pci: hotplug windup
[qemu.git] / hw / mips_malta.c
blobba276519ed36a26cbb87f7833cbc0c3747c34480
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "block.h"
32 #include "flash.h"
33 #include "mips.h"
34 #include "pci.h"
35 #include "qemu-char.h"
36 #include "sysemu.h"
37 #include "audio/audio.h"
38 #include "boards.h"
39 #include "qemu-log.h"
40 #include "mips-bios.h"
41 #include "ide.h"
42 #include "loader.h"
43 #include "elf.h"
45 //#define DEBUG_BOARD_INIT
47 #ifdef TARGET_MIPS64
48 #define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffULL)
49 #else
50 #define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffU)
51 #endif
53 #define ENVP_ADDR (int32_t)0x80002000
54 #define VIRT_TO_PHYS_ADDEND (-((int64_t)(int32_t)0x80000000))
56 #define ENVP_NB_ENTRIES 16
57 #define ENVP_ENTRY_SIZE 256
59 #define MAX_IDE_BUS 2
61 typedef struct {
62 uint32_t leds;
63 uint32_t brk;
64 uint32_t gpout;
65 uint32_t i2cin;
66 uint32_t i2coe;
67 uint32_t i2cout;
68 uint32_t i2csel;
69 CharDriverState *display;
70 char display_text[9];
71 SerialState *uart;
72 } MaltaFPGAState;
74 static PITState *pit;
76 static struct _loaderparams {
77 int ram_size;
78 const char *kernel_filename;
79 const char *kernel_cmdline;
80 const char *initrd_filename;
81 } loaderparams;
83 /* Malta FPGA */
84 static void malta_fpga_update_display(void *opaque)
86 char leds_text[9];
87 int i;
88 MaltaFPGAState *s = opaque;
90 for (i = 7 ; i >= 0 ; i--) {
91 if (s->leds & (1 << i))
92 leds_text[i] = '#';
93 else
94 leds_text[i] = ' ';
96 leds_text[8] = '\0';
98 qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
99 qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
103 * EEPROM 24C01 / 24C02 emulation.
105 * Emulation for serial EEPROMs:
106 * 24C01 - 1024 bit (128 x 8)
107 * 24C02 - 2048 bit (256 x 8)
109 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
112 //~ #define DEBUG
114 #if defined(DEBUG)
115 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
116 #else
117 # define logout(fmt, ...) ((void)0)
118 #endif
120 struct _eeprom24c0x_t {
121 uint8_t tick;
122 uint8_t address;
123 uint8_t command;
124 uint8_t ack;
125 uint8_t scl;
126 uint8_t sda;
127 uint8_t data;
128 //~ uint16_t size;
129 uint8_t contents[256];
132 typedef struct _eeprom24c0x_t eeprom24c0x_t;
134 static eeprom24c0x_t eeprom = {
135 .contents = {
136 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
137 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
138 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
139 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
140 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
141 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
142 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
143 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
144 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
146 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
147 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
148 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
149 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
150 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
151 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
155 static uint8_t eeprom24c0x_read(void)
157 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
158 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
159 return eeprom.sda;
162 static void eeprom24c0x_write(int scl, int sda)
164 if (eeprom.scl && scl && (eeprom.sda != sda)) {
165 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
166 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
167 if (!sda) {
168 eeprom.tick = 1;
169 eeprom.command = 0;
171 } else if (eeprom.tick == 0 && !eeprom.ack) {
