device[i]);
280 if (bds[i] == 0) {
281 error_setg(errp, "Invalid boot device for PC: '%c'",
282 boot_device[i]);
283 return;
286 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
287 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
290 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
292 set_boot_dev(opaque, boot_device, errp);
295 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
297 int val, nb, i;
298 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
300 /* floppy type */
301 if (floppy) {
302 for (i = 0; i < 2; i++) {
303 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
306 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
307 cmos_get_fd_drive_type(fd_type[1]);
308 rtc_set_memory(rtc_state, 0x10, val);
310 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
311 nb = 0;
312 if (fd_type[0] < FDRIVE_DRV_NONE) {
313 nb++;
315 if (fd_type[1] < FDRIVE_DRV_NONE) {
316 nb++;
318 switch (nb) {
319 case 0:
320 break;
321 case 1:
322 val |= 0x01; /* 1 drive, ready for boot */
323 break;
324 case 2:
325 val |= 0x41; /* 2 drives, ready for boot */
326 break;
328 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
331 typedef struct pc_cmos_init_late_arg {
332 ISADevice *rtc_state;
333 BusState *idebus[2];
334 } pc_cmos_init_late_arg;
336 typedef struct check_fdc_state {
337 ISADevice *floppy;
338 bool multiple;
339 } CheckFdcState;
341 static int check_fdc(Object *obj, void *opaque)
343 CheckFdcState *state = opaque;
344 Object *fdc;
345 uint32_t iobase;
346 Error *local_err = NULL;
348 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
349 if (!fdc) {
350 return 0;
353 iobase = object_property_get_int(obj, "iobase", &local_err);
354 if (local_err || iobase != 0x3f0) {
355 error_free(local_err);
356 return 0;
359 if (state->floppy) {
360 state->multiple = true;
361 } else {
362 state->floppy = ISA_DEVICE(obj);
364 return 0;
367 static const char * const fdc_container_path[] = {
368 "/unattached", "/peripheral", "/peripheral-anon"
371 static void pc_cmos_init_late(void *opaque)
373 pc_cmos_init_late_arg *arg = opaque;
374 ISADevice *s = arg->rtc_state;
375 int16_t cylinders;
376 int8_t heads, sectors;
377 int val;
378 int i, trans;
379 Object *container;
380 CheckFdcState state = { 0 };
382 val = 0;
383 if (ide_get_geometry(arg->idebus[0], 0,
384 &cylinders, &heads, &sectors) >= 0) {
385 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
386 val |= 0xf0;
388 if (ide_get_geometry(arg->idebus[0], 1,
389 &cylinders, &heads, &sectors) >= 0) {
390 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
391 val |= 0x0f;
393 rtc_set_memory(s, 0x12, val);
395 val = 0;
396 for (i = 0; i < 4; i++) {
397 /* NOTE: ide_get_geometry() returns the physical
398 geometry. It is always such that: 1 <= sects <= 63, 1
399 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
400 geometry can be different if a translation is done. */
401 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
402 &cylinders, &heads, &sectors) >= 0) {
403 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
404 assert((trans & ~3) == 0);
405 val |= trans << (i * 2);
408 rtc_set_memory(s, 0x39, val);
411 * Locate the FDC at IO address 0x3f0, and configure the CMOS registers
412 * accordingly.
414 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
415 container = container_get(qdev_get_machine(), fdc_container_path[i]);
416 object_child_foreach(container, check_fdc, &state);
419 if (state.multiple) {
420 error_report("warning: multiple floppy disk controllers with "
421 "iobase=0x3f0 have been found;\n"
422 "the one being picked for CMOS setup might not reflect "
423 "your intent");
425 pc_cmos_init_floppy(s, state.floppy);
427 qemu_unregister_reset(pc_cmos_init_late, opaque);
430 void pc_cmos_init(PCMachineState *pcms,
431 BusState *idebus0, BusState *idebus1,
432 ISADevice *s)
434 int val;
435 static pc_cmos_init_late_arg arg;
436 Error *local_err = NULL;
438 /* various important CMOS locations needed by PC/Bochs bios */
440 /* memory size */
441 /* base memory (first MiB) */
442 val = MIN(pcms->below_4g_mem_size / 1024, 640);
443 rtc_set_memory(s, 0x15, val);
444 rtc_set_memory(s, 0x16, val >> 8);
445 /* extended memory (next 64MiB) */
446 if (pcms->below_4g_mem_size > 1024 * 1024) {
447 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
448 } else {
449 val = 0;
451 if (val > 65535)
452 val = 65535;
453 rtc_set_memory(s, 0x17, val);
454 rtc_set_memory(s, 0x18, val >> 8);
455 rtc_set_memory(s, 0x30, val);
456 rtc_set_memory(s, 0x31, val >> 8);
457 /* memory between 16MiB and 4GiB */
458 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
459 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
460 } else {
461 val = 0;
463 if (val > 65535)
464 val = 65535;
465 rtc_set_memory(s, 0x34, val);
466 rtc_set_memory(s, 0x35, val >> 8);
467 /* memory above 4GiB */
468 val = pcms->above_4g_mem_size / 65536;
469 rtc_set_memory(s, 0x5b, val);
470 rtc_set_memory(s, 0x5c, val >> 8);
471 rtc_set_memory(s, 0x5d, val >> 16);
473 /* set the number of CPU */
474 rtc_set_memory(s, 0x5f, smp_cpus - 1);
476 object_property_add_link(OBJECT(pcms), "rtc_state",
477 TYPE_ISA_DEVICE,
478 (Object **)&pcms->rtc,
479 object_property_allow_set_link,
480 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
481 object_property_set_link(OBJECT(pcms), OBJECT(s),
482 "rtc_state", &error_abort);
484 set_boot_dev(s, MACHINE(pcms)->boot_order, &local_err);
