4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #define dprintf(fmt, ...) \
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr
;
45 ram_addr_t memory_size
;
46 ram_addr_t phys_offset
;
51 typedef struct kvm_dirty_log KVMDirtyLog
;
61 int broken_set_mem_region
;
63 #ifdef KVM_CAP_SET_GUEST_DEBUG
64 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
66 int irqchip_in_kernel
;
70 static KVMState
*kvm_state
;
72 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
76 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
77 /* KVM private memory slots */
80 if (s
->slots
[i
].memory_size
== 0)
84 fprintf(stderr
, "%s: no free slot available\n", __func__
);
88 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
89 target_phys_addr_t start_addr
,
90 target_phys_addr_t end_addr
)
94 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
95 KVMSlot
*mem
= &s
->slots
[i
];
97 if (start_addr
== mem
->start_addr
&&
98 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
107 * Find overlapping slot with lowest start address
109 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
110 target_phys_addr_t start_addr
,
111 target_phys_addr_t end_addr
)
113 KVMSlot
*found
= NULL
;
116 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
117 KVMSlot
*mem
= &s
->slots
[i
];
119 if (mem
->memory_size
== 0 ||
120 (found
&& found
->start_addr
< mem
->start_addr
)) {
124 if (end_addr
> mem
->start_addr
&&
125 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
133 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
135 struct kvm_userspace_memory_region mem
;
137 mem
.slot
= slot
->slot
;
138 mem
.guest_phys_addr
= slot
->start_addr
;
139 mem
.memory_size
= slot
->memory_size
;
140 mem
.userspace_addr
= (unsigned long)qemu_get_ram_ptr(slot
->phys_offset
);
141 mem
.flags
= slot
->flags
;
142 if (s
->migration_log
) {
143 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
145 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
148 static void kvm_reset_vcpu(void *opaque
)
150 CPUState
*env
= opaque
;
152 if (kvm_arch_put_registers(env
)) {
153 fprintf(stderr
, "Fatal: kvm vcpu reset failed\n");
158 int kvm_irqchip_in_kernel(void)
160 return kvm_state
->irqchip_in_kernel
;
163 int kvm_pit_in_kernel(void)
165 return kvm_state
->pit_in_kernel
;
169 int kvm_init_vcpu(CPUState
*env
)
171 KVMState
*s
= kvm_state
;
175 dprintf("kvm_init_vcpu\n");
177 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
179 dprintf("kvm_create_vcpu failed\n");
186 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
188 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
192 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
194 if (env
->kvm_run
== MAP_FAILED
) {
196 dprintf("mmap'ing vcpu state failed\n");
200 ret
= kvm_arch_init_vcpu(env
);
202 qemu_register_reset(kvm_reset_vcpu
, env
);
203 ret
= kvm_arch_put_registers(env
);
209 int kvm_put_mp_state(CPUState
*env
)
211 struct kvm_mp_state mp_state
= { .mp_state
= env
->mp_state
};
213 return kvm_vcpu_ioctl(env
, KVM_SET_MP_STATE
, &mp_state
);
216 int kvm_get_mp_state(CPUState
*env
)
218 struct kvm_mp_state mp_state
;
221 ret
= kvm_vcpu_ioctl(env
, KVM_GET_MP_STATE
, &mp_state
);
225 env
->mp_state
= mp_state
.mp_state
;
230 * dirty pages logging control
232 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
233 ram_addr_t size
, int flags
, int mask
)
235 KVMState
*s
= kvm_state
;
236 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
240 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
241 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
242 (target_phys_addr_t
)(phys_addr
+ size
- 1));
246 old_flags
= mem
->flags
;
248 flags
= (mem
->flags
& ~mask
) | flags
;
251 /* If nothing changed effectively, no need to issue ioctl */
252 if (s
->migration_log
) {
253 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
255 if (flags
== old_flags
) {
259 return kvm_set_user_memory_region(s
, mem
);
262 int kvm_log_start(target_phys_addr_t phys_addr
, ram_addr_t size
)
264 return kvm_dirty_pages_log_change(phys_addr
, size
,
265 KVM_MEM_LOG_DIRTY_PAGES
,
266 KVM_MEM_LOG_DIRTY_PAGES
);
269 int kvm_log_stop(target_phys_addr_t phys_addr
, ram_addr_t size
)
271 return kvm_dirty_pages_log_change(phys_addr
, size
,
273 KVM_MEM_LOG_DIRTY_PAGES
);
276 int kvm_set_migration_log(int enable
)
278 KVMState
*s
= kvm_state
;
282 s
->migration_log
= enable
;
284 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
287 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
290 err
= kvm_set_user_memory_region(s
, mem
);
298 static int test_le_bit(unsigned long nr
, unsigned char *addr
)
300 return (addr
[nr
>> 3] >> (nr
& 7)) & 1;
304 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
305 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
306 * This means all bits are set to dirty.