172 /* Waiting for start. */
173 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
174 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
175 } else if (!eeprom.scl && scl) {
176 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
177 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
178 if (eeprom.ack) {
179 logout("\ti2c ack bit = 0\n");
180 sda = 0;
181 eeprom.ack = 0;
182 } else if (eeprom.sda == sda) {
183 uint8_t bit = (sda != 0);
184 logout("\ti2c bit = %d\n", bit);
185 if (eeprom.tick < 9) {
186 eeprom.command <<= 1;
187 eeprom.command += bit;
188 eeprom.tick++;
189 if (eeprom.tick == 9) {
190 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
191 eeprom.ack = 1;
193 } else if (eeprom.tick < 17) {
194 if (eeprom.command & 1) {
195 sda = ((eeprom.data & 0x80) != 0);
197 eeprom.address <<= 1;
198 eeprom.address += bit;
199 eeprom.tick++;
200 eeprom.data <<= 1;
201 if (eeprom.tick == 17) {
202 eeprom.data = eeprom.contents[eeprom.address];
203 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
204 eeprom.ack = 1;
205 eeprom.tick = 0;
207 } else if (eeprom.tick >= 17) {
208 sda = 0;
210 } else {
211 logout("\tsda changed with raising scl\n");
213 } else {
214 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
216 eeprom.scl = scl;
217 eeprom.sda = sda;
220 static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
222 MaltaFPGAState *s = opaque;
223 uint32_t val = 0;
224 uint32_t saddr;
226 saddr = (addr & 0xfffff);
228 switch (saddr) {
230 /* SWITCH Register */
231 case 0x00200:
232 val = 0x00000000; /* All switches closed */
233 break;
235 /* STATUS Register */
236 case 0x00208:
237 #ifdef TARGET_WORDS_BIGENDIAN
238 val = 0x00000012;
239 #else
240 val = 0x00000010;
241 #endif
242 break;
244 /* JMPRS Register */
245 case 0x00210:
246 val = 0x00;
247 break;
249 /* LEDBAR Register */
250 case 0x00408:
251 val = s->leds;
252 break;
254 /* BRKRES Register */
255 case 0x00508:
256 val = s->brk;
257 break;
259 /* UART Registers are handled directly by the serial device */
261 /* GPOUT Register */
262 case 0x00a00:
263 val = s->gpout;
264 break;
266 /* XXX: implement a real I2C controller */
268 /* GPINP Register */
269 case 0x00a08:
270 /* IN = OUT until a real I2C control is implemented */
271 if (s->i2csel)
272 val = s->i2cout;
273 else
274 val = 0x00;
275 break;
277 /* I2CINP Register */
278 case 0x00b00:
279 val = ((s->i2cin & ~1) | eeprom24c0x_read());
280 break;
282 /* I2COE Register */
283 case 0x00b08:
284 val = s->i2coe;
285 break;
287 /* I2COUT Register */
288 case 0x00b10:
289 val = s->i2cout;
290 break;
292 /* I2CSEL Register */
293 case 0x00b18:
294 val = s->i2csel;
295 break;
297 default:
298 #if 0
299 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
300 addr);
301 #endif
302 break;
304 return val;
307 static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
308 uint32_t val)
310 MaltaFPGAState *s = opaque;
311 uint32_t saddr;
313 saddr = (addr & 0xfffff);
315 switch (saddr) {
317 /* SWITCH Register */
318 case 0x00200:
319 break;
321 /* JMPRS Register */
322 case 0x00210:
323 break;
325 /* LEDBAR Register */
326 /* XXX: implement a 8-LED array */
327 case 0x00408:
328 s->leds = val & 0xff;
329 break;
331 /* ASCIIWORD Register */
332 case 0x00410:
333 snprintf(s->display_text, 9, "%08X", val);
334 malta_fpga_update_display(s);
335 break;
337 /* ASCIIPOS0 to ASCIIPOS7 Registers */
338 case 0x00418:
339 case 0x00420:
340 case 0x00428:
341 case 0x00430:
342 case 0x00438:
343 case 0x00440:
344 case 0x00448:
345 case 0x00450:
346 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
347 malta_fpga_update_display(s);
348 break;
350 /* SOFTRES Register */
351 case 0x00500:
352 if (val == 0x42)
353 qemu_system_reset_request ();
354 break;
356 /* BRKRES Register */
357 case 0x00508:
358 s->brk = val & 0xff;
359 break;
361 /* UART Registers are handled directly by the serial device */
363 /* GPOUT Register */
364 case 0x00a00:
365 s->gpout = val & 0xff;
366 break;
368 /* I2COE Register */
369 case 0x00b08:
370 s->i2coe = val & 0x03;
371 break;
373 /* I2COUT Register */
374 case 0x00b10:
375 eeprom24c0x_write(val & 0x02, val & 0x01);
376 s->i2cout = val;
377 break;
379 /* I2CSEL Register */
380 case 0x00b18:
381 s->i2csel = val & 0x01;
382 break;
384 default:
385 #if 0
386 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
387 addr);
388 #endif
389 break;
393 static CPUReadMemoryFunc * const malta_fpga_read[] = {
394 malta_fpga_readl,
395 malta_fpga_readl,
396 malta_fpga_readl
399 static CPUWriteMemoryFunc * const malta_fpga_write[] = {
400 malta_fpga_writel,
401 malta_fpga_writel,
402 malta_fpga_writel
405 static void malta_fpga_reset(void *opaque)
407 MaltaFPGAState *s = opaque;
409 s->leds = 0x00;
410 s->brk = 0x0a;
411 s->gpout = 0x00;
412 s->i2cin = 0x3;
413 s->i2coe = 0x0;
414 s->i2cout = 0x3;
415 s->i2csel = 0x1;
417 s->display_text[8] = '\0';
418 snprintf(s->display_text, 9, " ");
421 static void malta_fpga_led_init(CharDriverState *chr)
423 qemu_chr_printf(chr, "\e[HMalta LEDBAR\r\n");
424 qemu_chr_printf(chr, "+--------+\r\n");
425 qemu_chr_printf(chr, "+ +\r\n");
426 qemu_chr_printf(chr, "+--------+\r\n");
427 qemu_chr_printf(chr, "\n");
428 qemu_chr_printf(chr, "Malta ASCII\r\n");
429 qemu_chr_printf(chr, "+--------+\r\n");
430 qemu_chr_printf(chr, "+ +\r\n");
431 qemu_chr_printf(chr, "+--------+\r\n");
434 static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
436 MaltaFPGAState *s;
437 int malta;
439 s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
441 malta = cpu_register_io_memory(malta_fpga_read,
442 malta_fpga_write, s);
444 cpu_register_physical_memory(base, 0x900, malta);
445 /* 0xa00 is less than a page, so will still get the right offsets. */
446 cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
448 s->display = qemu_chr_open("fpga", "vc:320x200", malta_fpga_led_init);
450 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1);
452 malta_fpga_reset(s);
453 qemu_register_reset(malta_fpga_reset, s);
455 return s;
458 /* Audio support */
459 #ifdef HAS_AUDIO
460 static void audio_init (PCIBus *pci_bus)
462 struct soundhw *c;
463 int audio_enabled = 0;
465 for (c = soundhw; !audio_enabled && c->name; ++c) {
466 audio_enabled = c->enabled;
469 if (audio_enabled) {
470 for (c = soundhw; c->name; ++c) {
471 if (c->enabled) {
472 c->init.init_pci(pci_bus);
477 #endif
479 /* Network support */
480 static void network_init(void)
482 int i;
484 for(i = 0; i < nb_nics; i++) {
485 NICInfo *nd = &nd_table[i];
486 const char *default_devaddr = NULL;
488 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
489 /* The malta board has a PCNet card using PCI SLOT 11 */
490 default_devaddr = "0b";
492 pci_nic_init(nd, "pcnet", default_devaddr);
496 /* ROM and pseudo bootloader
498 The following code implements a very very simple bootloader. It first
499 loads the registers a0 to a3 to the values expected by the OS, and
500 then jump at the kernel address.
502 The bootloader should pass the locations of the kernel arguments and
503 environment variables tables. Those tables contain the 32-bit address
504 of NULL terminated strings. The environment variables table should be
505 terminated by a NULL address.
507 For a simpler implementation, the number of kernel arguments is fixed
508 to two (the name of the kernel and the command line), and the two
509 tables are actually the same one.