485 if (local_err) {
486 error_report_err(local_err);
487 exit(1);
490 val = 0;
491 val |= 0x02; /* FPU is there */
492 val |= 0x04; /* PS/2 mouse installed */
493 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
495 /* hard drives and FDC */
496 arg.rtc_state = s;
497 arg.idebus[0] = idebus0;
498 arg.idebus[1] = idebus1;
499 qemu_register_reset(pc_cmos_init_late, &arg);
502 #define TYPE_PORT92 "port92"
503 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
505 /* port 92 stuff: could be split off */
506 typedef struct Port92State {
507 ISADevice parent_obj;
509 MemoryRegion io;
510 uint8_t outport;
511 qemu_irq *a20_out;
512 } Port92State;
514 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
515 unsigned size)
517 Port92State *s = opaque;
518 int oldval = s->outport;
520 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
521 s->outport = val;
522 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
523 if ((val & 1) && !(oldval & 1)) {
524 qemu_system_reset_request();
528 static uint64_t port92_read(void *opaque, hwaddr addr,
529 unsigned size)
531 Port92State *s = opaque;
532 uint32_t ret;
534 ret = s->outport;
535 DPRINTF("port92: read 0x%02x\n", ret);
536 return ret;
539 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
541 Port92State *s = PORT92(dev);
543 s->a20_out = a20_out;
546 static const VMStateDescription vmstate_port92_isa = {
547 .name = "port92",
548 .version_id = 1,
549 .minimum_version_id = 1,
550 .fields = (VMStateField[]) {
551 VMSTATE_UINT8(outport, Port92State),
552 VMSTATE_END_OF_LIST()
556 static void port92_reset(DeviceState *d)
558 Port92State *s = PORT92(d);
560 s->outport &= ~1;
563 static const MemoryRegionOps port92_ops = {
564 .read = port92_read,
565 .write = port92_write,
566 .impl = {
567 .min_access_size = 1,
568 .max_access_size = 1,
570 .endianness = DEVICE_LITTLE_ENDIAN,
573 static void port92_initfn(Object *obj)
575 Port92State *s = PORT92(obj);
577 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
579 s->outport = 0;
582 static void port92_realizefn(DeviceState *dev, Error **errp)
584 ISADevice *isadev = ISA_DEVICE(dev);
585 Port92State *s = PORT92(dev);
587 isa_register_ioport(isadev, &s->io, 0x92);
590 static void port92_class_initfn(ObjectClass *klass, void *data)
592 DeviceClass *dc = DEVICE_CLASS(klass);
594 dc->realize = port92_realizefn;
595 dc->reset = port92_reset;
596 dc->vmsd = &vmstate_port92_isa;
598 * Reason: unlike ordinary ISA devices, this one needs additional
599 * wiring: its A20 output line needs to be wired up by
600 * port92_init().
602 dc->cannot_instantiate_with_device_add_yet = true;
605 static const TypeInfo port92_info = {
606 .name = TYPE_PORT92,
607 .parent = TYPE_ISA_DEVICE,
608 .instance_size = sizeof(Port92State),
609 .instance_init = port92_initfn,
610 .class_init = port92_class_initfn,
613 static void port92_register_types(void)
615 type_register_static(&port92_info);
618 type_init(port92_register_types)
620 static void handle_a20_line_change(void *opaque, int irq, int level)
622 X86CPU *cpu = opaque;
624 /* XXX: send to all CPUs ? */
625 /* XXX: add logic to handle multiple A20 line sources */
626 x86_cpu_set_a20(cpu, level);
629 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
631 int index = le32_to_cpu(e820_reserve.count);
632 struct e820_entry *entry;
634 if (type != E820_RAM) {
635 /* old FW_CFG_E820_TABLE entry -- reservations only */
636 if (index >= E820_NR_ENTRIES) {
637 return -EBUSY;
639 entry = &e820_reserve.entry[index++];
641 entry->address = cpu_to_le64(address);
642 entry->length = cpu_to_le64(length);
643 entry->type = cpu_to_le32(type);
645 e820_reserve.count = cpu_to_le32(index);
648 /* new "etc/e820" file -- include ram too */
649 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
650 e820_table[e820_entries].address = cpu_to_le64(address);
651 e820_table[e820_entries].length = cpu_to_le64(length);
652 e820_table[e820_entries].type = cpu_to_le32(type);
653 e820_entries++;
655 return e820_entries;
658 int e820_get_num_entries(void)
660 return e820_entries;
663 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
665 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
666 *address = le64_to_cpu(e820_table[idx].address);
667 *length = le64_to_cpu(e820_table[idx].length);
668 return true;
670 return false;
673 /* Enables contiguous-apic-ID mode, for compatibility */
674 static bool compat_apic_id_mode;
676 void enable_compat_apic_id_mode(void)
678 compat_apic_id_mode = true;
681 /* Calculates initial APIC ID for a specific CPU index
683 * Currently we need to be able to calculate the APIC ID from the CPU index
684 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
685 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
686 * all CPUs up to max_cpus.
688 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
690 uint32_t correct_id;
691 static bool warned;
693 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
694 if (compat_apic_id_mode) {
695 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
696 error_report("APIC IDs set in compatibility mode, "
697 "CPU topology won't match the configuration");
698 warned = true;
700 return cpu_index;
701 } else {
702 return correct_id;
706 /* Calculates the limit to CPU APIC ID values
708 * This function returns the limit for the APIC ID value, so that all
709 * CPU APIC IDs are < pc_apic_id_limit().
