2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "sysemu/qtest.h"
35 #include "hw/fw-path-provider.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "cpu-models.h"
50 #include "hw/boards.h"
51 #include "hw/ppc/ppc.h"
52 #include "hw/loader.h"
54 #include "hw/ppc/fdt.h"
55 #include "hw/ppc/spapr.h"
56 #include "hw/ppc/spapr_vio.h"
57 #include "hw/pci-host/spapr.h"
58 #include "hw/pci/msi.h"
60 #include "hw/pci/pci.h"
61 #include "hw/scsi/scsi.h"
62 #include "hw/virtio/virtio-scsi.h"
63 #include "hw/virtio/vhost-scsi-common.h"
65 #include "exec/address-spaces.h"
66 #include "exec/ram_addr.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
72 #include "hw/intc/intc.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "hw/mem/memory-device.h"
80 /* SLOF memory layout:
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
88 * We load our kernel at 4M, leaving space for SLOF initial image
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
98 #define MIN_RMA_SLOF 128UL
100 #define PHANDLE_INTC 0x00001111
102 /* These two functions implement the VCPU id numbering: one to compute them
103 * all and one to identify thread 0 of a VCORE. Any change to the first one
104 * is likely to have an impact on the second one, so let's keep them close.
106 static int spapr_vcpu_id(sPAPRMachineState
*spapr
, int cpu_index
)
110 (cpu_index
/ smp_threads
) * spapr
->vsmt
+ cpu_index
% smp_threads
;
112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState
*spapr
,
116 return spapr_get_vcpu_id(cpu
) % spapr
->vsmt
== 0;
119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque
)
121 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
122 * and newer QEMUs don't even have them. In both cases, we don't want
123 * to send anything on the wire.
128 static const VMStateDescription pre_2_10_vmstate_dummy_icp
= {
129 .name
= "icp/server",
131 .minimum_version_id
= 1,
132 .needed
= pre_2_10_vmstate_dummy_icp_needed
,
133 .fields
= (VMStateField
[]) {
134 VMSTATE_UNUSED(4), /* uint32_t xirr */
135 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
136 VMSTATE_UNUSED(1), /* uint8_t mfrr */
137 VMSTATE_END_OF_LIST()
141 static void pre_2_10_vmstate_register_dummy_icp(int i
)
143 vmstate_register(NULL
, i
, &pre_2_10_vmstate_dummy_icp
,
144 (void *)(uintptr_t) i
);
147 static void pre_2_10_vmstate_unregister_dummy_icp(int i
)
149 vmstate_unregister(NULL
, &pre_2_10_vmstate_dummy_icp
,
150 (void *)(uintptr_t) i
);
153 int spapr_max_server_number(sPAPRMachineState
*spapr
)
156 return DIV_ROUND_UP(max_cpus
* spapr
->vsmt
, smp_threads
);
159 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
163 uint32_t servers_prop
[smt_threads
];
164 uint32_t gservers_prop
[smt_threads
* 2];
165 int index
= spapr_get_vcpu_id(cpu
);
167 if (cpu
->compat_pvr
) {
168 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->compat_pvr
);
174 /* Build interrupt servers and gservers properties */
175 for (i
= 0; i
< smt_threads
; i
++) {
176 servers_prop
[i
] = cpu_to_be32(index
+ i
);
177 /* Hack, direct the group queues back to cpu 0 */
178 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
179 gservers_prop
[i
*2 + 1] = 0;
181 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
182 servers_prop
, sizeof(servers_prop
));
186 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
187 gservers_prop
, sizeof(gservers_prop
));
192 static int spapr_fixup_cpu_numa_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
)
194 int index
= spapr_get_vcpu_id(cpu
);
195 uint32_t associativity
[] = {cpu_to_be32(0x5),
199 cpu_to_be32(cpu
->node_id
),
202 /* Advertise NUMA via ibm,associativity */
203 return fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
204 sizeof(associativity
));
207 /* Populate the "ibm,pa-features" property */
208 static void spapr_populate_pa_features(sPAPRMachineState
*spapr
,
210 void *fdt
, int offset
,
213 uint8_t pa_features_206
[] = { 6, 0,
214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215 uint8_t pa_features_207
[] = { 24, 0,
216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220 uint8_t pa_features_300
[] = { 66, 0,
221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236 /* 42: PM, 44: PC RA, 46: SC vec'd */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238 /* 48: SIMD, 50: QP BFP, 52: String */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240 /* 54: DecFP, 56: DecI, 58: SHA */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242 /* 60: NM atomic, 62: RNG */
243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
245 uint8_t *pa_features
= NULL
;
248 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_06
, 0, cpu
->compat_pvr
)) {
249 pa_features
= pa_features_206
;
250 pa_size
= sizeof(pa_features_206
);
252 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_07
, 0, cpu
->compat_pvr
)) {
253 pa_features
= pa_features_207
;
254 pa_size
= sizeof(pa_features_207
);
256 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_3_00
, 0, cpu
->compat_pvr
)) {
257 pa_features
= pa_features_300
;
258 pa_size
= sizeof(pa_features_300
);
264 if (ppc_hash64_has(cpu
, PPC_HASH64_CI_LARGEPAGE
)) {
266 * Note: we keep CI large pages off by default because a 64K capable
267 * guest provisioned with large pages might otherwise try to map a qemu
268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269 * even if that qemu runs on a 4k host.
270 * We dd this bit back here if we are confident this is not an issue
272 pa_features
[3] |= 0x20;
274 if ((spapr_get_cap(spapr
, SPAPR_CAP_HTM
) != 0) && pa_size
> 24) {
275 pa_features
[24] |= 0x80; /* Transactional memory support */
277 if (legacy_guest
&& pa_size
> 40) {
278 /* Workaround for broken kernels that attempt (guest) radix
279 * mode when they can't handle it, if they see the radix bit set
280 * in pa-features. So hide it from them. */
281 pa_features
[40 + 2] &= ~0x80; /* Radix MMU */
284 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
287 static int spapr_fixup_cpu_dt(void *fdt
, sPAPRMachineState
*spapr
)
289 int ret
= 0, offset
, cpus_offset
;
292 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
295 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
296 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
297 int index
= spapr_get_vcpu_id(cpu
);
298 int compat_smt
= MIN(smp_threads
, ppc_compat_max_vthreads(cpu
));
300 if (!spapr_is_thread0_in_vcore(spapr
, cpu
)) {
304 snprintf(cpu_model
, 32, "%s@%x", dc
->fw_name
, index
);
306 cpus_offset
= fdt_path_offset(fdt
, "/cpus");
307 if (cpus_offset
< 0) {
308 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
309 if (cpus_offset
< 0) {
313 offset
= fdt_subnode_offset(fdt
, cpus_offset
, cpu_model
);
315 offset
= fdt_add_subnode(fdt
, cpus_offset
, cpu_model
);
321 ret
= fdt_setprop(fdt
, offset
, "ibm,pft-size",
322 pft_size_prop
, sizeof(pft_size_prop
));
327 if (nb_numa_nodes
> 1) {
328 ret
= spapr_fixup_cpu_numa_dt(fdt
, offset
, cpu
);
334 ret
= spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
);
339 spapr_populate_pa_features(spapr
, cpu
, fdt
, offset
,
340 spapr
->cas_legacy_guest_workaround
);
345 static hwaddr
spapr_node0_size(MachineState
*machine
)
349 for (i
= 0; i
< nb_numa_nodes
; ++i
) {
350 if (numa_info
[i
].node_mem
) {
351 return MIN(pow2floor(numa_info
[i
].node_mem
),
356 return machine
->ram_size
;
359 static void add_str(GString
*s
, const gchar
*s1
)
361 g_string_append_len(s
, s1
, strlen(s1
) + 1);
364 static int spapr_populate_memory_node(void *fdt
, int nodeid
, hwaddr start
,
367 uint32_t associativity
[] = {
368 cpu_to_be32(0x4), /* length */
369 cpu_to_be32(0x0), cpu_to_be32(0x0),
370 cpu_to_be32(0x0), cpu_to_be32(nodeid
)
373 uint64_t mem_reg_property
[2];
376 mem_reg_property
[0] = cpu_to_be64(start
);
377 mem_reg_property
[1] = cpu_to_be64(size
);
379 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, start
);
380 off
= fdt_add_subnode(fdt
, 0, mem_name
);
382 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
383 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
384 sizeof(mem_reg_property
))));
385 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
386 sizeof(associativity
))));
390 static int spapr_populate_memory(sPAPRMachineState
*spapr
, void *fdt
)
392 MachineState
*machine
= MACHINE(spapr
);
393 hwaddr mem_start
, node_size
;
394 int i
, nb_nodes
= nb_numa_nodes
;
395 NodeInfo
*nodes
= numa_info
;
398 /* No NUMA nodes, assume there is just one node with whole RAM */
399 if (!nb_numa_nodes
) {
401 ramnode
.node_mem
= machine
->ram_size
;
405 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
406 if (!nodes
[i
].node_mem
) {
409 if (mem_start
>= machine
->ram_size
) {
412 node_size
= nodes
[i
].node_mem
;
413 if (node_size
> machine
->ram_size
- mem_start
) {
414 node_size
= machine
->ram_size
- mem_start
;
418 /* spapr_machine_init() checks for rma_size <= node0_size
420 spapr_populate_memory_node(fdt
, i
, 0, spapr
->rma_size
);
421 mem_start
+= spapr
->rma_size
;
422 node_size
-= spapr
->rma_size
;
424 for ( ; node_size
; ) {
425 hwaddr sizetmp
= pow2floor(node_size
);
427 /* mem_start != 0 here */
428 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
429 sizetmp
= 1ULL << ctzl(mem_start
);
432 spapr_populate_memory_node(fdt
, i
, mem_start
, sizetmp
);
433 node_size
-= sizetmp
;
434 mem_start
+= sizetmp
;
441 static void spapr_populate_cpu_dt(CPUState
*cs
, void *fdt
, int offset
,
442 sPAPRMachineState
*spapr
)
444 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
445 CPUPPCState
*env
= &cpu
->env
;
446 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
447 int index
= spapr_get_vcpu_id(cpu
);
448 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
449 0xffffffff, 0xffffffff};
450 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq()
451 : SPAPR_TIMEBASE_FREQ
;
452 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
453 uint32_t page_sizes_prop
[64];
454 size_t page_sizes_prop_size
;
455 uint32_t vcpus_per_socket
= smp_threads
* smp_cores
;
456 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
457 int compat_smt
= MIN(smp_threads
, ppc_compat_max_vthreads(cpu
));
458 sPAPRDRConnector
*drc
;
460 uint32_t radix_AP_encodings
[PPC_PAGE_SIZES_MAX_SZ
];
463 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
, index
);
465 drc_index
= spapr_drc_index(drc
);
466 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
)));
469 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
470 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
472 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
473 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
474 env
->dcache_line_size
)));
475 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
476 env
->dcache_line_size
)));
477 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
478 env
->icache_line_size
)));
479 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
480 env
->icache_line_size
)));
482 if (pcc
->l1_dcache_size
) {
483 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
484 pcc
->l1_dcache_size
)));
486 warn_report("Unknown L1 dcache size for cpu");
488 if (pcc
->l1_icache_size
) {
489 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
490 pcc
->l1_icache_size
)));
492 warn_report("Unknown L1 icache size for cpu");
495 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
496 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
497 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", cpu
->hash64_opts
->slb_size
)));
498 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", cpu
->hash64_opts
->slb_size
)));
499 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
500 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
502 if (env
->spr_cb
[SPR_PURR
].oea_read
) {
503 _FDT((fdt_setprop(fdt
, offset
, "ibm,purr", NULL
, 0)));
506 if (ppc_hash64_has(cpu
, PPC_HASH64_1TSEG
)) {
507 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
508 segs
, sizeof(segs
))));
511 /* Advertise VSX (vector extensions) if available
512 * 1 == VMX / Altivec available
515 * Only CPUs for which we create core types in spapr_cpu_core.c
516 * are possible, and all of those have VMX */
517 if (spapr_get_cap(spapr
, SPAPR_CAP_VSX
) != 0) {
518 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 2)));
520 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 1)));
523 /* Advertise DFP (Decimal Floating Point) if available
524 * 0 / no property == no DFP
525 * 1 == DFP available */
526 if (spapr_get_cap(spapr
, SPAPR_CAP_DFP
) != 0) {
527 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
530 page_sizes_prop_size
= ppc_create_page_sizes_prop(cpu
, page_sizes_prop
,
531 sizeof(page_sizes_prop
));
532 if (page_sizes_prop_size
) {
533 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
534 page_sizes_prop
, page_sizes_prop_size
)));
537 spapr_populate_pa_features(spapr
, cpu
, fdt
, offset
, false);
539 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
540 cs
->cpu_index
/ vcpus_per_socket
)));
542 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
543 pft_size_prop
, sizeof(pft_size_prop
))));
545 if (nb_numa_nodes
> 1) {
546 _FDT(spapr_fixup_cpu_numa_dt(fdt
, offset
, cpu
));
549 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
));
551 if (pcc
->radix_page_info
) {
552 for (i
= 0; i
< pcc
->radix_page_info
->count
; i
++) {
553 radix_AP_encodings
[i
] =
554 cpu_to_be32(pcc
->radix_page_info
->entries
[i
]);
556 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-radix-AP-encodings",
558 pcc
->radix_page_info
->count
*
559 sizeof(radix_AP_encodings
[0]))));
563 * We set this property to let the guest know that it can use the large
564 * decrementer and its width in bits.
566 if (spapr_get_cap(spapr
, SPAPR_CAP_LARGE_DECREMENTER
) != SPAPR_CAP_OFF
)
567 _FDT((fdt_setprop_u32(fdt
, offset
, "ibm,dec-bits",
568 pcc
->lrg_decr_bits
)));
571 static void spapr_populate_cpus_dt_node(void *fdt
, sPAPRMachineState
*spapr
)
580 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
582 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
583 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
586 * We walk the CPUs in reverse order to ensure that CPU DT nodes
587 * created by fdt_add_subnode() end up in the right order in FDT
588 * for the guest kernel the enumerate the CPUs correctly.
