2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "hw/sysbus.h"
25 #include "exec/address-spaces.h"
26 #include "intel_iommu_internal.h"
27 #include "hw/pci/pci.h"
28 #include "hw/pci/pci_bus.h"
29 #include "hw/i386/pc.h"
30 #include "hw/boards.h"
31 #include "hw/i386/x86-iommu.h"
32 #include "hw/pci-host/q35.h"
33 #include "sysemu/kvm.h"
35 /*#define DEBUG_INTEL_IOMMU*/
36 #ifdef DEBUG_INTEL_IOMMU
38 DEBUG_GENERAL
, DEBUG_CSR
, DEBUG_INV
, DEBUG_MMU
, DEBUG_FLOG
,
39 DEBUG_CACHE
, DEBUG_IR
,
41 #define VTD_DBGBIT(x) (1 << DEBUG_##x)
42 static int vtd_dbgflags
= VTD_DBGBIT(GENERAL
) | VTD_DBGBIT(CSR
);
44 #define VTD_DPRINTF(what, fmt, ...) do { \
45 if (vtd_dbgflags & VTD_DBGBIT(what)) { \
46 fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
50 #define VTD_DPRINTF(what, fmt, ...) do {} while (0)
53 static void vtd_define_quad(IntelIOMMUState
*s
, hwaddr addr
, uint64_t val
,
54 uint64_t wmask
, uint64_t w1cmask
)
56 stq_le_p(&s
->csr
[addr
], val
);
57 stq_le_p(&s
->wmask
[addr
], wmask
);
58 stq_le_p(&s
->w1cmask
[addr
], w1cmask
);
61 static void vtd_define_quad_wo(IntelIOMMUState
*s
, hwaddr addr
, uint64_t mask
)
63 stq_le_p(&s
->womask
[addr
], mask
);
66 static void vtd_define_long(IntelIOMMUState
*s
, hwaddr addr
, uint32_t val
,
67 uint32_t wmask
, uint32_t w1cmask
)
69 stl_le_p(&s
->csr
[addr
], val
);
70 stl_le_p(&s
->wmask
[addr
], wmask
);
71 stl_le_p(&s
->w1cmask
[addr
], w1cmask
);
74 static void vtd_define_long_wo(IntelIOMMUState
*s
, hwaddr addr
, uint32_t mask
)
76 stl_le_p(&s
->womask
[addr
], mask
);
79 /* "External" get/set operations */
80 static void vtd_set_quad(IntelIOMMUState
*s
, hwaddr addr
, uint64_t val
)
82 uint64_t oldval
= ldq_le_p(&s
->csr
[addr
]);
83 uint64_t wmask
= ldq_le_p(&s
->wmask
[addr
]);
84 uint64_t w1cmask
= ldq_le_p(&s
->w1cmask
[addr
]);
85 stq_le_p(&s
->csr
[addr
],
86 ((oldval
& ~wmask
) | (val
& wmask
)) & ~(w1cmask
& val
));
89 static void vtd_set_long(IntelIOMMUState
*s
, hwaddr addr
, uint32_t val
)
91 uint32_t oldval
= ldl_le_p(&s
->csr
[addr
]);
92 uint32_t wmask
= ldl_le_p(&s
->wmask
[addr
]);
93 uint32_t w1cmask
= ldl_le_p(&s
->w1cmask
[addr
]);
94 stl_le_p(&s
->csr
[addr
],
95 ((oldval
& ~wmask
) | (val
& wmask
)) & ~(w1cmask
& val
));
98 static uint64_t vtd_get_quad(IntelIOMMUState
*s
, hwaddr addr
)
100 uint64_t val
= ldq_le_p(&s
->csr
[addr
]);
101 uint64_t womask
= ldq_le_p(&s
->womask
[addr
]);
102 return val
& ~womask
;
105 static uint32_t vtd_get_long(IntelIOMMUState
*s
, hwaddr addr
)
107 uint32_t val
= ldl_le_p(&s
->csr
[addr
]);
108 uint32_t womask
= ldl_le_p(&s
->womask
[addr
]);
109 return val
& ~womask
;
112 /* "Internal" get/set operations */
113 static uint64_t vtd_get_quad_raw(IntelIOMMUState
*s
, hwaddr addr
)
115 return ldq_le_p(&s
->csr
[addr
]);
118 static uint32_t vtd_get_long_raw(IntelIOMMUState
*s
, hwaddr addr
)
120 return ldl_le_p(&s
->csr
[addr
]);
123 static void vtd_set_quad_raw(IntelIOMMUState
*s
, hwaddr addr
, uint64_t val
)
125 stq_le_p(&s
->csr
[addr
], val
);
128 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState
*s
, hwaddr addr
,
129 uint32_t clear
, uint32_t mask
)
131 uint32_t new_val
= (ldl_le_p(&s
->csr
[addr
]) & ~clear
) | mask
;
132 stl_le_p(&s
->csr
[addr
], new_val
);
136 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState
*s
, hwaddr addr
,
137 uint64_t clear
, uint64_t mask
)
139 uint64_t new_val
= (ldq_le_p(&s
->csr
[addr
]) & ~clear
) | mask
;
140 stq_le_p(&s
->csr
[addr
], new_val
);
144 /* GHashTable functions */
145 static gboolean
vtd_uint64_equal(gconstpointer v1
, gconstpointer v2
)
147 return *((const uint64_t *)v1
) == *((const uint64_t *)v2
);
150 static guint
vtd_uint64_hash(gconstpointer v
)
152 return (guint
)*(const uint64_t *)v
;
155 static gboolean
vtd_hash_remove_by_domain(gpointer key
, gpointer value
,
158 VTDIOTLBEntry
*entry
= (VTDIOTLBEntry
*)value
;
159 uint16_t domain_id
= *(uint16_t *)user_data
;
160 return entry
->domain_id
== domain_id
;
163 /* The shift of an addr for a certain level of paging structure */
164 static inline uint32_t vtd_slpt_level_shift(uint32_t level
)
166 return VTD_PAGE_SHIFT_4K
+ (level
- 1) * VTD_SL_LEVEL_BITS
;
169 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level
)
171 return ~((1ULL << vtd_slpt_level_shift(level
)) - 1);
174 static gboolean
vtd_hash_remove_by_page(gpointer key
, gpointer value
,
177 VTDIOTLBEntry
*entry
= (VTDIOTLBEntry
*)value
;
178 VTDIOTLBPageInvInfo
*info
= (VTDIOTLBPageInvInfo
*)user_data
;
179 uint64_t gfn
= (info
->addr
>> VTD_PAGE_SHIFT_4K
) & info
->mask
;
180 uint64_t gfn_tlb
= (info
->addr
& entry
->mask
) >> VTD_PAGE_SHIFT_4K
;
181 return (entry
->domain_id
== info
->domain_id
) &&
182 (((entry
->gfn
& info
->mask
) == gfn
) ||
183 (entry
->gfn
== gfn_tlb
));
186 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
187 * IntelIOMMUState to 1.
189 static void vtd_reset_context_cache(IntelIOMMUState
*s
)
191 VTDAddressSpace
*vtd_as
;
193 GHashTableIter bus_it
;
196 g_hash_table_iter_init(&bus_it
, s
->vtd_as_by_busptr
);
198 VTD_DPRINTF(CACHE
, "global context_cache_gen=1");
199 while (g_hash_table_iter_next (&bus_it
, NULL
, (void**)&vtd_bus
)) {
200 for (devfn_it
= 0; devfn_it
< X86_IOMMU_PCI_DEVFN_MAX
; ++devfn_it
) {
201 vtd_as
= vtd_bus
->dev_as
[devfn_it
];
205 vtd_as
->context_cache_entry
.context_cache_gen
= 0;
208 s
->context_cache_gen
= 1;
211 static void vtd_reset_iotlb(IntelIOMMUState
*s
)
214 g_hash_table_remove_all(s
->iotlb
);
217 static uint64_t vtd_get_iotlb_key(uint64_t gfn
, uint8_t source_id
,
220 return gfn
| ((uint64_t)(source_id
) << VTD_IOTLB_SID_SHIFT
) |
221 ((uint64_t)(level
) << VTD_IOTLB_LVL_SHIFT
);
224 static uint64_t vtd_get_iotlb_gfn(hwaddr addr
, uint32_t level
)
226 return (addr
& vtd_slpt_level_page_mask(level
)) >> VTD_PAGE_SHIFT_4K
;
229 static VTDIOTLBEntry
*vtd_lookup_iotlb(IntelIOMMUState
*s
, uint16_t source_id
,
232 VTDIOTLBEntry
*entry
;
236 for (level
= VTD_SL_PT_LEVEL
; level
< VTD_SL_PML4_LEVEL
; level
++) {
237 key
= vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr
, level
),
239 entry
= g_hash_table_lookup(s
->iotlb
, &key
);
249 static void vtd_update_iotlb(IntelIOMMUState
*s
, uint16_t source_id
,
250 uint16_t domain_id
, hwaddr addr
, uint64_t slpte
,
251 bool read_flags
, bool write_flags
,
254 VTDIOTLBEntry
*entry
= g_malloc(sizeof(*entry
));
255 uint64_t *key
= g_malloc(sizeof(*key
));
256 uint64_t gfn
= vtd_get_iotlb_gfn(addr
, level
);
258 VTD_DPRINTF(CACHE
, "update iotlb sid 0x%"PRIx16
" gpa 0x%"PRIx64
259 " slpte 0x%"PRIx64
" did 0x%"PRIx16
, source_id
, addr
, slpte
,
261 if (g_hash_table_size(s
->iotlb
) >= VTD_IOTLB_MAX_SIZE
) {
262 VTD_DPRINTF(CACHE
, "iotlb exceeds size limit, forced to reset");
267 entry
->domain_id
= domain_id
;
268 entry
->slpte
= slpte
;
269 entry
->read_flags
= read_flags
;
270 entry
->write_flags
= write_flags
;
271 entry
->mask
= vtd_slpt_level_page_mask(level
);
272 *key
= vtd_get_iotlb_key(gfn
, source_id
, level
);
273 g_hash_table_replace(s
->iotlb
, key
, entry
);
276 /* Given the reg addr of both the message data and address, generate an
279 static void vtd_generate_interrupt(IntelIOMMUState
*s
, hwaddr mesg_addr_reg
,
280 hwaddr mesg_data_reg
)
285 assert(mesg_data_reg
< DMAR_REG_SIZE
);
286 assert(mesg_addr_reg
< DMAR_REG_SIZE
);
288 addr
= vtd_get_long_raw(s
, mesg_addr_reg
);
289 data
= vtd_get_long_raw(s
, mesg_data_reg
);
291 VTD_DPRINTF(FLOG
, "msi: addr 0x%"PRIx64
" data 0x%"PRIx32
, addr
, data
);
292 address_space_stl_le(&address_space_memory
, addr
, data
,
293 MEMTXATTRS_UNSPECIFIED
, NULL
);
296 /* Generate a fault event to software via MSI if conditions are met.
297 * Notice that the value of FSTS_REG being passed to it should be the one
300 static void vtd_generate_fault_event(IntelIOMMUState
*s
, uint32_t pre_fsts
)
302 if (pre_fsts
& VTD_FSTS_PPF
|| pre_fsts
& VTD_FSTS_PFO
||
303 pre_fsts
& VTD_FSTS_IQE
) {
304 VTD_DPRINTF(FLOG
, "there are previous interrupt conditions "
305 "to be serviced by software, fault event is not generated "
306 "(FSTS_REG 0x%"PRIx32
")", pre_fsts
);
309 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, 0, VTD_FECTL_IP
);
310 if (vtd_get_long_raw(s
, DMAR_FECTL_REG
) & VTD_FECTL_IM
) {
311 VTD_DPRINTF(FLOG
, "Interrupt Mask set, fault event is not generated");
313 vtd_generate_interrupt(s
, DMAR_FEADDR_REG
, DMAR_FEDATA_REG
);
314 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, VTD_FECTL_IP
, 0);
318 /* Check if the Fault (F) field of the Fault Recording Register referenced by
321 static bool vtd_is_frcd_set(IntelIOMMUState
*s
, uint16_t index
)
323 /* Each reg is 128-bit */
324 hwaddr addr
= DMAR_FRCD_REG_OFFSET
+ (((uint64_t)index
) << 4);
325 addr
+= 8; /* Access the high 64-bit half */
327 assert(index
< DMAR_FRCD_REG_NR
);
329 return vtd_get_quad_raw(s
, addr
) & VTD_FRCD_F
;
332 /* Update the PPF field of Fault Status Register.
