Revert "exec: limit system memory size"
[qemu.git] / kvm-all.c
blob4478969ed2e0ee34b83e57b4e554242a36d26674
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/event_notifier.h"
36 #include "trace.h"
38 /* This check must be after config-host.h is included */
39 #ifdef CONFIG_EVENTFD
40 #include <sys/eventfd.h>
41 #endif
43 #ifdef CONFIG_VALGRIND_H
44 #include <valgrind/memcheck.h>
45 #endif
47 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
48 #define PAGE_SIZE TARGET_PAGE_SIZE
50 //#define DEBUG_KVM
52 #ifdef DEBUG_KVM
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55 #else
56 #define DPRINTF(fmt, ...) \
57 do { } while (0)
58 #endif
60 #define KVM_MSI_HASHTAB_SIZE 256
62 typedef struct KVMSlot
64 hwaddr start_addr;
65 ram_addr_t memory_size;
66 void *ram;
67 int slot;
68 int flags;
69 } KVMSlot;
71 typedef struct kvm_dirty_log KVMDirtyLog;
73 struct KVMState
75 KVMSlot slots[32];
76 int fd;
77 int vmfd;
78 int coalesced_mmio;
79 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
80 bool coalesced_flush_in_progress;
81 int broken_set_mem_region;
82 int migration_log;
83 int vcpu_events;
84 int robust_singlestep;
85 int debugregs;
86 #ifdef KVM_CAP_SET_GUEST_DEBUG
87 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
88 #endif
89 int pit_state2;
90 int xsave, xcrs;
91 int many_ioeventfds;
92 int intx_set_mask;
93 /* The man page (and posix) say ioctl numbers are signed int, but
94 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
95 * unsigned, and treating them as signed here can break things */
96 unsigned irq_set_ioctl;
97 #ifdef KVM_CAP_IRQ_ROUTING
98 struct kvm_irq_routing *irq_routes;
99 int nr_allocated_irq_routes;
100 uint32_t *used_gsi_bitmap;
101 unsigned int gsi_count;
102 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
103 bool direct_msi;
104 #endif
107 KVMState *kvm_state;
108 bool kvm_kernel_irqchip;
109 bool kvm_async_interrupts_allowed;
110 bool kvm_halt_in_kernel_allowed;
111 bool kvm_irqfds_allowed;
112 bool kvm_msi_via_irqfd_allowed;
113 bool kvm_gsi_routing_allowed;
114 bool kvm_gsi_direct_mapping;
115 bool kvm_allowed;
116 bool kvm_readonly_mem_allowed;
118 static const KVMCapabilityInfo kvm_required_capabilites[] = {
119 KVM_CAP_INFO(USER_MEMORY),
120 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
121 KVM_CAP_LAST_INFO
124 static KVMSlot *kvm_alloc_slot(KVMState *s)
126 int i;
128 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
129 if (s->slots[i].memory_size == 0) {
130 return &s->slots[i];
134 fprintf(stderr, "%s: no free slot available\n", __func__);
135 abort();
138 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
139 hwaddr start_addr,
140 hwaddr end_addr)
142 int i;
144 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
145 KVMSlot *mem = &s->slots[i];
147 if (start_addr == mem->start_addr &&
148 end_addr == mem->start_addr + mem->memory_size) {
149 return mem;
153 return NULL;
157 * Find overlapping slot with lowest start address
159 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
160 hwaddr start_addr,
161 hwaddr end_addr)
163 KVMSlot *found = NULL;
164 int i;
166 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
167 KVMSlot *mem = &s->slots[i];
169 if (mem->memory_size == 0 ||
170 (found && found->start_addr < mem->start_addr)) {
171 continue;
174 if (end_addr > mem->start_addr &&
175 start_addr < mem->start_addr + mem->memory_size) {
176 found = mem;
180 return found;
183 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
184 hwaddr *phys_addr)
186 int i;
188 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
189 KVMSlot *mem = &s->slots[i];
191 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
192 *phys_addr = mem->start_addr + (ram - mem->ram);
193 return 1;
197 return 0;
200 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
202 struct kvm_userspace_memory_region mem;
204 mem.slot = slot->slot;
205 mem.guest_phys_addr = slot->start_addr;
206 mem.userspace_addr = (unsigned long)slot->ram;
207 mem.flags = slot->flags;
208 if (s->migration_log) {
209 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
212 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
213 /* Set the slot size to 0 before setting the slot to the desired
214 * value. This is needed based on KVM commit 75d61fbc. */
215 mem.memory_size = 0;
216 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
218 mem.memory_size = slot->memory_size;
219 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
222 static void kvm_reset_vcpu(void *opaque)
224 CPUState *cpu = opaque;
226 kvm_arch_reset_vcpu(cpu);
229 int kvm_init_vcpu(CPUState *cpu)
231 KVMState *s = kvm_state;
232 long mmap_size;
233 int ret;
235 DPRINTF("kvm_init_vcpu\n");
237 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
238 if (ret < 0) {
239 DPRINTF("kvm_create_vcpu failed\n");
240 goto err;
243 cpu->kvm_fd = ret;
244 cpu->kvm_state = s;
245 cpu->kvm_vcpu_dirty = true;
247 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
248 if (mmap_size < 0) {
249 ret = mmap_size;
250 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
251 goto err;
254 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
255 cpu->kvm_fd, 0);
256 if (cpu->kvm_run == MAP_FAILED) {
257 ret = -errno;
258 DPRINTF("mmap'ing vcpu state failed\n");
259 goto err;
262 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
263 s->coalesced_mmio_ring =
264 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
267 ret = kvm_arch_init_vcpu(cpu);
268 if (ret == 0) {
269 qemu_register_reset(kvm_reset_vcpu, cpu);
270 kvm_arch_reset_vcpu(cpu);
272 err:
273 return ret;
277 * dirty pages logging control
280 static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
282 int flags = 0;
283 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
284 if (readonly && kvm_readonly_mem_allowed) {
285 flags |= KVM_MEM_READONLY;
287 return flags;
290 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
292 KVMState *s = kvm_state;
293 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
294 int old_flags;
296 old_flags = mem->flags;
298 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
299 mem->flags = flags;
301 /* If nothing changed effectively, no need to issue ioctl */
302 if (s->migration_log) {
303 flags |= KVM_MEM_LOG_DIRTY_PAGES;
306 if (flags == old_flags) {
307 return 0;
310 return kvm_set_user_memory_region(s, mem);
313 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
314 ram_addr_t size, bool log_dirty)
316 KVMState *s = kvm_state;