590 * The CPU list cannot be traversed in reverse order, so we need
596 rev
= g_renew(CPUState
*, rev
, n_cpus
+ 1);
600 for (i
= n_cpus
- 1; i
>= 0; i
--) {
601 CPUState
*cs
= rev
[i
];
602 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
603 int index
= spapr_get_vcpu_id(cpu
);
604 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
607 if (!spapr_is_thread0_in_vcore(spapr
, cpu
)) {
611 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
612 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
615 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
621 static int spapr_rng_populate_dt(void *fdt
)
626 node
= qemu_fdt_add_subnode(fdt
, "/ibm,platform-facilities");
630 ret
= fdt_setprop_string(fdt
, node
, "device_type",
631 "ibm,platform-facilities");
632 ret
|= fdt_setprop_cell(fdt
, node
, "#address-cells", 0x1);
633 ret
|= fdt_setprop_cell(fdt
, node
, "#size-cells", 0x0);
635 node
= fdt_add_subnode(fdt
, node
, "ibm,random-v1");
639 ret
|= fdt_setprop_string(fdt
, node
, "compatible", "ibm,random");
644 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList
*list
, ram_addr_t addr
)
646 MemoryDeviceInfoList
*info
;
648 for (info
= list
; info
; info
= info
->next
) {
649 MemoryDeviceInfo
*value
= info
->value
;
651 if (value
&& value
->type
== MEMORY_DEVICE_INFO_KIND_DIMM
) {
652 PCDIMMDeviceInfo
*pcdimm_info
= value
->u
.dimm
.data
;
654 if (addr
>= pcdimm_info
->addr
&&
655 addr
< (pcdimm_info
->addr
+ pcdimm_info
->size
)) {
656 return pcdimm_info
->node
;
664 struct sPAPRDrconfCellV2
{
672 typedef struct DrconfCellQueue
{
673 struct sPAPRDrconfCellV2 cell
;
674 QSIMPLEQ_ENTRY(DrconfCellQueue
) entry
;
677 static DrconfCellQueue
*
678 spapr_get_drconf_cell(uint32_t seq_lmbs
, uint64_t base_addr
,
679 uint32_t drc_index
, uint32_t aa_index
,
682 DrconfCellQueue
*elem
;
684 elem
= g_malloc0(sizeof(*elem
));
685 elem
->cell
.seq_lmbs
= cpu_to_be32(seq_lmbs
);
686 elem
->cell
.base_addr
= cpu_to_be64(base_addr
);
687 elem
->cell
.drc_index
= cpu_to_be32(drc_index
);
688 elem
->cell
.aa_index
= cpu_to_be32(aa_index
);
689 elem
->cell
.flags
= cpu_to_be32(flags
);
694 /* ibm,dynamic-memory-v2 */
695 static int spapr_populate_drmem_v2(sPAPRMachineState
*spapr
, void *fdt
,
696 int offset
, MemoryDeviceInfoList
*dimms
)
698 MachineState
*machine
= MACHINE(spapr
);
699 uint8_t *int_buf
, *cur_index
;
701 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
702 uint64_t addr
, cur_addr
, size
;
703 uint32_t nr_boot_lmbs
= (machine
->device_memory
->base
/ lmb_size
);
704 uint64_t mem_end
= machine
->device_memory
->base
+
705 memory_region_size(&machine
->device_memory
->mr
);
706 uint32_t node
, buf_len
, nr_entries
= 0;
707 sPAPRDRConnector
*drc
;
708 DrconfCellQueue
*elem
, *next
;
709 MemoryDeviceInfoList
*info
;
710 QSIMPLEQ_HEAD(, DrconfCellQueue
) drconf_queue
711 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue
);
713 /* Entry to cover RAM and the gap area */
714 elem
= spapr_get_drconf_cell(nr_boot_lmbs
, 0, 0, -1,
715 SPAPR_LMB_FLAGS_RESERVED
|
716 SPAPR_LMB_FLAGS_DRC_INVALID
);
717 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
720 cur_addr
= machine
->device_memory
->base
;
721 for (info
= dimms
; info
; info
= info
->next
) {
722 PCDIMMDeviceInfo
*di
= info
->value
->u
.dimm
.data
;
728 /* Entry for hot-pluggable area */
729 if (cur_addr
< addr
) {
730 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
732 elem
= spapr_get_drconf_cell((addr
- cur_addr
) / lmb_size
,
733 cur_addr
, spapr_drc_index(drc
), -1, 0);
734 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
739 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, addr
/ lmb_size
);
741 elem
= spapr_get_drconf_cell(size
/ lmb_size
, addr
,
742 spapr_drc_index(drc
), node
,
743 SPAPR_LMB_FLAGS_ASSIGNED
);
744 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
746 cur_addr
= addr
+ size
;
749 /* Entry for remaining hotpluggable area */
750 if (cur_addr
< mem_end
) {
751 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
753 elem
= spapr_get_drconf_cell((mem_end
- cur_addr
) / lmb_size
,
754 cur_addr
, spapr_drc_index(drc
), -1, 0);
755 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
759 buf_len
= nr_entries
* sizeof(struct sPAPRDrconfCellV2
) + sizeof(uint32_t);
760 int_buf
= cur_index
= g_malloc0(buf_len
);
761 *(uint32_t *)int_buf
= cpu_to_be32(nr_entries
);
762 cur_index
+= sizeof(nr_entries
);
764 QSIMPLEQ_FOREACH_SAFE(elem
, &drconf_queue
, entry
, next
) {
765 memcpy(cur_index
, &elem
->cell
, sizeof(elem
->cell
));
766 cur_index
+= sizeof(elem
->cell
);
767 QSIMPLEQ_REMOVE(&drconf_queue
, elem
, DrconfCellQueue
, entry
);
771 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory-v2", int_buf
, buf_len
);
779 /* ibm,dynamic-memory */
780 static int spapr_populate_drmem_v1(sPAPRMachineState
*spapr
, void *fdt
,
781 int offset
, MemoryDeviceInfoList
*dimms
)
783 MachineState
*machine
= MACHINE(spapr
);
785 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
786 uint32_t device_lmb_start
= machine
->device_memory
->base
/ lmb_size
;
787 uint32_t nr_lmbs
= (machine
->device_memory
->base
+
788 memory_region_size(&machine
->device_memory
->mr
)) /
790 uint32_t *int_buf
, *cur_index
, buf_len
;
793 * Allocate enough buffer size to fit in ibm,dynamic-memory
795 buf_len
= (nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1) * sizeof(uint32_t);
796 cur_index
= int_buf
= g_malloc0(buf_len
);
797 int_buf
[0] = cpu_to_be32(nr_lmbs
);
799 for (i
= 0; i
< nr_lmbs
; i
++) {
800 uint64_t addr
= i
* lmb_size
;
801 uint32_t *dynamic_memory
= cur_index
;
803 if (i
>= device_lmb_start
) {
804 sPAPRDRConnector
*drc
;
806 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, i
);
809 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
810 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
811 dynamic_memory
[2] = cpu_to_be32(spapr_drc_index(drc
));
812 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
813 dynamic_memory
[4] = cpu_to_be32(spapr_pc_dimm_node(dimms
, addr
));
814 if (memory_region_present(get_system_memory(), addr
)) {
815 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
817 dynamic_memory
[5] = cpu_to_be32(0);
821 * LMB information for RMA, boot time RAM and gap b/n RAM and
822 * device memory region -- all these are marked as reserved
823 * and as having no valid DRC.
825 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
826 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
827 dynamic_memory
[2] = cpu_to_be32(0);
828 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
829 dynamic_memory
[4] = cpu_to_be32(-1);
830 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED
|
831 SPAPR_LMB_FLAGS_DRC_INVALID
);
834 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
836 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
845 * Adds ibm,dynamic-reconfiguration-memory node.
846 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
847 * of this device tree node.
849 static int spapr_populate_drconf_memory(sPAPRMachineState
*spapr
, void *fdt
)
851 MachineState
*machine
= MACHINE(spapr
);
853 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
854 uint32_t prop_lmb_size
[] = {0, cpu_to_be32(lmb_size
)};
855 uint32_t *int_buf
, *cur_index
, buf_len
;
856 int nr_nodes
= nb_numa_nodes
? nb_numa_nodes
: 1;
857 MemoryDeviceInfoList
*dimms
= NULL
;
860 * Don't create the node if there is no device memory
862 if (machine
->ram_size
== machine
->maxram_size
) {
866 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
868 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
869 sizeof(prop_lmb_size
));
874 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
879 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
884 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
885 dimms
= qmp_memory_device_list();
886 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRMEM_V2
)) {
887 ret
= spapr_populate_drmem_v2(spapr
, fdt
, offset
, dimms
);
889 ret
= spapr_populate_drmem_v1(spapr
, fdt
, offset
, dimms
);
891 qapi_free_MemoryDeviceInfoList(dimms
);
897 /* ibm,associativity-lookup-arrays */
898 buf_len
= (nr_nodes
* 4 + 2) * sizeof(uint32_t);
899 cur_index
= int_buf
= g_malloc0(buf_len
);
900 int_buf
[0] = cpu_to_be32(nr_nodes
);
901 int_buf
[1] = cpu_to_be32(4); /* Number of entries per associativity list */
903 for (i
= 0; i
< nr_nodes
; i
++) {
904 uint32_t associativity
[] = {
910 memcpy(cur_index
, associativity
, sizeof(associativity
));
913 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity-lookup-arrays", int_buf
,
914 (cur_index
- int_buf
) * sizeof(uint32_t));
920 static int spapr_dt_cas_updates(sPAPRMachineState
*spapr
, void *fdt
,
921 sPAPROptionVector
*ov5_updates
)
923 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
926 /* Generate ibm,dynamic-reconfiguration-memory node if required */
927 if (spapr_ovec_test(ov5_updates
, OV5_DRCONF_MEMORY
)) {
928 g_assert(smc
->dr_lmb_enabled
);
929 ret
= spapr_populate_drconf_memory(spapr
, fdt
);
935 offset
= fdt_path_offset(fdt
, "/chosen");
937 offset
= fdt_add_subnode(fdt
, 0, "chosen");
942 ret
= spapr_ovec_populate_dt(fdt
, offset
, spapr
->ov5_cas
,
943 "ibm,architecture-vec-5");
949 static bool spapr_hotplugged_dev_before_cas(void)
951 Object
*drc_container
, *obj
;
952 ObjectProperty
*prop
;
953 ObjectPropertyIterator iter
;
955 drc_container
= container_get(object_get_root(), "/dr-connector");
956 object_property_iter_init(&iter
, drc_container
);
957 while ((prop
= object_property_iter_next(&iter
))) {
958 if (!strstart(prop
->type
, "link<", NULL
)) {
961 obj
= object_property_get_link(drc_container
, prop
->name
, NULL
);
962 if (spapr_drc_needed(obj
)) {
969 int spapr_h_cas_compose_response(sPAPRMachineState
*spapr
,
970 target_ulong addr
, target_ulong size
,
971 sPAPROptionVector
*ov5_updates
)
973 void *fdt
, *fdt_skel
;
974 sPAPRDeviceTreeUpdateHeader hdr
= { .version_id
= 1 };
976 if (spapr_hotplugged_dev_before_cas()) {
980 if (size
< sizeof(hdr
) || size
> FW_MAX_SIZE
) {
981 error_report("SLOF provided an unexpected CAS buffer size "
982 TARGET_FMT_lu
" (min: %zu, max: %u)",
983 size
, sizeof(hdr
), FW_MAX_SIZE
);
989 /* Create skeleton */
990 fdt_skel
= g_malloc0(size
);
991 _FDT((fdt_create(fdt_skel
, size
)));
992 _FDT((fdt_finish_reservemap(fdt_skel
)));
993 _FDT((fdt_begin_node(fdt_skel
, "")));
994 _FDT((fdt_end_node(fdt_skel
)));
995 _FDT((fdt_finish(fdt_skel
)));
996 fdt
= g_malloc0(size
);
997 _FDT((fdt_open_into(fdt_skel
, fdt
, size
)));
1000 /* Fixup cpu nodes */
1001 _FDT((spapr_fixup_cpu_dt(fdt
, spapr
)));
1003 if (spapr_dt_cas_updates(spapr
, fdt
, ov5_updates
)) {
1007 /* Pack resulting tree */
1008 _FDT((fdt_pack(fdt
)));
1010 if (fdt_totalsize(fdt
) + sizeof(hdr
) > size
) {
1011 trace_spapr_cas_failed(size
);
1015 cpu_physical_memory_write(addr
, &hdr
, sizeof(hdr
));
1016 cpu_physical_memory_write(addr
+ sizeof(hdr
), fdt
, fdt_totalsize(fdt
));
1017 trace_spapr_cas_continue(fdt_totalsize(fdt
) + sizeof(hdr
));
1023 static void spapr_dt_rtas(sPAPRMachineState
*spapr
, void *fdt
)
1026 GString
*hypertas
= g_string_sized_new(256);
1027 GString
*qemu_hypertas
= g_string_sized_new(256);
1028 uint32_t refpoints
[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1029 uint64_t max_device_addr
= MACHINE(spapr
)->device_memory
->base
+
1030 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
1031 uint32_t lrdr_capacity
[] = {
1032 cpu_to_be32(max_device_addr
>> 32),
1033 cpu_to_be32(max_device_addr
& 0xffffffff),
1034 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
),
1035 cpu_to_be32(max_cpus
/ smp_threads
),
1037 uint32_t maxdomains
[] = {
1042 cpu_to_be32(nb_numa_nodes
? nb_numa_nodes
: 1),
1045 _FDT(rtas
= fdt_add_subnode(fdt
, 0, "rtas"));
1048 add_str(hypertas
, "hcall-pft");
1049 add_str(hypertas
, "hcall-term");
1050 add_str(hypertas
, "hcall-dabr");
1051 add_str(hypertas
, "hcall-interrupt");
1052 add_str(hypertas
, "hcall-tce");
1053 add_str(hypertas
, "hcall-vio");
1054 add_str(hypertas
, "hcall-splpar");
1055 add_str(hypertas
, "hcall-bulk");
1056 add_str(hypertas
, "hcall-set-mode");
1057 add_str(hypertas
, "hcall-sprg0");
1058 add_str(hypertas
, "hcall-copy");
1059 add_str(hypertas
, "hcall-debug");
1060 add_str(hypertas
, "hcall-vphn");
1061 add_str(qemu_hypertas
, "hcall-memop1");
1063 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1064 add_str(hypertas
, "hcall-multi-tce");
1067 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
1068 add_str(hypertas
, "hcall-hpt-resize");
1071 _FDT(fdt_setprop(fdt
, rtas
, "ibm,hypertas-functions",
1072 hypertas
->str
, hypertas
->len
));
1073 g_string_free(hypertas
, TRUE
);
1074 _FDT(fdt_setprop(fdt
, rtas
, "qemu,hypertas-functions",
1075 qemu_hypertas
->str
, qemu_hypertas
->len
));
1076 g_string_free(qemu_hypertas
, TRUE
);
1078 _FDT(fdt_setprop(fdt
, rtas
, "ibm,associativity-reference-points",
1079 refpoints
, sizeof(refpoints
)));
1081 _FDT(fdt_setprop(fdt
, rtas
, "ibm,max-associativity-domains",
1082 maxdomains
, sizeof(maxdomains
)));
1084 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-error-log-max",
1085 RTAS_ERROR_LOG_MAX
));
1086 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-event-scan-rate",
1087 RTAS_EVENT_SCAN_RATE
));
1089 g_assert(msi_nonbroken
);
1090 _FDT(fdt_setprop(fdt
, rtas
, "ibm,change-msix-capable", NULL
, 0));
1093 * According to PAPR, rtas ibm,os-term does not guarantee a return
1094 * back to the guest cpu.
1096 * While an additional ibm,extended-os-term property indicates
1097 * that rtas call return will always occur. Set this property.