711 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
713 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
715 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
718 static void pc_build_smbios(FWCfgState *fw_cfg)
720 uint8_t *smbios_tables, *smbios_anchor;
721 size_t smbios_tables_len, smbios_anchor_len;
722 struct smbios_phys_mem_area *mem_array;
723 unsigned i, array_count;
725 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
726 if (smbios_tables) {
727 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
728 smbios_tables, smbios_tables_len);
731 /* build the array of physical mem area from e820 table */
732 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
733 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
734 uint64_t addr, len;
736 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
737 mem_array[array_count].address = addr;
738 mem_array[array_count].length = len;
739 array_count++;
742 smbios_get_tables(mem_array, array_count,
743 &smbios_tables, &smbios_tables_len,
744 &smbios_anchor, &smbios_anchor_len);
745 g_free(mem_array);
747 if (smbios_anchor) {
748 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
749 smbios_tables, smbios_tables_len);
750 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
751 smbios_anchor, smbios_anchor_len);
755 static FWCfgState *bochs_bios_init(AddressSpace *as)
757 FWCfgState *fw_cfg;
758 uint64_t *numa_fw_cfg;
759 int i, j;
760 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
762 fw_cfg = fw_cfg_init_io_dma(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 4, as);
764 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
766 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
767 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
768 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
769 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
770 * may see".
772 * So, this means we must not use max_cpus, here, but the maximum possible
773 * APIC ID value, plus one.
775 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
776 * the APIC ID, not the "CPU index"
778 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
779 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
780 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
781 acpi_tables, acpi_tables_len);
782 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
784 pc_build_smbios(fw_cfg);
786 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
787 &e820_reserve, sizeof(e820_reserve));
788 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
789 sizeof(struct e820_entry) * e820_entries);
791 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
792 /* allocate memory for the NUMA channel: one (64bit) word for the number
793 * of nodes, one word for each VCPU->node and one word for each node to
794 * hold the amount of memory.
796 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
797 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
798 for (i = 0; i < max_cpus; i++) {
799 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
800 assert(apic_id < apic_id_limit);
801 for (j = 0; j < nb_numa_nodes; j++) {
802 if (test_bit(i, numa_info[j].node_cpu)) {
803 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
804 break;
808 for (i = 0; i < nb_numa_nodes; i++) {
809 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
811 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
812 (1 + apic_id_limit + nb_numa_nodes) *
813 sizeof(*numa_fw_cfg));
815 return fw_cfg;
818 static long get_file_size(FILE *f)
820 long where, size;
822 /* XXX: on Unix systems, using fstat() probably makes more sense */
824 where = ftell(f);
825 fseek(f, 0, SEEK_END);
826 size = ftell(f);
827 fseek(f, where, SEEK_SET);
829 return size;
832 static void load_linux(PCMachineState *pcms,
833 FWCfgState *fw_cfg)
835 uint16_t protocol;
836 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
837 uint32_t initrd_max;
838 uint8_t header[8192], *setup, *kernel, *initrd_data;
839 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
840 FILE *f;
841 char *vmode;
842 MachineState *machine = MACHINE(pcms);
843 const char *kernel_filename = machine->kernel_filename;
844 const char *initrd_filename = machine->initrd_filename;
845 const char *kernel_cmdline = machine->kernel_cmdline;
847 /* Align to 16 bytes as a paranoia measure */
848 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
850 /* load the kernel header */
851 f = fopen(kernel_filename, "rb");
852 if (!f || !(kernel_size = get_file_size(f)) ||
853 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
854 MIN(ARRAY_SIZE(header), kernel_size)) {
855 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
856 kernel_filename, strerror(errno));
857 exit(1);
860 /* kernel protocol version */
861 #if 0
862 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
863 #endif
864 if (ldl_p(header+0x202) == 0x53726448) {
865 protocol = lduw_p(header+0x206);
866 } else {
867 /* This looks like a multiboot kernel. If it is, let's stop
868 treating it like a Linux kernel. */
869 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
870 kernel_cmdline, kernel_size, header)) {
871 return;
873 protocol = 0;
876 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
877 /* Low kernel */
878 real_addr = 0x90000;
879 cmdline_addr = 0x9a000 - cmdline_size;
880 prot_addr = 0x10000;
881 } else if (protocol < 0x202) {
882 /* High but ancient kernel */
883 real_addr = 0x90000;
884 cmdline_addr = 0x9a000 - cmdline_size;
885 prot_addr = 0x100000;
886 } else {
887 /* High and recent kernel */
888 real_addr = 0x10000;
889 cmdline_addr = 0x20000;
890 prot_addr = 0x100000;
893 #if 0
894 fprintf(stderr,
895 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
896 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
897 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
898 real_addr,
899 cmdline_addr,
900 prot_addr);
901 #endif
903 /* highest address for loading the initrd */
904 if (protocol >= 0x203) {
905 initrd_max = ldl_p(header+0x22c);
906 } else {
907 initrd_max = 0x37ffffff;
910 if (initrd_max >= pcms->below_4g_mem_size - acpi_data_size) {
911 initrd_max = pcms->below_4g_mem_size - acpi_data_size - 1;
914 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
915 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
916 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
918 if (protocol >= 0x202) {
919 stl_p(header+0x228, cmdline_addr);
920 } else {
921 stw_p(header+0x20, 0xA33F);
922 stw_p(header+0x22, cmdline_addr-real_addr);
925 /* handle vga= parameter */
926 vmode = strstr(kernel_cmdline, "vga=");
927 if (vmode) {
928 unsigned int video_mode;
929 /* skip "vga=" */
930 vmode += 4;
931 if (!strncmp(vmode, "normal", 6)) {
932 video_mode = 0xffff;
933 } else if (!strncmp(vmode, "ext", 3)) {
934 video_mode = 0xfffe;
935 } else if (!strncmp(vmode, "ask", 3)) {
936 video_mode = 0xfffd;
937 } else {
938 video_mode = strtol(vmode, NULL, 0);
940 stw_p(header+0x1fa, video_mode);
943 /* loader type */
944 /* High nybble = B reserved for QEMU; low nybble is revision number.