308 * @start_add: start of logged region.
309 * @end_addr: end of logged region.
311 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
312 target_phys_addr_t end_addr
)
314 KVMState
*s
= kvm_state
;
315 unsigned long size
, allocated_size
= 0;
316 target_phys_addr_t phys_addr
;
323 d
.dirty_bitmap
= NULL
;
324 while (start_addr
< end_addr
) {
325 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
330 /* We didn't activate dirty logging? Don't care then. */
331 if(!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
)) {
335 size
= ((mem
->memory_size
>> TARGET_PAGE_BITS
) + 7) / 8;
336 if (!d
.dirty_bitmap
) {
337 d
.dirty_bitmap
= qemu_malloc(size
);
338 } else if (size
> allocated_size
) {
339 d
.dirty_bitmap
= qemu_realloc(d
.dirty_bitmap
, size
);
341 allocated_size
= size
;
342 memset(d
.dirty_bitmap
, 0, allocated_size
);
346 r
= kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
);
348 dprintf("ioctl failed %d\n", errno
);
353 for (phys_addr
= mem
->start_addr
, addr
= mem
->phys_offset
;
354 phys_addr
< mem
->start_addr
+ mem
->memory_size
;
355 phys_addr
+= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
356 unsigned char *bitmap
= (unsigned char *)d
.dirty_bitmap
;
357 unsigned nr
= (phys_addr
- mem
->start_addr
) >> TARGET_PAGE_BITS
;
359 if (test_le_bit(nr
, bitmap
)) {
360 cpu_physical_memory_set_dirty(addr
);
362 /* When our KVM implementation doesn't know about dirty logging
363 * we can just assume it's always dirty and be fine. */
364 cpu_physical_memory_set_dirty(addr
);
367 start_addr
= phys_addr
;
369 qemu_free(d
.dirty_bitmap
);
374 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
377 #ifdef KVM_CAP_COALESCED_MMIO
378 KVMState
*s
= kvm_state
;
380 if (s
->coalesced_mmio
) {
381 struct kvm_coalesced_mmio_zone zone
;
386 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
393 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
396 #ifdef KVM_CAP_COALESCED_MMIO
397 KVMState
*s
= kvm_state
;
399 if (s
->coalesced_mmio
) {
400 struct kvm_coalesced_mmio_zone zone
;
405 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
412 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
416 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
424 int kvm_init(int smp_cpus
)
426 static const char upgrade_note
[] =
427 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
428 "(see http://sourceforge.net/projects/kvm).\n";
434 fprintf(stderr
, "No SMP KVM support, use '-smp 1'\n");
438 s
= qemu_mallocz(sizeof(KVMState
));
440 #ifdef KVM_CAP_SET_GUEST_DEBUG
441 TAILQ_INIT(&s
->kvm_sw_breakpoints
);
443 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++)
444 s
->slots
[i
].slot
= i
;
447 s
->fd
= open("/dev/kvm", O_RDWR
);
449 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
454 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
455 if (ret
< KVM_API_VERSION
) {
458 fprintf(stderr
, "kvm version too old\n");
462 if (ret
> KVM_API_VERSION
) {
464 fprintf(stderr
, "kvm version not supported\n");
468 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
472 /* initially, KVM allocated its own memory and we had to jump through
473 * hooks to make phys_ram_base point to this. Modern versions of KVM
474 * just use a user allocated buffer so we can use regular pages
475 * unmodified. Make sure we have a sufficiently modern version of KVM.