511 The registers a0 to a3 should contain the following values:
512 a0 - number of kernel arguments
513 a1 - 32-bit address of the kernel arguments table
514 a2 - 32-bit address of the environment variables table
515 a3 - RAM size in bytes
518 static void write_bootloader (CPUState *env, uint8_t *base,
519 int64_t kernel_entry)
521 uint32_t *p;
523 /* Small bootloader */
524 p = (uint32_t *)base;
525 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
526 stl_raw(p++, 0x00000000); /* nop */
528 /* YAMON service vector */
529 stl_raw(base + 0x500, 0xbfc00580); /* start: */
530 stl_raw(base + 0x504, 0xbfc0083c); /* print_count: */
531 stl_raw(base + 0x520, 0xbfc00580); /* start: */
532 stl_raw(base + 0x52c, 0xbfc00800); /* flush_cache: */
533 stl_raw(base + 0x534, 0xbfc00808); /* print: */
534 stl_raw(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */
535 stl_raw(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
536 stl_raw(base + 0x540, 0xbfc00800); /* reg_ic_isr: */
537 stl_raw(base + 0x544, 0xbfc00800); /* unred_ic_isr: */
538 stl_raw(base + 0x548, 0xbfc00800); /* reg_esr: */
539 stl_raw(base + 0x54c, 0xbfc00800); /* unreg_esr: */
540 stl_raw(base + 0x550, 0xbfc00800); /* getchar: */
541 stl_raw(base + 0x554, 0xbfc00800); /* syscon_read: */
544 /* Second part of the bootloader */
545 p = (uint32_t *) (base + 0x580);
546 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
547 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
548 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
549 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
550 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
551 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
552 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
553 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
554 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
556 /* Load BAR registers as done by YAMON */
557 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
559 #ifdef TARGET_WORDS_BIGENDIAN
560 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
561 #else
562 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
563 #endif
564 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
566 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
568 #ifdef TARGET_WORDS_BIGENDIAN
569 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
570 #else
571 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
572 #endif
573 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
574 #ifdef TARGET_WORDS_BIGENDIAN
575 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
576 #else
577 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
578 #endif
579 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
581 #ifdef TARGET_WORDS_BIGENDIAN
582 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
583 #else
584 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
585 #endif
586 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
587 #ifdef TARGET_WORDS_BIGENDIAN
588 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
589 #else
590 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
591 #endif
592 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
594 #ifdef TARGET_WORDS_BIGENDIAN
595 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
596 #else
597 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
598 #endif
599 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
600 #ifdef TARGET_WORDS_BIGENDIAN
601 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
602 #else
603 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
604 #endif
605 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
607 /* Jump to kernel code */
608 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
609 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
610 stl_raw(p++, 0x03e00008); /* jr ra */
611 stl_raw(p++, 0x00000000); /* nop */
613 /* YAMON subroutines */
614 p = (uint32_t *) (base + 0x800);
615 stl_raw(p++, 0x03e00008); /* jr ra */
616 stl_raw(p++, 0x24020000); /* li v0,0 */
617 /* 808 YAMON print */
618 stl_raw(p++, 0x03e06821); /* move t5,ra */
619 stl_raw(p++, 0x00805821); /* move t3,a0 */
620 stl_raw(p++, 0x00a05021); /* move t2,a1 */
621 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
622 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
623 stl_raw(p++, 0x10800005); /* beqz a0,834 */
624 stl_raw(p++, 0x00000000); /* nop */
625 stl_raw(p++, 0x0ff0021c); /* jal 870 */
626 stl_raw(p++, 0x00000000); /* nop */
627 stl_raw(p++, 0x08000205); /* j 814 */
628 stl_raw(p++, 0x00000000); /* nop */
629 stl_raw(p++, 0x01a00008); /* jr t5 */
630 stl_raw(p++, 0x01602021); /* move a0,t3 */
631 /* 0x83c YAMON print_count */
632 stl_raw(p++, 0x03e06821); /* move t5,ra */
633 stl_raw(p++, 0x00805821); /* move t3,a0 */
634 stl_raw(p++, 0x00a05021); /* move t2,a1 */
635 stl_raw(p++, 0x00c06021); /* move t4,a2 */
636 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
637 stl_raw(p++, 0x0ff0021c); /* jal 870 */
638 stl_raw(p++, 0x00000000); /* nop */
639 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
640 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
641 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
642 stl_raw(p++, 0x00000000); /* nop */
643 stl_raw(p++, 0x01a00008); /* jr t5 */
644 stl_raw(p++, 0x01602021); /* move a0,t3 */
645 /* 0x870 */
646 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
647 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
648 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
649 stl_raw(p++, 0x00000000); /* nop */
650 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
651 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
652 stl_raw(p++, 0x00000000); /* nop */
653 stl_raw(p++, 0x03e00008); /* jr ra */
654 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
658 static void prom_set(int index, const char *string, ...)