1099 _FDT(fdt_setprop(fdt
, rtas
, "ibm,extended-os-term", NULL
, 0));
1101 _FDT(fdt_setprop(fdt
, rtas
, "ibm,lrdr-capacity",
1102 lrdr_capacity
, sizeof(lrdr_capacity
)));
1104 spapr_dt_rtas_tokens(fdt
, rtas
);
1108 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1109 * and the XIVE features that the guest may request and thus the valid
1110 * values for bytes 23..26 of option vector 5:
1112 static void spapr_dt_ov5_platform_support(sPAPRMachineState
*spapr
, void *fdt
,
1115 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1118 23, spapr
->irq
->ov5
, /* Xive mode. */
1119 24, 0x00, /* Hash/Radix, filled in below. */
1120 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1121 26, 0x40, /* Radix options: GTSE == yes. */
1124 if (!ppc_check_compat(first_ppc_cpu
, CPU_POWERPC_LOGICAL_3_00
, 0,
1125 first_ppc_cpu
->compat_pvr
)) {
1127 * If we're in a pre POWER9 compat mode then the guest should
1128 * do hash and use the legacy interrupt mode
1130 val
[1] = 0x00; /* XICS */
1131 val
[3] = 0x00; /* Hash */
1132 } else if (kvm_enabled()) {
1133 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1134 val
[3] = 0x80; /* OV5_MMU_BOTH */
1135 } else if (kvmppc_has_cap_mmu_radix()) {
1136 val
[3] = 0x40; /* OV5_MMU_RADIX_300 */
1138 val
[3] = 0x00; /* Hash */
1141 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1144 _FDT(fdt_setprop(fdt
, chosen
, "ibm,arch-vec-5-platform-support",
1148 static void spapr_dt_chosen(sPAPRMachineState
*spapr
, void *fdt
)
1150 MachineState
*machine
= MACHINE(spapr
);
1152 const char *boot_device
= machine
->boot_order
;
1153 char *stdout_path
= spapr_vio_stdout_path(spapr
->vio_bus
);
1155 char *bootlist
= get_boot_devices_list(&cb
);
1157 _FDT(chosen
= fdt_add_subnode(fdt
, 0, "chosen"));
1159 _FDT(fdt_setprop_string(fdt
, chosen
, "bootargs", machine
->kernel_cmdline
));
1160 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-start",
1161 spapr
->initrd_base
));
1162 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-end",
1163 spapr
->initrd_base
+ spapr
->initrd_size
));
1165 if (spapr
->kernel_size
) {
1166 uint64_t kprop
[2] = { cpu_to_be64(KERNEL_LOAD_ADDR
),
1167 cpu_to_be64(spapr
->kernel_size
) };
1169 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel",
1170 &kprop
, sizeof(kprop
)));
1171 if (spapr
->kernel_le
) {
1172 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel-le", NULL
, 0));
1176 _FDT((fdt_setprop_cell(fdt
, chosen
, "qemu,boot-menu", boot_menu
)));
1178 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-width", graphic_width
));
1179 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-height", graphic_height
));
1180 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-depth", graphic_depth
));
1182 if (cb
&& bootlist
) {
1185 for (i
= 0; i
< cb
; i
++) {
1186 if (bootlist
[i
] == '\n') {
1190 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-list", bootlist
));
1193 if (boot_device
&& strlen(boot_device
)) {
1194 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-device", boot_device
));
1197 if (!spapr
->has_graphics
&& stdout_path
) {
1199 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1200 * kernel. New platforms should only use the "stdout-path" property. Set
1201 * the new property and continue using older property to remain
1202 * compatible with the existing firmware.
1204 _FDT(fdt_setprop_string(fdt
, chosen
, "linux,stdout-path", stdout_path
));
1205 _FDT(fdt_setprop_string(fdt
, chosen
, "stdout-path", stdout_path
));
1208 spapr_dt_ov5_platform_support(spapr
, fdt
, chosen
);
1210 g_free(stdout_path
);
1214 static void spapr_dt_hypervisor(sPAPRMachineState
*spapr
, void *fdt
)
1216 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1217 * KVM to work under pHyp with some guest co-operation */
1219 uint8_t hypercall
[16];
1221 _FDT(hypervisor
= fdt_add_subnode(fdt
, 0, "hypervisor"));
1222 /* indicate KVM hypercall interface */
1223 _FDT(fdt_setprop_string(fdt
, hypervisor
, "compatible", "linux,kvm"));
1224 if (kvmppc_has_cap_fixup_hcalls()) {
1226 * Older KVM versions with older guest kernels were broken
1227 * with the magic page, don't allow the guest to map it.
1229 if (!kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
1230 sizeof(hypercall
))) {
1231 _FDT(fdt_setprop(fdt
, hypervisor
, "hcall-instructions",
1232 hypercall
, sizeof(hypercall
)));
1237 static void *spapr_build_fdt(sPAPRMachineState
*spapr
)
1239 MachineState
*machine
= MACHINE(spapr
);
1240 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1241 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1247 fdt
= g_malloc0(FDT_MAX_SIZE
);
1248 _FDT((fdt_create_empty_tree(fdt
, FDT_MAX_SIZE
)));
1251 _FDT(fdt_setprop_string(fdt
, 0, "device_type", "chrp"));
1252 _FDT(fdt_setprop_string(fdt
, 0, "model", "IBM pSeries (emulated by qemu)"));
1253 _FDT(fdt_setprop_string(fdt
, 0, "compatible", "qemu,pseries"));
1256 * Add info to guest to indentify which host is it being run on
1257 * and what is the uuid of the guest
1259 if (spapr
->host_model
&& !g_str_equal(spapr
->host_model
, "none")) {
1260 if (g_str_equal(spapr
->host_model
, "passthrough")) {
1261 /* -M host-model=passthrough */
1262 if (kvmppc_get_host_model(&buf
)) {
1263 _FDT(fdt_setprop_string(fdt
, 0, "host-model", buf
));
1267 /* -M host-model=<user-string> */
1268 _FDT(fdt_setprop_string(fdt
, 0, "host-model", spapr
->host_model
));
1272 if (spapr
->host_serial
&& !g_str_equal(spapr
->host_serial
, "none")) {
1273 if (g_str_equal(spapr
->host_serial
, "passthrough")) {
1274 /* -M host-serial=passthrough */
1275 if (kvmppc_get_host_serial(&buf
)) {
1276 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", buf
));
1280 /* -M host-serial=<user-string> */
1281 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", spapr
->host_serial
));
1285 buf
= qemu_uuid_unparse_strdup(&qemu_uuid
);
1287 _FDT(fdt_setprop_string(fdt
, 0, "vm,uuid", buf
));
1288 if (qemu_uuid_set
) {
1289 _FDT(fdt_setprop_string(fdt
, 0, "system-id", buf
));
1293 if (qemu_get_vm_name()) {
1294 _FDT(fdt_setprop_string(fdt
, 0, "ibm,partition-name",
1295 qemu_get_vm_name()));
1298 _FDT(fdt_setprop_cell(fdt
, 0, "#address-cells", 2));
1299 _FDT(fdt_setprop_cell(fdt
, 0, "#size-cells", 2));
1301 /* /interrupt controller */
1302 spapr
->irq
->dt_populate(spapr
, spapr_max_server_number(spapr
), fdt
,
1305 ret
= spapr_populate_memory(spapr
, fdt
);
1307 error_report("couldn't setup memory nodes in fdt");
1312 spapr_dt_vdevice(spapr
->vio_bus
, fdt
);
1314 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
1315 ret
= spapr_rng_populate_dt(fdt
);
1317 error_report("could not set up rng device in the fdt");
1322 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
1323 ret
= spapr_populate_pci_dt(phb
, PHANDLE_INTC
, fdt
,
1324 spapr
->irq
->nr_msis
, NULL
);
1326 error_report("couldn't setup PCI devices in fdt");
1332 spapr_populate_cpus_dt_node(fdt
, spapr
);
1334 if (smc
->dr_lmb_enabled
) {
1335 _FDT(spapr_drc_populate_dt(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_LMB
));
1338 if (mc
->has_hotpluggable_cpus
) {
1339 int offset
= fdt_path_offset(fdt
, "/cpus");
1340 ret
= spapr_drc_populate_dt(fdt
, offset
, NULL
,
1341 SPAPR_DR_CONNECTOR_TYPE_CPU
);
1343 error_report("Couldn't set up CPU DR device tree properties");
1348 /* /event-sources */
1349 spapr_dt_events(spapr
, fdt
);
1352 spapr_dt_rtas(spapr
, fdt
);
1355 spapr_dt_chosen(spapr
, fdt
);
1358 if (kvm_enabled()) {
1359 spapr_dt_hypervisor(spapr
, fdt
);
1362 /* Build memory reserve map */
1363 if (spapr
->kernel_size
) {
1364 _FDT((fdt_add_mem_rsv(fdt
, KERNEL_LOAD_ADDR
, spapr
->kernel_size
)));
1366 if (spapr
->initrd_size
) {
1367 _FDT((fdt_add_mem_rsv(fdt
, spapr
->initrd_base
, spapr
->initrd_size
)));
1370 /* ibm,client-architecture-support updates */
1371 ret
= spapr_dt_cas_updates(spapr
, fdt
, spapr
->ov5_cas
);
1373 error_report("couldn't setup CAS properties fdt");
1377 if (smc
->dr_phb_enabled
) {
1378 ret
= spapr_drc_populate_dt(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_PHB
);
1380 error_report("Couldn't set up PHB DR device tree properties");
1388 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
1390 return (addr
& 0x0fffffff) + KERNEL_LOAD_ADDR
;
1393 static void emulate_spapr_hypercall(PPCVirtualHypervisor
*vhyp
,
1396 CPUPPCState
*env
= &cpu
->env
;
1398 /* The TCG path should also be holding the BQL at this point */
1399 g_assert(qemu_mutex_iothread_locked());
1402 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1403 env
->gpr
[3] = H_PRIVILEGE
;
1405 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1409 struct LPCRSyncState
{
1414 static void do_lpcr_sync(CPUState
*cs
, run_on_cpu_data arg
)
1416 struct LPCRSyncState
*s
= arg
.host_ptr
;
1417 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1418 CPUPPCState
*env
= &cpu
->env
;
1421 cpu_synchronize_state(cs
);
1422 lpcr
= env
->spr
[SPR_LPCR
];
1425 ppc_store_lpcr(cpu
, lpcr
);
1428 void spapr_set_all_lpcrs(target_ulong value
, target_ulong mask
)
1431 struct LPCRSyncState s
= {
1436 run_on_cpu(cs
, do_lpcr_sync
, RUN_ON_CPU_HOST_PTR(&s
));
1440 static void spapr_get_pate(PPCVirtualHypervisor
*vhyp
, ppc_v3_pate_t
*entry
)
1442 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1444 /* Copy PATE1:GR into PATE0:HR */
1445 entry
->dw0
= spapr
->patb_entry
& PATE0_HR
;
1446 entry
->dw1
= spapr
->patb_entry
;
1449 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1450 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1451 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1452 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1453 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1456 * Get the fd to access the kernel htab, re-opening it if necessary
1458 static int get_htab_fd(sPAPRMachineState
*spapr
)
1460 Error
*local_err
= NULL
;
1462 if (spapr
->htab_fd
>= 0) {
1463 return spapr
->htab_fd
;
1466 spapr
->htab_fd
= kvmppc_get_htab_fd(false, 0, &local_err
);
1467 if (spapr
->htab_fd
< 0) {
1468 error_report_err(local_err
);
1471 return spapr
->htab_fd
;
1474 void close_htab_fd(sPAPRMachineState
*spapr
)
1476 if (spapr
->htab_fd
>= 0) {
1477 close(spapr
->htab_fd
);
1479 spapr
->htab_fd
= -1;
1482 static hwaddr
spapr_hpt_mask(PPCVirtualHypervisor
*vhyp
)
1484 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1486 return HTAB_SIZE(spapr
) / HASH_PTEG_SIZE_64
- 1;
1489 static target_ulong
spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor
*vhyp
)
1491 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1493 assert(kvm_enabled());
1499 return (target_ulong
)(uintptr_t)spapr
->htab
| (spapr
->htab_shift
- 18);
1502 static const ppc_hash_pte64_t
*spapr_map_hptes(PPCVirtualHypervisor
*vhyp
,
1505 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1506 hwaddr pte_offset
= ptex
* HASH_PTE_SIZE_64
;
1510 * HTAB is controlled by KVM. Fetch into temporary buffer
1512 ppc_hash_pte64_t
*hptes
= g_malloc(n
* HASH_PTE_SIZE_64
);
1513 kvmppc_read_hptes(hptes
, ptex
, n
);
1518 * HTAB is controlled by QEMU. Just point to the internally
1521 return (const ppc_hash_pte64_t
*)(spapr
->htab
+ pte_offset
);
1524 static void spapr_unmap_hptes(PPCVirtualHypervisor
*vhyp
,
1525 const ppc_hash_pte64_t
*hptes
,
1528 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1531 g_free((void *)hptes
);
1534 /* Nothing to do for qemu managed HPT */
1537 static void spapr_store_hpte(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1538 uint64_t pte0
, uint64_t pte1
)
1540 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1541 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
;
1544 kvmppc_write_hpte(ptex
, pte0
, pte1
);
1546 if (pte0
& HPTE64_V_VALID
) {
1547 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1549 * When setting valid, we write PTE1 first. This ensures
1550 * proper synchronization with the reading code in
1551 * ppc_hash64_pteg_search()
1554 stq_p(spapr
->htab
+ offset
, pte0
);
1556 stq_p(spapr
->htab
+ offset
, pte0
);
1558 * When clearing it we set PTE0 first. This ensures proper
1559 * synchronization with the reading code in
1560 * ppc_hash64_pteg_search()
1563 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1568 int spapr_hpt_shift_for_ramsize(uint64_t ramsize
)
1572 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1573 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1574 * that's much more than is needed for Linux guests */
1575 shift
= ctz64(pow2ceil(ramsize
)) - 7;
1576 shift
= MAX(shift
, 18); /* Minimum architected size */
1577 shift
= MIN(shift
, 46); /* Maximum architected size */
1581 void spapr_free_hpt(sPAPRMachineState
*spapr
)
1583 g_free(spapr
->htab
);
1585 spapr
->htab_shift
= 0;
1586 close_htab_fd(spapr
);
1589 void spapr_reallocate_hpt(sPAPRMachineState
*spapr
, int shift
,
1594 /* Clean up any HPT info from a previous boot */
1595 spapr_free_hpt(spapr
);
1597 rc
= kvmppc_reset_htab(shift
);
1599 /* kernel-side HPT needed, but couldn't allocate one */
1600 error_setg_errno(errp
, errno
,
1601 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1603 /* This is almost certainly fatal, but if the caller really
1604 * wants to carry on with shift == 0, it's welcome to try */
1605 } else if (rc
> 0) {
1606 /* kernel-side HPT allocated */
1609 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1613 spapr
->htab_shift
= shift
;
1616 /* kernel-side HPT not needed, allocate in userspace instead */
1617 size_t size
= 1ULL << shift
;
1620 spapr
->htab
= qemu_memalign(size
, size
);
1622 error_setg_errno(errp
, errno
,
1623 "Could not allocate HPT of order %d", shift
);
1627 memset(spapr
->htab
, 0, size
);
1628 spapr
->htab_shift
= shift
;
1630 for (i
= 0; i
< size
/ HASH_PTE_SIZE_64
; i
++) {
1631 DIRTY_HPTE(HPTE(spapr
->htab
, i
));
1634 /* We're setting up a hash table, so that means we're not radix */
1635 spapr_set_all_lpcrs(0, LPCR_HR
| LPCR_UPRT
);
1638 void spapr_setup_hpt_and_vrma(sPAPRMachineState
*spapr
)
1642 if ((spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
)
1643 || (spapr
->cas_reboot
1644 && !spapr_ovec_test(spapr
->ov5_cas
, OV5_HPT_RESIZE
))) {
1645 hpt_shift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1647 uint64_t current_ram_size
;
1649 current_ram_size
= MACHINE(spapr
)->ram_size
+ get_plugged_memory_size();
1650 hpt_shift
= spapr_hpt_shift_for_ramsize(current_ram_size
);
1652 spapr_reallocate_hpt(spapr
, hpt_shift
, &error_fatal
);
1654 if (spapr
->vrma_adjust
) {
1655 spapr
->rma_size
= kvmppc_rma_size(spapr_node0_size(MACHINE(spapr
)),
1660 static int spapr_reset_drcs(Object
*child
, void *opaque
)
1662 sPAPRDRConnector
*drc
=
1663 (sPAPRDRConnector
*) object_dynamic_cast(child
,
1664 TYPE_SPAPR_DR_CONNECTOR
);
1667 spapr_drc_reset(drc
);
1673 static void spapr_machine_reset(void)
1675 MachineState
*machine
= MACHINE(qdev_get_machine());
1676 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
1677 PowerPCCPU
*first_ppc_cpu
;
1678 uint32_t rtas_limit
;
1679 hwaddr rtas_addr
, fdt_addr
;
1683 spapr_caps_apply(spapr
);
1685 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1686 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1687 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
1688 spapr
->max_compat_pvr
)) {
1690 * If using KVM with radix mode available, VCPUs can be started
1691 * without a HPT because KVM will start them in radix mode.