333 * Should be called whenever change the F field of any fault recording
336 static void vtd_update_fsts_ppf(IntelIOMMUState
*s
)
339 uint32_t ppf_mask
= 0;
341 for (i
= 0; i
< DMAR_FRCD_REG_NR
; i
++) {
342 if (vtd_is_frcd_set(s
, i
)) {
343 ppf_mask
= VTD_FSTS_PPF
;
347 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, VTD_FSTS_PPF
, ppf_mask
);
348 VTD_DPRINTF(FLOG
, "set PPF of FSTS_REG to %d", ppf_mask
? 1 : 0);
351 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState
*s
, uint16_t index
)
353 /* Each reg is 128-bit */
354 hwaddr addr
= DMAR_FRCD_REG_OFFSET
+ (((uint64_t)index
) << 4);
355 addr
+= 8; /* Access the high 64-bit half */
357 assert(index
< DMAR_FRCD_REG_NR
);
359 vtd_set_clear_mask_quad(s
, addr
, 0, VTD_FRCD_F
);
360 vtd_update_fsts_ppf(s
);
363 /* Must not update F field now, should be done later */
364 static void vtd_record_frcd(IntelIOMMUState
*s
, uint16_t index
,
365 uint16_t source_id
, hwaddr addr
,
366 VTDFaultReason fault
, bool is_write
)
369 hwaddr frcd_reg_addr
= DMAR_FRCD_REG_OFFSET
+ (((uint64_t)index
) << 4);
371 assert(index
< DMAR_FRCD_REG_NR
);
373 lo
= VTD_FRCD_FI(addr
);
374 hi
= VTD_FRCD_SID(source_id
) | VTD_FRCD_FR(fault
);
378 vtd_set_quad_raw(s
, frcd_reg_addr
, lo
);
379 vtd_set_quad_raw(s
, frcd_reg_addr
+ 8, hi
);
380 VTD_DPRINTF(FLOG
, "record to FRCD_REG #%"PRIu16
": hi 0x%"PRIx64
381 ", lo 0x%"PRIx64
, index
, hi
, lo
);
384 /* Try to collapse multiple pending faults from the same requester */
385 static bool vtd_try_collapse_fault(IntelIOMMUState
*s
, uint16_t source_id
)
389 hwaddr addr
= DMAR_FRCD_REG_OFFSET
+ 8; /* The high 64-bit half */
391 for (i
= 0; i
< DMAR_FRCD_REG_NR
; i
++) {
392 frcd_reg
= vtd_get_quad_raw(s
, addr
);
393 VTD_DPRINTF(FLOG
, "frcd_reg #%d 0x%"PRIx64
, i
, frcd_reg
);
394 if ((frcd_reg
& VTD_FRCD_F
) &&
395 ((frcd_reg
& VTD_FRCD_SID_MASK
) == source_id
)) {
398 addr
+= 16; /* 128-bit for each */
403 /* Log and report an DMAR (address translation) fault to software */
404 static void vtd_report_dmar_fault(IntelIOMMUState
*s
, uint16_t source_id
,
405 hwaddr addr
, VTDFaultReason fault
,
408 uint32_t fsts_reg
= vtd_get_long_raw(s
, DMAR_FSTS_REG
);
410 assert(fault
< VTD_FR_MAX
);
412 if (fault
== VTD_FR_RESERVED_ERR
) {
413 /* This is not a normal fault reason case. Drop it. */
416 VTD_DPRINTF(FLOG
, "sid 0x%"PRIx16
", fault %d, addr 0x%"PRIx64
417 ", is_write %d", source_id
, fault
, addr
, is_write
);
418 if (fsts_reg
& VTD_FSTS_PFO
) {
419 VTD_DPRINTF(FLOG
, "new fault is not recorded due to "
420 "Primary Fault Overflow");
423 if (vtd_try_collapse_fault(s
, source_id
)) {
424 VTD_DPRINTF(FLOG
, "new fault is not recorded due to "
425 "compression of faults");
428 if (vtd_is_frcd_set(s
, s
->next_frcd_reg
)) {
429 VTD_DPRINTF(FLOG
, "Primary Fault Overflow and "
430 "new fault is not recorded, set PFO field");
431 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, 0, VTD_FSTS_PFO
);
435 vtd_record_frcd(s
, s
->next_frcd_reg
, source_id
, addr
, fault
, is_write
);
437 if (fsts_reg
& VTD_FSTS_PPF
) {
438 VTD_DPRINTF(FLOG
, "there are pending faults already, "
439 "fault event is not generated");
440 vtd_set_frcd_and_update_ppf(s
, s
->next_frcd_reg
);
442 if (s
->next_frcd_reg
== DMAR_FRCD_REG_NR
) {
443 s
->next_frcd_reg
= 0;
446 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, VTD_FSTS_FRI_MASK
,
447 VTD_FSTS_FRI(s
->next_frcd_reg
));
448 vtd_set_frcd_and_update_ppf(s
, s
->next_frcd_reg
); /* Will set PPF */
450 if (s
->next_frcd_reg
== DMAR_FRCD_REG_NR
) {
451 s
->next_frcd_reg
= 0;
453 /* This case actually cause the PPF to be Set.
454 * So generate fault event (interrupt).
456 vtd_generate_fault_event(s
, fsts_reg
);
460 /* Handle Invalidation Queue Errors of queued invalidation interface error
463 static void vtd_handle_inv_queue_error(IntelIOMMUState
*s
)
465 uint32_t fsts_reg
= vtd_get_long_raw(s
, DMAR_FSTS_REG
);
467 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, 0, VTD_FSTS_IQE
);
468 vtd_generate_fault_event(s
, fsts_reg
);
471 /* Set the IWC field and try to generate an invalidation completion interrupt */
472 static void vtd_generate_completion_event(IntelIOMMUState
*s
)
474 VTD_DPRINTF(INV
, "completes an invalidation wait command with "
476 if (vtd_get_long_raw(s
, DMAR_ICS_REG
) & VTD_ICS_IWC
) {
477 VTD_DPRINTF(INV
, "there is a previous interrupt condition to be "
478 "serviced by software, "
479 "new invalidation event is not generated");
482 vtd_set_clear_mask_long(s
, DMAR_ICS_REG
, 0, VTD_ICS_IWC
);
483 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, 0, VTD_IECTL_IP
);
484 if (vtd_get_long_raw(s
, DMAR_IECTL_REG
) & VTD_IECTL_IM
) {
485 VTD_DPRINTF(INV
, "IM filed in IECTL_REG is set, new invalidation "
486 "event is not generated");
489 /* Generate the interrupt event */
490 vtd_generate_interrupt(s
, DMAR_IEADDR_REG
, DMAR_IEDATA_REG
);
491 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, VTD_IECTL_IP
, 0);
495 static inline bool vtd_root_entry_present(VTDRootEntry
*root
)
497 return root
->val
& VTD_ROOT_ENTRY_P
;
500 static int vtd_get_root_entry(IntelIOMMUState
*s
, uint8_t index
,
505 addr
= s
->root
+ index
* sizeof(*re
);
506 if (dma_memory_read(&address_space_memory
, addr
, re
, sizeof(*re
))) {
507 VTD_DPRINTF(GENERAL
, "error: fail to access root-entry at 0x%"PRIx64
508 " + %"PRIu8
, s
->root
, index
);
510 return -VTD_FR_ROOT_TABLE_INV
;
512 re
->val
= le64_to_cpu(re
->val
);
516 static inline bool vtd_context_entry_present(VTDContextEntry
*context
)
518 return context
->lo
& VTD_CONTEXT_ENTRY_P
;
521 static int vtd_get_context_entry_from_root(VTDRootEntry
*root
, uint8_t index
,
526 if (!vtd_root_entry_present(root
)) {
527 VTD_DPRINTF(GENERAL
, "error: root-entry is not present");
528 return -VTD_FR_ROOT_ENTRY_P
;
530 addr
= (root
->val
& VTD_ROOT_ENTRY_CTP
) + index
* sizeof(*ce
);
531 if (dma_memory_read(&address_space_memory
, addr
, ce
, sizeof(*ce
))) {
532 VTD_DPRINTF(GENERAL
, "error: fail to access context-entry at 0x%"PRIx64
534 (uint64_t)(root
->val
& VTD_ROOT_ENTRY_CTP
), index
);
535 return -VTD_FR_CONTEXT_TABLE_INV
;
537 ce
->lo
= le64_to_cpu(ce
->lo
);
538 ce
->hi
= le64_to_cpu(ce
->hi
);
542 static inline dma_addr_t
vtd_get_slpt_base_from_context(VTDContextEntry
*ce
)
544 return ce
->lo
& VTD_CONTEXT_ENTRY_SLPTPTR
;
547 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte
)
549 return slpte
& VTD_SL_PT_BASE_ADDR_MASK
;
552 /* Whether the pte indicates the address of the page frame */
553 static inline bool vtd_is_last_slpte(uint64_t slpte
, uint32_t level
)
555 return level
== VTD_SL_PT_LEVEL
|| (slpte
& VTD_SL_PT_PAGE_SIZE_MASK
);
558 /* Get the content of a spte located in @base_addr[@index] */
559 static uint64_t vtd_get_slpte(dma_addr_t base_addr
, uint32_t index
)
563 assert(index
< VTD_SL_PT_ENTRY_NR
);
565 if (dma_memory_read(&address_space_memory
,
566 base_addr
+ index
* sizeof(slpte
), &slpte
,
568 slpte
= (uint64_t)-1;
571 slpte
= le64_to_cpu(slpte
);
575 /* Given a gpa and the level of paging structure, return the offset of current
578 static inline uint32_t vtd_gpa_level_offset(uint64_t gpa
, uint32_t level
)
580 return (gpa
>> vtd_slpt_level_shift(level
)) &
581 ((1ULL << VTD_SL_LEVEL_BITS
) - 1);
584 /* Check Capability Register to see if the @level of page-table is supported */
585 static inline bool vtd_is_level_supported(IntelIOMMUState
*s
, uint32_t level
)
587 return VTD_CAP_SAGAW_MASK
& s
->cap
&
588 (1ULL << (level
- 2 + VTD_CAP_SAGAW_SHIFT
));
591 /* Get the page-table level that hardware should use for the second-level
592 * page-table walk from the Address Width field of context-entry.
594 static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry
*ce
)
596 return 2 + (ce
->hi
& VTD_CONTEXT_ENTRY_AW
);
599 static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry
*ce
)
601 return 30 + (ce
->hi
& VTD_CONTEXT_ENTRY_AW
) * 9;
604 static const uint64_t vtd_paging_entry_rsvd_field
[] = {
606 /* For not large page */
607 [1] = 0x800ULL
| ~(VTD_HAW_MASK
| VTD_SL_IGN_COM
),
608 [2] = 0x800ULL
| ~(VTD_HAW_MASK
| VTD_SL_IGN_COM
),
609 [3] = 0x800ULL
| ~(VTD_HAW_MASK
| VTD_SL_IGN_COM
),
610 [4] = 0x880ULL
| ~(VTD_HAW_MASK
| VTD_SL_IGN_COM
),
612 [5] = 0x800ULL
| ~(VTD_HAW_MASK
| VTD_SL_IGN_COM
),
613 [6] = 0x1ff800ULL
| ~(VTD_HAW_MASK
| VTD_SL_IGN_COM
),
614 [7] = 0x3ffff800ULL
| ~(VTD_HAW_MASK
| VTD_SL_IGN_COM
),
615 [8] = 0x880ULL
| ~(VTD_HAW_MASK
| VTD_SL_IGN_COM
),
618 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte
, uint32_t level
)
620 if (slpte
& VTD_SL_PT_PAGE_SIZE_MASK
) {
621 /* Maybe large page */
622 return slpte
& vtd_paging_entry_rsvd_field
[level
+ 4];
624 return slpte
& vtd_paging_entry_rsvd_field
[level
];
628 /* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
629 * of the translation, can be used for deciding the size of large page.
631 static int vtd_gpa_to_slpte(VTDContextEntry
*ce
, uint64_t gpa
, bool is_write
,
632 uint64_t *slptep
, uint32_t *slpte_level
,
633 bool *reads
, bool *writes
)
635 dma_addr_t addr
= vtd_get_slpt_base_from_context(ce
);
636 uint32_t level
= vtd_get_level_from_context_entry(ce
);
639 uint32_t ce_agaw
= vtd_get_agaw_from_context_entry(ce
);
640 uint64_t access_right_check
;
642 /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
643 * and AW in context-entry.