660 char buf[ENVP_ENTRY_SIZE];
661 target_phys_addr_t p;
662 va_list ap;
663 int32_t table_addr;
665 if (index >= ENVP_NB_ENTRIES)
666 return;
668 p = ENVP_ADDR + VIRT_TO_PHYS_ADDEND + index * 4;
670 if (string == NULL) {
671 stl_phys(p, 0);
672 return;
675 table_addr = ENVP_ADDR + sizeof(int32_t) * ENVP_NB_ENTRIES
676 + index * ENVP_ENTRY_SIZE;
677 stl_phys(p, table_addr);
679 va_start(ap, string);
680 vsnprintf(buf, ENVP_ENTRY_SIZE, string, ap);
681 va_end(ap);
682 pstrcpy_targphys(table_addr + VIRT_TO_PHYS_ADDEND, ENVP_ENTRY_SIZE, buf);
685 /* Kernel */
686 static int64_t load_kernel (CPUState *env)
688 int64_t kernel_entry, kernel_low, kernel_high;
689 int index = 0;
690 long initrd_size;
691 ram_addr_t initrd_offset;
692 int big_endian;
694 #ifdef TARGET_WORDS_BIGENDIAN
695 big_endian = 1;
696 #else
697 big_endian = 0;
698 #endif
700 if (load_elf(loaderparams.kernel_filename, VIRT_TO_PHYS_ADDEND,
701 (uint64_t *)&kernel_entry, (uint64_t *)&kernel_low,
702 (uint64_t *)&kernel_high, big_endian, ELF_MACHINE, 1) < 0) {
703 fprintf(stderr, "qemu: could not load kernel '%s'\n",
704 loaderparams.kernel_filename);
705 exit(1);
708 /* load initrd */
709 initrd_size = 0;
710 initrd_offset = 0;
711 if (loaderparams.initrd_filename) {
712 initrd_size = get_image_size (loaderparams.initrd_filename);
713 if (initrd_size > 0) {
714 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
715 if (initrd_offset + initrd_size > ram_size) {
716 fprintf(stderr,
717 "qemu: memory too small for initial ram disk '%s'\n",
718 loaderparams.initrd_filename);
719 exit(1);
721 initrd_size = load_image_targphys(loaderparams.initrd_filename,
722 initrd_offset,
723 ram_size - initrd_offset);
725 if (initrd_size == (target_ulong) -1) {
726 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
727 loaderparams.initrd_filename);
728 exit(1);
732 /* Store command line. */
733 prom_set(index++, loaderparams.kernel_filename);
734 if (initrd_size > 0)
735 prom_set(index++, "rd_start=0x" TARGET_FMT_lx " rd_size=%li %s",
736 PHYS_TO_VIRT(initrd_offset), initrd_size,
737 loaderparams.kernel_cmdline);
738 else
739 prom_set(index++, loaderparams.kernel_cmdline);
741 /* Setup minimum environment variables */
742 prom_set(index++, "memsize");
743 prom_set(index++, "%i", loaderparams.ram_size);
744 prom_set(index++, "modetty0");
745 prom_set(index++, "38400n8r");
746 prom_set(index++, NULL);
748 return kernel_entry;
751 static void main_cpu_reset(void *opaque)
753 CPUState *env = opaque;
754 cpu_reset(env);
756 /* The bootload does not need to be rewritten as it is located in a
757 read only location. The kernel location and the arguments table
758 location does not change. */
759 if (loaderparams.kernel_filename) {
760 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
761 load_kernel (env);
765 static
766 void mips_malta_init (ram_addr_t ram_size,
767 const char *boot_device,
768 const char *kernel_filename, const char *kernel_cmdline,
769 const char *initrd_filename, const char *cpu_model)
771 char *filename;
772 ram_addr_t ram_offset;