317 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
319 if (mem == NULL) {
320 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
321 TARGET_FMT_plx "\n", __func__, phys_addr,
322 (hwaddr)(phys_addr + size - 1));
323 return -EINVAL;
325 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
328 static void kvm_log_start(MemoryListener *listener,
329 MemoryRegionSection *section)
331 int r;
333 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
334 int128_get64(section->size), true);
335 if (r < 0) {
336 abort();
340 static void kvm_log_stop(MemoryListener *listener,
341 MemoryRegionSection *section)
343 int r;
345 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
346 int128_get64(section->size), false);
347 if (r < 0) {
348 abort();
352 static int kvm_set_migration_log(int enable)
354 KVMState *s = kvm_state;
355 KVMSlot *mem;
356 int i, err;
358 s->migration_log = enable;
360 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
361 mem = &s->slots[i];
363 if (!mem->memory_size) {
364 continue;
366 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
367 continue;
369 err = kvm_set_user_memory_region(s, mem);
370 if (err) {
371 return err;
374 return 0;
377 /* get kvm's dirty pages bitmap and update qemu's */
378 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
379 unsigned long *bitmap)
381 unsigned int i, j;
382 unsigned long page_number, c;
383 hwaddr addr, addr1;
384 unsigned int pages = int128_get64(section->size) / getpagesize();
385 unsigned int len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
386 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
389 * bitmap-traveling is faster than memory-traveling (for addr...)
390 * especially when most of the memory is not dirty.
392 for (i = 0; i < len; i++) {
393 if (bitmap[i] != 0) {
394 c = leul_to_cpu(bitmap[i]);
395 do {
396 j = ffsl(c) - 1;
397 c &= ~(1ul << j);
398 page_number = (i * HOST_LONG_BITS + j) * hpratio;
399 addr1 = page_number * TARGET_PAGE_SIZE;
400 addr = section->offset_within_region + addr1;
401 memory_region_set_dirty(section->mr, addr,
402 TARGET_PAGE_SIZE * hpratio);
403 } while (c != 0);
406 return 0;
409 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
412 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
413 * This function updates qemu's dirty bitmap using
414 * memory_region_set_dirty(). This means all bits are set
415 * to dirty.
417 * @start_add: start of logged region.
418 * @end_addr: end of logged region.
420 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
422 KVMState *s = kvm_state;
423 unsigned long size, allocated_size = 0;
424 KVMDirtyLog d;
425 KVMSlot *mem;
426 int ret = 0;
427 hwaddr start_addr = section->offset_within_address_space;
428 hwaddr end_addr = start_addr + int128_get64(section->size);
430 d.dirty_bitmap = NULL;
431 while (start_addr < end_addr) {
432 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
433 if (mem == NULL) {
434 break;
437 /* XXX bad kernel interface alert
438 * For dirty bitmap, kernel allocates array of size aligned to
439 * bits-per-long. But for case when the kernel is 64bits and
440 * the userspace is 32bits, userspace can't align to the same
441 * bits-per-long, since sizeof(long) is different between kernel
442 * and user space. This way, userspace will provide buffer which
443 * may be 4 bytes less than the kernel will use, resulting in
444 * userspace memory corruption (which is not detectable by valgrind
445 * too, in most cases).
446 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
447 * a hope that sizeof(long) wont become >8 any time soon.
449 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
450 /*HOST_LONG_BITS*/ 64) / 8;
451 if (!d.dirty_bitmap) {
452 d.dirty_bitmap = g_malloc(size);
453 } else if (size > allocated_size) {
454 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
456 allocated_size = size;
457 memset(d.dirty_bitmap, 0, allocated_size);
459 d.slot = mem->slot;
461 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
462 DPRINTF("ioctl failed %d\n", errno);
463 ret = -1;
464 break;
467 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
468 start_addr = mem->start_addr + mem->memory_size;
470 g_free(d.dirty_bitmap);
472 return ret;
475 static void kvm_coalesce_mmio_region(MemoryListener *listener,
476 MemoryRegionSection *secion,
477 hwaddr start, hwaddr size)
479 KVMState *s = kvm_state;
481 if (s->coalesced_mmio) {
482 struct kvm_coalesced_mmio_zone zone;
484 zone.addr = start;
485 zone.size = size;
486 zone.pad = 0;
488 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
492 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
493 MemoryRegionSection *secion,
494 hwaddr start, hwaddr size)
496 KVMState *s = kvm_state;
498 if (s->coalesced_mmio) {
499 struct kvm_coalesced_mmio_zone zone;
501 zone.addr = start;
502 zone.size = size;
503 zone.pad = 0;
505 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
509 int kvm_check_extension(KVMState *s, unsigned int extension)
511 int ret;
513 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
514 if (ret < 0) {
515 ret = 0;
518 return ret;
521 static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val,
522 bool assign, uint32_t size, bool datamatch)
524 int ret;
525 struct kvm_ioeventfd iofd;
527 iofd.datamatch = datamatch ? val : 0;
528 iofd.addr = addr;
529 iofd.len = size;
530 iofd.flags = 0;
531 iofd.fd = fd;
533 if (!kvm_enabled()) {
534 return -ENOSYS;
537 if (datamatch) {
538 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
540 if (!assign) {
541 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
544 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
546 if (ret < 0) {
547 return -errno;
550 return 0;
553 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
554 bool assign, uint32_t size, bool datamatch)
556 struct kvm_ioeventfd kick = {
557 .datamatch = datamatch ? val : 0,
558 .addr = addr,
559 .flags = KVM_IOEVENTFD_FLAG_PIO,
560 .len = size,
561 .fd = fd,
563 int r;
564 if (!kvm_enabled()) {
565 return -ENOSYS;
567 if (datamatch) {
568 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
570 if (!assign) {
571 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
573 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
574 if (r < 0) {
575 return r;
577 return 0;
581 static int kvm_check_many_ioeventfds(void)
583 /* Userspace can use ioeventfd for io notification. This requires a host
584 * that supports eventfd(2) and an I/O thread; since eventfd does not
585 * support SIGIO it cannot interrupt the vcpu.