645 if (gpa
& ~((1ULL << MIN(ce_agaw
, VTD_MGAW
)) - 1)) {
646 VTD_DPRINTF(GENERAL
, "error: gpa 0x%"PRIx64
" exceeds limits", gpa
);
647 return -VTD_FR_ADDR_BEYOND_MGAW
;
650 /* FIXME: what is the Atomics request here? */
651 access_right_check
= is_write
? VTD_SL_W
: VTD_SL_R
;
654 offset
= vtd_gpa_level_offset(gpa
, level
);
655 slpte
= vtd_get_slpte(addr
, offset
);
657 if (slpte
== (uint64_t)-1) {
658 VTD_DPRINTF(GENERAL
, "error: fail to access second-level paging "
659 "entry at level %"PRIu32
" for gpa 0x%"PRIx64
,
661 if (level
== vtd_get_level_from_context_entry(ce
)) {
662 /* Invalid programming of context-entry */
663 return -VTD_FR_CONTEXT_ENTRY_INV
;
665 return -VTD_FR_PAGING_ENTRY_INV
;
668 *reads
= (*reads
) && (slpte
& VTD_SL_R
);
669 *writes
= (*writes
) && (slpte
& VTD_SL_W
);
670 if (!(slpte
& access_right_check
)) {
671 VTD_DPRINTF(GENERAL
, "error: lack of %s permission for "
672 "gpa 0x%"PRIx64
" slpte 0x%"PRIx64
,
673 (is_write
? "write" : "read"), gpa
, slpte
);
674 return is_write
? -VTD_FR_WRITE
: -VTD_FR_READ
;
676 if (vtd_slpte_nonzero_rsvd(slpte
, level
)) {
677 VTD_DPRINTF(GENERAL
, "error: non-zero reserved field in second "
678 "level paging entry level %"PRIu32
" slpte 0x%"PRIx64
,
680 return -VTD_FR_PAGING_ENTRY_RSVD
;
683 if (vtd_is_last_slpte(slpte
, level
)) {
685 *slpte_level
= level
;
688 addr
= vtd_get_slpte_addr(slpte
);
693 /* Map a device to its corresponding domain (context-entry) */
694 static int vtd_dev_to_context_entry(IntelIOMMUState
*s
, uint8_t bus_num
,
695 uint8_t devfn
, VTDContextEntry
*ce
)
700 ret_fr
= vtd_get_root_entry(s
, bus_num
, &re
);
705 if (!vtd_root_entry_present(&re
)) {
706 VTD_DPRINTF(GENERAL
, "error: root-entry #%"PRIu8
" is not present",
708 return -VTD_FR_ROOT_ENTRY_P
;
709 } else if (re
.rsvd
|| (re
.val
& VTD_ROOT_ENTRY_RSVD
)) {
710 VTD_DPRINTF(GENERAL
, "error: non-zero reserved field in root-entry "
711 "hi 0x%"PRIx64
" lo 0x%"PRIx64
, re
.rsvd
, re
.val
);
712 return -VTD_FR_ROOT_ENTRY_RSVD
;
715 ret_fr
= vtd_get_context_entry_from_root(&re
, devfn
, ce
);
720 if (!vtd_context_entry_present(ce
)) {
722 "error: context-entry #%"PRIu8
"(bus #%"PRIu8
") "
723 "is not present", devfn
, bus_num
);
724 return -VTD_FR_CONTEXT_ENTRY_P
;
725 } else if ((ce
->hi
& VTD_CONTEXT_ENTRY_RSVD_HI
) ||
726 (ce
->lo
& VTD_CONTEXT_ENTRY_RSVD_LO
)) {
728 "error: non-zero reserved field in context-entry "
729 "hi 0x%"PRIx64
" lo 0x%"PRIx64
, ce
->hi
, ce
->lo
);
730 return -VTD_FR_CONTEXT_ENTRY_RSVD
;
732 /* Check if the programming of context-entry is valid */
733 if (!vtd_is_level_supported(s
, vtd_get_level_from_context_entry(ce
))) {
734 VTD_DPRINTF(GENERAL
, "error: unsupported Address Width value in "
735 "context-entry hi 0x%"PRIx64
" lo 0x%"PRIx64
,
737 return -VTD_FR_CONTEXT_ENTRY_INV
;
738 } else if (ce
->lo
& VTD_CONTEXT_ENTRY_TT
) {
739 VTD_DPRINTF(GENERAL
, "error: unsupported Translation Type in "
740 "context-entry hi 0x%"PRIx64
" lo 0x%"PRIx64
,
742 return -VTD_FR_CONTEXT_ENTRY_INV
;
747 static inline uint16_t vtd_make_source_id(uint8_t bus_num
, uint8_t devfn
)
749 return ((bus_num
& 0xffUL
) << 8) | (devfn
& 0xffUL
);
752 static const bool vtd_qualified_faults
[] = {
753 [VTD_FR_RESERVED
] = false,
754 [VTD_FR_ROOT_ENTRY_P
] = false,
755 [VTD_FR_CONTEXT_ENTRY_P
] = true,
756 [VTD_FR_CONTEXT_ENTRY_INV
] = true,
757 [VTD_FR_ADDR_BEYOND_MGAW
] = true,
758 [VTD_FR_WRITE
] = true,
759 [VTD_FR_READ
] = true,
760 [VTD_FR_PAGING_ENTRY_INV
] = true,
761 [VTD_FR_ROOT_TABLE_INV
] = false,
762 [VTD_FR_CONTEXT_TABLE_INV
] = false,
763 [VTD_FR_ROOT_ENTRY_RSVD
] = false,
764 [VTD_FR_PAGING_ENTRY_RSVD
] = true,
765 [VTD_FR_CONTEXT_ENTRY_TT
] = true,
766 [VTD_FR_RESERVED_ERR
] = false,
767 [VTD_FR_MAX
] = false,
770 /* To see if a fault condition is "qualified", which is reported to software
771 * only if the FPD field in the context-entry used to process the faulting
774 static inline bool vtd_is_qualified_fault(VTDFaultReason fault
)
776 return vtd_qualified_faults
[fault
];
779 static inline bool vtd_is_interrupt_addr(hwaddr addr
)
781 return VTD_INTERRUPT_ADDR_FIRST
<= addr
&& addr
<= VTD_INTERRUPT_ADDR_LAST
;
784 /* Map dev to context-entry then do a paging-structures walk to do a iommu
787 * Called from RCU critical section.
789 * @bus_num: The bus number
790 * @devfn: The devfn, which is the combined of device and function number
791 * @is_write: The access is a write operation
792 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
794 static void vtd_do_iommu_translate(VTDAddressSpace
*vtd_as
, PCIBus
*bus
,
795 uint8_t devfn
, hwaddr addr
, bool is_write
,
796 IOMMUTLBEntry
*entry
)
798 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
800 uint8_t bus_num
= pci_bus_num(bus
);
801 VTDContextCacheEntry
*cc_entry
= &vtd_as
->context_cache_entry
;
802 uint64_t slpte
, page_mask
;
804 uint16_t source_id
= vtd_make_source_id(bus_num
, devfn
);
806 bool is_fpd_set
= false;
809 VTDIOTLBEntry
*iotlb_entry
;
811 /* Check if the request is in interrupt address range */
812 if (vtd_is_interrupt_addr(addr
)) {
814 /* FIXME: since we don't know the length of the access here, we
815 * treat Non-DWORD length write requests without PASID as
816 * interrupt requests, too. Withoud interrupt remapping support,
817 * we just use 1:1 mapping.
819 VTD_DPRINTF(MMU
, "write request to interrupt address "
820 "gpa 0x%"PRIx64
, addr
);
821 entry
->iova
= addr
& VTD_PAGE_MASK_4K
;
822 entry
->translated_addr
= addr
& VTD_PAGE_MASK_4K
;
823 entry
->addr_mask
= ~VTD_PAGE_MASK_4K
;
824 entry
->perm
= IOMMU_WO
;
827 VTD_DPRINTF(GENERAL
, "error: read request from interrupt address "
828 "gpa 0x%"PRIx64
, addr
);
829 vtd_report_dmar_fault(s
, source_id
, addr
, VTD_FR_READ
, is_write
);
833 /* Try to fetch slpte form IOTLB */
834 iotlb_entry
= vtd_lookup_iotlb(s
, source_id
, addr
);
836 VTD_DPRINTF(CACHE
, "hit iotlb sid 0x%"PRIx16
" gpa 0x%"PRIx64
837 " slpte 0x%"PRIx64
" did 0x%"PRIx16
, source_id
, addr
,
838 iotlb_entry
->slpte
, iotlb_entry
->domain_id
);
839 slpte
= iotlb_entry
->slpte
;
840 reads
= iotlb_entry
->read_flags
;
841 writes
= iotlb_entry
->write_flags
;
842 page_mask
= iotlb_entry
->mask
;
845 /* Try to fetch context-entry from cache first */
846 if (cc_entry
->context_cache_gen
== s
->context_cache_gen
) {
847 VTD_DPRINTF(CACHE
, "hit context-cache bus %d devfn %d "
848 "(hi %"PRIx64
" lo %"PRIx64
" gen %"PRIu32
")",
849 bus_num
, devfn
, cc_entry
->context_entry
.hi
,
850 cc_entry
->context_entry
.lo
, cc_entry
->context_cache_gen
);
851 ce
= cc_entry
->context_entry
;
852 is_fpd_set
= ce
.lo
& VTD_CONTEXT_ENTRY_FPD
;
854 ret_fr
= vtd_dev_to_context_entry(s
, bus_num
, devfn
, &ce
);
855 is_fpd_set
= ce
.lo
& VTD_CONTEXT_ENTRY_FPD
;
858 if (is_fpd_set
&& vtd_is_qualified_fault(ret_fr
)) {
859 VTD_DPRINTF(FLOG
, "fault processing is disabled for DMA "
860 "requests through this context-entry "
863 vtd_report_dmar_fault(s
, source_id
, addr
, ret_fr
, is_write
);
867 /* Update context-cache */
868 VTD_DPRINTF(CACHE
, "update context-cache bus %d devfn %d "
869 "(hi %"PRIx64
" lo %"PRIx64
" gen %"PRIu32
"->%"PRIu32
")",
870 bus_num
, devfn
, ce
.hi
, ce
.lo
,
871 cc_entry
->context_cache_gen
, s
->context_cache_gen
);
872 cc_entry
->context_entry
= ce
;
873 cc_entry
->context_cache_gen
= s
->context_cache_gen
;
876 ret_fr
= vtd_gpa_to_slpte(&ce
, addr
, is_write
, &slpte
, &level
,
880 if (is_fpd_set
&& vtd_is_qualified_fault(ret_fr
)) {
881 VTD_DPRINTF(FLOG
, "fault processing is disabled for DMA requests "
882 "through this context-entry (with FPD Set)");
884 vtd_report_dmar_fault(s
, source_id
, addr
, ret_fr
, is_write
);
889 page_mask
= vtd_slpt_level_page_mask(level
);
890 vtd_update_iotlb(s
, source_id
, VTD_CONTEXT_ENTRY_DID(ce
.hi
), addr
, slpte
,
891 reads
, writes
, level
);
893 entry
->iova
= addr
& page_mask
;
894 entry
->translated_addr
= vtd_get_slpte_addr(slpte
) & page_mask
;
895 entry
->addr_mask
= ~page_mask
;
896 entry
->perm
= (writes
? 2 : 0) + (reads
? 1 : 0);
899 static void vtd_root_table_setup(IntelIOMMUState
*s
)
901 s
->root
= vtd_get_quad_raw(s
, DMAR_RTADDR_REG
);
902 s
->root_extended
= s
->root
& VTD_RTADDR_RTT
;
903 s
->root
&= VTD_RTADDR_ADDR_MASK
;
905 VTD_DPRINTF(CSR
, "root_table addr 0x%"PRIx64
" %s", s
->root
,
906 (s
->root_extended
? "(extended)" : ""));
909 static void vtd_iec_notify_all(IntelIOMMUState
*s
, bool global
,
910 uint32_t index
, uint32_t mask
)
912 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s
), global
, index
, mask
);
915 static void vtd_interrupt_remap_table_setup(IntelIOMMUState
*s
)
918 value
= vtd_get_quad_raw(s
, DMAR_IRTA_REG
);
919 s
->intr_size
= 1UL << ((value
& VTD_IRTA_SIZE_MASK
) + 1);
920 s
->intr_root
= value
& VTD_IRTA_ADDR_MASK
;
921 s
->intr_eime
= value
& VTD_IRTA_EIME
;
923 /* Notify global invalidation */
924 vtd_iec_notify_all(s
, true, 0, 0);
926 VTD_DPRINTF(CSR
, "int remap table addr 0x%"PRIx64
" size %"PRIu32
,
927 s
->intr_root
, s
->intr_size
);
930 static void vtd_context_global_invalidate(IntelIOMMUState
*s
)
932 s
->context_cache_gen
++;
933 if (s
->context_cache_gen
== VTD_CONTEXT_CACHE_GEN_MAX
) {
934 vtd_reset_context_cache(s
);
939 /* Find the VTD address space currently associated with a given bus number,
941 static VTDBus
*vtd_find_as_from_bus_num(IntelIOMMUState
*s
, uint8_t bus_num
)
943 VTDBus
*vtd_bus
= s
->vtd_as_by_bus_num
[bus_num
];
945 /* Iterate over the registered buses to find the one
946 * which currently hold this bus number, and update the bus_num lookup table:
950 g_hash_table_iter_init(&iter
, s
->vtd_as_by_busptr
);
951 while (g_hash_table_iter_next (&iter
, NULL
, (void**)&vtd_bus
)) {
952 if (pci_bus_num(vtd_bus
->bus
) == bus_num
) {
953 s
->vtd_as_by_bus_num
[bus_num
] = vtd_bus
;
961 /* Do a context-cache device-selective invalidation.