773 ram_addr_t bios_offset;
774 target_long bios_size;
775 int64_t kernel_entry;
776 PCIBus *pci_bus;
777 ISADevice *isa_dev;
778 CPUState *env;
779 RTCState *rtc_state;
780 fdctrl_t *floppy_controller;
781 MaltaFPGAState *malta_fpga;
782 qemu_irq *i8259;
783 int piix4_devfn;
784 uint8_t *eeprom_buf;
785 i2c_bus *smbus;
786 int i;
787 DriveInfo *dinfo;
788 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
789 BlockDriverState *fd[MAX_FD];
790 int fl_idx = 0;
791 int fl_sectors = 0;
793 /* Make sure the first 3 serial ports are associated with a device. */
794 for(i = 0; i < 3; i++) {
795 if (!serial_hds[i]) {
796 char label[32];
797 snprintf(label, sizeof(label), "serial%d", i);
798 serial_hds[i] = qemu_chr_open(label, "null", NULL);
802 /* init CPUs */
803 if (cpu_model == NULL) {
804 #ifdef TARGET_MIPS64
805 cpu_model = "20Kc";
806 #else
807 cpu_model = "24Kf";
808 #endif
810 env = cpu_init(cpu_model);
811 if (!env) {
812 fprintf(stderr, "Unable to find CPU definition\n");
813 exit(1);
815 qemu_register_reset(main_cpu_reset, env);
817 /* allocate RAM */
818 if (ram_size > (256 << 20)) {
819 fprintf(stderr,
820 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
821 ((unsigned int)ram_size / (1 << 20)));
822 exit(1);
824 ram_offset = qemu_ram_alloc(ram_size);
825 bios_offset = qemu_ram_alloc(BIOS_SIZE);
828 cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
830 /* Map the bios at two physical locations, as on the real board. */
831 cpu_register_physical_memory(0x1e000000LL,
832 BIOS_SIZE, bios_offset | IO_MEM_ROM);
833 cpu_register_physical_memory(0x1fc00000LL,
834 BIOS_SIZE, bios_offset | IO_MEM_ROM);
836 /* FPGA */
837 malta_fpga = malta_fpga_init(0x1f000000LL, env->irq[2], serial_hds[2]);
839 /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
840 if (kernel_filename) {
841 /* Write a small bootloader to the flash location. */
842 loaderparams.ram_size = ram_size;
843 loaderparams.kernel_filename = kernel_filename;
844 loaderparams.kernel_cmdline = kernel_cmdline;
845 loaderparams.initrd_filename = initrd_filename;
846 kernel_entry = load_kernel(env);
847 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
848 write_bootloader(env, qemu_get_ram_ptr(bios_offset), kernel_entry);
849 } else {
850 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
851 if (dinfo) {
852 /* Load firmware from flash. */
853 bios_size = 0x400000;
854 fl_sectors = bios_size >> 16;
855 #ifdef DEBUG_BOARD_INIT
856 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
857 "offset %08lx addr %08llx '%s' %x\n",
858 fl_idx, bios_size, bios_offset, 0x1e000000LL,
859 bdrv_get_device_name(dinfo->bdrv), fl_sectors);
860 #endif
861 pflash_cfi01_register(0x1e000000LL, bios_offset,
862 dinfo->bdrv, 65536, fl_sectors,
863 4, 0x0000, 0x0000, 0x0000, 0x0000);
864 fl_idx++;
865 } else {
866 /* Load a BIOS image. */
867 if (bios_name == NULL)
868 bios_name = BIOS_FILENAME;
869 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
870 if (filename) {
871 bios_size = load_image_targphys(filename, 0x1fc00000LL,