587 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
588 * can avoid creating too many ioeventfds.
590 #if defined(CONFIG_EVENTFD)
591 int ioeventfds[7];
592 int i, ret = 0;
593 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
594 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
595 if (ioeventfds[i] < 0) {
596 break;
598 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
599 if (ret < 0) {
600 close(ioeventfds[i]);
601 break;
605 /* Decide whether many devices are supported or not */
606 ret = i == ARRAY_SIZE(ioeventfds);
608 while (i-- > 0) {
609 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
610 close(ioeventfds[i]);
612 return ret;
613 #else
614 return 0;
615 #endif
618 static const KVMCapabilityInfo *
619 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
621 while (list->name) {
622 if (!kvm_check_extension(s, list->value)) {
623 return list;
625 list++;
627 return NULL;
630 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
632 KVMState *s = kvm_state;
633 KVMSlot *mem, old;
634 int err;
635 MemoryRegion *mr = section->mr;
636 bool log_dirty = memory_region_is_logging(mr);
637 bool writeable = !mr->readonly && !mr->rom_device;
638 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
639 hwaddr start_addr = section->offset_within_address_space;
640 ram_addr_t size = int128_get64(section->size);
641 void *ram = NULL;
642 unsigned delta;
644 /* kvm works in page size chunks, but the function may be called
645 with sub-page size and unaligned start address. */
646 delta = TARGET_PAGE_ALIGN(size) - size;
647 if (delta > size) {
648 return;
650 start_addr += delta;
651 size -= delta;
652 size &= TARGET_PAGE_MASK;
653 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
654 return;
657 if (!memory_region_is_ram(mr)) {
658 if (writeable || !kvm_readonly_mem_allowed) {
659 return;
660 } else if (!mr->romd_mode) {
661 /* If the memory device is not in romd_mode, then we actually want
662 * to remove the kvm memory slot so all accesses will trap. */
663 add = false;
667 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
669 while (1) {
670 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
671 if (!mem) {
672 break;
675 if (add && start_addr >= mem->start_addr &&
676 (start_addr + size <= mem->start_addr + mem->memory_size) &&
677 (ram - start_addr == mem->ram - mem->start_addr)) {
678 /* The new slot fits into the existing one and comes with
679 * identical parameters - update flags and done. */
680 kvm_slot_dirty_pages_log_change(mem, log_dirty);
681 return;
684 old = *mem;
686 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
687 kvm_physical_sync_dirty_bitmap(section);
690 /* unregister the overlapping slot */
691 mem->memory_size = 0;
692 err = kvm_set_user_memory_region(s, mem);
693 if (err) {
694 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
695 __func__, strerror(-err));
696 abort();
699 /* Workaround for older KVM versions: we can't join slots, even not by
700 * unregistering the previous ones and then registering the larger
701 * slot. We have to maintain the existing fragmentation. Sigh.
703 * This workaround assumes that the new slot starts at the same
704 * address as the first existing one. If not or if some overlapping
705 * slot comes around later, we will fail (not seen in practice so far)
706 * - and actually require a recent KVM version. */
707 if (s->broken_set_mem_region &&
708 old.start_addr == start_addr && old.memory_size < size && add) {
709 mem = kvm_alloc_slot(s);
710 mem->memory_size = old.memory_size;
711 mem->start_addr = old.start_addr;
712 mem->ram = old.ram;
713 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
715 err = kvm_set_user_memory_region(s, mem);
716 if (err) {
717 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
718 strerror(-err));
719 abort();
722 start_addr += old.memory_size;
723 ram += old.memory_size;
724 size -= old.memory_size;
725 continue;
728 /* register prefix slot */
729 if (old.start_addr < start_addr) {
730 mem = kvm_alloc_slot(s);
731 mem->memory_size = start_addr - old.start_addr;
732 mem->start_addr = old.start_addr;
733 mem->ram = old.ram;
734 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
736 err = kvm_set_user_memory_region(s, mem);
737 if (err) {
738 fprintf(stderr, "%s: error registering prefix slot: %s\n",
739 __func__, strerror(-err));
740 #ifdef TARGET_PPC
741 fprintf(stderr, "%s: This is probably because your kernel's " \
742 "PAGE_SIZE is too big. Please try to use 4k " \
743 "PAGE_SIZE!\n", __func__);
744 #endif
745 abort();
749 /* register suffix slot */
750 if (old.start_addr + old.memory_size > start_addr + size) {
751 ram_addr_t size_delta;
753 mem = kvm_alloc_slot(s);
754 mem->start_addr = start_addr + size;
755 size_delta = mem->start_addr - old.start_addr;
756 mem->memory_size = old.memory_size - size_delta;
757 mem->ram = old.ram + size_delta;
758 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
760 err = kvm_set_user_memory_region(s, mem);
761 if (err) {
762 fprintf(stderr, "%s: error registering suffix slot: %s\n",
763 __func__, strerror(-err));
764 abort();
769 /* in case the KVM bug workaround already "consumed" the new slot */
770 if (!size) {
771 return;
773 if (!add) {
774 return;
776 mem = kvm_alloc_slot(s);
777 mem->memory_size = size;
778 mem->start_addr = start_addr;
779 mem->ram = ram;
780 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
782 err = kvm_set_user_memory_region(s, mem);
783 if (err) {
784 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
785 strerror(-err));
786 abort();
790 static void kvm_region_add(MemoryListener *listener,
791 MemoryRegionSection *section)
793 memory_region_ref(section->mr);
794 kvm_set_phys_mem(section, true);
797 static void kvm_region_del(MemoryListener *listener,
798 MemoryRegionSection *section)
800 kvm_set_phys_mem(section, false);
801 memory_region_unref(section->mr);
804 static void kvm_log_sync(MemoryListener *listener,
805 MemoryRegionSection *section)
807 int r;