962 * @func_mask: FM field after shifting
964 static void vtd_context_device_invalidate(IntelIOMMUState
*s
,
970 VTDAddressSpace
*vtd_as
;
974 switch (func_mask
& 3) {
976 mask
= 0; /* No bits in the SID field masked */
979 mask
= 4; /* Mask bit 2 in the SID field */
982 mask
= 6; /* Mask bit 2:1 in the SID field */
985 mask
= 7; /* Mask bit 2:0 in the SID field */
988 VTD_DPRINTF(INV
, "device-selective invalidation source 0x%"PRIx16
989 " mask %"PRIu16
, source_id
, mask
);
990 vtd_bus
= vtd_find_as_from_bus_num(s
, VTD_SID_TO_BUS(source_id
));
992 devfn
= VTD_SID_TO_DEVFN(source_id
);
993 for (devfn_it
= 0; devfn_it
< X86_IOMMU_PCI_DEVFN_MAX
; ++devfn_it
) {
994 vtd_as
= vtd_bus
->dev_as
[devfn_it
];
995 if (vtd_as
&& ((devfn_it
& mask
) == (devfn
& mask
))) {
996 VTD_DPRINTF(INV
, "invalidate context-cahce of devfn 0x%"PRIx16
,
998 vtd_as
->context_cache_entry
.context_cache_gen
= 0;
1004 /* Context-cache invalidation
1005 * Returns the Context Actual Invalidation Granularity.
1006 * @val: the content of the CCMD_REG
1008 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState
*s
, uint64_t val
)
1011 uint64_t type
= val
& VTD_CCMD_CIRG_MASK
;
1014 case VTD_CCMD_DOMAIN_INVL
:
1015 VTD_DPRINTF(INV
, "domain-selective invalidation domain 0x%"PRIx16
,
1016 (uint16_t)VTD_CCMD_DID(val
));
1018 case VTD_CCMD_GLOBAL_INVL
:
1019 VTD_DPRINTF(INV
, "global invalidation");
1020 caig
= VTD_CCMD_GLOBAL_INVL_A
;
1021 vtd_context_global_invalidate(s
);
1024 case VTD_CCMD_DEVICE_INVL
:
1025 caig
= VTD_CCMD_DEVICE_INVL_A
;
1026 vtd_context_device_invalidate(s
, VTD_CCMD_SID(val
), VTD_CCMD_FM(val
));
1030 VTD_DPRINTF(GENERAL
, "error: invalid granularity");
1036 static void vtd_iotlb_global_invalidate(IntelIOMMUState
*s
)
1041 static void vtd_iotlb_domain_invalidate(IntelIOMMUState
*s
, uint16_t domain_id
)
1043 g_hash_table_foreach_remove(s
->iotlb
, vtd_hash_remove_by_domain
,
1047 static void vtd_iotlb_page_invalidate(IntelIOMMUState
*s
, uint16_t domain_id
,
1048 hwaddr addr
, uint8_t am
)
1050 VTDIOTLBPageInvInfo info
;
1052 assert(am
<= VTD_MAMV
);
1053 info
.domain_id
= domain_id
;
1055 info
.mask
= ~((1 << am
) - 1);
1056 g_hash_table_foreach_remove(s
->iotlb
, vtd_hash_remove_by_page
, &info
);
1060 * Returns the IOTLB Actual Invalidation Granularity.
1061 * @val: the content of the IOTLB_REG
1063 static uint64_t vtd_iotlb_flush(IntelIOMMUState
*s
, uint64_t val
)
1066 uint64_t type
= val
& VTD_TLB_FLUSH_GRANU_MASK
;
1072 case VTD_TLB_GLOBAL_FLUSH
:
1073 VTD_DPRINTF(INV
, "global invalidation");
1074 iaig
= VTD_TLB_GLOBAL_FLUSH_A
;
1075 vtd_iotlb_global_invalidate(s
);
1078 case VTD_TLB_DSI_FLUSH
:
1079 domain_id
= VTD_TLB_DID(val
);
1080 VTD_DPRINTF(INV
, "domain-selective invalidation domain 0x%"PRIx16
,
1082 iaig
= VTD_TLB_DSI_FLUSH_A
;
1083 vtd_iotlb_domain_invalidate(s
, domain_id
);
1086 case VTD_TLB_PSI_FLUSH
:
1087 domain_id
= VTD_TLB_DID(val
);
1088 addr
= vtd_get_quad_raw(s
, DMAR_IVA_REG
);
1089 am
= VTD_IVA_AM(addr
);
1090 addr
= VTD_IVA_ADDR(addr
);
1091 VTD_DPRINTF(INV
, "page-selective invalidation domain 0x%"PRIx16
1092 " addr 0x%"PRIx64
" mask %"PRIu8
, domain_id
, addr
, am
);
1093 if (am
> VTD_MAMV
) {
1094 VTD_DPRINTF(GENERAL
, "error: supported max address mask value is "
1095 "%"PRIu8
, (uint8_t)VTD_MAMV
);
1099 iaig
= VTD_TLB_PSI_FLUSH_A
;
1100 vtd_iotlb_page_invalidate(s
, domain_id
, addr
, am
);
1104 VTD_DPRINTF(GENERAL
, "error: invalid granularity");
1110 static inline bool vtd_queued_inv_enable_check(IntelIOMMUState
*s
)
1112 return s
->iq_tail
== 0;
1115 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState
*s
)
1117 return s
->qi_enabled
&& (s
->iq_tail
== s
->iq_head
) &&
1118 (s
->iq_last_desc_type
== VTD_INV_DESC_WAIT
);
1121 static void vtd_handle_gcmd_qie(IntelIOMMUState
*s
, bool en
)
1123 uint64_t iqa_val
= vtd_get_quad_raw(s
, DMAR_IQA_REG
);
1125 VTD_DPRINTF(INV
, "Queued Invalidation Enable %s", (en
? "on" : "off"));
1127 if (vtd_queued_inv_enable_check(s
)) {
1128 s
->iq
= iqa_val
& VTD_IQA_IQA_MASK
;
1129 /* 2^(x+8) entries */
1130 s
->iq_size
= 1UL << ((iqa_val
& VTD_IQA_QS
) + 8);
1131 s
->qi_enabled
= true;
1132 VTD_DPRINTF(INV
, "DMAR_IQA_REG 0x%"PRIx64
, iqa_val
);
1133 VTD_DPRINTF(INV
, "Invalidation Queue addr 0x%"PRIx64
" size %d",
1135 /* Ok - report back to driver */
1136 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_QIES
);
1138 VTD_DPRINTF(GENERAL
, "error: can't enable Queued Invalidation: "
1139 "tail %"PRIu16
, s
->iq_tail
);
1142 if (vtd_queued_inv_disable_check(s
)) {
1143 /* disable Queued Invalidation */
1144 vtd_set_quad_raw(s
, DMAR_IQH_REG
, 0);
1146 s
->qi_enabled
= false;
1147 /* Ok - report back to driver */
1148 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, VTD_GSTS_QIES
, 0);
1150 VTD_DPRINTF(GENERAL
, "error: can't disable Queued Invalidation: "
1151 "head %"PRIu16
", tail %"PRIu16
1152 ", last_descriptor %"PRIu8
,
1153 s
->iq_head
, s
->iq_tail
, s
->iq_last_desc_type
);
1158 /* Set Root Table Pointer */
1159 static void vtd_handle_gcmd_srtp(IntelIOMMUState
*s
)
1161 VTD_DPRINTF(CSR
, "set Root Table Pointer");
1163 vtd_root_table_setup(s
);
1164 /* Ok - report back to driver */
1165 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_RTPS
);
1168 /* Set Interrupt Remap Table Pointer */
1169 static void vtd_handle_gcmd_sirtp(IntelIOMMUState
*s
)
1171 VTD_DPRINTF(CSR
, "set Interrupt Remap Table Pointer");
1173 vtd_interrupt_remap_table_setup(s
);
1174 /* Ok - report back to driver */
1175 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_IRTPS
);
1178 /* Handle Translation Enable/Disable */
1179 static void vtd_handle_gcmd_te(IntelIOMMUState
*s
, bool en
)
1181 VTD_DPRINTF(CSR
, "Translation Enable %s", (en
? "on" : "off"));
1184 s
->dmar_enabled
= true;
1185 /* Ok - report back to driver */
1186 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_TES
);
1188 s
->dmar_enabled
= false;
1190 /* Clear the index of Fault Recording Register */
1191 s
->next_frcd_reg
= 0;
1192 /* Ok - report back to driver */
1193 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, VTD_GSTS_TES
, 0);
1197 /* Handle Interrupt Remap Enable/Disable */
1198 static void vtd_handle_gcmd_ire(IntelIOMMUState
*s
, bool en
)
1200 VTD_DPRINTF(CSR
, "Interrupt Remap Enable %s", (en
? "on" : "off"));
1203 s
->intr_enabled
= true;
1204 /* Ok - report back to driver */
1205 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_IRES
);
1207 s
->intr_enabled
= false;
1208 /* Ok - report back to driver */
1209 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, VTD_GSTS_IRES
, 0);
1213 /* Handle write to Global Command Register */
1214 static void vtd_handle_gcmd_write(IntelIOMMUState
*s
)
1216 uint32_t status
= vtd_get_long_raw(s
, DMAR_GSTS_REG
);
1217 uint32_t val
= vtd_get_long_raw(s
, DMAR_GCMD_REG
);
1218 uint32_t changed
= status
^ val
;
1220 VTD_DPRINTF(CSR
, "value 0x%"PRIx32
" status 0x%"PRIx32
, val
, status
);
1221 if (changed
& VTD_GCMD_TE
) {
1222 /* Translation enable/disable */
1223 vtd_handle_gcmd_te(s
, val
& VTD_GCMD_TE
);
1225 if (val
& VTD_GCMD_SRTP
) {
1226 /* Set/update the root-table pointer */
1227 vtd_handle_gcmd_srtp(s
);
1229 if (changed
& VTD_GCMD_QIE
) {
1230 /* Queued Invalidation Enable */
1231 vtd_handle_gcmd_qie(s
, val
& VTD_GCMD_QIE
);
1233 if (val
& VTD_GCMD_SIRTP
) {
1234 /* Set/update the interrupt remapping root-table pointer */
1235 vtd_handle_gcmd_sirtp(s
);
1237 if (changed
& VTD_GCMD_IRE
) {
1238 /* Interrupt remap enable/disable */
1239 vtd_handle_gcmd_ire(s
, val
& VTD_GCMD_IRE
);
1243 /* Handle write to Context Command Register */
1244 static void vtd_handle_ccmd_write(IntelIOMMUState
*s
)
1247 uint64_t val
= vtd_get_quad_raw(s
, DMAR_CCMD_REG
);
1249 /* Context-cache invalidation request */
1250 if (val
& VTD_CCMD_ICC
) {
1251 if (s
->qi_enabled
) {
1252 VTD_DPRINTF(GENERAL
, "error: Queued Invalidation enabled, "
1253 "should not use register-based invalidation");
1256 ret
= vtd_context_cache_invalidate(s
, val
);
1257 /* Invalidation completed. Change something to show */
1258 vtd_set_clear_mask_quad(s
, DMAR_CCMD_REG
, VTD_CCMD_ICC
, 0ULL);
1259 ret
= vtd_set_clear_mask_quad(s
, DMAR_CCMD_REG
, VTD_CCMD_CAIG_MASK
,
1261 VTD_DPRINTF(INV
, "CCMD_REG write-back val: 0x%"PRIx64
, ret
);
1265 /* Handle write to IOTLB Invalidation Register */
1266 static void vtd_handle_iotlb_write(IntelIOMMUState
*s
)
1269 uint64_t val
= vtd_get_quad_raw(s
, DMAR_IOTLB_REG
);
1271 /* IOTLB invalidation request */