1692 * Set the GR bit in PATE so that we know there is no HPT.
1694 spapr
->patb_entry
= PATE1_GR
;
1695 spapr_set_all_lpcrs(LPCR_HR
| LPCR_UPRT
, LPCR_HR
| LPCR_UPRT
);
1697 spapr_setup_hpt_and_vrma(spapr
);
1701 * If this reset wasn't generated by CAS, we should reset our
1702 * negotiated options and start from scratch
1704 if (!spapr
->cas_reboot
) {
1705 spapr_ovec_cleanup(spapr
->ov5_cas
);
1706 spapr
->ov5_cas
= spapr_ovec_new();
1708 ppc_set_compat(first_ppc_cpu
, spapr
->max_compat_pvr
, &error_fatal
);
1711 if (!SPAPR_MACHINE_GET_CLASS(spapr
)->legacy_irq_allocation
) {
1712 spapr_irq_msi_reset(spapr
);
1715 qemu_devices_reset();
1718 * This is fixing some of the default configuration of the XIVE
1719 * devices. To be called after the reset of the machine devices.
1721 spapr_irq_reset(spapr
, &error_fatal
);
1724 * There is no CAS under qtest. Simulate one to please the code that
1725 * depends on spapr->ov5_cas. This is especially needed to test device
1726 * unplug, so we do that before resetting the DRCs.
1728 if (qtest_enabled()) {
1729 spapr_ovec_cleanup(spapr
->ov5_cas
);
1730 spapr
->ov5_cas
= spapr_ovec_clone(spapr
->ov5
);
1733 /* DRC reset may cause a device to be unplugged. This will cause troubles
1734 * if this device is used by another device (eg, a running vhost backend
1735 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1736 * situations, we reset DRCs after all devices have been reset.
1738 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs
, NULL
);
1740 spapr_clear_pending_events(spapr
);
1743 * We place the device tree and RTAS just below either the top of the RMA,
1744 * or just below 2GB, whichever is lower, so that it can be
1745 * processed with 32-bit real mode code if necessary
1747 rtas_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
);
1748 rtas_addr
= rtas_limit
- RTAS_MAX_SIZE
;
1749 fdt_addr
= rtas_addr
- FDT_MAX_SIZE
;
1751 fdt
= spapr_build_fdt(spapr
);
1753 spapr_load_rtas(spapr
, fdt
, rtas_addr
);
1757 /* Should only fail if we've built a corrupted tree */
1760 if (fdt_totalsize(fdt
) > FDT_MAX_SIZE
) {
1761 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1762 fdt_totalsize(fdt
), FDT_MAX_SIZE
);
1767 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
1768 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
1769 g_free(spapr
->fdt_blob
);
1770 spapr
->fdt_size
= fdt_totalsize(fdt
);
1771 spapr
->fdt_initial_size
= spapr
->fdt_size
;
1772 spapr
->fdt_blob
= fdt
;
1774 /* Set up the entry state */
1775 spapr_cpu_set_entry_state(first_ppc_cpu
, SPAPR_ENTRY_POINT
, fdt_addr
);
1776 first_ppc_cpu
->env
.gpr
[5] = 0;
1778 spapr
->cas_reboot
= false;
1781 static void spapr_create_nvram(sPAPRMachineState
*spapr
)
1783 DeviceState
*dev
= qdev_create(&spapr
->vio_bus
->bus
, "spapr-nvram");
1784 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1787 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1791 qdev_init_nofail(dev
);
1793 spapr
->nvram
= (struct sPAPRNVRAM
*)dev
;
1796 static void spapr_rtc_create(sPAPRMachineState
*spapr
)
1798 object_initialize_child(OBJECT(spapr
), "rtc",
1799 &spapr
->rtc
, sizeof(spapr
->rtc
), TYPE_SPAPR_RTC
,
1800 &error_fatal
, NULL
);
1801 object_property_set_bool(OBJECT(&spapr
->rtc
), true, "realized",
1803 object_property_add_alias(OBJECT(spapr
), "rtc-time", OBJECT(&spapr
->rtc
),
1804 "date", &error_fatal
);
1807 /* Returns whether we want to use VGA or not */
1808 static bool spapr_vga_init(PCIBus
*pci_bus
, Error
**errp
)
1810 switch (vga_interface_type
) {
1818 return pci_vga_init(pci_bus
) != NULL
;
1821 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1826 static int spapr_pre_load(void *opaque
)
1830 rc
= spapr_caps_pre_load(opaque
);
1838 static int spapr_post_load(void *opaque
, int version_id
)
1840 sPAPRMachineState
*spapr
= (sPAPRMachineState
*)opaque
;
1843 err
= spapr_caps_post_migration(spapr
);
1849 * In earlier versions, there was no separate qdev for the PAPR
1850 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1851 * So when migrating from those versions, poke the incoming offset
1852 * value into the RTC device
1854 if (version_id
< 3) {
1855 err
= spapr_rtc_import_offset(&spapr
->rtc
, spapr
->rtc_offset
);
1861 if (kvm_enabled() && spapr
->patb_entry
) {
1862 PowerPCCPU
*cpu
= POWERPC_CPU(first_cpu
);
1863 bool radix
= !!(spapr
->patb_entry
& PATE1_GR
);
1864 bool gtse
= !!(cpu
->env
.spr
[SPR_LPCR
] & LPCR_GTSE
);
1867 * Update LPCR:HR and UPRT as they may not be set properly in
1870 spapr_set_all_lpcrs(radix
? (LPCR_HR
| LPCR_UPRT
) : 0,
1871 LPCR_HR
| LPCR_UPRT
);
1873 err
= kvmppc_configure_v3_mmu(cpu
, radix
, gtse
, spapr
->patb_entry
);
1875 error_report("Process table config unsupported by the host");
1880 err
= spapr_irq_post_load(spapr
, version_id
);
1888 static int spapr_pre_save(void *opaque
)
1892 rc
= spapr_caps_pre_save(opaque
);
1900 static bool version_before_3(void *opaque
, int version_id
)
1902 return version_id
< 3;
1905 static bool spapr_pending_events_needed(void *opaque
)
1907 sPAPRMachineState
*spapr
= (sPAPRMachineState
*)opaque
;
1908 return !QTAILQ_EMPTY(&spapr
->pending_events
);
1911 static const VMStateDescription vmstate_spapr_event_entry
= {
1912 .name
= "spapr_event_log_entry",
1914 .minimum_version_id
= 1,
1915 .fields
= (VMStateField
[]) {
1916 VMSTATE_UINT32(summary
, sPAPREventLogEntry
),
1917 VMSTATE_UINT32(extended_length
, sPAPREventLogEntry
),
1918 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log
, sPAPREventLogEntry
, 0,
1919 NULL
, extended_length
),
1920 VMSTATE_END_OF_LIST()
1924 static const VMStateDescription vmstate_spapr_pending_events
= {
1925 .name
= "spapr_pending_events",
1927 .minimum_version_id
= 1,
1928 .needed
= spapr_pending_events_needed
,
1929 .fields
= (VMStateField
[]) {
1930 VMSTATE_QTAILQ_V(pending_events
, sPAPRMachineState
, 1,
1931 vmstate_spapr_event_entry
, sPAPREventLogEntry
, next
),
1932 VMSTATE_END_OF_LIST()
1936 static bool spapr_ov5_cas_needed(void *opaque
)
1938 sPAPRMachineState
*spapr
= opaque
;
1939 sPAPROptionVector
*ov5_mask
= spapr_ovec_new();
1940 sPAPROptionVector
*ov5_legacy
= spapr_ovec_new();
1941 sPAPROptionVector
*ov5_removed
= spapr_ovec_new();
1944 /* Prior to the introduction of sPAPROptionVector, we had two option
1945 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1946 * Both of these options encode machine topology into the device-tree
1947 * in such a way that the now-booted OS should still be able to interact
1948 * appropriately with QEMU regardless of what options were actually
1949 * negotiatied on the source side.
1951 * As such, we can avoid migrating the CAS-negotiated options if these
1952 * are the only options available on the current machine/platform.
1953 * Since these are the only options available for pseries-2.7 and
1954 * earlier, this allows us to maintain old->new/new->old migration
1957 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1958 * via default pseries-2.8 machines and explicit command-line parameters.
1959 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1960 * of the actual CAS-negotiated values to continue working properly. For
1961 * example, availability of memory unplug depends on knowing whether
1962 * OV5_HP_EVT was negotiated via CAS.
1964 * Thus, for any cases where the set of available CAS-negotiatable
1965 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1966 * include the CAS-negotiated options in the migration stream, unless
1967 * if they affect boot time behaviour only.
1969 spapr_ovec_set(ov5_mask
, OV5_FORM1_AFFINITY
);
1970 spapr_ovec_set(ov5_mask
, OV5_DRCONF_MEMORY
);
1971 spapr_ovec_set(ov5_mask
, OV5_DRMEM_V2
);
1973 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1974 * the mask itself since in the future it's possible "legacy" bits may be
1975 * removed via machine options, which could generate a false positive
1976 * that breaks migration.