809 r = kvm_physical_sync_dirty_bitmap(section);
810 if (r < 0) {
811 abort();
815 static void kvm_log_global_start(struct MemoryListener *listener)
817 int r;
819 r = kvm_set_migration_log(1);
820 assert(r >= 0);
823 static void kvm_log_global_stop(struct MemoryListener *listener)
825 int r;
827 r = kvm_set_migration_log(0);
828 assert(r >= 0);
831 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
832 MemoryRegionSection *section,
833 bool match_data, uint64_t data,
834 EventNotifier *e)
836 int fd = event_notifier_get_fd(e);
837 int r;
839 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
840 data, true, int128_get64(section->size),
841 match_data);
842 if (r < 0) {
843 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
844 __func__, strerror(-r));
845 abort();
849 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
850 MemoryRegionSection *section,
851 bool match_data, uint64_t data,
852 EventNotifier *e)
854 int fd = event_notifier_get_fd(e);
855 int r;
857 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
858 data, false, int128_get64(section->size),
859 match_data);
860 if (r < 0) {
861 abort();
865 static void kvm_io_ioeventfd_add(MemoryListener *listener,
866 MemoryRegionSection *section,
867 bool match_data, uint64_t data,
868 EventNotifier *e)
870 int fd = event_notifier_get_fd(e);
871 int r;
873 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
874 data, true, int128_get64(section->size),
875 match_data);
876 if (r < 0) {
877 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
878 __func__, strerror(-r));
879 abort();
883 static void kvm_io_ioeventfd_del(MemoryListener *listener,
884 MemoryRegionSection *section,
885 bool match_data, uint64_t data,
886 EventNotifier *e)
889 int fd = event_notifier_get_fd(e);
890 int r;
892 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
893 data, false, int128_get64(section->size),
894 match_data);
895 if (r < 0) {
896 abort();
900 static MemoryListener kvm_memory_listener = {
901 .region_add = kvm_region_add,
902 .region_del = kvm_region_del,
903 .log_start = kvm_log_start,
904 .log_stop = kvm_log_stop,
905 .log_sync = kvm_log_sync,
906 .log_global_start = kvm_log_global_start,
907 .log_global_stop = kvm_log_global_stop,
908 .eventfd_add = kvm_mem_ioeventfd_add,
909 .eventfd_del = kvm_mem_ioeventfd_del,
910 .coalesced_mmio_add = kvm_coalesce_mmio_region,
911 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
912 .priority = 10,
915 static MemoryListener kvm_io_listener = {
916 .eventfd_add = kvm_io_ioeventfd_add,
917 .eventfd_del = kvm_io_ioeventfd_del,
918 .priority = 10,
921 static void kvm_handle_interrupt(CPUState *cpu, int mask)
923 cpu->interrupt_request |= mask;
925 if (!qemu_cpu_is_self(cpu)) {
926 qemu_cpu_kick(cpu);
930 int kvm_set_irq(KVMState *s, int irq, int level)
932 struct kvm_irq_level event;
933 int ret;
935 assert(kvm_async_interrupts_enabled());
937 event.level = level;
938 event.irq = irq;
939 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
940 if (ret < 0) {
941 perror("kvm_set_irq");
942 abort();
945 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
948 #ifdef KVM_CAP_IRQ_ROUTING
949 typedef struct KVMMSIRoute {
950 struct kvm_irq_routing_entry kroute;
951 QTAILQ_ENTRY(KVMMSIRoute) entry;
952 } KVMMSIRoute;
954 static void set_gsi(KVMState *s, unsigned int gsi)
956 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
959 static void clear_gsi(KVMState *s, unsigned int gsi)
961 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
964 void kvm_init_irq_routing(KVMState *s)
966 int gsi_count, i;
968 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
969 if (gsi_count > 0) {
970 unsigned int gsi_bits, i;
972 /* Round up so we can search ints using ffs */
973 gsi_bits = ALIGN(gsi_count, 32);
974 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
975 s->gsi_count = gsi_count;
977 /* Mark any over-allocated bits as already in use */
978 for (i = gsi_count; i < gsi_bits; i++) {
979 set_gsi(s, i);
983 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
984 s->nr_allocated_irq_routes = 0;
986 if (!s->direct_msi) {
987 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
988 QTAILQ_INIT(&s->msi_hashtab[i]);
992 kvm_arch_init_irq_routing(s);
995 void kvm_irqchip_commit_routes(KVMState *s)
997 int ret;
999 s->irq_routes->flags = 0;
1000 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1001 assert(ret == 0);
1004 static void kvm_add_routing_entry(KVMState *s,
1005 struct kvm_irq_routing_entry *entry)
1007 struct kvm_irq_routing_entry *new;
1008 int n, size;
1010 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1011 n = s->nr_allocated_irq_routes * 2;
1012 if (n < 64) {
1013 n = 64;
1015 size = sizeof(struct kvm_irq_routing);
1016 size += n * sizeof(*new);
1017 s->irq_routes = g_realloc(s->irq_routes, size);
1018 s->nr_allocated_irq_routes = n;
1020 n = s->irq_routes->nr++;
1021 new = &s->irq_routes->entries[n];
1023 *new = *entry;
1025 set_gsi(s, entry->gsi);
1028 static int kvm_update_routing_entry(KVMState *s,
1029 struct kvm_irq_routing_entry *new_entry)
1031 struct kvm_irq_routing_entry *entry;
1032 int n;
1034 for (n = 0; n < s->irq_routes->nr; n++) {
1035 entry = &s->irq_routes->entries[n];
1036 if (entry->gsi != new_entry->gsi) {
1037 continue;
1040 if(!memcmp(entry, new_entry, sizeof *entry)) {
1041 return 0;
1044 *entry = *new_entry;
1046 kvm_irqchip_commit_routes(s);
1048 return 0;
1051 return -ESRCH;
1054 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1056 struct kvm_irq_routing_entry e = {};
1058 assert(pin < s->gsi_count);
1060 e.gsi = irq;
1061 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1062 e.flags = 0;
1063 e.u.irqchip.irqchip = irqchip;
1064 e.u.irqchip.pin = pin;
1065 kvm_add_routing_entry(s, &e);
1068 void kvm_irqchip_release_virq(KVMState *s, int virq)
1070 struct kvm_irq_routing_entry *e;
1071 int i;
1073 if (kvm_gsi_direct_mapping()) {
1074 return;
1077 for (i = 0; i < s->irq_routes->nr; i++) {
1078 e = &s->irq_routes->entries[i];