477 if (!kvm_check_extension(s
, KVM_CAP_USER_MEMORY
)) {
479 fprintf(stderr
, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
484 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
485 * destroyed properly. Since we rely on this capability, refuse to work
486 * with any kernel without this capability. */
487 if (!kvm_check_extension(s
, KVM_CAP_DESTROY_MEMORY_REGION_WORKS
)) {
491 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
496 #ifdef KVM_CAP_COALESCED_MMIO
497 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
499 s
->coalesced_mmio
= 0;
502 s
->broken_set_mem_region
= 1;
503 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
504 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
506 s
->broken_set_mem_region
= 0;
510 ret
= kvm_arch_init(s
, smp_cpus
);
530 static int kvm_handle_io(CPUState
*env
, uint16_t port
, void *data
,
531 int direction
, int size
, uint32_t count
)
536 for (i
= 0; i
< count
; i
++) {
537 if (direction
== KVM_EXIT_IO_IN
) {
540 stb_p(ptr
, cpu_inb(env
, port
));
543 stw_p(ptr
, cpu_inw(env
, port
));
546 stl_p(ptr
, cpu_inl(env
, port
));
552 cpu_outb(env
, port
, ldub_p(ptr
));
555 cpu_outw(env
, port
, lduw_p(ptr
));
558 cpu_outl(env
, port
, ldl_p(ptr
));
569 static void kvm_run_coalesced_mmio(CPUState
*env
, struct kvm_run
*run
)
571 #ifdef KVM_CAP_COALESCED_MMIO
572 KVMState
*s
= kvm_state
;
573 if (s
->coalesced_mmio
) {
574 struct kvm_coalesced_mmio_ring
*ring
;
576 ring
= (void *)run
+ (s
->coalesced_mmio
* TARGET_PAGE_SIZE
);
577 while (ring
->first
!= ring
->last
) {
578 struct kvm_coalesced_mmio
*ent
;
580 ent
= &ring
->coalesced_mmio
[ring
->first
];
582 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
583 /* FIXME smp_wmb() */
584 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
590 int kvm_cpu_exec(CPUState
*env
)
592 struct kvm_run
*run
= env
->kvm_run
;
595 dprintf("kvm_cpu_exec()\n");
598 if (env
->exit_request
) {
599 dprintf("interrupt exit requested\n");
604 kvm_arch_pre_run(env
, run
);
605 ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
606 kvm_arch_post_run(env
, run
);
608 if (ret
== -EINTR
|| ret
== -EAGAIN
) {
609 dprintf("io window exit\n");
615 dprintf("kvm run failed %s\n", strerror(-ret
));
619 kvm_run_coalesced_mmio(env
, run
);
621 ret
= 0; /* exit loop */
622 switch (run
->exit_reason
) {
624 dprintf("handle_io\n");
625 ret
= kvm_handle_io(env
, run
->io
.port
,
626 (uint8_t *)run
+ run
->io
.data_offset
,
632 dprintf("handle_mmio\n");
633 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
639 case KVM_EXIT_IRQ_WINDOW_OPEN
:
640 dprintf("irq_window_open\n");
642 case KVM_EXIT_SHUTDOWN
:
643 dprintf("shutdown\n");
644 qemu_system_reset_request();
647 case KVM_EXIT_UNKNOWN
:
648 dprintf("kvm_exit_unknown\n");
650 case KVM_EXIT_FAIL_ENTRY
:
651 dprintf("kvm_exit_fail_entry\n");
653 case KVM_EXIT_EXCEPTION
:
654 dprintf("kvm_exit_exception\n");
657 dprintf("kvm_exit_debug\n");
658 #ifdef KVM_CAP_SET_GUEST_DEBUG
659 if (kvm_arch_debug(&run
->debug
.arch
)) {
660 gdb_set_stop_cpu(env
);
662 env
->exception_index
= EXCP_DEBUG
;
665 /* re-enter, this exception was guest-internal */
667 #endif /* KVM_CAP_SET_GUEST_DEBUG */
670 dprintf("kvm_arch_handle_exit\n");
671 ret
= kvm_arch_handle_exit(env
, run
);
676 if (env
->exit_request
) {
677 env
->exit_request
= 0;
678 env
->exception_index
= EXCP_INTERRUPT
;
684 void kvm_set_phys_mem(target_phys_addr_t start_addr
,
686 ram_addr_t phys_offset
)
688 KVMState
*s
= kvm_state
;
689 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
693 if (start_addr
& ~TARGET_PAGE_MASK
) {
694 if (flags
>= IO_MEM_UNASSIGNED
) {
695 if (!kvm_lookup_overlapping_slot(s
, start_addr
,
696 start_addr
+ size
)) {
699 fprintf(stderr
, "Unaligned split of a KVM memory slot\n");
701 fprintf(stderr
, "Only page-aligned memory slots supported\n");
706 /* KVM does not support read-only slots */
707 phys_offset
&= ~IO_MEM_ROM
;
710 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
715 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
716 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
717 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
718 /* The new slot fits into the existing one and comes with
719 * identical parameters - nothing to be done. */
725 /* unregister the overlapping slot */
726 mem
->memory_size
= 0;
727 err
= kvm_set_user_memory_region(s
, mem
);
729 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
730 __func__
, strerror(-err
));
734 /* Workaround for older KVM versions: we can't join slots, even not by
735 * unregistering the previous ones and then registering the larger
736 * slot. We have to maintain the existing fragmentation. Sigh.