1978 spapr_ovec_intersect(ov5_legacy
, spapr
->ov5
, ov5_mask
);
1979 cas_needed
= spapr_ovec_diff(ov5_removed
, spapr
->ov5
, ov5_legacy
);
1981 spapr_ovec_cleanup(ov5_mask
);
1982 spapr_ovec_cleanup(ov5_legacy
);
1983 spapr_ovec_cleanup(ov5_removed
);
1988 static const VMStateDescription vmstate_spapr_ov5_cas
= {
1989 .name
= "spapr_option_vector_ov5_cas",
1991 .minimum_version_id
= 1,
1992 .needed
= spapr_ov5_cas_needed
,
1993 .fields
= (VMStateField
[]) {
1994 VMSTATE_STRUCT_POINTER_V(ov5_cas
, sPAPRMachineState
, 1,
1995 vmstate_spapr_ovec
, sPAPROptionVector
),
1996 VMSTATE_END_OF_LIST()
2000 static bool spapr_patb_entry_needed(void *opaque
)
2002 sPAPRMachineState
*spapr
= opaque
;
2004 return !!spapr
->patb_entry
;
2007 static const VMStateDescription vmstate_spapr_patb_entry
= {
2008 .name
= "spapr_patb_entry",
2010 .minimum_version_id
= 1,
2011 .needed
= spapr_patb_entry_needed
,
2012 .fields
= (VMStateField
[]) {
2013 VMSTATE_UINT64(patb_entry
, sPAPRMachineState
),
2014 VMSTATE_END_OF_LIST()
2018 static bool spapr_irq_map_needed(void *opaque
)
2020 sPAPRMachineState
*spapr
= opaque
;
2022 return spapr
->irq_map
&& !bitmap_empty(spapr
->irq_map
, spapr
->irq_map_nr
);
2025 static const VMStateDescription vmstate_spapr_irq_map
= {
2026 .name
= "spapr_irq_map",
2028 .minimum_version_id
= 1,
2029 .needed
= spapr_irq_map_needed
,
2030 .fields
= (VMStateField
[]) {
2031 VMSTATE_BITMAP(irq_map
, sPAPRMachineState
, 0, irq_map_nr
),
2032 VMSTATE_END_OF_LIST()
2036 static bool spapr_dtb_needed(void *opaque
)
2038 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(opaque
);
2040 return smc
->update_dt_enabled
;
2043 static int spapr_dtb_pre_load(void *opaque
)
2045 sPAPRMachineState
*spapr
= (sPAPRMachineState
*)opaque
;
2047 g_free(spapr
->fdt_blob
);
2048 spapr
->fdt_blob
= NULL
;
2049 spapr
->fdt_size
= 0;
2054 static const VMStateDescription vmstate_spapr_dtb
= {
2055 .name
= "spapr_dtb",
2057 .minimum_version_id
= 1,
2058 .needed
= spapr_dtb_needed
,
2059 .pre_load
= spapr_dtb_pre_load
,
2060 .fields
= (VMStateField
[]) {
2061 VMSTATE_UINT32(fdt_initial_size
, sPAPRMachineState
),
2062 VMSTATE_UINT32(fdt_size
, sPAPRMachineState
),
2063 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob
, sPAPRMachineState
, 0, NULL
,
2065 VMSTATE_END_OF_LIST()
2069 static const VMStateDescription vmstate_spapr
= {
2072 .minimum_version_id
= 1,
2073 .pre_load
= spapr_pre_load
,
2074 .post_load
= spapr_post_load
,
2075 .pre_save
= spapr_pre_save
,
2076 .fields
= (VMStateField
[]) {
2077 /* used to be @next_irq */
2078 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
2081 VMSTATE_UINT64_TEST(rtc_offset
, sPAPRMachineState
, version_before_3
),
2083 VMSTATE_PPC_TIMEBASE_V(tb
, sPAPRMachineState
, 2),
2084 VMSTATE_END_OF_LIST()
2086 .subsections
= (const VMStateDescription
*[]) {
2087 &vmstate_spapr_ov5_cas
,
2088 &vmstate_spapr_patb_entry
,
2089 &vmstate_spapr_pending_events
,
2090 &vmstate_spapr_cap_htm
,
2091 &vmstate_spapr_cap_vsx
,
2092 &vmstate_spapr_cap_dfp
,
2093 &vmstate_spapr_cap_cfpc
,
2094 &vmstate_spapr_cap_sbbc
,
2095 &vmstate_spapr_cap_ibs
,
2096 &vmstate_spapr_irq_map
,
2097 &vmstate_spapr_cap_nested_kvm_hv
,
2099 &vmstate_spapr_cap_large_decr
,
2104 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
2106 sPAPRMachineState
*spapr
= opaque
;
2108 /* "Iteration" header */
2109 if (!spapr
->htab_shift
) {
2110 qemu_put_be32(f
, -1);
2112 qemu_put_be32(f
, spapr
->htab_shift
);
2116 spapr
->htab_save_index
= 0;
2117 spapr
->htab_first_pass
= true;
2119 if (spapr
->htab_shift
) {
2120 assert(kvm_enabled());
2128 static void htab_save_chunk(QEMUFile
*f
, sPAPRMachineState
*spapr
,
2129 int chunkstart
, int n_valid
, int n_invalid
)
2131 qemu_put_be32(f
, chunkstart
);
2132 qemu_put_be16(f
, n_valid
);
2133 qemu_put_be16(f
, n_invalid
);
2134 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
2135 HASH_PTE_SIZE_64
* n_valid
);
2138 static void htab_save_end_marker(QEMUFile
*f
)
2140 qemu_put_be32(f
, 0);
2141 qemu_put_be16(f
, 0);
2142 qemu_put_be16(f
, 0);
2145 static void htab_save_first_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
2148 bool has_timeout
= max_ns
!= -1;
2149 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2150 int index
= spapr
->htab_save_index
;
2151 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2153 assert(spapr
->htab_first_pass
);
2158 /* Consume invalid HPTEs */
2159 while ((index
< htabslots
)
2160 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2161 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2165 /* Consume valid HPTEs */
2167 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2168 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2169 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2173 if (index
> chunkstart
) {
2174 int n_valid
= index
- chunkstart
;
2176 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, 0);
2179 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2183 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
2185 if (index
>= htabslots
) {
2186 assert(index
== htabslots
);
2188 spapr
->htab_first_pass
= false;
2190 spapr
->htab_save_index
= index
;
2193 static int htab_save_later_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
2196 bool final
= max_ns
< 0;
2197 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2198 int examined
= 0, sent
= 0;
2199 int index
= spapr
->htab_save_index
;
2200 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2202 assert(!spapr
->htab_first_pass
);
2205 int chunkstart
, invalidstart
;
2207 /* Consume non-dirty HPTEs */
2208 while ((index
< htabslots
)
2209 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
2215 /* Consume valid dirty HPTEs */
2216 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2217 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2218 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2219 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2224 invalidstart
= index
;
2225 /* Consume invalid dirty HPTEs */
2226 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
2227 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2228 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2229 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2234 if (index
> chunkstart
) {
2235 int n_valid
= invalidstart
- chunkstart
;
2236 int n_invalid
= index
- invalidstart
;
2238 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, n_invalid
);
2239 sent
+= index
- chunkstart
;
2241 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2246 if (examined
>= htabslots
) {
2250 if (index
>= htabslots
) {
2251 assert(index
== htabslots
);
2254 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
2256 if (index
>= htabslots
) {
2257 assert(index
== htabslots
);
2261 spapr
->htab_save_index
= index
;
2263 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
2266 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2267 #define MAX_KVM_BUF_SIZE 2048
2269 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
2271 sPAPRMachineState
*spapr
= opaque
;
2275 /* Iteration header */
2276 if (!spapr
->htab_shift
) {
2277 qemu_put_be32(f
, -1);
2280 qemu_put_be32(f
, 0);
2284 assert(kvm_enabled());
2286 fd
= get_htab_fd(spapr
);
2291 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
2295 } else if (spapr
->htab_first_pass
) {
2296 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
2298 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
2301 htab_save_end_marker(f
);
2306 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
2308 sPAPRMachineState
*spapr
= opaque
;
2311 /* Iteration header */
2312 if (!spapr
->htab_shift
) {
2313 qemu_put_be32(f
, -1);
2316 qemu_put_be32(f
, 0);
2322 assert(kvm_enabled());
2324 fd
= get_htab_fd(spapr
);
2329 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, -1);
2334 if (spapr
->htab_first_pass
) {
2335 htab_save_first_pass(f
, spapr
, -1);
2337 htab_save_later_pass(f
, spapr
, -1);
2341 htab_save_end_marker(f
);
2346 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
2348 sPAPRMachineState
*spapr
= opaque
;
2349 uint32_t section_hdr
;
2351 Error
*local_err
= NULL
;
2353 if (version_id
< 1 || version_id
> 1) {
2354 error_report("htab_load() bad version");
2358 section_hdr
= qemu_get_be32(f
);
2360 if (section_hdr
== -1) {
2361 spapr_free_hpt(spapr
);
2366 /* First section gives the htab size */
2367 spapr_reallocate_hpt(spapr
, section_hdr
, &local_err
);
2369 error_report_err(local_err
);
2376 assert(kvm_enabled());
2378 fd
= kvmppc_get_htab_fd(true, 0, &local_err
);
2380 error_report_err(local_err
);
2387 uint16_t n_valid
, n_invalid
;
2389 index
= qemu_get_be32(f
);
2390 n_valid
= qemu_get_be16(f
);
2391 n_invalid
= qemu_get_be16(f
);
2393 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
2398 if ((index
+ n_valid
+ n_invalid
) >
2399 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
2400 /* Bad index in stream */
2402 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2403 index
, n_valid
, n_invalid
, spapr
->htab_shift
);
2409 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
2410 HASH_PTE_SIZE_64
* n_valid
);
2413 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
2414 HASH_PTE_SIZE_64
* n_invalid
);
2421 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
);
2436 static void htab_save_cleanup(void *opaque
)
2438 sPAPRMachineState
*spapr
= opaque
;
2440 close_htab_fd(spapr
);
2443 static SaveVMHandlers savevm_htab_handlers
= {
2444 .save_setup
= htab_save_setup
,
2445 .save_live_iterate
= htab_save_iterate
,
2446 .save_live_complete_precopy
= htab_save_complete
,
2447 .save_cleanup
= htab_save_cleanup
,
2448 .load_state
= htab_load
,
2451 static void spapr_boot_set(void *opaque
, const char *boot_device
,
2454 MachineState
*machine
= MACHINE(opaque
);
2455 machine
->boot_order
= g_strdup(boot_device
);
2458 static void spapr_create_lmb_dr_connectors(sPAPRMachineState
*spapr
)
2460 MachineState
*machine
= MACHINE(spapr
);
2461 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
2462 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
2465 for (i
= 0; i
< nr_lmbs
; i
++) {
2468 addr
= i
* lmb_size
+ machine
->device_memory
->base
;
2469 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_LMB
,
2475 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2476 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2477 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2479 static void spapr_validate_node_memory(MachineState
*machine
, Error
**errp
)
2483 if (machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2484 error_setg(errp
, "Memory size 0x" RAM_ADDR_FMT
2485 " is not aligned to %" PRIu64
" MiB",
2487 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2491 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2492 error_setg(errp
, "Maximum memory size 0x" RAM_ADDR_FMT
2493 " is not aligned to %" PRIu64
" MiB",
2495 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2499 for (i
= 0; i
< nb_numa_nodes
; i
++) {
2500 if (numa_info
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
2502 "Node %d memory size 0x%" PRIx64
2503 " is not aligned to %" PRIu64
" MiB",
2504 i
, numa_info
[i
].node_mem
,
2505 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2511 /* find cpu slot in machine->possible_cpus by core_id */
2512 static CPUArchId
*spapr_find_cpu_slot(MachineState
*ms
, uint32_t id
, int *idx
)
2514 int index
= id
/ smp_threads
;
2516 if (index
>= ms
->possible_cpus
->len
) {
2522 return &ms
->possible_cpus
->cpus
[index
];
2525 static void spapr_set_vsmt_mode(sPAPRMachineState
*spapr
, Error
**errp
)
2527 Error
*local_err
= NULL
;
2528 bool vsmt_user
= !!spapr
->vsmt
;
2529 int kvm_smt
= kvmppc_smt_threads();
2532 if (!kvm_enabled() && (smp_threads
> 1)) {
2533 error_setg(&local_err
, "TCG cannot support more than 1 thread/core "
2534 "on a pseries machine");
2537 if (!is_power_of_2(smp_threads
)) {
2538 error_setg(&local_err
, "Cannot support %d threads/core on a pseries "
2539 "machine because it must be a power of 2", smp_threads
);
2543 /* Detemine the VSMT mode to use: */
2545 if (spapr
->vsmt
< smp_threads
) {
2546 error_setg(&local_err
, "Cannot support VSMT mode %d"
2547 " because it must be >= threads/core (%d)",
2548 spapr
->vsmt
, smp_threads
);
2551 /* In this case, spapr->vsmt has been set by the command line */
2554 * Default VSMT value is tricky, because we need it to be as
2555 * consistent as possible (for migration), but this requires
2556 * changing it for at least some existing cases. We pick 8 as
2557 * the value that we'd get with KVM on POWER8, the
2558 * overwhelmingly common case in production systems.
2560 spapr
->vsmt
= MAX(8, smp_threads
);
2563 /* KVM: If necessary, set the SMT mode: */
2564 if (kvm_enabled() && (spapr
->vsmt
!= kvm_smt
)) {
2565 ret
= kvmppc_set_smt_threads(spapr
->vsmt
);
2567 /* Looks like KVM isn't able to change VSMT mode */
2568 error_setg(&local_err
,
2569 "Failed to set KVM's VSMT mode to %d (errno %d)",
2571 /* We can live with that if the default one is big enough
2572 * for the number of threads, and a submultiple of the one
2573 * we want. In this case we'll waste some vcpu ids, but
2574 * behaviour will be correct */
2575 if ((kvm_smt
>= smp_threads
) && ((spapr
->vsmt
% kvm_smt
) == 0)) {
2576 warn_report_err(local_err
);
2581 error_append_hint(&local_err
,
2582 "On PPC, a VM with %d threads/core"
2583 " on a host with %d threads/core"
2584 " requires the use of VSMT mode %d.\n",
2585 smp_threads
, kvm_smt
, spapr
->vsmt
);
2587 kvmppc_hint_smt_possible(&local_err
);
2592 /* else TCG: nothing to do currently */
2594 error_propagate(errp
, local_err
);
2597 static void spapr_init_cpus(sPAPRMachineState
*spapr
)
2599 MachineState
*machine
= MACHINE(spapr
);
2600 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2601 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2602 const char *type
= spapr_get_cpu_core_type(machine
->cpu_type
);
2603 const CPUArchIdList
*possible_cpus
;
2604 int boot_cores_nr
= smp_cpus
/ smp_threads
;
2607 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
2608 if (mc
->has_hotpluggable_cpus
) {
2609 if (smp_cpus
% smp_threads
) {
2610 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2611 smp_cpus
, smp_threads
);
2614 if (max_cpus
% smp_threads
) {
2615 error_report("max_cpus (%u) must be multiple of threads (%u)",
2616 max_cpus
, smp_threads
);
2620 if (max_cpus
!= smp_cpus
) {
2621 error_report("This machine version does not support CPU hotplug");
2624 boot_cores_nr
= possible_cpus
->len
;
2627 if (smc
->pre_2_10_has_unused_icps
) {
2630 for (i
= 0; i
< spapr_max_server_number(spapr
); i
++) {
2631 /* Dummy entries get deregistered when real ICPState objects
2632 * are registered during CPU core hotplug.
2634 pre_2_10_vmstate_register_dummy_icp(i
);
2638 for (i
= 0; i
< possible_cpus
->len
; i
++) {
2639 int core_id
= i
* smp_threads
;
2641 if (mc
->has_hotpluggable_cpus
) {
2642 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_CPU
,
2643 spapr_vcpu_id(spapr
, core_id
));
2646 if (i
< boot_cores_nr
) {
2647 Object
*core
= object_new(type
);
2648 int nr_threads
= smp_threads
;
2650 /* Handle the partially filled core for older machine types */
2651 if ((i
+ 1) * smp_threads
>= smp_cpus
) {
2652 nr_threads
= smp_cpus
- i
* smp_threads
;
2655 object_property_set_int(core
, nr_threads
, "nr-threads",
2657 object_property_set_int(core
, core_id
, CPU_CORE_PROP_CORE_ID
,
2659 object_property_set_bool(core
, true, "realized", &error_fatal
);
2666 static PCIHostState
*spapr_create_default_phb(void)
2670 dev
= qdev_create(NULL
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
2671 qdev_prop_set_uint32(dev
, "index", 0);
2672 qdev_init_nofail(dev
);
2674 return PCI_HOST_BRIDGE(dev
);
2677 /* pSeries LPAR / sPAPR hardware init */
2678 static void spapr_machine_init(MachineState
*machine
)
2680 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
2681 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2682 const char *kernel_filename
= machine
->kernel_filename
;
2683 const char *initrd_filename
= machine
->initrd_filename
;
2686 MemoryRegion
*sysmem
= get_system_memory();
2687 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
2688 hwaddr node0_size
= spapr_node0_size(machine
);
2689 long load_limit
, fw_size
;
2691 Error
*resize_hpt_err
= NULL
;
2693 msi_nonbroken
= true;
2695 QLIST_INIT(&spapr
->phbs
);
2696 QTAILQ_INIT(&spapr
->pending_dimm_unplugs
);
2698 /* Determine capabilities to run with */
2699 spapr_caps_init(spapr
);
2701 kvmppc_check_papr_resize_hpt(&resize_hpt_err
);
2702 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DEFAULT
) {
2704 * If the user explicitly requested a mode we should either
2705 * supply it, or fail completely (which we do below). But if
2706 * it's not set explicitly, we reset our mode to something
2709 if (resize_hpt_err
) {
2710 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
2711 error_free(resize_hpt_err
);
2712 resize_hpt_err
= NULL
;
2714 spapr
->resize_hpt
= smc
->resize_hpt_default
;
2718 assert(spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DEFAULT
);
2720 if ((spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) && resize_hpt_err
) {
2722 * User requested HPT resize, but this host can't supply it. Bail out
2724 error_report_err(resize_hpt_err
);
2728 spapr
->rma_size
= node0_size
;
2730 /* With KVM, we don't actually know whether KVM supports an
2731 * unbounded RMA (PR KVM) or is limited by the hash table size
2732 * (HV KVM using VRMA), so we always assume the latter
2734 * In that case, we also limit the initial allocations for RTAS
2735 * etc... to 256M since we have no way to know what the VRMA size
2736 * is going to be as it depends on the size of the hash table
2737 * which isn't determined yet.