945 If this code is substantially changed, you may want to consider
946 incrementing the revision. */
947 if (protocol >= 0x200) {
948 header[0x210] = 0xB0;
950 /* heap */
951 if (protocol >= 0x201) {
952 header[0x211] |= 0x80; /* CAN_USE_HEAP */
953 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
956 /* load initrd */
957 if (initrd_filename) {
958 if (protocol < 0x200) {
959 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
960 exit(1);
963 initrd_size = get_image_size(initrd_filename);
964 if (initrd_size < 0) {
965 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
966 initrd_filename, strerror(errno));
967 exit(1);
970 initrd_addr = (initrd_max-initrd_size) & ~4095;
972 initrd_data = g_malloc(initrd_size);
973 load_image(initrd_filename, initrd_data);
975 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
976 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
977 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
979 stl_p(header+0x218, initrd_addr);
980 stl_p(header+0x21c, initrd_size);
983 /* load kernel and setup */
984 setup_size = header[0x1f1];
985 if (setup_size == 0) {
986 setup_size = 4;
988 setup_size = (setup_size+1)*512;
989 if (setup_size > kernel_size) {
990 fprintf(stderr, "qemu: invalid kernel header\n");
991 exit(1);
993 kernel_size -= setup_size;
995 setup = g_malloc(setup_size);
996 kernel = g_malloc(kernel_size);
997 fseek(f, 0, SEEK_SET);
998 if (fread(setup, 1, setup_size, f) != setup_size) {
999 fprintf(stderr, "fread() failed\n");
1000 exit(1);
1002 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1003 fprintf(stderr, "fread() failed\n");
1004 exit(1);
1006 fclose(f);
1007 memcpy(setup, header, MIN(sizeof(header), setup_size));
1009 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1010 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1011 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1013 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1014 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1015 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1017 option_rom[nb_option_roms].name = "linuxboot.bin";
1018 option_rom[nb_option_roms].bootindex = 0;
1019 nb_option_roms++;
1022 #define NE2000_NB_MAX 6
1024 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1025 0x280, 0x380 };
1026 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1028 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1030 static int nb_ne2k = 0;
1032 if (nb_ne2k == NE2000_NB_MAX)
1033 return;
1034 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1035 ne2000_irq[nb_ne2k], nd);
1036 nb_ne2k++;
1039 DeviceState *cpu_get_current_apic(void)
1041 if (current_cpu) {
1042 X86CPU *cpu = X86_CPU(current_cpu);
1043 return cpu->apic_state;
1044 } else {
1045 return NULL;
1049 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1051 X86CPU *cpu = opaque;
1053 if (level) {
1054 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1058 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
1059 Error **errp)
1061 X86CPU *cpu = NULL;
1062 Error *local_err = NULL;
1064 cpu = cpu_x86_create(cpu_model, &local_err);
1065 if (local_err != NULL) {
1066 goto out;
1069 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1070 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1072 out:
1073 if (local_err) {
1074 error_propagate(errp, local_err);
1075 object_unref(OBJECT(cpu));
1076 cpu = NULL;
1078 return cpu;
1081 void pc_hot_add_cpu(const int64_t id, Error **errp)
1083 X86CPU *cpu;
1084 MachineState *machine = MACHINE(qdev_get_machine());
1085 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1086 Error *local_err = NULL;
1088 if (id < 0) {
1089 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1090 return;
1093 if (cpu_exists(apic_id)) {
1094 error_setg(errp, "Unable to add CPU: %" PRIi64
1095 ", it already exists", id);
1096 return;
1099 if (id >= max_cpus) {
1100 error_setg(errp, "Unable to add CPU: %" PRIi64
1101 ", max allowed: %d", id, max_cpus - 1);
1102 return;
1105 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1106 error_setg(errp, "Unable to add CPU: %" PRIi64
1107 ", resulting APIC ID (%" PRIi64 ") is too large",
1108 id, apic_id);
1109 return;
1112 cpu = pc_new_cpu(machine->cpu_model, apic_id, &local_err);
1113 if (local_err) {
1114 error_propagate(errp, local_err);
1115 return;
1117 object_unref(OBJECT(cpu));
1120 void pc_cpus_init(PCMachineState *pcms)
1122 int i;
1123 X86CPU *cpu = NULL;
1124 MachineState *machine = MACHINE(pcms);
1125 Error *error = NULL;
1126 unsigned long apic_id_limit;
1128 /* init CPUs */
1129 if (machine->cpu_model == NULL) {
1130 #ifdef TARGET_X86_64
1131 machine->cpu_model = "qemu64";
1132 #else
1133 machine->cpu_model = "qemu32";
1134 #endif
1137 apic_id_limit = pc_apic_id_limit(max_cpus);
1138 if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1139 error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1140 apic_id_limit - 1);
