qemu-img: Deprecate obsolete -6 and -e options
[qemu.git] / target-microblaze / op_helper.c
blob3d2b313fb35a83a898d9ee0ed0c5e36788b13677
1 /*
2 * Microblaze helper routines.
4 * Copyright (c) 2009 Edgar E. Iglesias <edgar.iglesias@gmail.com>.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include <assert.h>
21 #include "exec.h"
22 #include "helper.h"
23 #include "host-utils.h"
25 #define D(x)
27 #if !defined(CONFIG_USER_ONLY)
28 #define MMUSUFFIX _mmu
29 #define SHIFT 0
30 #include "softmmu_template.h"
31 #define SHIFT 1
32 #include "softmmu_template.h"
33 #define SHIFT 2
34 #include "softmmu_template.h"
35 #define SHIFT 3
36 #include "softmmu_template.h"
38 /* Try to fill the TLB and return an exception if error. If retaddr is
39 NULL, it means that the function was called in C code (i.e. not
40 from generated code or from helper.c) */
41 /* XXX: fix it to restore all registers */
42 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
44 TranslationBlock *tb;
45 CPUState *saved_env;
46 unsigned long pc;
47 int ret;
49 /* XXX: hack to restore env in all cases, even if not called from
50 generated code */
51 saved_env = env;
52 env = cpu_single_env;
54 ret = cpu_mb_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
55 if (unlikely(ret)) {
56 if (retaddr) {
57 /* now we have a real cpu fault */
58 pc = (unsigned long)retaddr;
59 tb = tb_find_pc(pc);
60 if (tb) {
61 /* the PC is inside the translated code. It means that we have
62 a virtual CPU fault */
63 cpu_restore_state(tb, env, pc, NULL);
66 cpu_loop_exit();
68 env = saved_env;
70 #endif
72 void helper_raise_exception(uint32_t index)
74 env->exception_index = index;
75 cpu_loop_exit();
78 void helper_debug(void)
80 int i;
82 qemu_log("PC=%8.8x\n", env->sregs[SR_PC]);
83 qemu_log("rmsr=%x resr=%x rear=%x debug[%x] imm=%x iflags=%x\n",
84 env->sregs[SR_MSR], env->sregs[SR_ESR], env->sregs[SR_EAR],
85 env->debug, env->imm, env->iflags);
86 qemu_log("btaken=%d btarget=%x mode=%s(saved=%s) eip=%d ie=%d\n",
87 env->btaken, env->btarget,
88 (env->sregs[SR_MSR] & MSR_UM) ? "user" : "kernel",
89 (env->sregs[SR_MSR] & MSR_UMS) ? "user" : "kernel",
90 (env->sregs[SR_MSR] & MSR_EIP),
91 (env->sregs[SR_MSR] & MSR_IE));
92 for (i = 0; i < 32; i++) {
93 qemu_log("r%2.2d=%8.8x ", i, env->regs[i]);
94 if ((i + 1) % 4 == 0)
95 qemu_log("\n");
97 qemu_log("\n\n");
100 static inline uint32_t compute_carry(uint32_t a, uint32_t b, uint32_t cin)
102 uint32_t cout = 0;
104 if ((b == ~0) && cin)
105 cout = 1;
106 else if ((~0 - a) < (b + cin))
107 cout = 1;
108 return cout;
111 uint32_t helper_cmp(uint32_t a, uint32_t b)
113 uint32_t t;
115 t = b + ~a + 1;
116 if ((b & 0x80000000) ^ (a & 0x80000000))
117 t = (t & 0x7fffffff) | (b & 0x80000000);
118 return t;
121 uint32_t helper_cmpu(uint32_t a, uint32_t b)
123 uint32_t t;
125 t = b + ~a + 1;
126 if ((b & 0x80000000) ^ (a & 0x80000000))