1079 if (e->gsi == virq) {
1080 s->irq_routes->nr--;
1081 *e = s->irq_routes->entries[s->irq_routes->nr];
1084 clear_gsi(s, virq);
1087 static unsigned int kvm_hash_msi(uint32_t data)
1089 /* This is optimized for IA32 MSI layout. However, no other arch shall
1090 * repeat the mistake of not providing a direct MSI injection API. */
1091 return data & 0xff;
1094 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1096 KVMMSIRoute *route, *next;
1097 unsigned int hash;
1099 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1100 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1101 kvm_irqchip_release_virq(s, route->kroute.gsi);
1102 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1103 g_free(route);
1108 static int kvm_irqchip_get_virq(KVMState *s)
1110 uint32_t *word = s->used_gsi_bitmap;
1111 int max_words = ALIGN(s->gsi_count, 32) / 32;
1112 int i, bit;
1113 bool retry = true;
1115 again:
1116 /* Return the lowest unused GSI in the bitmap */
1117 for (i = 0; i < max_words; i++) {
1118 bit = ffs(~word[i]);
1119 if (!bit) {
1120 continue;
1123 return bit - 1 + i * 32;
1125 if (!s->direct_msi && retry) {
1126 retry = false;
1127 kvm_flush_dynamic_msi_routes(s);
1128 goto again;
1130 return -ENOSPC;
1134 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1136 unsigned int hash = kvm_hash_msi(msg.data);
1137 KVMMSIRoute *route;
1139 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1140 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1141 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1142 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1143 return route;
1146 return NULL;
1149 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1151 struct kvm_msi msi;
1152 KVMMSIRoute *route;
1154 if (s->direct_msi) {
1155 msi.address_lo = (uint32_t)msg.address;
1156 msi.address_hi = msg.address >> 32;
1157 msi.data = le32_to_cpu(msg.data);
1158 msi.flags = 0;
1159 memset(msi.pad, 0, sizeof(msi.pad));
1161 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1164 route = kvm_lookup_msi_route(s, msg);
1165 if (!route) {
1166 int virq;
1168 virq = kvm_irqchip_get_virq(s);
1169 if (virq < 0) {
1170 return virq;
1173 route = g_malloc0(sizeof(KVMMSIRoute));
1174 route->kroute.gsi = virq;
1175 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1176 route->kroute.flags = 0;
1177 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1178 route->kroute.u.msi.address_hi = msg.address >> 32;
1179 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1181 kvm_add_routing_entry(s, &route->kroute);
1182 kvm_irqchip_commit_routes(s);
1184 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1185 entry);
1188 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1190 return kvm_set_irq(s, route->kroute.gsi, 1);
1193 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1195 struct kvm_irq_routing_entry kroute = {};
1196 int virq;
1198 if (kvm_gsi_direct_mapping()) {
1199 return msg.data & 0xffff;
1202 if (!kvm_gsi_routing_enabled()) {
1203 return -ENOSYS;
1206 virq = kvm_irqchip_get_virq(s);
1207 if (virq < 0) {
1208 return virq;
1211 kroute.gsi = virq;
1212 kroute.type = KVM_IRQ_ROUTING_MSI;
1213 kroute.flags = 0;
1214 kroute.u.msi.address_lo = (uint32_t)msg.address;
1215 kroute.u.msi.address_hi = msg.address >> 32;
1216 kroute.u.msi.data = le32_to_cpu(msg.data);
1218 kvm_add_routing_entry(s, &kroute);
1219 kvm_irqchip_commit_routes(s);
1221 return virq;
1224 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1226 struct kvm_irq_routing_entry kroute = {};
1228 if (kvm_gsi_direct_mapping()) {
1229 return 0;
1232 if (!kvm_irqchip_in_kernel()) {
1233 return -ENOSYS;
1236 kroute.gsi = virq;
1237 kroute.type = KVM_IRQ_ROUTING_MSI;
1238 kroute.flags = 0;
1239 kroute.u.msi.address_lo = (uint32_t)msg.address;
1240 kroute.u.msi.address_hi = msg.address >> 32;
1241 kroute.u.msi.data = le32_to_cpu(msg.data);
1243 return kvm_update_routing_entry(s, &kroute);
1246 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1247 bool assign)
1249 struct kvm_irqfd irqfd = {
1250 .fd = fd,
1251 .gsi = virq,
1252 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1255 if (rfd != -1) {
1256 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1257 irqfd.resamplefd = rfd;
1260 if (!kvm_irqfds_enabled()) {
1261 return -ENOSYS;
1264 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1267 #else /* !KVM_CAP_IRQ_ROUTING */
1269 void kvm_init_irq_routing(KVMState *s)
1273 void kvm_irqchip_release_virq(KVMState *s, int virq)
1277 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1279 abort();
1282 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1284 return -ENOSYS;
1287 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1289 abort();
1292 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1294 return -ENOSYS;
1296 #endif /* !KVM_CAP_IRQ_ROUTING */
1298 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1299 EventNotifier *rn, int virq)
1301 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1302 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1305 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1307 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1308 false);
1311 static int kvm_irqchip_create(KVMState *s)
1313 int ret;
1315 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1316 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1317 return 0;
1320 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1321 if (ret < 0) {
1322 fprintf(stderr, "Create kernel irqchip failed\n");
1323 return ret;
1326 kvm_kernel_irqchip = true;
1327 /* If we have an in-kernel IRQ chip then we must have asynchronous
1328 * interrupt delivery (though the reverse is not necessarily true)
1330 kvm_async_interrupts_allowed = true;
1331 kvm_halt_in_kernel_allowed = true;
1333 kvm_init_irq_routing(s);
1335 return 0;
1338 /* Find number of supported CPUs using the recommended
1339 * procedure from the kernel API documentation to cope with
1340 * older kernels that may be missing capabilities.