1141 exit(1);
1144 for (i = 0; i < smp_cpus; i++) {
1145 cpu = pc_new_cpu(machine->cpu_model, x86_cpu_apic_id_from_index(i),
1146 &error);
1147 if (error) {
1148 error_report_err(error);
1149 exit(1);
1151 object_unref(OBJECT(cpu));
1154 /* tell smbios about cpuid version and features */
1155 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1158 /* pci-info ROM file. Little endian format */
1159 typedef struct PcRomPciInfo {
1160 uint64_t w32_min;
1161 uint64_t w32_max;
1162 uint64_t w64_min;
1163 uint64_t w64_max;
1164 } PcRomPciInfo;
1166 typedef struct PcGuestInfoState {
1167 PcGuestInfo info;
1168 Notifier machine_done;
1169 } PcGuestInfoState;
1171 static
1172 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1174 PcGuestInfoState *guest_info_state = container_of(notifier,
1175 PcGuestInfoState,
1176 machine_done);
1177 PCIBus *bus = find_i440fx();
1179 if (bus) {
1180 int extra_hosts = 0;
1182 QLIST_FOREACH(bus, &bus->child, sibling) {
1183 /* look for expander root buses */
1184 if (pci_bus_is_root(bus)) {
1185 extra_hosts++;
1188 if (extra_hosts && guest_info_state->info.fw_cfg) {
1189 uint64_t *val = g_malloc(sizeof(*val));
1190 *val = cpu_to_le64(extra_hosts);
1191 fw_cfg_add_file(guest_info_state->info.fw_cfg,
1192 "etc/extra-pci-roots", val, sizeof(*val));
1196 acpi_setup(&guest_info_state->info);
1199 PcGuestInfo *pc_guest_info_init(PCMachineState *pcms)
1201 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1202 PcGuestInfo *guest_info = &guest_info_state->info;
1203 int i, j;
1205 guest_info->ram_size_below_4g = pcms->below_4g_mem_size;
1206 guest_info->ram_size = pcms->below_4g_mem_size + pcms->above_4g_mem_size;
1207 guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1208 guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1209 guest_info->numa_nodes = nb_numa_nodes;
1210 guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1211 sizeof *guest_info->node_mem);
1212 for (i = 0; i < nb_numa_nodes; i++) {
1213 guest_info->node_mem[i] = numa_info[i].node_mem;
1216 guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1217 sizeof *guest_info->node_cpu);
1219 for (i = 0; i < max_cpus; i++) {
1220 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1221 assert(apic_id < guest_info->apic_id_limit);
1222 for (j = 0; j < nb_numa_nodes; j++) {
1223 if (test_bit(i, numa_info[j].node_cpu)) {
1224 guest_info->node_cpu[apic_id] = j;
1225 break;
1230 guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1231 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1232 return guest_info;
1235 /* setup pci memory address space mapping into system address space */
1236 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1237 MemoryRegion *pci_address_space)
1239 /* Set to lower priority than RAM */
1240 memory_region_add_subregion_overlap(system_memory, 0x0,
1241 pci_address_space, -1);
1244 void pc_acpi_init(const char *default_dsdt)
1246 char *filename;
1248 if (acpi_tables != NULL) {
1249 /* manually set via -acpitable, leave it alone */
1250 return;
1253 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1254 if (filename == NULL) {
1255 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1256 } else {
1257 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1258 &error_abort);
1259 Error *err = NULL;
1261 qemu_opt_set(opts, "file", filename, &error_abort);
1263 acpi_table_add_builtin(opts, &err);
1264 if (err) {
1265 error_report("WARNING: failed to load %s: %s", filename,
1266 error_get_pretty(err));
1267 error_free(err);
1269 g_free(filename);
1273 FWCfgState *xen_load_linux(PCMachineState *pcms,
1274 PcGuestInfo *guest_info)
1276 int i;
1277 FWCfgState *fw_cfg;
1279 assert(MACHINE(pcms)->kernel_filename != NULL);
1281 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1282 rom_set_fw(fw_cfg);
1284 load_linux(pcms, fw_cfg);
1285 for (i = 0; i < nb_option_roms; i++) {
1286 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1287 !strcmp(option_rom[i].name, "multiboot.bin"));
1288 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1290 guest_info->fw_cfg = fw_cfg;
1291 return fw_cfg;
1294 FWCfgState *pc_memory_init(PCMachineState *pcms,
1295 MemoryRegion *system_memory,
1296 MemoryRegion *rom_memory,
1297 MemoryRegion **ram_memory,
1298 PcGuestInfo *guest_info)
1300 int linux_boot, i;
1301 MemoryRegion *ram, *option_rom_mr;
1302 MemoryRegion *ram_below_4g, *ram_above_4g;
1303 FWCfgState *fw_cfg;
1304 MachineState *machine = MACHINE(pcms);
1306 assert(machine->ram_size == pcms->below_4g_mem_size +
1307 pcms->above_4g_mem_size);
1309 linux_boot = (machine->kernel_filename != NULL);
1311 /* Allocate RAM. We allocate it as a single memory region and use
1312 * aliases to address portions of it, mostly for backwards compatibility
1313 * with older qemus that used qemu_ram_alloc().