127 t = (t & 0x7fffffff) | (a & 0x80000000);
128 return t;
131 uint32_t helper_addkc(uint32_t a, uint32_t b, uint32_t k, uint32_t c)
133 uint32_t d, cf = 0, ncf;
135 if (c)
136 cf = env->sregs[SR_MSR] >> 31;
137 assert(cf == 0 || cf == 1);
138 d = a + b + cf;
140 if (!k) {
141 ncf = compute_carry(a, b, cf);
142 assert(ncf == 0 || ncf == 1);
143 if (ncf)
144 env->sregs[SR_MSR] |= MSR_C | MSR_CC;
145 else
146 env->sregs[SR_MSR] &= ~(MSR_C | MSR_CC);
148 D(qemu_log("%x = %x + %x cf=%d ncf=%d k=%d c=%d\n",
149 d, a, b, cf, ncf, k, c));
150 return d;
153 uint32_t helper_subkc(uint32_t a, uint32_t b, uint32_t k, uint32_t c)
155 uint32_t d, cf = 1, ncf;
157 if (c)
158 cf = env->sregs[SR_MSR] >> 31;
159 assert(cf == 0 || cf == 1);
160 d = b + ~a + cf;
162 if (!k) {
163 ncf = compute_carry(b, ~a, cf);
164 assert(ncf == 0 || ncf == 1);
165 if (ncf)
166 env->sregs[SR_MSR] |= MSR_C | MSR_CC;
167 else
168 env->sregs[SR_MSR] &= ~(MSR_C | MSR_CC);
170 D(qemu_log("%x = %x + %x cf=%d ncf=%d k=%d c=%d\n",
171 d, a, b, cf, ncf, k, c));
172 return d;
175 static inline int div_prepare(uint32_t a, uint32_t b)
177 if (b == 0) {
178 env->sregs[SR_MSR] |= MSR_DZ;
180 if ((env->sregs[SR_MSR] & MSR_EE)
181 && !(env->pvr.regs[2] & PVR2_DIV_ZERO_EXC_MASK)) {
182 env->sregs[SR_ESR] = ESR_EC_DIVZERO;
183 helper_raise_exception(EXCP_HW_EXCP);
185 return 0;
187 env->sregs[SR_MSR] &= ~MSR_DZ;
188 return 1;
191 uint32_t helper_divs(uint32_t a, uint32_t b)
193 if (!div_prepare(a, b))
194 return 0;
195 return (int32_t)a / (int32_t)b;
198 uint32_t helper_divu(uint32_t a, uint32_t b)
200 if (!div_prepare(a, b))
201 return 0;
202 return a / b;
205 /* raise FPU exception. */
206 static void raise_fpu_exception(void)
208 env->sregs[SR_ESR] = ESR_EC_FPU;
209 helper_raise_exception(EXCP_HW_EXCP);
212 static void update_fpu_flags(int flags)
214 int raise = 0;
216 if (flags & float_flag_invalid) {
217 env->sregs[SR_FSR] |= FSR_IO;
218 raise = 1;
220 if (flags & float_flag_divbyzero) {
221 env->sregs[SR_FSR] |= FSR_DZ;
222 raise = 1;
224 if (flags & float_flag_overflow) {
225 env->sregs[SR_FSR] |= FSR_OF;
226 raise = 1;
228 if (flags & float_flag_underflow) {
229 env->sregs[SR_FSR] |= FSR_UF;
230 raise = 1;
232 if (raise
233 && (env->pvr.regs[2] & PVR2_FPU_EXC_MASK)
234 && (env->sregs[SR_MSR] & MSR_EE)) {
235 raise_fpu_exception();
239 uint32_t helper_fadd(uint32_t a, uint32_t b)
241 CPU_FloatU fd, fa, fb;
242 int flags;
244 set_float_exception_flags(0, &env->fp_status);
245 fa.l = a;
246 fb.l = b;
247 fd.f = float32_add(fa.f, fb.f, &env->fp_status);
249 flags = get_float_exception_flags(&env->fp_status);
250 update_fpu_flags(flags);
251 return fd.l;
254 uint32_t helper_frsub(uint32_t a, uint32_t b)
256 CPU_FloatU fd, fa, fb;
257 int flags;
259 set_float_exception_flags(0, &env->fp_status);
260 fa.l = a;
261 fb.l = b;