2739 if (kvm_enabled()) {
2740 spapr
->vrma_adjust
= 1;
2741 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x10000000);
2744 /* Actually we don't support unbounded RMA anymore since we added
2745 * proper emulation of HV mode. The max we can get is 16G which
2746 * also happens to be what we configure for PAPR mode so make sure
2747 * we don't do anything bigger than that
2749 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x400000000ull
);
2751 if (spapr
->rma_size
> node0_size
) {
2752 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx
")",
2757 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2758 load_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FW_OVERHEAD
;
2761 * VSMT must be set in order to be able to compute VCPU ids, ie to
2762 * call spapr_max_server_number() or spapr_vcpu_id().
2764 spapr_set_vsmt_mode(spapr
, &error_fatal
);
2766 /* Set up Interrupt Controller before we create the VCPUs */
2767 spapr_irq_init(spapr
, &error_fatal
);
2769 /* Set up containers for ibm,client-architecture-support negotiated options
2771 spapr
->ov5
= spapr_ovec_new();
2772 spapr
->ov5_cas
= spapr_ovec_new();
2774 if (smc
->dr_lmb_enabled
) {
2775 spapr_ovec_set(spapr
->ov5
, OV5_DRCONF_MEMORY
);
2776 spapr_validate_node_memory(machine
, &error_fatal
);
2779 spapr_ovec_set(spapr
->ov5
, OV5_FORM1_AFFINITY
);
2781 /* advertise support for dedicated HP event source to guests */
2782 if (spapr
->use_hotplug_event_source
) {
2783 spapr_ovec_set(spapr
->ov5
, OV5_HP_EVT
);
2786 /* advertise support for HPT resizing */
2787 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
2788 spapr_ovec_set(spapr
->ov5
, OV5_HPT_RESIZE
);
2791 /* advertise support for ibm,dyamic-memory-v2 */
2792 spapr_ovec_set(spapr
->ov5
, OV5_DRMEM_V2
);
2794 /* advertise XIVE on POWER9 machines */
2795 if (spapr
->irq
->ov5
& (SPAPR_OV5_XIVE_EXPLOIT
| SPAPR_OV5_XIVE_BOTH
)) {
2796 if (ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
,
2797 0, spapr
->max_compat_pvr
)) {
2798 spapr_ovec_set(spapr
->ov5
, OV5_XIVE_EXPLOIT
);
2799 } else if (spapr
->irq
->ov5
& SPAPR_OV5_XIVE_EXPLOIT
) {
2800 error_report("XIVE-only machines require a POWER9 CPU");
2806 spapr_init_cpus(spapr
);
2808 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2809 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
2810 spapr
->max_compat_pvr
)) {
2811 /* KVM and TCG always allow GTSE with radix... */
2812 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_GTSE
);
2814 /* ... but not with hash (currently). */
2816 if (kvm_enabled()) {
2817 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2818 kvmppc_enable_logical_ci_hcalls();
2819 kvmppc_enable_set_mode_hcall();
2821 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2822 kvmppc_enable_clear_ref_mod_hcalls();
2826 memory_region_allocate_system_memory(ram
, NULL
, "ppc_spapr.ram",
2828 memory_region_add_subregion(sysmem
, 0, ram
);
2830 /* always allocate the device memory information */
2831 machine
->device_memory
= g_malloc0(sizeof(*machine
->device_memory
));
2833 /* initialize hotplug memory address space */
2834 if (machine
->ram_size
< machine
->maxram_size
) {
2835 ram_addr_t device_mem_size
= machine
->maxram_size
- machine
->ram_size
;
2837 * Limit the number of hotpluggable memory slots to half the number
2838 * slots that KVM supports, leaving the other half for PCI and other
2839 * devices. However ensure that number of slots doesn't drop below 32.
2841 int max_memslots
= kvm_enabled() ? kvm_get_max_memslots() / 2 :
2842 SPAPR_MAX_RAM_SLOTS
;
2844 if (max_memslots
< SPAPR_MAX_RAM_SLOTS
) {
2845 max_memslots
= SPAPR_MAX_RAM_SLOTS
;
2847 if (machine
->ram_slots
> max_memslots
) {
2848 error_report("Specified number of memory slots %"
2849 PRIu64
" exceeds max supported %d",
2850 machine
->ram_slots
, max_memslots
);
2854 machine
->device_memory
->base
= ROUND_UP(machine
->ram_size
,
2855 SPAPR_DEVICE_MEM_ALIGN
);
2856 memory_region_init(&machine
->device_memory
->mr
, OBJECT(spapr
),
2857 "device-memory", device_mem_size
);
2858 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
2859 &machine
->device_memory
->mr
);
2862 if (smc
->dr_lmb_enabled
) {
2863 spapr_create_lmb_dr_connectors(spapr
);
2866 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, "spapr-rtas.bin");
2868 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2871 spapr
->rtas_size
= get_image_size(filename
);
2872 if (spapr
->rtas_size
< 0) {
2873 error_report("Could not get size of LPAR rtas '%s'", filename
);
2876 spapr
->rtas_blob
= g_malloc(spapr
->rtas_size
);
2877 if (load_image_size(filename
, spapr
->rtas_blob
, spapr
->rtas_size
) < 0) {
2878 error_report("Could not load LPAR rtas '%s'", filename
);
2881 if (spapr
->rtas_size
> RTAS_MAX_SIZE
) {
2882 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2883 (size_t)spapr
->rtas_size
, RTAS_MAX_SIZE
);
2888 /* Set up RTAS event infrastructure */
2889 spapr_events_init(spapr
);
2891 /* Set up the RTC RTAS interfaces */
2892 spapr_rtc_create(spapr
);
2894 /* Set up VIO bus */
2895 spapr
->vio_bus
= spapr_vio_bus_init();
2897 for (i
= 0; i
< serial_max_hds(); i
++) {
2899 spapr_vty_create(spapr
->vio_bus
, serial_hd(i
));
2903 /* We always have at least the nvram device on VIO */
2904 spapr_create_nvram(spapr
);
2907 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2908 * connectors (described in root DT node's "ibm,drc-types" property)
2909 * are pre-initialized here. additional child connectors (such as
2910 * connectors for a PHBs PCI slots) are added as needed during their
2911 * parent's realization.
2913 if (smc
->dr_phb_enabled
) {
2914 for (i
= 0; i
< SPAPR_MAX_PHBS
; i
++) {
2915 spapr_dr_connector_new(OBJECT(machine
), TYPE_SPAPR_DRC_PHB
, i
);
2920 spapr_pci_rtas_init();
2922 phb
= spapr_create_default_phb();
2924 for (i
= 0; i
< nb_nics
; i
++) {
2925 NICInfo
*nd
= &nd_table
[i
];
2928 nd
->model
= g_strdup("spapr-vlan");
2931 if (g_str_equal(nd
->model
, "spapr-vlan") ||
2932 g_str_equal(nd
->model
, "ibmveth")) {
2933 spapr_vlan_create(spapr
->vio_bus
, nd
);
2935 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
2939 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
2940 spapr_vscsi_create(spapr
->vio_bus
);
2944 if (spapr_vga_init(phb
->bus
, &error_fatal
)) {
2945 spapr
->has_graphics
= true;
2946 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
2950 if (smc
->use_ohci_by_default
) {
2951 pci_create_simple(phb
->bus
, -1, "pci-ohci");
2953 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
2956 if (spapr
->has_graphics
) {
2957 USBBus
*usb_bus
= usb_bus_find(-1);
2959 usb_create_simple(usb_bus
, "usb-kbd");
2960 usb_create_simple(usb_bus
, "usb-mouse");
2964 if (spapr
->rma_size
< (MIN_RMA_SLOF
* MiB
)) {
2966 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2971 if (kernel_filename
) {
2972 uint64_t lowaddr
= 0;
2974 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
2975 translate_kernel_address
, NULL
,
2976 NULL
, &lowaddr
, NULL
, 1,
2977 PPC_ELF_MACHINE
, 0, 0);
2978 if (spapr
->kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
2979 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
2980 translate_kernel_address
, NULL
, NULL
,
2981 &lowaddr
, NULL
, 0, PPC_ELF_MACHINE
,
2983 spapr
->kernel_le
= spapr
->kernel_size
> 0;
2985 if (spapr
->kernel_size
< 0) {
2986 error_report("error loading %s: %s", kernel_filename
,
2987 load_elf_strerror(spapr
->kernel_size
));
2992 if (initrd_filename
) {
2993 /* Try to locate the initrd in the gap between the kernel
2994 * and the firmware. Add a bit of space just in case
2996 spapr
->initrd_base
= (KERNEL_LOAD_ADDR
+ spapr
->kernel_size
2997 + 0x1ffff) & ~0xffff;
2998 spapr
->initrd_size
= load_image_targphys(initrd_filename
,
3001 - spapr
->initrd_base
);
3002 if (spapr
->initrd_size
< 0) {
3003 error_report("could not load initial ram disk '%s'",
3010 if (bios_name
== NULL
) {
3011 bios_name
= FW_FILE_NAME
;
3013 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
3015 error_report("Could not find LPAR firmware '%s'", bios_name
);
3018 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
3020 error_report("Could not load LPAR firmware '%s'", filename
);
3025 /* FIXME: Should register things through the MachineState's qdev
3026 * interface, this is a legacy from the sPAPREnvironment structure
3027 * which predated MachineState but had a similar function */
3028 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
3029 register_savevm_live(NULL
, "spapr/htab", -1, 1,
3030 &savevm_htab_handlers
, spapr
);
3032 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine
),
3035 qemu_register_boot_set(spapr_boot_set
, spapr
);
3037 if (kvm_enabled()) {
3038 /* to stop and start vmclock */
3039 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change
,
3042 kvmppc_spapr_enable_inkernel_multitce();
3046 static int spapr_kvm_type(MachineState
*machine
, const char *vm_type
)
3052 if (!strcmp(vm_type
, "HV")) {
3056 if (!strcmp(vm_type
, "PR")) {
3060 error_report("Unknown kvm-type specified '%s'", vm_type
);
3065 * Implementation of an interface to adjust firmware path
3066 * for the bootindex property handling.
3068 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
3071 #define CAST(type, obj, name) \
3072 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3073 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
3074 sPAPRPHBState
*phb
= CAST(sPAPRPHBState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
3075 VHostSCSICommon
*vsc
= CAST(VHostSCSICommon
, dev
, TYPE_VHOST_SCSI_COMMON
);
3078 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
3079 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
3080 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
3084 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3085 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3086 * 0x8000 | (target << 8) | (bus << 5) | lun
3087 * (see the "Logical unit addressing format" table in SAM5)
3089 unsigned id
= 0x8000 | (d
->id
<< 8) | (d
->channel
<< 5) | d
->lun
;
3090 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3091 (uint64_t)id
<< 48);
3092 } else if (virtio
) {
3094 * We use SRP luns of the form 01000000 | (target << 8) | lun
3095 * in the top 32 bits of the 64-bit LUN
3096 * Note: the quote above is from SLOF and it is wrong,
3097 * the actual binding is:
3098 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3100 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
3101 if (d
->lun
>= 256) {
3102 /* Use the LUN "flat space addressing method" */
3105 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3106 (uint64_t)id
<< 32);
3109 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3110 * in the top 32 bits of the 64-bit LUN
3112 unsigned usb_port
= atoi(usb
->port
->path
);
3113 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
3114 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3115 (uint64_t)id
<< 32);
3120 * SLOF probes the USB devices, and if it recognizes that the device is a
3121 * storage device, it changes its name to "storage" instead of "usb-host",
3122 * and additionally adds a child node for the SCSI LUN, so the correct
3123 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3125 if (strcmp("usb-host", qdev_fw_name(dev
)) == 0) {
3126 USBDevice
*usbdev
= CAST(USBDevice
, dev
, TYPE_USB_DEVICE
);
3127 if (usb_host_dev_is_scsi_storage(usbdev
)) {
3128 return g_strdup_printf("storage@%s/disk", usbdev
->port
->path
);
3133 /* Replace "pci" with "pci@800000020000000" */
3134 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
3138 /* Same logic as virtio above */
3139 unsigned id
= 0x1000000 | (vsc
->target
<< 16) | vsc
->lun
;
3140 return g_strdup_printf("disk@%"PRIX64
, (uint64_t)id
<< 32);
3143 if (g_str_equal("pci-bridge", qdev_fw_name(dev
))) {
3144 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3145 PCIDevice
*pcidev
= CAST(PCIDevice
, dev
, TYPE_PCI_DEVICE
);
3146 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev
->devfn
));
3152 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
3154 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3156 return g_strdup(spapr
->kvm_type
);
3159 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
3161 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3163 g_free(spapr
->kvm_type
);
3164 spapr
->kvm_type
= g_strdup(value
);
3167 static bool spapr_get_modern_hotplug_events(Object
*obj
, Error
**errp
)
3169 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3171 return spapr
->use_hotplug_event_source
;
3174 static void spapr_set_modern_hotplug_events(Object
*obj
, bool value
,
3177 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3179 spapr
->use_hotplug_event_source
= value
;
3182 static bool spapr_get_msix_emulation(Object
*obj
, Error
**errp
)
3187 static char *spapr_get_resize_hpt(Object
*obj
, Error
**errp
)
3189 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3191 switch (spapr
->resize_hpt
) {
3192 case SPAPR_RESIZE_HPT_DEFAULT
:
3193 return g_strdup("default");
3194 case SPAPR_RESIZE_HPT_DISABLED
:
3195 return g_strdup("disabled");
3196 case SPAPR_RESIZE_HPT_ENABLED
:
3197 return g_strdup("enabled");
3198 case SPAPR_RESIZE_HPT_REQUIRED
:
3199 return g_strdup("required");
3201 g_assert_not_reached();
3204 static void spapr_set_resize_hpt(Object
*obj
, const char *value
, Error
**errp
)
3206 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3208 if (strcmp(value
, "default") == 0) {
3209 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DEFAULT
;
3210 } else if (strcmp(value
, "disabled") == 0) {
3211 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
3212 } else if (strcmp(value
, "enabled") == 0) {
3213 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_ENABLED
;
3214 } else if (strcmp(value
, "required") == 0) {
3215 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_REQUIRED
;
3217 error_setg(errp
, "Bad value for \"resize-hpt\" property");
3221 static void spapr_get_vsmt(Object
*obj
, Visitor
*v
, const char *name
,
3222 void *opaque
, Error
**errp
)
3224 visit_type_uint32(v
, name
, (uint32_t *)opaque
, errp
);
3227 static void spapr_set_vsmt(Object
*obj
, Visitor
*v
, const char *name
,
3228 void *opaque
, Error
**errp
)
3230 visit_type_uint32(v
, name
, (uint32_t *)opaque
, errp
);
3233 static char *spapr_get_ic_mode(Object
*obj
, Error
**errp
)
3235 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3237 if (spapr
->irq
== &spapr_irq_xics_legacy
) {
3238 return g_strdup("legacy");
3239 } else if (spapr
->irq
== &spapr_irq_xics
) {
3240 return g_strdup("xics");
3241 } else if (spapr
->irq
== &spapr_irq_xive
) {
3242 return g_strdup("xive");
3243 } else if (spapr
->irq
== &spapr_irq_dual
) {
3244 return g_strdup("dual");
3246 g_assert_not_reached();
3249 static void spapr_set_ic_mode(Object
*obj
, const char *value
, Error
**errp
)
3251 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3253 if (SPAPR_MACHINE_GET_CLASS(spapr