1315 ram = g_malloc(sizeof(*ram));
1316 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1317 machine->ram_size);
1318 *ram_memory = ram;
1319 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1320 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1321 0, pcms->below_4g_mem_size);
1322 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1323 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1324 if (pcms->above_4g_mem_size > 0) {
1325 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1326 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1327 pcms->below_4g_mem_size,
1328 pcms->above_4g_mem_size);
1329 memory_region_add_subregion(system_memory, 0x100000000ULL,
1330 ram_above_4g);
1331 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1334 if (!guest_info->has_reserved_memory &&
1335 (machine->ram_slots ||
1336 (machine->maxram_size > machine->ram_size))) {
1337 MachineClass *mc = MACHINE_GET_CLASS(machine);
1339 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1340 mc->name);
1341 exit(EXIT_FAILURE);
1344 /* initialize hotplug memory address space */
1345 if (guest_info->has_reserved_memory &&
1346 (machine->ram_size < machine->maxram_size)) {
1347 ram_addr_t hotplug_mem_size =
1348 machine->maxram_size - machine->ram_size;
1350 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1351 error_report("unsupported amount of memory slots: %"PRIu64,
1352 machine->ram_slots);
1353 exit(EXIT_FAILURE);
1356 if (QEMU_ALIGN_UP(machine->maxram_size,
1357 TARGET_PAGE_SIZE) != machine->maxram_size) {
1358 error_report("maximum memory size must by aligned to multiple of "
1359 "%d bytes", TARGET_PAGE_SIZE);
1360 exit(EXIT_FAILURE);
1363 pcms->hotplug_memory.base =
1364 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1366 if (pcms->enforce_aligned_dimm) {
1367 /* size hotplug region assuming 1G page max alignment per slot */
1368 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1371 if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1372 hotplug_mem_size) {
1373 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1374 machine->maxram_size);
1375 exit(EXIT_FAILURE);
1378 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1379 "hotplug-memory", hotplug_mem_size);
1380 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1381 &pcms->hotplug_memory.mr);
1384 /* Initialize PC system firmware */
1385 pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1387 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1388 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1389 &error_fatal);
1390 vmstate_register_ram_global(option_rom_mr);
1391 memory_region_add_subregion_overlap(rom_memory,
1392 PC_ROM_MIN_VGA,
1393 option_rom_mr,
1396 fw_cfg = bochs_bios_init(&address_space_memory);
1398 rom_set_fw(fw_cfg);
1400 if (guest_info->has_reserved_memory && pcms->hotplug_memory.base) {
1401 uint64_t *val = g_malloc(sizeof(*val));
1402 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1403 uint64_t res_mem_end = pcms->hotplug_memory.base;
1405 if (!pcmc->broken_reserved_end) {
1406 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1408 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1409 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1412 if (linux_boot) {
1413 load_linux(pcms, fw_cfg);
1416 for (i = 0; i < nb_option_roms; i++) {
1417 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1419 guest_info->fw_cfg = fw_cfg;
1420 return fw_cfg;
1423 qemu_irq pc_allocate_cpu_irq(void)
1425 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1428 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1430 DeviceState *dev = NULL;
1432 if (pci_bus) {
1433 PCIDevice *pcidev = pci_vga_init(pci_bus);
1434 dev = pcidev ? &pcidev->qdev : NULL;
1435 } else if (isa_bus) {
1436 ISADevice *isadev = isa_vga_init(isa_bus);
1437 dev = isadev ? DEVICE(isadev) : NULL;
1439 return dev;
1442 static const MemoryRegionOps ioport80_io_ops = {
1443 .write = ioport80_write,
1444 .read = ioport80_read,
1445 .endianness = DEVICE_NATIVE_ENDIAN,
1446 .impl = {
1447 .min_access_size = 1,
1448 .max_access_size = 1,
1452 static const MemoryRegionOps ioportF0_io_ops = {
1453 .write = ioportF0_write,
1454 .read = ioportF0_read,
1455 .endianness = DEVICE_NATIVE_ENDIAN,
1456 .impl = {
1457 .min_access_size = 1,
1458 .max_access_size = 1,
1462 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1463 ISADevice **rtc_state,
1464 bool create_fdctrl,
1465 bool no_vmport,
1466 uint32 hpet_irqs)
1468 int i;
1469 DriveInfo *fd[MAX_FD];
1470 DeviceState *hpet = NULL;
1471 int pit_isa_irq = 0;
1472 qemu_irq pit_alt_irq = NULL;
1473 qemu_irq rtc_irq = NULL;
1474 qemu_irq *a20_line;
1475 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1476 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1477 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1479 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1480 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1482 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1483 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1486 * Check if an HPET shall be created.
1488 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1489 * when the HPET wants to take over. Thus we have to disable the latter.
1491 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1492 /* In order to set property, here not using sysbus_try_create_simple */
1493 hpet = qdev_try_create(NULL, TYPE_HPET);
1494 if (hpet) {
1495 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1496 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1497 * IRQ8 and IRQ2.