262 fd.f = float32_sub(fb.f, fa.f, &env->fp_status);
263 flags = get_float_exception_flags(&env->fp_status);
264 update_fpu_flags(flags);
265 return fd.l;
268 uint32_t helper_fmul(uint32_t a, uint32_t b)
270 CPU_FloatU fd, fa, fb;
271 int flags;
273 set_float_exception_flags(0, &env->fp_status);
274 fa.l = a;
275 fb.l = b;
276 fd.f = float32_mul(fa.f, fb.f, &env->fp_status);
277 flags = get_float_exception_flags(&env->fp_status);
278 update_fpu_flags(flags);
280 return fd.l;
283 uint32_t helper_fdiv(uint32_t a, uint32_t b)
285 CPU_FloatU fd, fa, fb;
286 int flags;
288 set_float_exception_flags(0, &env->fp_status);
289 fa.l = a;
290 fb.l = b;
291 fd.f = float32_div(fb.f, fa.f, &env->fp_status);
292 flags = get_float_exception_flags(&env->fp_status);
293 update_fpu_flags(flags);
295 return fd.l;
298 uint32_t helper_fcmp_un(uint32_t a, uint32_t b)
300 CPU_FloatU fa, fb;
301 uint32_t r = 0;
303 fa.l = a;
304 fb.l = b;
306 if (float32_is_signaling_nan(fa.f) || float32_is_signaling_nan(fb.f)) {
307 update_fpu_flags(float_flag_invalid);
308 r = 1;
311 if (float32_is_nan(fa.f) || float32_is_nan(fb.f)) {
312 r = 1;
315 return r;
318 uint32_t helper_fcmp_lt(uint32_t a, uint32_t b)
320 CPU_FloatU fa, fb;
321 int r;
322 int flags;
324 set_float_exception_flags(0, &env->fp_status);
325 fa.l = a;
326 fb.l = b;
327 r = float32_lt(fb.f, fa.f, &env->fp_status);
328 flags = get_float_exception_flags(&env->fp_status);
329 update_fpu_flags(flags & float_flag_invalid);
331 return r;
334 uint32_t helper_fcmp_eq(uint32_t a, uint32_t b)
336 CPU_FloatU fa, fb;
337 int flags;
338 int r;
340 set_float_exception_flags(0, &env->fp_status);
341 fa.l = a;
342 fb.l = b;
343 r = float32_eq(fa.f, fb.f, &env->fp_status);
344 flags = get_float_exception_flags(&env->fp_status);
345 update_fpu_flags(flags & float_flag_invalid);
347 return r;
350 uint32_t helper_fcmp_le(uint32_t a, uint32_t b)
352 CPU_FloatU fa, fb;
353 int flags;
354 int r;
356 fa.l = a;
357 fb.l = b;
358 set_float_exception_flags(0, &env->fp_status);
359 r = float32_le(fa.f, fb.f, &env->fp_status);
360 flags = get_float_exception_flags(&env->fp_status);
361 update_fpu_flags(flags & float_flag_invalid);
364 return r;
367 uint32_t helper_fcmp_gt(uint32_t a, uint32_t b)
369 CPU_FloatU fa, fb;
370 int flags, r;
372 fa.l = a;
373 fb.l = b;
374 set_float_exception_flags(0, &env->fp_status);
375 r = float32_lt(fa.f, fb.f, &env->fp_status);
376 flags = get_float_exception_flags(&env->fp_status);
377 update_fpu_flags(flags & float_flag_invalid);
378 return r;
381 uint32_t helper_fcmp_ne(uint32_t a, uint32_t b)
383 CPU_FloatU fa, fb;
384 int flags, r;
386 fa.l = a;
387 fb.l = b;
388 set_float_exception_flags(0, &env->fp_status);
389 r = !float32_eq(fa.f, fb.f, &env->fp_status);
390 flags = get_float_exception_flags(&env->fp_status);
391 update_fpu_flags(flags & float_flag_invalid);
393 return r;