1272 if (val
& VTD_TLB_IVT
) {
1273 if (s
->qi_enabled
) {
1274 VTD_DPRINTF(GENERAL
, "error: Queued Invalidation enabled, "
1275 "should not use register-based invalidation");
1278 ret
= vtd_iotlb_flush(s
, val
);
1279 /* Invalidation completed. Change something to show */
1280 vtd_set_clear_mask_quad(s
, DMAR_IOTLB_REG
, VTD_TLB_IVT
, 0ULL);
1281 ret
= vtd_set_clear_mask_quad(s
, DMAR_IOTLB_REG
,
1282 VTD_TLB_FLUSH_GRANU_MASK_A
, ret
);
1283 VTD_DPRINTF(INV
, "IOTLB_REG write-back val: 0x%"PRIx64
, ret
);
1287 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1288 static bool vtd_get_inv_desc(dma_addr_t base_addr
, uint32_t offset
,
1289 VTDInvDesc
*inv_desc
)
1291 dma_addr_t addr
= base_addr
+ offset
* sizeof(*inv_desc
);
1292 if (dma_memory_read(&address_space_memory
, addr
, inv_desc
,
1293 sizeof(*inv_desc
))) {
1294 VTD_DPRINTF(GENERAL
, "error: fail to fetch Invalidation Descriptor "
1295 "base_addr 0x%"PRIx64
" offset %"PRIu32
, base_addr
, offset
);
1301 inv_desc
->lo
= le64_to_cpu(inv_desc
->lo
);
1302 inv_desc
->hi
= le64_to_cpu(inv_desc
->hi
);
1306 static bool vtd_process_wait_desc(IntelIOMMUState
*s
, VTDInvDesc
*inv_desc
)
1308 if ((inv_desc
->hi
& VTD_INV_DESC_WAIT_RSVD_HI
) ||
1309 (inv_desc
->lo
& VTD_INV_DESC_WAIT_RSVD_LO
)) {
1310 VTD_DPRINTF(GENERAL
, "error: non-zero reserved field in Invalidation "
1311 "Wait Descriptor hi 0x%"PRIx64
" lo 0x%"PRIx64
,
1312 inv_desc
->hi
, inv_desc
->lo
);
1315 if (inv_desc
->lo
& VTD_INV_DESC_WAIT_SW
) {
1317 uint32_t status_data
= (uint32_t)(inv_desc
->lo
>>
1318 VTD_INV_DESC_WAIT_DATA_SHIFT
);
1320 assert(!(inv_desc
->lo
& VTD_INV_DESC_WAIT_IF
));
1322 /* FIXME: need to be masked with HAW? */
1323 dma_addr_t status_addr
= inv_desc
->hi
;
1324 VTD_DPRINTF(INV
, "status data 0x%x, status addr 0x%"PRIx64
,
1325 status_data
, status_addr
);
1326 status_data
= cpu_to_le32(status_data
);
1327 if (dma_memory_write(&address_space_memory
, status_addr
, &status_data
,
1328 sizeof(status_data
))) {
1329 VTD_DPRINTF(GENERAL
, "error: fail to perform a coherent write");
1332 } else if (inv_desc
->lo
& VTD_INV_DESC_WAIT_IF
) {
1333 /* Interrupt flag */
1334 VTD_DPRINTF(INV
, "Invalidation Wait Descriptor interrupt completion");
1335 vtd_generate_completion_event(s
);
1337 VTD_DPRINTF(GENERAL
, "error: invalid Invalidation Wait Descriptor: "
1338 "hi 0x%"PRIx64
" lo 0x%"PRIx64
, inv_desc
->hi
, inv_desc
->lo
);
1344 static bool vtd_process_context_cache_desc(IntelIOMMUState
*s
,
1345 VTDInvDesc
*inv_desc
)
1347 if ((inv_desc
->lo
& VTD_INV_DESC_CC_RSVD
) || inv_desc
->hi
) {
1348 VTD_DPRINTF(GENERAL
, "error: non-zero reserved field in Context-cache "
1349 "Invalidate Descriptor");
1352 switch (inv_desc
->lo
& VTD_INV_DESC_CC_G
) {
1353 case VTD_INV_DESC_CC_DOMAIN
:
1354 VTD_DPRINTF(INV
, "domain-selective invalidation domain 0x%"PRIx16
,
1355 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc
->lo
));
1357 case VTD_INV_DESC_CC_GLOBAL
:
1358 VTD_DPRINTF(INV
, "global invalidation");
1359 vtd_context_global_invalidate(s
);
1362 case VTD_INV_DESC_CC_DEVICE
:
1363 vtd_context_device_invalidate(s
, VTD_INV_DESC_CC_SID(inv_desc
->lo
),
1364 VTD_INV_DESC_CC_FM(inv_desc
->lo
));
1368 VTD_DPRINTF(GENERAL
, "error: invalid granularity in Context-cache "
1369 "Invalidate Descriptor hi 0x%"PRIx64
" lo 0x%"PRIx64
,
1370 inv_desc
->hi
, inv_desc
->lo
);
1376 static bool vtd_process_iotlb_desc(IntelIOMMUState
*s
, VTDInvDesc
*inv_desc
)
1382 if ((inv_desc
->lo
& VTD_INV_DESC_IOTLB_RSVD_LO
) ||
1383 (inv_desc
->hi
& VTD_INV_DESC_IOTLB_RSVD_HI
)) {
1384 VTD_DPRINTF(GENERAL
, "error: non-zero reserved field in IOTLB "
1385 "Invalidate Descriptor hi 0x%"PRIx64
" lo 0x%"PRIx64
,
1386 inv_desc
->hi
, inv_desc
->lo
);
1390 switch (inv_desc
->lo
& VTD_INV_DESC_IOTLB_G
) {
1391 case VTD_INV_DESC_IOTLB_GLOBAL
:
1392 VTD_DPRINTF(INV
, "global invalidation");
1393 vtd_iotlb_global_invalidate(s
);
1396 case VTD_INV_DESC_IOTLB_DOMAIN
:
1397 domain_id
= VTD_INV_DESC_IOTLB_DID(inv_desc
->lo
);
1398 VTD_DPRINTF(INV
, "domain-selective invalidation domain 0x%"PRIx16
,
1400 vtd_iotlb_domain_invalidate(s
, domain_id
);
1403 case VTD_INV_DESC_IOTLB_PAGE
:
1404 domain_id
= VTD_INV_DESC_IOTLB_DID(inv_desc
->lo
);
1405 addr
= VTD_INV_DESC_IOTLB_ADDR(inv_desc
->hi
);
1406 am
= VTD_INV_DESC_IOTLB_AM(inv_desc
->hi
);
1407 VTD_DPRINTF(INV
, "page-selective invalidation domain 0x%"PRIx16
1408 " addr 0x%"PRIx64
" mask %"PRIu8
, domain_id
, addr
, am
);
1409 if (am
> VTD_MAMV
) {
1410 VTD_DPRINTF(GENERAL
, "error: supported max address mask value is "
1411 "%"PRIu8
, (uint8_t)VTD_MAMV
);
1414 vtd_iotlb_page_invalidate(s
, domain_id
, addr
, am
);
1418 VTD_DPRINTF(GENERAL
, "error: invalid granularity in IOTLB Invalidate "
1419 "Descriptor hi 0x%"PRIx64
" lo 0x%"PRIx64
,
1420 inv_desc
->hi
, inv_desc
->lo
);
1426 static bool vtd_process_inv_iec_desc(IntelIOMMUState
*s
,
1427 VTDInvDesc
*inv_desc
)
1429 VTD_DPRINTF(INV
, "inv ir glob %d index %d mask %d",
1430 inv_desc
->iec
.granularity
,
1431 inv_desc
->iec
.index
,
1432 inv_desc
->iec
.index_mask
);
1434 vtd_iec_notify_all(s
, !inv_desc
->iec
.granularity
,
1435 inv_desc
->iec
.index
,
1436 inv_desc
->iec
.index_mask
);
1441 static bool vtd_process_inv_desc(IntelIOMMUState
*s
)
1443 VTDInvDesc inv_desc
;
1446 VTD_DPRINTF(INV
, "iq head %"PRIu16
, s
->iq_head
);
1447 if (!vtd_get_inv_desc(s
->iq
, s
->iq_head
, &inv_desc
)) {
1448 s
->iq_last_desc_type
= VTD_INV_DESC_NONE
;
1451 desc_type
= inv_desc
.lo
& VTD_INV_DESC_TYPE
;
1452 /* FIXME: should update at first or at last? */
1453 s
->iq_last_desc_type
= desc_type
;
1455 switch (desc_type
) {
1456 case VTD_INV_DESC_CC
:
1457 VTD_DPRINTF(INV
, "Context-cache Invalidate Descriptor hi 0x%"PRIx64
1458 " lo 0x%"PRIx64
, inv_desc
.hi
, inv_desc
.lo
);
1459 if (!vtd_process_context_cache_desc(s
, &inv_desc
)) {
1464 case VTD_INV_DESC_IOTLB
:
1465 VTD_DPRINTF(INV
, "IOTLB Invalidate Descriptor hi 0x%"PRIx64
1466 " lo 0x%"PRIx64
, inv_desc
.hi
, inv_desc
.lo
);
1467 if (!vtd_process_iotlb_desc(s
, &inv_desc
)) {
1472 case VTD_INV_DESC_WAIT
:
1473 VTD_DPRINTF(INV
, "Invalidation Wait Descriptor hi 0x%"PRIx64
1474 " lo 0x%"PRIx64
, inv_desc
.hi
, inv_desc
.lo
);
1475 if (!vtd_process_wait_desc(s
, &inv_desc
)) {
1480 case VTD_INV_DESC_IEC
:
1481 VTD_DPRINTF(INV
, "Invalidation Interrupt Entry Cache "
1482 "Descriptor hi 0x%"PRIx64
" lo 0x%"PRIx64
,
1483 inv_desc
.hi
, inv_desc
.lo
);
1484 if (!vtd_process_inv_iec_desc(s
, &inv_desc
)) {
1490 VTD_DPRINTF(GENERAL
, "error: unkonw Invalidation Descriptor type "
1491 "hi 0x%"PRIx64
" lo 0x%"PRIx64
" type %"PRIu8
,
1492 inv_desc
.hi
, inv_desc
.lo
, desc_type
);
1496 if (s
->iq_head
== s
->iq_size
) {
1502 /* Try to fetch and process more Invalidation Descriptors */
1503 static void vtd_fetch_inv_desc(IntelIOMMUState
*s
)
1505 VTD_DPRINTF(INV
, "fetch Invalidation Descriptors");
1506 if (s
->iq_tail
>= s
->iq_size
) {
1507 /* Detects an invalid Tail pointer */
1508 VTD_DPRINTF(GENERAL
, "error: iq_tail is %"PRIu16
1509 " while iq_size is %"PRIu16
, s
->iq_tail
, s
->iq_size
);
1510 vtd_handle_inv_queue_error(s
);
1513 while (s
->iq_head
!= s
->iq_tail
) {
1514 if (!vtd_process_inv_desc(s
)) {
1515 /* Invalidation Queue Errors */
1516 vtd_handle_inv_queue_error(s
);
1519 /* Must update the IQH_REG in time */
1520 vtd_set_quad_raw(s
, DMAR_IQH_REG
,
1521 (((uint64_t)(s
->iq_head
)) << VTD_IQH_QH_SHIFT
) &
1526 /* Handle write to Invalidation Queue Tail Register */
1527 static void vtd_handle_iqt_write(IntelIOMMUState
*s
)
1529 uint64_t val
= vtd_get_quad_raw(s
, DMAR_IQT_REG
);
1531 s
->iq_tail
= VTD_IQT_QT(val
);
1532 VTD_DPRINTF(INV
, "set iq tail %"PRIu16
, s
->iq_tail
);
1533 if (s
->qi_enabled
&& !(vtd_get_long_raw(s
, DMAR_FSTS_REG
) & VTD_FSTS_IQE
)) {
1534 /* Process Invalidation Queue here */
1535 vtd_fetch_inv_desc(s
);
1539 static void vtd_handle_fsts_write(IntelIOMMUState
*s
)
1541 uint32_t fsts_reg
= vtd_get_long_raw(s
, DMAR_FSTS_REG
);
1542 uint32_t fectl_reg
= vtd_get_long_raw(s
, DMAR_FECTL_REG
);
1543 uint32_t status_fields
= VTD_FSTS_PFO
| VTD_FSTS_PPF
| VTD_FSTS_IQE
;
1545 if ((fectl_reg
& VTD_FECTL_IP
) && !(fsts_reg
& status_fields
)) {
1546 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, VTD_FECTL_IP
, 0);
1547 VTD_DPRINTF(FLOG
, "all pending interrupt conditions serviced, clear "
1548 "IP field of FECTL_REG");
1550 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1551 * Descriptors if there are any when Queued Invalidation is enabled?