738 * This workaround assumes that the new slot starts at the same
739 * address as the first existing one. If not or if some overlapping
740 * slot comes around later, we will fail (not seen in practice so far)
741 * - and actually require a recent KVM version. */
742 if (s
->broken_set_mem_region
&&
743 old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
744 flags
< IO_MEM_UNASSIGNED
) {
745 mem
= kvm_alloc_slot(s
);
746 mem
->memory_size
= old
.memory_size
;
747 mem
->start_addr
= old
.start_addr
;
748 mem
->phys_offset
= old
.phys_offset
;
751 err
= kvm_set_user_memory_region(s
, mem
);
753 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
758 start_addr
+= old
.memory_size
;
759 phys_offset
+= old
.memory_size
;
760 size
-= old
.memory_size
;
764 /* register prefix slot */
765 if (old
.start_addr
< start_addr
) {
766 mem
= kvm_alloc_slot(s
);
767 mem
->memory_size
= start_addr
- old
.start_addr
;
768 mem
->start_addr
= old
.start_addr
;
769 mem
->phys_offset
= old
.phys_offset
;
772 err
= kvm_set_user_memory_region(s
, mem
);
774 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
775 __func__
, strerror(-err
));
780 /* register suffix slot */
781 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
782 ram_addr_t size_delta
;
784 mem
= kvm_alloc_slot(s
);
785 mem
->start_addr
= start_addr
+ size
;
786 size_delta
= mem
->start_addr
- old
.start_addr
;
787 mem
->memory_size
= old
.memory_size
- size_delta
;
788 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
791 err
= kvm_set_user_memory_region(s
, mem
);
793 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
794 __func__
, strerror(-err
));
800 /* in case the KVM bug workaround already "consumed" the new slot */
804 /* KVM does not need to know about this memory */
805 if (flags
>= IO_MEM_UNASSIGNED
)
808 mem
= kvm_alloc_slot(s
);
809 mem
->memory_size
= size
;
810 mem
->start_addr
= start_addr
;
811 mem
->phys_offset
= phys_offset
;
814 err
= kvm_set_user_memory_region(s
, mem
);
816 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
822 int kvm_ioctl(KVMState
*s
, int type
, ...)
829 arg
= va_arg(ap
, void *);
832 ret
= ioctl(s
->fd
, type
, arg
);
839 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
846 arg
= va_arg(ap
, void *);
849 ret
= ioctl(s
->vmfd
, type
, arg
);
856 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
863 arg
= va_arg(ap
, void *);
866 ret
= ioctl(env
->kvm_fd
, type
, arg
);
873 int kvm_has_sync_mmu(void)
875 #ifdef KVM_CAP_SYNC_MMU
876 KVMState
*s
= kvm_state
;
878 return kvm_check_extension(s
, KVM_CAP_SYNC_MMU
);
884 void kvm_setup_guest_memory(void *start
, size_t size
)
886 if (!kvm_has_sync_mmu()) {
888 int ret
= madvise(start
, size
, MADV_DONTFORK
);
896 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
902 #ifdef KVM_CAP_SET_GUEST_DEBUG
903 static void on_vcpu(CPUState
*env
, void (*func
)(void *data
), void *data
)
905 if (env
== cpu_single_env
) {
912 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
915 struct kvm_sw_breakpoint
*bp
;
917 TAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
924 int kvm_sw_breakpoints_active(CPUState
*env
)
926 return !TAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
929 struct kvm_set_guest_debug_data
{
930 struct kvm_guest_debug dbg
;
935 static void kvm_invoke_set_guest_debug(void *data
)
937 struct kvm_set_guest_debug_data
*dbg_data
= data
;
938 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
941 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
943 struct kvm_set_guest_debug_data data
;
945 data
.dbg
.control
= 0;
946 if (env
->singlestep_enabled
)
947 data
.dbg
.control
= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
949 kvm_arch_update_guest_debug(env
, &data
.dbg
);
950 data
.dbg
.control
|= reinject_trap
;
953 on_vcpu(env
, kvm_invoke_set_guest_debug
, &data
);
957 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
958 target_ulong len
, int type
)
960 struct kvm_sw_breakpoint
*bp
;
964 if (type
== GDB_BREAKPOINT_SW
) {
965 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
971 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
977 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
983 TAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
986 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
991 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
992 err
= kvm_update_guest_debug(env
, 0);
999 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1000 target_ulong len
, int type
)
1002 struct kvm_sw_breakpoint
*bp
;
1006 if (type
== GDB_BREAKPOINT_SW
) {
1007 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1011 if (bp
->use_count
> 1) {
1016 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1020 TAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1023 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1028 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1029 err
= kvm_update_guest_debug(env
, 0);
1036 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1038 struct kvm_sw_breakpoint
*bp
, *next
;
1039 KVMState
*s
= current_env
->kvm_state
;
1042 TAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1043 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1044 /* Try harder to find a CPU that currently sees the breakpoint. */
1045 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1046 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
1051 kvm_arch_remove_all_hw_breakpoints();
1053 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1054 kvm_update_guest_debug(env
, 0);
1057 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1059 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1064 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1065 target_ulong len
, int type
)
1070 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1071 target_ulong len
, int type
)
1076 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1079 #endif /* !KVM_CAP_SET_GUEST_DEBUG */