1499 uint8_t compat = object_property_get_int(OBJECT(hpet),
1500 HPET_INTCAP, NULL);
1501 if (!compat) {
1502 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1504 qdev_init_nofail(hpet);
1505 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1507 for (i = 0; i < GSI_NUM_PINS; i++) {
1508 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1510 pit_isa_irq = -1;
1511 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1512 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1515 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1517 qemu_register_boot_set(pc_boot_set, *rtc_state);
1519 if (!xen_enabled()) {
1520 if (kvm_irqchip_in_kernel()) {
1521 pit = kvm_pit_init(isa_bus, 0x40);
1522 } else {
1523 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1525 if (hpet) {
1526 /* connect PIT to output control line of the HPET */
1527 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1529 pcspk_init(isa_bus, pit);
1532 serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1533 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1535 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1536 i8042 = isa_create_simple(isa_bus, "i8042");
1537 i8042_setup_a20_line(i8042, &a20_line[0]);
1538 if (!no_vmport) {
1539 vmport_init(isa_bus);
1540 vmmouse = isa_try_create(isa_bus, "vmmouse");
1541 } else {
1542 vmmouse = NULL;
1544 if (vmmouse) {
1545 DeviceState *dev = DEVICE(vmmouse);
1546 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1547 qdev_init_nofail(dev);
1549 port92 = isa_create_simple(isa_bus, "port92");
1550 port92_init(port92, &a20_line[1]);
1552 DMA_init(0);
1554 for(i = 0; i < MAX_FD; i++) {
1555 fd[i] = drive_get(IF_FLOPPY, 0, i);
1556 create_fdctrl |= !!fd[i];
1558 if (create_fdctrl) {
1559 fdctrl_init_isa(isa_bus, fd);
1563 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1565 int i;
1567 for (i = 0; i < nb_nics; i++) {
1568 NICInfo *nd = &nd_table[i];
1570 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1571 pc_init_ne2k_isa(isa_bus, nd);
1572 } else {
1573 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1578 void pc_pci_device_init(PCIBus *pci_bus)
1580 int max_bus;
1581 int bus;
1583 max_bus = drive_get_max_bus(IF_SCSI);
1584 for (bus = 0; bus <= max_bus; bus++) {
1585 pci_create_simple(pci_bus, -1, "lsi53c895a");
1589 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1591 DeviceState *dev;
1592 SysBusDevice *d;
1593 unsigned int i;
1595 if (kvm_irqchip_in_kernel()) {
1596 dev = qdev_create(NULL, "kvm-ioapic");
1597 } else {
1598 dev = qdev_create(NULL, "ioapic");
1600 if (parent_name) {
1601 object_property_add_child(object_resolve_path(parent_name, NULL),
1602 "ioapic", OBJECT(dev), NULL);
1604 qdev_init_nofail(dev);
1605 d = SYS_BUS_DEVICE(dev);
1606 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1608 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1609 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1613 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1614 DeviceState *dev, Error **errp)
1616 HotplugHandlerClass *hhc;
1617 Error *local_err = NULL;
1618 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1619 PCDIMMDevice *dimm = PC_DIMM(dev);
1620 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1621 MemoryRegion *mr = ddc->get_memory_region(dimm);
1622 uint64_t align = TARGET_PAGE_SIZE;
1624 if (memory_region_get_alignment(mr) && pcms->enforce_aligned_dimm) {
1625 align = memory_region_get_alignment(mr);
1628 if (!pcms->acpi_dev) {
1629 error_setg(&local_err,
1630 "memory hotplug is not enabled: missing acpi device");
1631 goto out;
1634 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1635 if (local_err) {
1636 goto out;
1639 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1640 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1641 out:
1642 error_propagate(errp, local_err);
1645 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1646 DeviceState *dev, Error **errp)
1648 HotplugHandlerClass *hhc;
1649 Error *local_err = NULL;
1650 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1652 if (!pcms->acpi_dev) {
1653 error_setg(&local_err,
1654 "memory hotplug is not enabled: missing acpi device");
1655 goto out;
1658 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1659 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1661 out:
1662 error_propagate(errp, local_err);
1665 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1666 DeviceState *dev, Error **errp)
1668 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1669 PCDIMMDevice *dimm = PC_DIMM(dev);
1670 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1671 MemoryRegion *mr = ddc->get_memory_region(dimm);
1672 HotplugHandlerClass *hhc;
1673 Error *local_err = NULL;
1675 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1676 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1678 if (local_err) {
1679 goto out;
1682 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1683 object_unparent(OBJECT(dev));
1685 out:
1686 error_propagate(errp, local_err);
1689 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1690 DeviceState *dev, Error **errp)
1692 HotplugHandlerClass *hhc;
1693 Error *local_err = NULL;
1694 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1696 if (!dev->hotplugged) {
1697 goto out;
1700 if (!pcms->acpi_dev) {
1701 error_setg(&local_err,
1702 "cpu hotplug is not enabled: missing acpi device");
1703 goto out;
1706 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1707 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1708 if (local_err) {
1709 goto out;
1712 /* increment the number of CPUs */
1713 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1714 out:
1715 error_propagate(errp, local_err);
1718 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1719 DeviceState *dev, Error **errp)
1721 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1722 pc_dimm_plug(hotplug_dev, dev, errp);
1723 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1724 pc_cpu_plug(hotplug_dev, dev, errp);
1728 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1729 DeviceState *dev, Error **errp)
1731 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1732 pc_dimm_unplug_request(hotplug_dev, dev, errp);
1733 } else {
1734 error_setg(errp, "acpi: device unplug request for not supported device"
1735 " type: %s", object_get_typename(OBJECT(dev)));
1739 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1740 DeviceState *dev, Error **errp)
1742 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1743 pc_dimm_unplug(hotplug_dev, dev, errp);
1744 } else {
1745 error_setg(errp, "acpi: device unplug for not supported device"
1746 " type: %s", object_get_typename(OBJECT(dev)));
1750 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1751 DeviceState *dev)
1753 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1755 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1756 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1757 return HOTPLUG_HANDLER(machine);
1760 return pcmc->get_hotplug_handler ?