1555 static void vtd_handle_fectl_write(IntelIOMMUState
*s
)
1558 /* FIXME: when software clears the IM field, check the IP field. But do we
1559 * need to compare the old value and the new value to conclude that
1560 * software clears the IM field? Or just check if the IM field is zero?
1562 fectl_reg
= vtd_get_long_raw(s
, DMAR_FECTL_REG
);
1563 if ((fectl_reg
& VTD_FECTL_IP
) && !(fectl_reg
& VTD_FECTL_IM
)) {
1564 vtd_generate_interrupt(s
, DMAR_FEADDR_REG
, DMAR_FEDATA_REG
);
1565 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, VTD_FECTL_IP
, 0);
1566 VTD_DPRINTF(FLOG
, "IM field is cleared, generate "
1567 "fault event interrupt");
1571 static void vtd_handle_ics_write(IntelIOMMUState
*s
)
1573 uint32_t ics_reg
= vtd_get_long_raw(s
, DMAR_ICS_REG
);
1574 uint32_t iectl_reg
= vtd_get_long_raw(s
, DMAR_IECTL_REG
);
1576 if ((iectl_reg
& VTD_IECTL_IP
) && !(ics_reg
& VTD_ICS_IWC
)) {
1577 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, VTD_IECTL_IP
, 0);
1578 VTD_DPRINTF(INV
, "pending completion interrupt condition serviced, "
1579 "clear IP field of IECTL_REG");
1583 static void vtd_handle_iectl_write(IntelIOMMUState
*s
)
1586 /* FIXME: when software clears the IM field, check the IP field. But do we
1587 * need to compare the old value and the new value to conclude that
1588 * software clears the IM field? Or just check if the IM field is zero?
1590 iectl_reg
= vtd_get_long_raw(s
, DMAR_IECTL_REG
);
1591 if ((iectl_reg
& VTD_IECTL_IP
) && !(iectl_reg
& VTD_IECTL_IM
)) {
1592 vtd_generate_interrupt(s
, DMAR_IEADDR_REG
, DMAR_IEDATA_REG
);
1593 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, VTD_IECTL_IP
, 0);
1594 VTD_DPRINTF(INV
, "IM field is cleared, generate "
1595 "invalidation event interrupt");
1599 static uint64_t vtd_mem_read(void *opaque
, hwaddr addr
, unsigned size
)
1601 IntelIOMMUState
*s
= opaque
;
1604 if (addr
+ size
> DMAR_REG_SIZE
) {
1605 VTD_DPRINTF(GENERAL
, "error: addr outside region: max 0x%"PRIx64
1606 ", got 0x%"PRIx64
" %d",
1607 (uint64_t)DMAR_REG_SIZE
, addr
, size
);
1608 return (uint64_t)-1;
1612 /* Root Table Address Register, 64-bit */
1613 case DMAR_RTADDR_REG
:
1615 val
= s
->root
& ((1ULL << 32) - 1);
1621 case DMAR_RTADDR_REG_HI
:
1623 val
= s
->root
>> 32;
1626 /* Invalidation Queue Address Register, 64-bit */
1628 val
= s
->iq
| (vtd_get_quad(s
, DMAR_IQA_REG
) & VTD_IQA_QS
);
1630 val
= val
& ((1ULL << 32) - 1);
1634 case DMAR_IQA_REG_HI
:
1641 val
= vtd_get_long(s
, addr
);
1643 val
= vtd_get_quad(s
, addr
);
1646 VTD_DPRINTF(CSR
, "addr 0x%"PRIx64
" size %d val 0x%"PRIx64
,
1651 static void vtd_mem_write(void *opaque
, hwaddr addr
,
1652 uint64_t val
, unsigned size
)
1654 IntelIOMMUState
*s
= opaque
;
1656 if (addr
+ size
> DMAR_REG_SIZE
) {
1657 VTD_DPRINTF(GENERAL
, "error: addr outside region: max 0x%"PRIx64
1658 ", got 0x%"PRIx64
" %d",
1659 (uint64_t)DMAR_REG_SIZE
, addr
, size
);
1664 /* Global Command Register, 32-bit */
1666 VTD_DPRINTF(CSR
, "DMAR_GCMD_REG write addr 0x%"PRIx64
1667 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1668 vtd_set_long(s
, addr
, val
);
1669 vtd_handle_gcmd_write(s
);
1672 /* Context Command Register, 64-bit */
1674 VTD_DPRINTF(CSR
, "DMAR_CCMD_REG write addr 0x%"PRIx64
1675 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1677 vtd_set_long(s
, addr
, val
);
1679 vtd_set_quad(s
, addr
, val
);
1680 vtd_handle_ccmd_write(s
);
1684 case DMAR_CCMD_REG_HI
:
1685 VTD_DPRINTF(CSR
, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
1686 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1688 vtd_set_long(s
, addr
, val
);
1689 vtd_handle_ccmd_write(s
);
1692 /* IOTLB Invalidation Register, 64-bit */
1693 case DMAR_IOTLB_REG
:
1694 VTD_DPRINTF(INV
, "DMAR_IOTLB_REG write addr 0x%"PRIx64
1695 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1697 vtd_set_long(s
, addr
, val
);
1699 vtd_set_quad(s
, addr
, val
);
1700 vtd_handle_iotlb_write(s
);
1704 case DMAR_IOTLB_REG_HI
:
1705 VTD_DPRINTF(INV
, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
1706 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1708 vtd_set_long(s
, addr
, val
);
1709 vtd_handle_iotlb_write(s
);
1712 /* Invalidate Address Register, 64-bit */
1714 VTD_DPRINTF(INV
, "DMAR_IVA_REG write addr 0x%"PRIx64
1715 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1717 vtd_set_long(s
, addr
, val
);
1719 vtd_set_quad(s
, addr
, val
);
1723 case DMAR_IVA_REG_HI
:
1724 VTD_DPRINTF(INV
, "DMAR_IVA_REG_HI write addr 0x%"PRIx64
1725 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1727 vtd_set_long(s
, addr
, val
);
1730 /* Fault Status Register, 32-bit */
1732 VTD_DPRINTF(FLOG
, "DMAR_FSTS_REG write addr 0x%"PRIx64
1733 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1735 vtd_set_long(s
, addr
, val
);
1736 vtd_handle_fsts_write(s
);
1739 /* Fault Event Control Register, 32-bit */
1740 case DMAR_FECTL_REG
:
1741 VTD_DPRINTF(FLOG
, "DMAR_FECTL_REG write addr 0x%"PRIx64
1742 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1744 vtd_set_long(s
, addr
, val
);
1745 vtd_handle_fectl_write(s
);
1748 /* Fault Event Data Register, 32-bit */
1749 case DMAR_FEDATA_REG
:
1750 VTD_DPRINTF(FLOG
, "DMAR_FEDATA_REG write addr 0x%"PRIx64
1751 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1753 vtd_set_long(s
, addr
, val
);
1756 /* Fault Event Address Register, 32-bit */
1757 case DMAR_FEADDR_REG
:
1758 VTD_DPRINTF(FLOG
, "DMAR_FEADDR_REG write addr 0x%"PRIx64
1759 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1761 vtd_set_long(s
, addr
, val
);
1764 /* Fault Event Upper Address Register, 32-bit */
1765 case DMAR_FEUADDR_REG
:
1766 VTD_DPRINTF(FLOG
, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
1767 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1769 vtd_set_long(s
, addr
, val
);
1772 /* Protected Memory Enable Register, 32-bit */
1774 VTD_DPRINTF(CSR
, "DMAR_PMEN_REG write addr 0x%"PRIx64
1775 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1777 vtd_set_long(s
, addr
, val
);
1780 /* Root Table Address Register, 64-bit */
1781 case DMAR_RTADDR_REG
:
1782 VTD_DPRINTF(CSR
, "DMAR_RTADDR_REG write addr 0x%"PRIx64
1783 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1785 vtd_set_long(s
, addr
, val
);
1787 vtd_set_quad(s
, addr
, val
);
1791 case DMAR_RTADDR_REG_HI
:
1792 VTD_DPRINTF(CSR
, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
1793 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1795 vtd_set_long(s
, addr
, val
);
1798 /* Invalidation Queue Tail Register, 64-bit */
1800 VTD_DPRINTF(INV
, "DMAR_IQT_REG write addr 0x%"PRIx64
1801 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1803 vtd_set_long(s
, addr
, val
);
1805 vtd_set_quad(s
, addr
, val
);
1807 vtd_handle_iqt_write(s
);
1810 case DMAR_IQT_REG_HI
:
1811 VTD_DPRINTF(INV
, "DMAR_IQT_REG_HI write addr 0x%"PRIx64
1812 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1814 vtd_set_long(s
, addr
, val
);
1815 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
1818 /* Invalidation Queue Address Register, 64-bit */
1820 VTD_DPRINTF(INV
, "DMAR_IQA_REG write addr 0x%"PRIx64
1821 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1823 vtd_set_long(s
, addr
, val
);
1825 vtd_set_quad(s
, addr
, val
);
1829 case DMAR_IQA_REG_HI
:
1830 VTD_DPRINTF(INV
, "DMAR_IQA_REG_HI write addr 0x%"PRIx64
1831 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1833 vtd_set_long(s
, addr
, val
);
1836 /* Invalidation Completion Status Register, 32-bit */
1838 VTD_DPRINTF(INV
, "DMAR_ICS_REG write addr 0x%"PRIx64
1839 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1841 vtd_set_long(s
, addr
, val
);
1842 vtd_handle_ics_write(s
);
1845 /* Invalidation Event Control Register, 32-bit */
1846 case DMAR_IECTL_REG
:
1847 VTD_DPRINTF(INV
, "DMAR_IECTL_REG write addr 0x%"PRIx64
1848 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1850 vtd_set_long(s
, addr
, val
);
1851 vtd_handle_iectl_write(s
);
1854 /* Invalidation Event Data Register, 32-bit */
1855 case DMAR_IEDATA_REG
:
1856 VTD_DPRINTF(INV
, "DMAR_IEDATA_REG write addr 0x%"PRIx64
1857 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1859 vtd_set_long(s
, addr
, val
);
1862 /* Invalidation Event Address Register, 32-bit */
1863 case DMAR_IEADDR_REG
:
1864 VTD_DPRINTF(INV
, "DMAR_IEADDR_REG write addr 0x%"PRIx64
1865 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1867 vtd_set_long(s
, addr
, val
);
1870 /* Invalidation Event Upper Address Register, 32-bit */
1871 case DMAR_IEUADDR_REG
:
1872 VTD_DPRINTF(INV
, "DMAR_IEUADDR_REG write addr 0x%"PRIx64
1873 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1875 vtd_set_long(s
, addr
, val
);
1878 /* Fault Recording Registers, 128-bit */
1879 case DMAR_FRCD_REG_0_0
:
1880 VTD_DPRINTF(FLOG
, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
1881 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1883 vtd_set_long(s
, addr
, val
);
1885 vtd_set_quad(s
, addr
, val
);
1889 case DMAR_FRCD_REG_0_1
:
1890 VTD_DPRINTF(FLOG
, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
1891 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1893 vtd_set_long(s