396 uint32_t helper_fcmp_ge(uint32_t a, uint32_t b)
398 CPU_FloatU fa, fb;
399 int flags, r;
401 fa.l = a;
402 fb.l = b;
403 set_float_exception_flags(0, &env->fp_status);
404 r = !float32_lt(fa.f, fb.f, &env->fp_status);
405 flags = get_float_exception_flags(&env->fp_status);
406 update_fpu_flags(flags & float_flag_invalid);
408 return r;
411 uint32_t helper_flt(uint32_t a)
413 CPU_FloatU fd, fa;
415 fa.l = a;
416 fd.f = int32_to_float32(fa.l, &env->fp_status);
417 return fd.l;
420 uint32_t helper_fint(uint32_t a)
422 CPU_FloatU fa;
423 uint32_t r;
424 int flags;
426 set_float_exception_flags(0, &env->fp_status);
427 fa.l = a;
428 r = float32_to_int32(fa.f, &env->fp_status);
429 flags = get_float_exception_flags(&env->fp_status);
430 update_fpu_flags(flags);
432 return r;
435 uint32_t helper_fsqrt(uint32_t a)
437 CPU_FloatU fd, fa;
438 int flags;
440 set_float_exception_flags(0, &env->fp_status);
441 fa.l = a;
442 fd.l = float32_sqrt(fa.f, &env->fp_status);
443 flags = get_float_exception_flags(&env->fp_status);
444 update_fpu_flags(flags);
446 return fd.l;
449 uint32_t helper_pcmpbf(uint32_t a, uint32_t b)
451 unsigned int i;
452 uint32_t mask = 0xff000000;
454 for (i = 0; i < 4; i++) {
455 if ((a & mask) == (b & mask))
456 return i + 1;
457 mask >>= 8;
459 return 0;
462 void helper_memalign(uint32_t addr, uint32_t dr, uint32_t wr, uint32_t mask)
464 if (addr & mask) {
465 qemu_log_mask(CPU_LOG_INT,
466 "unaligned access addr=%x mask=%x, wr=%d dr=r%d\n",
467 addr, mask, wr, dr);
468 env->sregs[SR_EAR] = addr;
469 env->sregs[SR_ESR] = ESR_EC_UNALIGNED_DATA | (wr << 10) \
470 | (dr & 31) << 5;
471 if (mask == 3) {
472 env->sregs[SR_ESR] |= 1 << 11;
474 if (!(env->sregs[SR_MSR] & MSR_EE)) {
475 return;
477 helper_raise_exception(EXCP_HW_EXCP);
481 #if !defined(CONFIG_USER_ONLY)
482 /* Writes/reads to the MMU's special regs end up here. */
483 uint32_t helper_mmu_read(uint32_t rn)
485 return mmu_read(env, rn);
488 void helper_mmu_write(uint32_t rn, uint32_t v)
490 mmu_write(env, rn, v);
493 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
494 int is_asi, int size)
496 CPUState *saved_env;
498 if (!cpu_single_env) {
499 /* XXX: ??? */
500 return;
503 /* XXX: hack to restore env in all cases, even if not called from
504 generated code */
505 saved_env = env;
506 env = cpu_single_env;
507 qemu_log_mask(CPU_LOG_INT, "Unassigned " TARGET_FMT_plx " wr=%d exe=%d\n",
508 addr, is_write, is_exec);
509 if (!(env->sregs[SR_MSR] & MSR_EE)) {
510 env = saved_env;
511 return;
514 env->sregs[SR_EAR] = addr;
515 if (is_exec) {
516 if ((env->pvr.regs[2] & PVR2_IOPB_BUS_EXC_MASK)) {
517 env->sregs[SR_ESR] = ESR_EC_INSN_BUS;
518 helper_raise_exception(EXCP_HW_EXCP);
520 } else {
521 if ((env->pvr.regs[2] & PVR2_DOPB_BUS_EXC_MASK)) {
522 env->sregs[SR_ESR] = ESR_EC_DATA_BUS;
523 helper_raise_exception(EXCP_HW_EXCP);
526 env = saved_env;
528 #endif