1342 static int kvm_recommended_vcpus(KVMState *s)
1344 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1345 return (ret) ? ret : 4;
1348 static int kvm_max_vcpus(KVMState *s)
1350 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1351 return (ret) ? ret : kvm_recommended_vcpus(s);
1354 int kvm_init(void)
1356 static const char upgrade_note[] =
1357 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1358 "(see http://sourceforge.net/projects/kvm).\n";
1359 struct {
1360 const char *name;
1361 int num;
1362 } num_cpus[] = {
1363 { "SMP", smp_cpus },
1364 { "hotpluggable", max_cpus },
1365 { NULL, }
1366 }, *nc = num_cpus;
1367 int soft_vcpus_limit, hard_vcpus_limit;
1368 KVMState *s;
1369 const KVMCapabilityInfo *missing_cap;
1370 int ret;
1371 int i;
1373 s = g_malloc0(sizeof(KVMState));
1376 * On systems where the kernel can support different base page
1377 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1378 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1379 * page size for the system though.
1381 assert(TARGET_PAGE_SIZE <= getpagesize());
1383 #ifdef KVM_CAP_SET_GUEST_DEBUG
1384 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1385 #endif
1386 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1387 s->slots[i].slot = i;
1389 s->vmfd = -1;
1390 s->fd = qemu_open("/dev/kvm", O_RDWR);
1391 if (s->fd == -1) {
1392 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1393 ret = -errno;
1394 goto err;
1397 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1398 if (ret < KVM_API_VERSION) {
1399 if (ret > 0) {
1400 ret = -EINVAL;
1402 fprintf(stderr, "kvm version too old\n");
1403 goto err;
1406 if (ret > KVM_API_VERSION) {
1407 ret = -EINVAL;
1408 fprintf(stderr, "kvm version not supported\n");
1409 goto err;
1412 /* check the vcpu limits */
1413 soft_vcpus_limit = kvm_recommended_vcpus(s);
1414 hard_vcpus_limit = kvm_max_vcpus(s);
1416 while (nc->name) {
1417 if (nc->num > soft_vcpus_limit) {
1418 fprintf(stderr,
1419 "Warning: Number of %s cpus requested (%d) exceeds "
1420 "the recommended cpus supported by KVM (%d)\n",
1421 nc->name, nc->num, soft_vcpus_limit);
1423 if (nc->num > hard_vcpus_limit) {
1424 ret = -EINVAL;
1425 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1426 "the maximum cpus supported by KVM (%d)\n",
1427 nc->name, nc->num, hard_vcpus_limit);
1428 goto err;
1431 nc++;
1434 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1435 if (s->vmfd < 0) {
1436 #ifdef TARGET_S390X
1437 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1438 "your host kernel command line\n");
1439 #endif
1440 ret = s->vmfd;
1441 goto err;
1444 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1445 if (!missing_cap) {
1446 missing_cap =
1447 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1449 if (missing_cap) {
1450 ret = -EINVAL;
1451 fprintf(stderr, "kvm does not support %s\n%s",
1452 missing_cap->name, upgrade_note);
1453 goto err;
1456 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1458 s->broken_set_mem_region = 1;
1459 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1460 if (ret > 0) {
1461 s->broken_set_mem_region = 0;
1464 #ifdef KVM_CAP_VCPU_EVENTS
1465 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1466 #endif
1468 s->robust_singlestep =
1469 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1471 #ifdef KVM_CAP_DEBUGREGS
1472 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1473 #endif
1475 #ifdef KVM_CAP_XSAVE
1476 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1477 #endif
1479 #ifdef KVM_CAP_XCRS
1480 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1481 #endif
1483 #ifdef KVM_CAP_PIT_STATE2
1484 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1485 #endif
1487 #ifdef KVM_CAP_IRQ_ROUTING
1488 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1489 #endif
1491 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1493 s->irq_set_ioctl = KVM_IRQ_LINE;
1494 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1495 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1498 #ifdef KVM_CAP_READONLY_MEM
1499 kvm_readonly_mem_allowed =
1500 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1501 #endif
1503 ret = kvm_arch_init(s);
1504 if (ret < 0) {
1505 goto err;
1508 ret = kvm_irqchip_create(s);
1509 if (ret < 0) {
1510 goto err;
1513 kvm_state = s;
1514 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1515 memory_listener_register(&kvm_io_listener, &address_space_io);
1517 s->many_ioeventfds = kvm_check_many_ioeventfds();
1519 cpu_interrupt_handler = kvm_handle_interrupt;
1521 return 0;
1523 err:
1524 if (s->vmfd >= 0) {
1525 close(s->vmfd);
1527 if (s->fd != -1) {
1528 close(s->fd);
1530 g_free(s);
1532 return ret;
1535 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1536 uint32_t count)
1538 int i;
1539 uint8_t *ptr = data;
1541 for (i = 0; i < count; i++) {
1542 address_space_rw(&address_space_io, port, ptr, size,
1543 direction == KVM_EXIT_IO_OUT);
1544 ptr += size;
1548 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1550 fprintf(stderr, "KVM internal error.");
1551 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1552 int i;
1554 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1555 for (i = 0; i < run->internal.ndata; ++i) {
1556 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1557 i, (uint64_t)run->internal.data[i]);
1559 } else {
1560 fprintf(stderr, "\n");
1562 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1563 fprintf(stderr, "emulation failure\n");
1564 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1565 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1566 return EXCP_INTERRUPT;
1569 /* FIXME: Should trigger a qmp message to let management know
1570 * something went wrong.