, addr
, val
);
1896 case DMAR_FRCD_REG_0_2
:
1897 VTD_DPRINTF(FLOG
, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
1898 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1900 vtd_set_long(s
, addr
, val
);
1902 vtd_set_quad(s
, addr
, val
);
1903 /* May clear bit 127 (Fault), update PPF */
1904 vtd_update_fsts_ppf(s
);
1908 case DMAR_FRCD_REG_0_3
:
1909 VTD_DPRINTF(FLOG
, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
1910 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1912 vtd_set_long(s
, addr
, val
);
1913 /* May clear bit 127 (Fault), update PPF */
1914 vtd_update_fsts_ppf(s
);
1918 VTD_DPRINTF(IR
, "DMAR_IRTA_REG write addr 0x%"PRIx64
1919 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1921 vtd_set_long(s
, addr
, val
);
1923 vtd_set_quad(s
, addr
, val
);
1927 case DMAR_IRTA_REG_HI
:
1928 VTD_DPRINTF(IR
, "DMAR_IRTA_REG_HI write addr 0x%"PRIx64
1929 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1931 vtd_set_long(s
, addr
, val
);
1935 VTD_DPRINTF(GENERAL
, "error: unhandled reg write addr 0x%"PRIx64
1936 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1938 vtd_set_long(s
, addr
, val
);
1940 vtd_set_quad(s
, addr
, val
);
1945 static IOMMUTLBEntry
vtd_iommu_translate(MemoryRegion
*iommu
, hwaddr addr
,
1948 VTDAddressSpace
*vtd_as
= container_of(iommu
, VTDAddressSpace
, iommu
);
1949 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
1950 IOMMUTLBEntry ret
= {
1951 .target_as
= &address_space_memory
,
1953 .translated_addr
= 0,
1954 .addr_mask
= ~(hwaddr
)0,
1958 if (!s
->dmar_enabled
) {
1959 /* DMAR disabled, passthrough, use 4k-page*/
1960 ret
.iova
= addr
& VTD_PAGE_MASK_4K
;
1961 ret
.translated_addr
= addr
& VTD_PAGE_MASK_4K
;
1962 ret
.addr_mask
= ~VTD_PAGE_MASK_4K
;
1963 ret
.perm
= IOMMU_RW
;
1967 vtd_do_iommu_translate(vtd_as
, vtd_as
->bus
, vtd_as
->devfn
, addr
,
1970 "bus %"PRIu8
" slot %"PRIu8
" func %"PRIu8
" devfn %"PRIu8
1971 " gpa 0x%"PRIx64
" hpa 0x%"PRIx64
, pci_bus_num(vtd_as
->bus
),
1972 VTD_PCI_SLOT(vtd_as
->devfn
), VTD_PCI_FUNC(vtd_as
->devfn
),
1973 vtd_as
->devfn
, addr
, ret
.translated_addr
);
1977 static void vtd_iommu_notify_flag_changed(MemoryRegion
*iommu
,
1978 IOMMUNotifierFlag old
,
1979 IOMMUNotifierFlag
new)
1981 VTDAddressSpace
*vtd_as
= container_of(iommu
, VTDAddressSpace
, iommu
);
1983 if (new & IOMMU_NOTIFIER_MAP
) {
1984 error_report("Device at bus %s addr %02x.%d requires iommu "
1985 "notifier which is currently not supported by "
1986 "intel-iommu emulation",
1987 vtd_as
->bus
->qbus
.name
, PCI_SLOT(vtd_as
->devfn
),
1988 PCI_FUNC(vtd_as
->devfn
));
1993 static const VMStateDescription vtd_vmstate
= {
1994 .name
= "iommu-intel",
1998 static const MemoryRegionOps vtd_mem_ops
= {
1999 .read
= vtd_mem_read
,
2000 .write
= vtd_mem_write
,
2001 .endianness
= DEVICE_LITTLE_ENDIAN
,
2003 .min_access_size
= 4,
2004 .max_access_size
= 8,
2007 .min_access_size
= 4,
2008 .max_access_size
= 8,
2012 static Property vtd_properties
[] = {
2013 DEFINE_PROP_UINT32("version", IntelIOMMUState
, version
, 0),
2014 DEFINE_PROP_END_OF_LIST(),
2017 /* Read IRTE entry with specific index */
2018 static int vtd_irte_get(IntelIOMMUState
*iommu
, uint16_t index
,
2019 VTD_IR_TableEntry
*entry
, uint16_t sid
)
2021 static const uint16_t vtd_svt_mask
[VTD_SQ_MAX
] = \
2022 {0xffff, 0xfffb, 0xfff9, 0xfff8};
2023 dma_addr_t addr
= 0x00;
2024 uint16_t mask
, source_id
;
2025 uint8_t bus
, bus_max
, bus_min
;
2027 addr
= iommu
->intr_root
+ index
* sizeof(*entry
);
2028 if (dma_memory_read(&address_space_memory
, addr
, entry
,
2030 VTD_DPRINTF(GENERAL
, "error: fail to access IR root at 0x%"PRIx64
2031 " + %"PRIu16
, iommu
->intr_root
, index
);
2032 return -VTD_FR_IR_ROOT_INVAL
;
2035 if (!entry
->irte
.present
) {
2036 VTD_DPRINTF(GENERAL
, "error: present flag not set in IRTE"
2037 " entry index %u value 0x%"PRIx64
" 0x%"PRIx64
,
2038 index
, le64_to_cpu(entry
->data
[1]),
2039 le64_to_cpu(entry
->data
[0]));
2040 return -VTD_FR_IR_ENTRY_P
;
2043 if (entry
->irte
.__reserved_0
|| entry
->irte
.__reserved_1
||
2044 entry
->irte
.__reserved_2
) {
2045 VTD_DPRINTF(GENERAL
, "error: IRTE entry index %"PRIu16
2046 " reserved fields non-zero: 0x%"PRIx64
" 0x%"PRIx64
,
2047 index
, le64_to_cpu(entry
->data
[1]),
2048 le64_to_cpu(entry
->data
[0]));
2049 return -VTD_FR_IR_IRTE_RSVD
;
2052 if (sid
!= X86_IOMMU_SID_INVALID
) {
2053 /* Validate IRTE SID */
2054 source_id
= le32_to_cpu(entry
->irte
.source_id
);
2055 switch (entry
->irte
.sid_vtype
) {
2057 VTD_DPRINTF(IR
, "No SID validation for IRTE index %d", index
);
2061 mask
= vtd_svt_mask
[entry
->irte
.sid_q
];
2062 if ((source_id
& mask
) != (sid
& mask
)) {
2063 VTD_DPRINTF(GENERAL
, "SID validation for IRTE index "
2064 "%d failed (reqid 0x%04x sid 0x%04x)", index
,
2066 return -VTD_FR_IR_SID_ERR
;
2071 bus_max
= source_id
>> 8;
2072 bus_min
= source_id
& 0xff;
2074 if (bus
> bus_max
|| bus
< bus_min
) {
2075 VTD_DPRINTF(GENERAL
, "SID validation for IRTE index %d "
2076 "failed (bus %d outside %d-%d)", index
, bus
,
2078 return -VTD_FR_IR_SID_ERR
;
2083 VTD_DPRINTF(GENERAL
, "Invalid SVT bits (0x%x) in IRTE index "
2084 "%d", entry
->irte
.sid_vtype
, index
);
2085 /* Take this as verification failure. */
2086 return -VTD_FR_IR_SID_ERR
;
2094 /* Fetch IRQ information of specific IR index */
2095 static int vtd_remap_irq_get(IntelIOMMUState
*iommu
, uint16_t index
,
2096 VTDIrq
*irq
, uint16_t sid
)
2098 VTD_IR_TableEntry irte
= {};
2101 ret
= vtd_irte_get(iommu
, index
, &irte
, sid
);
2106 irq
->trigger_mode
= irte
.irte
.trigger_mode
;
2107 irq
->vector
= irte
.irte
.vector
;
2108 irq
->delivery_mode
= irte
.irte
.delivery_mode
;
2109 irq
->dest
= le32_to_cpu(irte
.irte
.dest_id
);
2110 if (!iommu
->intr_eime
) {
2111 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
2112 #define VTD_IR_APIC_DEST_SHIFT (8)
2113 irq
->dest
= (irq
->dest
& VTD_IR_APIC_DEST_MASK
) >>
2114 VTD_IR_APIC_DEST_SHIFT
;
2116 irq
->dest_mode
= irte
.irte
.dest_mode
;
2117 irq
->redir_hint
= irte
.irte
.redir_hint
;
2119 VTD_DPRINTF(IR
, "remapping interrupt index %d: trig:%u,vec:%u,"
2120 "deliver:%u,dest:%u,dest_mode:%u", index
,
2121 irq
->trigger_mode
, irq
->vector
, irq
->delivery_mode
,
2122 irq
->dest
, irq
->dest_mode
);
2127 /* Generate one MSI message from VTDIrq info */
2128 static void vtd_generate_msi_message(VTDIrq
*irq
, MSIMessage
*msg_out
)
2130 VTD_MSIMessage msg
= {};
2132 /* Generate address bits */
2133 msg
.dest_mode
= irq
->dest_mode
;
2134 msg
.redir_hint
= irq
->redir_hint
;
2135 msg
.dest
= irq
->dest
;
2136 msg
.__addr_head
= cpu_to_le32(0xfee);
2137 /* Keep this from original MSI address bits */
2138 msg
.__not_used
= irq
->msi_addr_last_bits
;
2140 /* Generate data bits */
2141 msg
.vector
= irq
->vector
;
2142 msg
.delivery_mode
= irq
->delivery_mode
;
2144 msg
.trigger_mode
= irq
->trigger_mode
;
2146 msg_out
->address
= msg
.msi_addr
;
2147 msg_out
->data
= msg
.msi_data
;
2150 /* Interrupt remapping for MSI/MSI-X entry */
2151 static int vtd_interrupt_remap_msi(IntelIOMMUState
*iommu
,
2153 MSIMessage
*translated
,
2157 VTD_IR_MSIAddress addr
;
2161 assert(origin
&& translated
);
2163 if (!iommu
|| !iommu
->intr_enabled
) {
2164 goto do_not_translate
;
2167 if (origin
->address
& VTD_MSI_ADDR_HI_MASK
) {
2168 VTD_DPRINTF(GENERAL
, "error: MSI addr high 32 bits nonzero"
2169 " during interrupt remapping: 0x%"PRIx32
,
2170 (uint32_t)((origin
->address
& VTD_MSI_ADDR_HI_MASK
) >> \
2171 VTD_MSI_ADDR_HI_SHIFT
));
2172 return -VTD_FR_IR_REQ_RSVD
;
2175 addr
.data
= origin
->address
& VTD_MSI_ADDR_LO_MASK
;
2176 if (le16_to_cpu(addr
.addr
.__head
) != 0xfee) {
2177 VTD_DPRINTF(GENERAL
, "error: MSI addr low 32 bits invalid: "
2178 "0x%"PRIx32
, addr
.data
);
2179 return -VTD_FR_IR_REQ_RSVD
;
2182 /* This is compatible mode. */
2183 if (addr
.addr
.int_mode
!= VTD_IR_INT_FORMAT_REMAP
) {
2184 goto do_not_translate
;
2187 index
= addr
.addr
.index_h
<< 15 | le16_to_cpu(addr
.addr
.index_l
);
2189 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
2190 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
2192 if (addr
.addr
.sub_valid
) {
2193 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2194 index
+= origin
->data
& VTD_IR_MSI_DATA_SUBHANDLE
;
2197 ret
= vtd_remap_irq_get(iommu
, index
, &irq
, sid
);
2202 if (addr
.addr
.sub_valid
) {
2203 VTD_DPRINTF(IR
, "received MSI interrupt");
2204 if (origin
->data
& VTD_IR_MSI_DATA_RESERVED
) {
2205 VTD_DPRINTF(GENERAL
, "error: MSI data bits non-zero for "
2206 "interrupt remappable entry: 0x%"PRIx32
,
2208 return -VTD_FR_IR_REQ_RSVD
;
2211 uint8_t vector
= origin
->data
& 0xff;
2212 VTD_DPRINTF(IR
, "received IOAPIC interrupt");
2213 /* IOAPIC entry vector should be aligned with IRTE vector
2214 * (see vt-d spec 5.1.5.1). */
2215 if (vector
!= irq
.vector
) {
2216 VTD_DPRINTF(GENERAL
, "IOAPIC vector inconsistent: "
2217 "entry: %d, IRTE: %d, index: %d",
2218 vector
, irq
.vector
, index
);
2223 * We'd better keep the last two bits, assuming that guest OS
2224 * might modify it. Keep it does not hurt after all.