)->legacy_irq_allocation
) {
3254 error_setg(errp
, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3258 /* The legacy IRQ backend can not be set */
3259 if (strcmp(value
, "xics") == 0) {
3260 spapr
->irq
= &spapr_irq_xics
;
3261 } else if (strcmp(value
, "xive") == 0) {
3262 spapr
->irq
= &spapr_irq_xive
;
3263 } else if (strcmp(value
, "dual") == 0) {
3264 spapr
->irq
= &spapr_irq_dual
;
3266 error_setg(errp
, "Bad value for \"ic-mode\" property");
3270 static char *spapr_get_host_model(Object
*obj
, Error
**errp
)
3272 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3274 return g_strdup(spapr
->host_model
);
3277 static void spapr_set_host_model(Object
*obj
, const char *value
, Error
**errp
)
3279 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3281 g_free(spapr
->host_model
);
3282 spapr
->host_model
= g_strdup(value
);
3285 static char *spapr_get_host_serial(Object
*obj
, Error
**errp
)
3287 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3289 return g_strdup(spapr
->host_serial
);
3292 static void spapr_set_host_serial(Object
*obj
, const char *value
, Error
**errp
)
3294 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3296 g_free(spapr
->host_serial
);
3297 spapr
->host_serial
= g_strdup(value
);
3300 static void spapr_instance_init(Object
*obj
)
3302 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3303 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3305 spapr
->htab_fd
= -1;
3306 spapr
->use_hotplug_event_source
= true;
3307 object_property_add_str(obj
, "kvm-type",
3308 spapr_get_kvm_type
, spapr_set_kvm_type
, NULL
);
3309 object_property_set_description(obj
, "kvm-type",
3310 "Specifies the KVM virtualization mode (HV, PR)",
3312 object_property_add_bool(obj
, "modern-hotplug-events",
3313 spapr_get_modern_hotplug_events
,
3314 spapr_set_modern_hotplug_events
,
3316 object_property_set_description(obj
, "modern-hotplug-events",
3317 "Use dedicated hotplug event mechanism in"
3318 " place of standard EPOW events when possible"
3319 " (required for memory hot-unplug support)",
3321 ppc_compat_add_property(obj
, "max-cpu-compat", &spapr
->max_compat_pvr
,
3322 "Maximum permitted CPU compatibility mode",
3325 object_property_add_str(obj
, "resize-hpt",
3326 spapr_get_resize_hpt
, spapr_set_resize_hpt
, NULL
);
3327 object_property_set_description(obj
, "resize-hpt",
3328 "Resizing of the Hash Page Table (enabled, disabled, required)",
3330 object_property_add(obj
, "vsmt", "uint32", spapr_get_vsmt
,
3331 spapr_set_vsmt
, NULL
, &spapr
->vsmt
, &error_abort
);
3332 object_property_set_description(obj
, "vsmt",
3333 "Virtual SMT: KVM behaves as if this were"
3334 " the host's SMT mode", &error_abort
);
3335 object_property_add_bool(obj
, "vfio-no-msix-emulation",
3336 spapr_get_msix_emulation
, NULL
, NULL
);
3338 /* The machine class defines the default interrupt controller mode */
3339 spapr
->irq
= smc
->irq
;
3340 object_property_add_str(obj
, "ic-mode", spapr_get_ic_mode
,
3341 spapr_set_ic_mode
, NULL
);
3342 object_property_set_description(obj
, "ic-mode",
3343 "Specifies the interrupt controller mode (xics, xive, dual)",
3346 object_property_add_str(obj
, "host-model",
3347 spapr_get_host_model
, spapr_set_host_model
,
3349 object_property_set_description(obj
, "host-model",
3350 "Set host's model-id to use - none|passthrough|string", &error_abort
);
3351 object_property_add_str(obj
, "host-serial",
3352 spapr_get_host_serial
, spapr_set_host_serial
,
3354 object_property_set_description(obj
, "host-serial",
3355 "Set host's system-id to use - none|passthrough|string", &error_abort
);
3358 static void spapr_machine_finalizefn(Object
*obj
)
3360 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3362 g_free(spapr
->kvm_type
);
3365 void spapr_do_system_reset_on_cpu(CPUState
*cs
, run_on_cpu_data arg
)
3367 cpu_synchronize_state(cs
);
3368 ppc_cpu_do_system_reset(cs
);
3371 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
3376 async_run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
3380 int spapr_lmb_dt_populate(sPAPRDRConnector
*drc
, sPAPRMachineState
*spapr
,
3381 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3386 addr
= spapr_drc_index(drc
) * SPAPR_MEMORY_BLOCK_SIZE
;
3387 node
= object_property_get_uint(OBJECT(drc
->dev
), PC_DIMM_NODE_PROP
,
3389 *fdt_start_offset
= spapr_populate_memory_node(fdt
, node
, addr
,
3390 SPAPR_MEMORY_BLOCK_SIZE
);
3394 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr_start
, uint64_t size
,
3395 bool dedicated_hp_event_source
, Error
**errp
)
3397 sPAPRDRConnector
*drc
;
3398 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
3400 uint64_t addr
= addr_start
;
3401 bool hotplugged
= spapr_drc_hotplugged(dev
);
3402 Error
*local_err
= NULL
;
3404 for (i
= 0; i
< nr_lmbs
; i
++) {
3405 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3406 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3409 spapr_drc_attach(drc
, dev
, &local_err
);
3411 while (addr
> addr_start
) {
3412 addr
-= SPAPR_MEMORY_BLOCK_SIZE
;
3413 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3414 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3415 spapr_drc_detach(drc
);
3417 error_propagate(errp
, local_err
);
3421 spapr_drc_reset(drc
);
3423 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3425 /* send hotplug notification to the
3426 * guest only in case of hotplugged memory
3429 if (dedicated_hp_event_source
) {
3430 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3431 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3432 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3434 spapr_drc_index(drc
));
3436 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3442 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3445 Error
*local_err
= NULL
;
3446 sPAPRMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
3447 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3448 uint64_t size
, addr
;
3450 size
= memory_device_get_region_size(MEMORY_DEVICE(dev
), &error_abort
);
3452 pc_dimm_plug(dimm
, MACHINE(ms
), &local_err
);
3457 addr
= object_property_get_uint(OBJECT(dimm
),
3458 PC_DIMM_ADDR_PROP
, &local_err
);
3463 spapr_add_lmbs(dev
, addr
, size
, spapr_ovec_test(ms
->ov5_cas
, OV5_HP_EVT
),
3472 pc_dimm_unplug(dimm
, MACHINE(ms
));
3474 error_propagate(errp
, local_err
);
3477 static void spapr_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3480 const sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(hotplug_dev
);
3481 sPAPRMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3482 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3483 Error
*local_err
= NULL
;
3488 if (!smc
->dr_lmb_enabled
) {
3489 error_setg(errp
, "Memory hotplug not supported for this machine");
3493 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &local_err
);
3495 error_propagate(errp
, local_err
);
3499 if (size
% SPAPR_MEMORY_BLOCK_SIZE
) {
3500 error_setg(errp
, "Hotplugged memory size must be a multiple of "
3501 "%" PRIu64
" MB", SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
3505 memdev
= object_property_get_link(OBJECT(dimm
), PC_DIMM_MEMDEV_PROP
,
3507 pagesize
= host_memory_backend_pagesize(MEMORY_BACKEND(memdev
));
3508 spapr_check_pagesize(spapr
, pagesize
, &local_err
);
3510 error_propagate(errp
, local_err
);
3514 pc_dimm_pre_plug(dimm
, MACHINE(hotplug_dev
), NULL
, errp
);
3517 struct sPAPRDIMMState
{
3520 QTAILQ_ENTRY(sPAPRDIMMState
) next
;
3523 static sPAPRDIMMState
*spapr_pending_dimm_unplugs_find(sPAPRMachineState
*s
,
3526 sPAPRDIMMState
*dimm_state
= NULL
;
3528 QTAILQ_FOREACH(dimm_state
, &s
->pending_dimm_unplugs
, next
) {
3529 if (dimm_state
->dimm
== dimm
) {
3536 static sPAPRDIMMState
*spapr_pending_dimm_unplugs_add(sPAPRMachineState
*spapr
,
3540 sPAPRDIMMState
*ds
= NULL
;
3543 * If this request is for a DIMM whose removal had failed earlier
3544 * (due to guest's refusal to remove the LMBs), we would have this
3545 * dimm already in the pending_dimm_unplugs list. In that
3546 * case don't add again.
3548 ds
= spapr_pending_dimm_unplugs_find(spapr
, dimm
);
3550 ds
= g_malloc0(sizeof(sPAPRDIMMState
));
3551 ds
->nr_lmbs
= nr_lmbs
;
3553 QTAILQ_INSERT_HEAD(&spapr
->pending_dimm_unplugs
, ds
, next
);
3558 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState
*spapr
,
3559 sPAPRDIMMState
*dimm_state
)
3561 QTAILQ_REMOVE(&spapr
->pending_dimm_unplugs
, dimm_state
, next
);
3565 static sPAPRDIMMState
*spapr_recover_pending_dimm_state(sPAPRMachineState
*ms
,
3568 sPAPRDRConnector
*drc
;
3569 uint64_t size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
),
3571 uint32_t nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3572 uint32_t avail_lmbs
= 0;
3573 uint64_t addr_start
, addr
;
3576 addr_start
= object_property_get_int(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3580 for (i
= 0; i
< nr_lmbs
; i
++) {
3581 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3582 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3587 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3590 return spapr_pending_dimm_unplugs_add(ms
, avail_lmbs
, dimm
);
3593 /* Callback to be called during DRC release. */
3594 void spapr_lmb_release(DeviceState
*dev
)
3596 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3597 sPAPRMachineState
*spapr
= SPAPR_MACHINE(hotplug_ctrl
);
3598 sPAPRDIMMState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3600 /* This information will get lost if a migration occurs
3601 * during the unplug process. In this case recover it. */
3603 ds
= spapr_recover_pending_dimm_state(spapr
, PC_DIMM(dev
));
3605 /* The DRC being examined by the caller at least must be counted */
3606 g_assert(ds
->nr_lmbs
);
3609 if (--ds
->nr_lmbs
) {
3614 * Now that all the LMBs have been removed by the guest, call the
3615 * unplug handler chain. This can never fail.
3617 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3618 object_unparent(OBJECT(dev
));
3621 static void spapr_memory_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3623 sPAPRMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3624 sPAPRDIMMState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3626 pc_dimm_unplug(PC_DIMM(dev
), MACHINE(hotplug_dev
));
3627 object_property_set_bool(OBJECT(dev
), false, "realized", NULL
);
3628 spapr_pending_dimm_unplugs_remove(spapr
, ds
);
3631 static void spapr_memory_unplug_request(HotplugHandler
*hotplug_dev
,
3632 DeviceState
*dev
, Error
**errp
)
3634 sPAPRMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3635 Error
*local_err
= NULL
;
3636 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3638 uint64_t size
, addr_start
, addr
;
3640 sPAPRDRConnector
*drc
;
3642 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &error_abort
);
3643 nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3645 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3652 * An existing pending dimm state for this DIMM means that there is an
3653 * unplug operation in progress, waiting for the spapr_lmb_release
3654 * callback to complete the job (BQL can't cover that far). In this case,
3655 * bail out to avoid detaching DRCs that were already released.
3657 if (spapr_pending_dimm_unplugs_find(spapr
, dimm
)) {
3658 error_setg(&local_err
,
3659 "Memory unplug already in progress for device %s",
3664 spapr_pending_dimm_unplugs_add(spapr
, nr_lmbs
, dimm
);
3667 for (i
= 0; i
< nr_lmbs
; i
++) {
3668 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3669 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3672 spapr_drc_detach(drc
);
3673 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3676 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3677 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3678 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3679 nr_lmbs
, spapr_drc_index(drc
));
3681 error_propagate(errp
, local_err
);
3684 /* Callback to be called during DRC release. */
3685 void spapr_core_release(DeviceState
*dev
)
3687 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3689 /* Call the unplug handler chain. This can never fail. */
3690 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3691 object_unparent(OBJECT(dev
));
3694 static void spapr_core_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3696 MachineState
*ms
= MACHINE(hotplug_dev
);
3697 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(ms
);
3698 CPUCore
*cc
= CPU_CORE(dev
);
3699 CPUArchId
*core_slot
= spapr_find_cpu_slot(ms
, cc
->core_id
, NULL
);
3701 if (smc
->pre_2_10_has_unused_icps
) {
3702 sPAPRCPUCore
*sc
= SPAPR_CPU_CORE(OBJECT(dev
));
3705 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3706 CPUState
*cs
= CPU(sc
->threads
[i
]);
3708 pre_2_10_vmstate_register_dummy_icp(cs
->cpu_index
);
3713 core_slot
->cpu
= NULL
;
3714 object_property_set_bool(OBJECT(dev
), false, "realized", NULL
);
3718 void spapr_core_unplug_request(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3721 sPAPRMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3723 sPAPRDRConnector
*drc
;
3724 CPUCore
*cc
= CPU_CORE(dev
);
3726 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
)) {
3727 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3732 error_setg(errp
, "Boot CPU core may not be unplugged");
3736 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3737 spapr_vcpu_id(spapr
, cc
->core_id
));
3740 spapr_drc_detach(drc
);
3742 spapr_hotplug_req_remove_by_index(drc
);
3745 int spapr_core_dt_populate(sPAPRDRConnector
*drc
, sPAPRMachineState
*spapr
,
3746 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3748 sPAPRCPUCore
*core
= SPAPR_CPU_CORE(drc
->dev
);
3749 CPUState
*cs
= CPU(core
->threads
[0]);
3750 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3751 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
3752 int id
= spapr_get_vcpu_id(cpu
);
3756 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, id
);
3757 offset
= fdt_add_subnode(fdt
, 0, nodename
);
3760 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
3762 *fdt_start_offset
= offset
;
3766 static void spapr_core_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3769 sPAPRMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3770 MachineClass
*mc
= MACHINE_GET_CLASS(spapr
);
3771 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3772 sPAPRCPUCore
*core
= SPAPR_CPU_CORE(OBJECT(dev
));
3773 CPUCore
*cc
= CPU_CORE(dev
);
3775 sPAPRDRConnector
*drc
;
3776 Error
*local_err
= NULL
;
3777 CPUArchId
*core_slot
;
3779 bool hotplugged
= spapr_drc_hotplugged(dev
);
3781 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3783 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3787 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3788 spapr_vcpu_id(spapr
, cc
->core_id
));
3790 g_assert(drc
|| !mc
->has_hotpluggable_cpus
);
3793 spapr_drc_attach(drc
, dev
, &local_err
);
3795 error_propagate(errp
, local_err
);
3801 * Send hotplug notification interrupt to the guest only
3802 * in case of hotplugged CPUs.