1761 pcmc->get_hotplug_handler(machine, dev) : NULL;
1764 static void
1765 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1766 const char *name, Error **errp)
1768 PCMachineState *pcms = PC_MACHINE(obj);
1769 int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
1771 visit_type_int(v, &value, name, errp);
1774 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1775 void *opaque, const char *name,
1776 Error **errp)
1778 PCMachineState *pcms = PC_MACHINE(obj);
1779 uint64_t value = pcms->max_ram_below_4g;
1781 visit_type_size(v, &value, name, errp);
1784 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1785 void *opaque, const char *name,
1786 Error **errp)
1788 PCMachineState *pcms = PC_MACHINE(obj);
1789 Error *error = NULL;
1790 uint64_t value;
1792 visit_type_size(v, &value, name, &error);
1793 if (error) {
1794 error_propagate(errp, error);
1795 return;
1797 if (value > (1ULL << 32)) {
1798 error_set(&error, ERROR_CLASS_GENERIC_ERROR,
1799 "Machine option 'max-ram-below-4g=%"PRIu64
1800 "' expects size less than or equal to 4G", value);
1801 error_propagate(errp, error);
1802 return;
1805 if (value < (1ULL << 20)) {
1806 error_report("Warning: small max_ram_below_4g(%"PRIu64
1807 ") less than 1M. BIOS may not work..",
1808 value);
1811 pcms->max_ram_below_4g = value;
1814 static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1815 const char *name, Error **errp)
1817 PCMachineState *pcms = PC_MACHINE(obj);
1818 OnOffAuto vmport = pcms->vmport;
1820 visit_type_OnOffAuto(v, &vmport, name, errp);
1823 static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1824 const char *name, Error **errp)
1826 PCMachineState *pcms = PC_MACHINE(obj);
1828 visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1831 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
1833 bool smm_available = false;
1835 if (pcms->smm == ON_OFF_AUTO_OFF) {
1836 return false;
1839 if (tcg_enabled() || qtest_enabled()) {
1840 smm_available = true;
1841 } else if (kvm_enabled()) {
1842 smm_available = kvm_has_smm();
1845 if (smm_available) {
1846 return true;
1849 if (pcms->smm == ON_OFF_AUTO_ON) {
1850 error_report("System Management Mode not supported by this hypervisor.");
1851 exit(1);
1853 return false;
1856 static void pc_machine_get_smm(Object *obj, Visitor *v, void *opaque,
1857 const char *name, Error **errp)
1859 PCMachineState *pcms = PC_MACHINE(obj);
1860 OnOffAuto smm = pcms->smm;
1862 visit_type_OnOffAuto(v, &smm, name, errp);
1865 static void pc_machine_set_smm(Object *obj, Visitor *v, void *opaque,
1866 const char *name, Error **errp)
1868 PCMachineState *pcms = PC_MACHINE(obj);
1870 visit_type_OnOffAuto(v, &pcms->smm, name, errp);
1873 static bool pc_machine_get_aligned_dimm(Object *obj, Error **errp)
1875 PCMachineState *pcms = PC_MACHINE(obj);
1877 return pcms->enforce_aligned_dimm;
1880 static void pc_machine_initfn(Object *obj)
1882 PCMachineState *pcms = PC_MACHINE(obj);
1884 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1885 pc_machine_get_hotplug_memory_region_size,
1886 NULL, NULL, NULL, &error_abort);
1888 pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1889 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1890 pc_machine_get_max_ram_below_4g,
1891 pc_machine_set_max_ram_below_4g,
1892 NULL, NULL, &error_abort);
1893 object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1894 "Maximum ram below the 4G boundary (32bit boundary)",
1895 &error_abort);
1897 pcms->smm = ON_OFF_AUTO_AUTO;
1898 object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
1899 pc_machine_get_smm,
1900 pc_machine_set_smm,
1901 NULL, NULL, &error_abort);
1902 object_property_set_description(obj, PC_MACHINE_SMM,
1903 "Enable SMM (pc & q35)",
1904 &error_abort);
1906 pcms->vmport = ON_OFF_AUTO_AUTO;
1907 object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1908 pc_machine_get_vmport,
1909 pc_machine_set_vmport,
1910 NULL, NULL, &error_abort);
1911 object_property_set_description(obj, PC_MACHINE_VMPORT,
1912 "Enable vmport (pc & q35)",
1913 &error_abort);
1915 pcms->enforce_aligned_dimm = true;
1916 object_property_add_bool(obj, PC_MACHINE_ENFORCE_ALIGNED_DIMM,
1917 pc_machine_get_aligned_dimm,
1918 NULL, &error_abort);
1921 static void pc_machine_reset(void)
1923 CPUState *cs;
1924 X86CPU *cpu;
1926 qemu_devices_reset();
1928 /* Reset APIC after devices have been reset to cancel
1929 * any changes that qemu_devices_reset() might have done.
1931 CPU_FOREACH(cs) {
1932 cpu = X86_CPU(cs);
1934 if (cpu->apic_state) {
1935 device_reset(cpu->apic_state);
1940 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
1942 X86CPUTopoInfo topo;
1943 x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
1944 &topo);
1945 return topo.pkg_id;
1948 static void pc_machine_class_init(ObjectClass *oc, void *data)
1950 MachineClass *mc = MACHINE_CLASS(oc);
1951 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1952 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1954 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1955 mc->get_hotplug_handler = pc_get_hotpug_handler;
1956 mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
1957 mc->default_boot_order = "cad";
1958 mc->hot_add_cpu = pc_hot_add_cpu;
1959 mc->max_cpus = 255;
1960 mc->reset = pc_machine_reset;
1961 hc->plug = pc_machine_device_plug_cb;
1962 hc->unplug_request = pc_machine_device_unplug_request_cb;
1963 hc->unplug = pc_machine_device_unplug_cb;
1966 static const TypeInfo pc_machine_info = {
1967 .name = TYPE_PC_MACHINE,
1968 .parent = TYPE_MACHINE,
1969 .abstract = true,
1970 .instance_size = sizeof(PCMachineState),
1971 .instance_init = pc_machine_initfn,
1972 .class_size = sizeof(PCMachineClass),
1973 .class_init = pc_machine_class_init,
1974 .interfaces = (InterfaceInfo[]) {
1975 { TYPE_HOTPLUG_HANDLER },
1980 static void pc_machine_register_types(void)
1982 type_register_static(&pc_machine_info);
1985 type_init(pc_machine_register_types)