2226 irq
.msi_addr_last_bits
= addr
.addr
.__not_care
;
2228 /* Translate VTDIrq to MSI message */
2229 vtd_generate_msi_message(&irq
, translated
);
2231 VTD_DPRINTF(IR
, "mapping MSI 0x%"PRIx64
":0x%"PRIx32
" -> "
2232 "0x%"PRIx64
":0x%"PRIx32
, origin
->address
, origin
->data
,
2233 translated
->address
, translated
->data
);
2237 memcpy(translated
, origin
, sizeof(*origin
));
2241 static int vtd_int_remap(X86IOMMUState
*iommu
, MSIMessage
*src
,
2242 MSIMessage
*dst
, uint16_t sid
)
2244 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu
),
2248 static MemTxResult
vtd_mem_ir_read(void *opaque
, hwaddr addr
,
2249 uint64_t *data
, unsigned size
,
2255 static MemTxResult
vtd_mem_ir_write(void *opaque
, hwaddr addr
,
2256 uint64_t value
, unsigned size
,
2260 MSIMessage from
= {}, to
= {};
2261 uint16_t sid
= X86_IOMMU_SID_INVALID
;
2263 from
.address
= (uint64_t) addr
+ VTD_INTERRUPT_ADDR_FIRST
;
2264 from
.data
= (uint32_t) value
;
2266 if (!attrs
.unspecified
) {
2267 /* We have explicit Source ID */
2268 sid
= attrs
.requester_id
;
2271 ret
= vtd_interrupt_remap_msi(opaque
, &from
, &to
, sid
);
2273 /* TODO: report error */
2274 VTD_DPRINTF(GENERAL
, "int remap fail for addr 0x%"PRIx64
2275 " data 0x%"PRIx32
, from
.address
, from
.data
);
2276 /* Drop this interrupt */
2280 VTD_DPRINTF(IR
, "delivering MSI 0x%"PRIx64
":0x%"PRIx32
2281 " for device sid 0x%04x",
2282 to
.address
, to
.data
, sid
);
2284 if (dma_memory_write(&address_space_memory
, to
.address
,
2286 VTD_DPRINTF(GENERAL
, "error: fail to write 0x%"PRIx64
2287 " value 0x%"PRIx32
, to
.address
, to
.data
);
2293 static const MemoryRegionOps vtd_mem_ir_ops
= {
2294 .read_with_attrs
= vtd_mem_ir_read
,
2295 .write_with_attrs
= vtd_mem_ir_write
,
2296 .endianness
= DEVICE_LITTLE_ENDIAN
,
2298 .min_access_size
= 4,
2299 .max_access_size
= 4,
2302 .min_access_size
= 4,
2303 .max_access_size
= 4,
2307 VTDAddressSpace
*vtd_find_add_as(IntelIOMMUState
*s
, PCIBus
*bus
, int devfn
)
2309 uintptr_t key
= (uintptr_t)bus
;
2310 VTDBus
*vtd_bus
= g_hash_table_lookup(s
->vtd_as_by_busptr
, &key
);
2311 VTDAddressSpace
*vtd_dev_as
;
2314 /* No corresponding free() */
2315 vtd_bus
= g_malloc0(sizeof(VTDBus
) + sizeof(VTDAddressSpace
*) * \
2316 X86_IOMMU_PCI_DEVFN_MAX
);
2318 key
= (uintptr_t)bus
;
2319 g_hash_table_insert(s
->vtd_as_by_busptr
, &key
, vtd_bus
);
2322 vtd_dev_as
= vtd_bus
->dev_as
[devfn
];
2325 vtd_bus
->dev_as
[devfn
] = vtd_dev_as
= g_malloc0(sizeof(VTDAddressSpace
));
2327 vtd_dev_as
->bus
= bus
;
2328 vtd_dev_as
->devfn
= (uint8_t)devfn
;
2329 vtd_dev_as
->iommu_state
= s
;
2330 vtd_dev_as
->context_cache_entry
.context_cache_gen
= 0;
2331 memory_region_init_iommu(&vtd_dev_as
->iommu
, OBJECT(s
),
2332 &s
->iommu_ops
, "intel_iommu", UINT64_MAX
);
2333 memory_region_init_io(&vtd_dev_as
->iommu_ir
, OBJECT(s
),
2334 &vtd_mem_ir_ops
, s
, "intel_iommu_ir",
2335 VTD_INTERRUPT_ADDR_SIZE
);
2336 memory_region_add_subregion(&vtd_dev_as
->iommu
, VTD_INTERRUPT_ADDR_FIRST
,
2337 &vtd_dev_as
->iommu_ir
);
2338 address_space_init(&vtd_dev_as
->as
,
2339 &vtd_dev_as
->iommu
, "intel_iommu");
2344 /* Do the initialization. It will also be called when reset, so pay
2345 * attention when adding new initialization stuff.
2347 static void vtd_init(IntelIOMMUState
*s
)
2349 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
2351 memset(s
->csr
, 0, DMAR_REG_SIZE
);
2352 memset(s
->wmask
, 0, DMAR_REG_SIZE
);
2353 memset(s
->w1cmask
, 0, DMAR_REG_SIZE
);
2354 memset(s
->womask
, 0, DMAR_REG_SIZE
);
2356 s
->iommu_ops
.translate
= vtd_iommu_translate
;
2357 s
->iommu_ops
.notify_flag_changed
= vtd_iommu_notify_flag_changed
;
2359 s
->root_extended
= false;
2360 s
->dmar_enabled
= false;
2365 s
->qi_enabled
= false;
2366 s
->iq_last_desc_type
= VTD_INV_DESC_NONE
;
2367 s
->next_frcd_reg
= 0;
2368 s
->cap
= VTD_CAP_FRO
| VTD_CAP_NFR
| VTD_CAP_ND
| VTD_CAP_MGAW
|
2369 VTD_CAP_SAGAW
| VTD_CAP_MAMV
| VTD_CAP_PSI
| VTD_CAP_SLLPS
;
2370 s
->ecap
= VTD_ECAP_QI
| VTD_ECAP_IRO
;
2372 if (x86_iommu
->intr_supported
) {
2373 s
->ecap
|= VTD_ECAP_IR
| VTD_ECAP_EIM
| VTD_ECAP_MHMV
;
2376 vtd_reset_context_cache(s
);
2379 /* Define registers with default values and bit semantics */
2380 vtd_define_long(s
, DMAR_VER_REG
, 0x10UL
, 0, 0);
2381 vtd_define_quad(s
, DMAR_CAP_REG
, s
->cap
, 0, 0);
2382 vtd_define_quad(s
, DMAR_ECAP_REG
, s
->ecap
, 0, 0);
2383 vtd_define_long(s
, DMAR_GCMD_REG
, 0, 0xff800000UL
, 0);
2384 vtd_define_long_wo(s
, DMAR_GCMD_REG
, 0xff800000UL
);
2385 vtd_define_long(s
, DMAR_GSTS_REG
, 0, 0, 0);
2386 vtd_define_quad(s
, DMAR_RTADDR_REG
, 0, 0xfffffffffffff000ULL
, 0);
2387 vtd_define_quad(s
, DMAR_CCMD_REG
, 0, 0xe0000003ffffffffULL
, 0);
2388 vtd_define_quad_wo(s
, DMAR_CCMD_REG
, 0x3ffff0000ULL
);
2390 /* Advanced Fault Logging not supported */
2391 vtd_define_long(s
, DMAR_FSTS_REG
, 0, 0, 0x11UL
);
2392 vtd_define_long(s
, DMAR_FECTL_REG
, 0x80000000UL
, 0x80000000UL
, 0);
2393 vtd_define_long(s
, DMAR_FEDATA_REG
, 0, 0x0000ffffUL
, 0);
2394 vtd_define_long(s
, DMAR_FEADDR_REG
, 0, 0xfffffffcUL
, 0);
2396 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
2397 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
2399 vtd_define_long(s
, DMAR_FEUADDR_REG
, 0, 0, 0);
2401 /* Treated as RO for implementations that PLMR and PHMR fields reported
2402 * as Clear in the CAP_REG.
2403 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
2405 vtd_define_long(s
, DMAR_PMEN_REG
, 0, 0, 0);
2407 vtd_define_quad(s
, DMAR_IQH_REG
, 0, 0, 0);
2408 vtd_define_quad(s
, DMAR_IQT_REG
, 0, 0x7fff0ULL
, 0);
2409 vtd_define_quad(s
, DMAR_IQA_REG
, 0, 0xfffffffffffff007ULL
, 0);
2410 vtd_define_long(s
, DMAR_ICS_REG
, 0, 0, 0x1UL
);
2411 vtd_define_long(s
, DMAR_IECTL_REG
, 0x80000000UL
, 0x80000000UL
, 0);
2412 vtd_define_long(s
, DMAR_IEDATA_REG
, 0, 0xffffffffUL
, 0);
2413 vtd_define_long(s
, DMAR_IEADDR_REG
, 0, 0xfffffffcUL
, 0);
2414 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
2415 vtd_define_long(s
, DMAR_IEUADDR_REG
, 0, 0, 0);
2417 /* IOTLB registers */
2418 vtd_define_quad(s
, DMAR_IOTLB_REG
, 0, 0Xb003ffff00000000ULL
, 0);
2419 vtd_define_quad(s
, DMAR_IVA_REG
, 0, 0xfffffffffffff07fULL
, 0);
2420 vtd_define_quad_wo(s
, DMAR_IVA_REG
, 0xfffffffffffff07fULL
);
2422 /* Fault Recording Registers, 128-bit */
2423 vtd_define_quad(s
, DMAR_FRCD_REG_0_0
, 0, 0, 0);
2424 vtd_define_quad(s
, DMAR_FRCD_REG_0_2
, 0, 0, 0x8000000000000000ULL
);
2427 * Interrupt remapping registers.
2429 vtd_define_quad(s
, DMAR_IRTA_REG
, 0, 0xfffffffffffff80fULL
, 0);
2432 /* Should not reset address_spaces when reset because devices will still use
2433 * the address space they got at first (won't ask the bus again).
2435 static void vtd_reset(DeviceState
*dev
)
2437 IntelIOMMUState
*s
= INTEL_IOMMU_DEVICE(dev
);
2439 VTD_DPRINTF(GENERAL
, "");
2443 static AddressSpace
*vtd_host_dma_iommu(PCIBus
*bus
, void *opaque
, int devfn
)
2445 IntelIOMMUState
*s
= opaque
;
2446 VTDAddressSpace
*vtd_as
;
2448 assert(0 <= devfn
&& devfn
<= X86_IOMMU_PCI_DEVFN_MAX
);
2450 vtd_as
= vtd_find_add_as(s
, bus
, devfn
);
2454 static void vtd_realize(DeviceState
*dev
, Error
**errp
)
2456 PCMachineState
*pcms
= PC_MACHINE(qdev_get_machine());
2457 PCIBus
*bus
= pcms
->bus
;
2458 IntelIOMMUState
*s
= INTEL_IOMMU_DEVICE(dev
);
2459 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(dev
);
2461 VTD_DPRINTF(GENERAL
, "");
2462 x86_iommu
->type
= TYPE_INTEL
;
2463 memset(s
->vtd_as_by_bus_num
, 0, sizeof(s
->vtd_as_by_bus_num
));
2464 memory_region_init_io(&s
->csrmem
, OBJECT(s
), &vtd_mem_ops
, s
,
2465 "intel_iommu", DMAR_REG_SIZE
);
2466 sysbus_init_mmio(SYS_BUS_DEVICE(s
), &s
->csrmem
);
2467 /* No corresponding destroy */
2468 s
->iotlb
= g_hash_table_new_full(vtd_uint64_hash
, vtd_uint64_equal
,
2470 s
->vtd_as_by_busptr
= g_hash_table_new_full(vtd_uint64_hash
, vtd_uint64_equal
,
2473 sysbus_mmio_map(SYS_BUS_DEVICE(s
), 0, Q35_HOST_BRIDGE_IOMMU_ADDR
);
2474 pci_setup_iommu(bus
, vtd_host_dma_iommu
, dev
);
2475 /* Pseudo address space under root PCI bus. */
2476 pcms
->ioapic_as
= vtd_host_dma_iommu(bus
, s
, Q35_PSEUDO_DEVFN_IOAPIC
);
2478 /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
2479 if (x86_iommu
->intr_supported
&& kvm_irqchip_in_kernel() &&
2480 !kvm_irqchip_is_split()) {
2481 error_report("Intel Interrupt Remapping cannot work with "
2482 "kernel-irqchip=on, please use 'split|off'.");
2487 static void vtd_class_init(ObjectClass
*klass
, void *data
)
2489 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2490 X86IOMMUClass
*x86_class
= X86_IOMMU_CLASS(klass
);
2492 dc
->reset
= vtd_reset
;
2493 dc
->vmsd
= &vtd_vmstate
;
2494 dc
->props
= vtd_properties
;
2495 dc
->hotpluggable
= false;
2496 x86_class
->realize
= vtd_realize
;
2497 x86_class
->int_remap
= vtd_int_remap
;
2500 static const TypeInfo vtd_info
= {
2501 .name
= TYPE_INTEL_IOMMU_DEVICE
,
2502 .parent
= TYPE_X86_IOMMU_DEVICE
,
2503 .instance_size
= sizeof(IntelIOMMUState
),
2504 .class_init
= vtd_class_init
,
2507 static void vtd_register_types(void)
2509 VTD_DPRINTF(GENERAL
, "");
2510 type_register_static(&vtd_info
);
2513 type_init(vtd_register_types
)