1572 return -1;
1575 void kvm_flush_coalesced_mmio_buffer(void)
1577 KVMState *s = kvm_state;
1579 if (s->coalesced_flush_in_progress) {
1580 return;
1583 s->coalesced_flush_in_progress = true;
1585 if (s->coalesced_mmio_ring) {
1586 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1587 while (ring->first != ring->last) {
1588 struct kvm_coalesced_mmio *ent;
1590 ent = &ring->coalesced_mmio[ring->first];
1592 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1593 smp_wmb();
1594 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1598 s->coalesced_flush_in_progress = false;
1601 static void do_kvm_cpu_synchronize_state(void *arg)
1603 CPUState *cpu = arg;
1605 if (!cpu->kvm_vcpu_dirty) {
1606 kvm_arch_get_registers(cpu);
1607 cpu->kvm_vcpu_dirty = true;
1611 void kvm_cpu_synchronize_state(CPUState *cpu)
1613 if (!cpu->kvm_vcpu_dirty) {
1614 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1618 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1620 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1621 cpu->kvm_vcpu_dirty = false;
1624 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1626 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1627 cpu->kvm_vcpu_dirty = false;
1630 int kvm_cpu_exec(CPUState *cpu)
1632 struct kvm_run *run = cpu->kvm_run;
1633 int ret, run_ret;
1635 DPRINTF("kvm_cpu_exec()\n");
1637 if (kvm_arch_process_async_events(cpu)) {
1638 cpu->exit_request = 0;
1639 return EXCP_HLT;
1642 do {
1643 if (cpu->kvm_vcpu_dirty) {
1644 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1645 cpu->kvm_vcpu_dirty = false;
1648 kvm_arch_pre_run(cpu, run);
1649 if (cpu->exit_request) {
1650 DPRINTF("interrupt exit requested\n");
1652 * KVM requires us to reenter the kernel after IO exits to complete
1653 * instruction emulation. This self-signal will ensure that we
1654 * leave ASAP again.
1656 qemu_cpu_kick_self();
1658 qemu_mutex_unlock_iothread();
1660 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1662 qemu_mutex_lock_iothread();
1663 kvm_arch_post_run(cpu, run);
1665 if (run_ret < 0) {
1666 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1667 DPRINTF("io window exit\n");
1668 ret = EXCP_INTERRUPT;
1669 break;
1671 fprintf(stderr, "error: kvm run failed %s\n",
1672 strerror(-run_ret));
1673 abort();
1676 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1677 switch (run->exit_reason) {
1678 case KVM_EXIT_IO:
1679 DPRINTF("handle_io\n");
1680 kvm_handle_io(run->io.port,
1681 (uint8_t *)run + run->io.data_offset,
1682 run->io.direction,
1683 run->io.size,
1684 run->io.count);
1685 ret = 0;
1686 break;
1687 case KVM_EXIT_MMIO:
1688 DPRINTF("handle_mmio\n");
1689 cpu_physical_memory_rw(run->mmio.phys_addr,
1690 run->mmio.data,
1691 run->mmio.len,
1692 run->mmio.is_write);
1693 ret = 0;
1694 break;
1695 case KVM_EXIT_IRQ_WINDOW_OPEN:
1696 DPRINTF("irq_window_open\n");
1697 ret = EXCP_INTERRUPT;
1698 break;
1699 case KVM_EXIT_SHUTDOWN:
1700 DPRINTF("shutdown\n");
1701 qemu_system_reset_request();
1702 ret = EXCP_INTERRUPT;
1703 break;
1704 case KVM_EXIT_UNKNOWN:
1705 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1706 (uint64_t)run->hw.hardware_exit_reason);
1707 ret = -1;
1708 break;
1709 case KVM_EXIT_INTERNAL_ERROR:
1710 ret = kvm_handle_internal_error(cpu, run);
1711 break;
1712 default:
1713 DPRINTF("kvm_arch_handle_exit\n");
1714 ret = kvm_arch_handle_exit(cpu, run);
1715 break;
1717 } while (ret == 0);
1719 if (ret < 0) {
1720 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1721 vm_stop(RUN_STATE_INTERNAL_ERROR);
1724 cpu->exit_request = 0;
1725 return ret;
1728 int kvm_ioctl(KVMState *s, int type, ...)
1730 int ret;
1731 void *arg;
1732 va_list ap;
1734 va_start(ap, type);
1735 arg = va_arg(ap, void *);
1736 va_end(ap);
1738 trace_kvm_ioctl(type, arg);
1739 ret = ioctl(s->fd, type, arg);
1740 if (ret == -1) {
1741 ret = -errno;
1743 return ret;
1746 int kvm_vm_ioctl(KVMState *s, int type, ...)