872 BIOS_SIZE);
873 qemu_free(filename);
874 } else {
875 bios_size = -1;
877 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
878 fprintf(stderr,
879 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
880 bios_name);
881 exit(1);
884 /* In little endian mode the 32bit words in the bios are swapped,
885 a neat trick which allows bi-endian firmware. */
886 #ifndef TARGET_WORDS_BIGENDIAN
888 uint32_t *addr = qemu_get_ram_ptr(bios_offset);;
889 uint32_t *end = addr + bios_size;
890 while (addr < end) {
891 bswap32s(addr);
894 #endif
897 /* Board ID = 0x420 (Malta Board with CoreLV)
898 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
899 map to the board ID. */
900 stl_phys(0x1fc00010LL, 0x00000420);
902 /* Init internal devices */
903 cpu_mips_irq_init_cpu(env);
904 cpu_mips_clock_init(env);
906 /* Interrupt controller */
907 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
908 i8259 = i8259_init(env->irq[2]);
910 /* Northbridge */
911 pci_bus = pci_gt64120_init(i8259);
913 /* Southbridge */
915 if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
916 fprintf(stderr, "qemu: too many IDE bus\n");
917 exit(1);
920 for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
921 hd[i] = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
924 piix4_devfn = piix4_init(pci_bus, 80);
925 isa_bus_irqs(i8259);
926 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
927 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
928 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, isa_reserve_irq(9));
929 eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
930 for (i = 0; i < 8; i++) {
931 /* TODO: Populate SPD eeprom data. */
932 DeviceState *eeprom;
933 eeprom = qdev_create((BusState *)smbus, "smbus-eeprom");
934 qdev_prop_set_uint8(eeprom, "address", 0x50 + i);
935 qdev_prop_set_ptr(eeprom, "data", eeprom_buf + (i * 256));
936 qdev_init(eeprom);
938 pit = pit_init(0x40, isa_reserve_irq(0));
939 DMA_init(0);
941 /* Super I/O */
942 isa_dev = isa_create_simple("i8042");
944 rtc_state = rtc_init(2000);
945 serial_init(0x3f8, isa_reserve_irq(4), 115200, serial_hds[0]);
946 serial_init(0x2f8, isa_reserve_irq(3), 115200, serial_hds[1]);
947 if (parallel_hds[0])
948 parallel_init(0, parallel_hds[0]);
949 for(i = 0; i < MAX_FD; i++) {
950 dinfo = drive_get(IF_FLOPPY, 0, i);
951 fd[i] = dinfo ? dinfo->bdrv : NULL;
953 floppy_controller = fdctrl_init_isa(fd);
955 /* Sound card */
956 #ifdef HAS_AUDIO
957 audio_init(pci_bus);
958 #endif
960 /* Network card */
961 network_init();
963 /* Optional PCI video card */
964 if (cirrus_vga_enabled) {
965 pci_cirrus_vga_init(pci_bus);
966 } else if (vmsvga_enabled) {
967 pci_vmsvga_init(pci_bus);
968 } else if (std_vga_enabled) {
969 pci_vga_init(pci_bus, 0, 0);
973 static QEMUMachine mips_malta_machine = {
974 .name = "malta",
975 .desc = "MIPS Malta Core LV",
976 .init = mips_malta_init,
977 .is_default = 1,
980 static void mips_malta_machine_init(void)
982 qemu_register_machine(&mips_malta_machine);
985 machine_init(mips_malta_machine_init);