1748 int ret;
1749 void *arg;
1750 va_list ap;
1752 va_start(ap, type);
1753 arg = va_arg(ap, void *);
1754 va_end(ap);
1756 trace_kvm_vm_ioctl(type, arg);
1757 ret = ioctl(s->vmfd, type, arg);
1758 if (ret == -1) {
1759 ret = -errno;
1761 return ret;
1764 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1766 int ret;
1767 void *arg;
1768 va_list ap;
1770 va_start(ap, type);
1771 arg = va_arg(ap, void *);
1772 va_end(ap);
1774 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1775 ret = ioctl(cpu->kvm_fd, type, arg);
1776 if (ret == -1) {
1777 ret = -errno;
1779 return ret;
1782 int kvm_has_sync_mmu(void)
1784 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1787 int kvm_has_vcpu_events(void)
1789 return kvm_state->vcpu_events;
1792 int kvm_has_robust_singlestep(void)
1794 return kvm_state->robust_singlestep;
1797 int kvm_has_debugregs(void)
1799 return kvm_state->debugregs;
1802 int kvm_has_xsave(void)
1804 return kvm_state->xsave;
1807 int kvm_has_xcrs(void)
1809 return kvm_state->xcrs;
1812 int kvm_has_pit_state2(void)
1814 return kvm_state->pit_state2;
1817 int kvm_has_many_ioeventfds(void)
1819 if (!kvm_enabled()) {
1820 return 0;
1822 return kvm_state->many_ioeventfds;
1825 int kvm_has_gsi_routing(void)
1827 #ifdef KVM_CAP_IRQ_ROUTING
1828 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1829 #else
1830 return false;
1831 #endif
1834 int kvm_has_intx_set_mask(void)
1836 return kvm_state->intx_set_mask;
1839 void kvm_setup_guest_memory(void *start, size_t size)
1841 #ifdef CONFIG_VALGRIND_H
1842 VALGRIND_MAKE_MEM_DEFINED(start, size);
1843 #endif
1844 if (!kvm_has_sync_mmu()) {
1845 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1847 if (ret) {
1848 perror("qemu_madvise");
1849 fprintf(stderr,
1850 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1851 exit(1);
1856 #ifdef KVM_CAP_SET_GUEST_DEBUG
1857 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1858 target_ulong pc)
1860 struct kvm_sw_breakpoint *bp;
1862 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1863 if (bp->pc == pc) {
1864 return bp;
1867 return NULL;
1870 int kvm_sw_breakpoints_active(CPUState *cpu)
1872 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1875 struct kvm_set_guest_debug_data {
1876 struct kvm_guest_debug dbg;
1877 CPUState *cpu;
1878 int err;
1881 static void kvm_invoke_set_guest_debug(void *data)
1883 struct kvm_set_guest_debug_data *dbg_data = data;
1885 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1886 &dbg_data->dbg);
1889 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
1891 struct kvm_set_guest_debug_data data;
1893 data.dbg.control = reinject_trap;
1895 if (cpu->singlestep_enabled) {
1896 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1898 kvm_arch_update_guest_debug(cpu, &data.dbg);
1899 data.cpu = cpu;
1901 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1902 return data.err;
1905 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
1906 target_ulong len, int type)
1908 struct kvm_sw_breakpoint *bp;
1909 int err;
1911 if (type == GDB_BREAKPOINT_SW) {
1912 bp = kvm_find_sw_breakpoint(cpu, addr);
1913 if (bp) {
1914 bp->use_count++;
1915 return 0;
1918 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1919 if (!bp) {
1920 return -ENOMEM;
1923 bp->pc = addr;
1924 bp->use_count = 1;
1925 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
1926 if (err) {
1927 g_free(bp);
1928 return err;
1931 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1932 } else {
1933 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1934 if (err) {
1935 return err;
1939 CPU_FOREACH(cpu) {
1940 err = kvm_update_guest_debug(cpu, 0);
1941 if (err) {
1942 return err;
1945 return 0;
1948 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
1949 target_ulong len, int type)
1951 struct kvm_sw_breakpoint *bp;
1952 int err;
1954 if (type == GDB_BREAKPOINT_SW) {
1955 bp = kvm_find_sw_breakpoint(cpu, addr);
1956 if (!bp) {
1957 return -ENOENT;
1960 if (bp->use_count > 1) {
1961 bp->use_count--;
1962 return 0;
1965 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
1966 if (err) {
1967 return err;
1970 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1971 g_free(bp);
1972 } else {
1973 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1974 if (err) {
1975 return err;
1979 CPU_FOREACH(cpu) {
1980 err = kvm_update_guest_debug(cpu, 0);
1981 if (err) {
1982 return err;
1985 return 0;
1988 void kvm_remove_all_breakpoints(CPUState *cpu)
1990 struct kvm_sw_breakpoint *bp, *next;
1991 KVMState *s = cpu->kvm_state;
1993 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1994 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
1995 /* Try harder to find a CPU that currently sees the breakpoint. */
1996 CPU_FOREACH(cpu) {
1997 if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
1998 break;
2002 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2003 g_free(bp);
2005 kvm_arch_remove_all_hw_breakpoints();
2007 CPU_FOREACH(cpu) {
2008 kvm_update_guest_debug(cpu, 0);
2012 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2014 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2016 return -EINVAL;
2019 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2020 target_ulong len, int type)
2022 return -EINVAL;
2025 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2026 target_ulong len, int type)
2028 return -EINVAL;
2031 void kvm_remove_all_breakpoints(CPUState *cpu)
2034 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2036 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2038 struct kvm_signal_mask *sigmask;
2039 int r;
2041 if (!sigset) {
2042 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2045 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2047 sigmask->len = 8;
2048 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2049 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2050 g_free(sigmask);
2052 return r;
2054 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2056 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2059 int kvm_on_sigbus(int code, void *addr)
2061 return kvm_arch_on_sigbus(code, addr);