3804 spapr_hotplug_req_add_by_index(drc
);
3806 spapr_drc_reset(drc
);
3810 core_slot
->cpu
= OBJECT(dev
);
3812 if (smc
->pre_2_10_has_unused_icps
) {
3815 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3816 cs
= CPU(core
->threads
[i
]);
3817 pre_2_10_vmstate_unregister_dummy_icp(cs
->cpu_index
);
3822 static void spapr_core_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3825 MachineState
*machine
= MACHINE(OBJECT(hotplug_dev
));
3826 MachineClass
*mc
= MACHINE_GET_CLASS(hotplug_dev
);
3827 Error
*local_err
= NULL
;
3828 CPUCore
*cc
= CPU_CORE(dev
);
3829 const char *base_core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
3830 const char *type
= object_get_typename(OBJECT(dev
));
3831 CPUArchId
*core_slot
;
3834 if (dev
->hotplugged
&& !mc
->has_hotpluggable_cpus
) {
3835 error_setg(&local_err
, "CPU hotplug not supported for this machine");
3839 if (strcmp(base_core_type
, type
)) {
3840 error_setg(&local_err
, "CPU core type should be %s", base_core_type
);
3844 if (cc
->core_id
% smp_threads
) {
3845 error_setg(&local_err
, "invalid core id %d", cc
->core_id
);
3850 * In general we should have homogeneous threads-per-core, but old
3851 * (pre hotplug support) machine types allow the last core to have
3852 * reduced threads as a compatibility hack for when we allowed
3853 * total vcpus not a multiple of threads-per-core.
3855 if (mc
->has_hotpluggable_cpus
&& (cc
->nr_threads
!= smp_threads
)) {
3856 error_setg(&local_err
, "invalid nr-threads %d, must be %d",
3857 cc
->nr_threads
, smp_threads
);
3861 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3863 error_setg(&local_err
, "core id %d out of range", cc
->core_id
);
3867 if (core_slot
->cpu
) {
3868 error_setg(&local_err
, "core %d already populated", cc
->core_id
);
3872 numa_cpu_pre_plug(core_slot
, dev
, &local_err
);
3875 error_propagate(errp
, local_err
);
3878 int spapr_phb_dt_populate(sPAPRDRConnector
*drc
, sPAPRMachineState
*spapr
,
3879 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3881 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(drc
->dev
);
3884 intc_phandle
= spapr_irq_get_phandle(spapr
, spapr
->fdt_blob
, errp
);
3885 if (intc_phandle
<= 0) {
3889 if (spapr_populate_pci_dt(sphb
, intc_phandle
, fdt
, spapr
->irq
->nr_msis
,
3890 fdt_start_offset
)) {
3891 error_setg(errp
, "unable to create FDT node for PHB %d", sphb
->index
);
3895 /* generally SLOF creates these, for hotplug it's up to QEMU */
3896 _FDT(fdt_setprop_string(fdt
, *fdt_start_offset
, "name", "pci"));
3901 static void spapr_phb_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3904 sPAPRMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3905 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
3906 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3907 const unsigned windows_supported
= spapr_phb_windows_supported(sphb
);
3909 if (dev
->hotplugged
&& !smc
->dr_phb_enabled
) {
3910 error_setg(errp
, "PHB hotplug not supported for this machine");
3914 if (sphb
->index
== (uint32_t)-1) {
3915 error_setg(errp
, "\"index\" for PAPR PHB is mandatory");
3920 * This will check that sphb->index doesn't exceed the maximum number of
3921 * PHBs for the current machine type.
3923 smc
->phb_placement(spapr
, sphb
->index
,
3924 &sphb
->buid
, &sphb
->io_win_addr
,
3925 &sphb
->mem_win_addr
, &sphb
->mem64_win_addr
,
3926 windows_supported
, sphb
->dma_liobn
, errp
);
3929 static void spapr_phb_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3932 sPAPRMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3933 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3934 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
3935 sPAPRDRConnector
*drc
;
3936 bool hotplugged
= spapr_drc_hotplugged(dev
);
3937 Error
*local_err
= NULL
;
3939 if (!smc
->dr_phb_enabled
) {
3943 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
3944 /* hotplug hooks should check it's enabled before getting this far */
3947 spapr_drc_attach(drc
, DEVICE(dev
), &local_err
);
3949 error_propagate(errp
, local_err
);
3954 spapr_hotplug_req_add_by_index(drc
);
3956 spapr_drc_reset(drc
);
3960 void spapr_phb_release(DeviceState
*dev
)
3962 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3964 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3965 object_unparent(OBJECT(dev
));
3968 static void spapr_phb_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3970 object_property_set_bool(OBJECT(dev
), false, "realized", NULL
);
3973 static void spapr_phb_unplug_request(HotplugHandler
*hotplug_dev
,
3974 DeviceState
*dev
, Error
**errp
)
3976 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
3977 sPAPRDRConnector
*drc
;
3979 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
3982 if (!spapr_drc_unplug_requested(drc
)) {
3983 spapr_drc_detach(drc
);
3984 spapr_hotplug_req_remove_by_index(drc
);
3988 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
3989 DeviceState
*dev
, Error
**errp
)
3991 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
3992 spapr_memory_plug(hotplug_dev
, dev
, errp
);
3993 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3994 spapr_core_plug(hotplug_dev
, dev
, errp
);
3995 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
3996 spapr_phb_plug(hotplug_dev
, dev
, errp
);
4000 static void spapr_machine_device_unplug(HotplugHandler
*hotplug_dev
,
4001 DeviceState
*dev
, Error
**errp
)
4003 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4004 spapr_memory_unplug(hotplug_dev
, dev
);
4005 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4006 spapr_core_unplug(hotplug_dev
, dev
);
4007 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4008 spapr_phb_unplug(hotplug_dev
, dev
);
4012 static void spapr_machine_device_unplug_request(HotplugHandler
*hotplug_dev
,
4013 DeviceState
*dev
, Error
**errp
)
4015 sPAPRMachineState
*sms
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4016 MachineClass
*mc
= MACHINE_GET_CLASS(sms
);
4017 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4019 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4020 if (spapr_ovec_test(sms
->ov5_cas
, OV5_HP_EVT
)) {
4021 spapr_memory_unplug_request(hotplug_dev
, dev
, errp
);
4023 /* NOTE: this means there is a window after guest reset, prior to
4024 * CAS negotiation, where unplug requests will fail due to the
4025 * capability not being detected yet. This is a bit different than
4026 * the case with PCI unplug, where the events will be queued and
4027 * eventually handled by the guest after boot
4029 error_setg(errp
, "Memory hot unplug not supported for this guest");
4031 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4032 if (!mc
->has_hotpluggable_cpus
) {
4033 error_setg(errp
, "CPU hot unplug not supported on this machine");
4036 spapr_core_unplug_request(hotplug_dev
, dev
, errp
);
4037 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4038 if (!smc
->dr_phb_enabled
) {
4039 error_setg(errp
, "PHB hot unplug not supported on this machine");
4042 spapr_phb_unplug_request(hotplug_dev
, dev
, errp
);
4046 static void spapr_machine_device_pre_plug(HotplugHandler
*hotplug_dev
,
4047 DeviceState
*dev
, Error
**errp
)
4049 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4050 spapr_memory_pre_plug(hotplug_dev
, dev
, errp
);
4051 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4052 spapr_core_pre_plug(hotplug_dev
, dev
, errp
);
4053 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4054 spapr_phb_pre_plug(hotplug_dev
, dev
, errp
);
4058 static HotplugHandler
*spapr_get_hotplug_handler(MachineState
*machine
,
4061 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
) ||
4062 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
) ||
4063 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4064 return HOTPLUG_HANDLER(machine
);
4069 static CpuInstanceProperties
4070 spapr_cpu_index_to_props(MachineState
*machine
, unsigned cpu_index
)
4072 CPUArchId
*core_slot
;
4073 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
4075 /* make sure possible_cpu are intialized */
4076 mc
->possible_cpu_arch_ids(machine
);
4077 /* get CPU core slot containing thread that matches cpu_index */
4078 core_slot
= spapr_find_cpu_slot(machine
, cpu_index
, NULL
);
4080 return core_slot
->props
;
4083 static int64_t spapr_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
4085 return idx
/ smp_cores
% nb_numa_nodes
;
4088 static const CPUArchIdList
*spapr_possible_cpu_arch_ids(MachineState
*machine
)
4091 const char *core_type
;
4092 int spapr_max_cores
= max_cpus
/ smp_threads
;
4093 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
4095 if (!mc
->has_hotpluggable_cpus
) {
4096 spapr_max_cores
= QEMU_ALIGN_UP(smp_cpus
, smp_threads
) / smp_threads
;
4098 if (machine
->possible_cpus
) {
4099 assert(machine
->possible_cpus
->len
== spapr_max_cores
);
4100 return machine
->possible_cpus
;
4103 core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
4105 error_report("Unable to find sPAPR CPU Core definition");
4109 machine
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
4110 sizeof(CPUArchId
) * spapr_max_cores
);
4111 machine
->possible_cpus
->len
= spapr_max_cores
;
4112 for (i
= 0; i
< machine
->possible_cpus
->len
; i
++) {
4113 int core_id
= i
* smp_threads
;
4115 machine
->possible_cpus
->cpus
[i
].type
= core_type
;
4116 machine
->possible_cpus
->cpus
[i
].vcpus_count
= smp_threads
;
4117 machine
->possible_cpus
->cpus
[i
].arch_id
= core_id
;
4118 machine
->possible_cpus
->cpus
[i
].props
.has_core_id
= true;
4119 machine
->possible_cpus
->cpus
[i
].props
.core_id
= core_id
;
4121 return machine
->possible_cpus
;
4124 static void spapr_phb_placement(sPAPRMachineState
*spapr
, uint32_t index
,
4125 uint64_t *buid
, hwaddr
*pio
,
4126 hwaddr
*mmio32
, hwaddr
*mmio64
,
4127 unsigned n_dma
, uint32_t *liobns
, Error
**errp
)
4130 * New-style PHB window placement.
4132 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4133 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4136 * Some guest kernels can't work with MMIO windows above 1<<46
4137 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4139 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4140 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4141 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4142 * 1TiB 64-bit MMIO windows for each PHB.
4144 const uint64_t base_buid
= 0x800000020000000ULL
;
4147 /* Sanity check natural alignments */
4148 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
4149 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
4150 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE
% SPAPR_PCI_MEM32_WIN_SIZE
) != 0);
4151 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE
% SPAPR_PCI_IO_WIN_SIZE
) != 0);
4152 /* Sanity check bounds */
4153 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_IO_WIN_SIZE
) >
4154 SPAPR_PCI_MEM32_WIN_SIZE
);
4155 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_MEM32_WIN_SIZE
) >
4156 SPAPR_PCI_MEM64_WIN_SIZE
);
4158 if (index
>= SPAPR_MAX_PHBS
) {
4159 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %llu)",
4160 SPAPR_MAX_PHBS
- 1);
4164 *buid
= base_buid
+ index
;
4165 for (i
= 0; i
< n_dma
; ++i
) {
4166 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
4169 *pio
= SPAPR_PCI_BASE
+ index
* SPAPR_PCI_IO_WIN_SIZE
;
4170 *mmio32
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM32_WIN_SIZE
;
4171 *mmio64
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM64_WIN_SIZE
;
4174 static ICSState
*spapr_ics_get(XICSFabric
*dev
, int irq
)
4176 sPAPRMachineState
*spapr
= SPAPR_MACHINE(dev
);
4178 return ics_valid_irq(spapr
->ics
, irq
) ? spapr
->ics
: NULL
;
4181 static void spapr_ics_resend(XICSFabric
*dev
)
4183 sPAPRMachineState
*spapr
= SPAPR_MACHINE(dev
);
4185 ics_resend(spapr
->ics
);
4188 static ICPState
*spapr_icp_get(XICSFabric
*xi
, int vcpu_id
)
4190 PowerPCCPU
*cpu
= spapr_find_cpu(vcpu_id
);
4192 return cpu
? spapr_cpu_state(cpu
)->icp
: NULL
;
4195 static void spapr_pic_print_info(InterruptStatsProvider
*obj
,
4198 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
4200 spapr
->irq
->print_info(spapr
, mon
);
4203 int spapr_get_vcpu_id(PowerPCCPU
*cpu
)
4205 return cpu
->vcpu_id
;
4208 void spapr_set_vcpu_id(PowerPCCPU
*cpu
, int cpu_index
, Error
**errp
)
4210 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
4213 vcpu_id
= spapr_vcpu_id(spapr
, cpu_index
);
4215 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id
)) {
4216 error_setg(errp
, "Can't create CPU with id %d in KVM", vcpu_id
);
4217 error_append_hint(errp
, "Adjust the number of cpus to %d "
4218 "or try to raise the number of threads per core\n",
4219 vcpu_id
* smp_threads
/ spapr
->vsmt
);
4223 cpu
->vcpu_id
= vcpu_id
;
4226 PowerPCCPU
*spapr_find_cpu(int vcpu_id
)
4231 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
4233 if (spapr_get_vcpu_id(cpu
) == vcpu_id
) {
4241 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
4243 MachineClass
*mc
= MACHINE_CLASS(oc
);
4244 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
4245 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
4246 NMIClass
*nc
= NMI_CLASS(oc
);
4247 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
4248 PPCVirtualHypervisorClass
*vhc
= PPC_VIRTUAL_HYPERVISOR_CLASS(oc
);
4249 XICSFabricClass
*xic
= XICS_FABRIC_CLASS(oc
);
4250 InterruptStatsProviderClass
*ispc
= INTERRUPT_STATS_PROVIDER_CLASS(oc
);
4252 mc
->desc
= "pSeries Logical Partition (PAPR compliant)";
4253 mc
->ignore_boot_device_suffixes
= true;
4256 * We set up the default / latest behaviour here. The class_init
4257 * functions for the specific versioned machine types can override
4258 * these details for backwards compatibility
4260 mc
->init
= spapr_machine_init
;
4261 mc
->reset
= spapr_machine_reset
;
4262 mc
->block_default_type
= IF_SCSI
;
4263 mc
->max_cpus
= 1024;
4264 mc
->no_parallel
= 1;
4265 mc
->default_boot_order
= "";
4266 mc
->default_ram_size
= 512 * MiB
;
4267 mc
->default_display
= "std";
4268 mc
->kvm_type
= spapr_kvm_type
;
4269 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
4270 mc
->pci_allow_0_address
= true;
4271 assert(!mc
->get_hotplug_handler
);
4272 mc
->get_hotplug_handler
= spapr_get_hotplug_handler
;
4273 hc
->pre_plug
= spapr_machine_device_pre_plug
;
4274 hc
->plug
= spapr_machine_device_plug
;
4275 mc
->cpu_index_to_instance_props
= spapr_cpu_index_to_props
;
4276 mc
->get_default_cpu_node_id
= spapr_get_default_cpu_node_id
;
4277 mc
->possible_cpu_arch_ids
= spapr_possible_cpu_arch_ids
;
4278 hc
->unplug_request
= spapr_machine_device_unplug_request
;
4279 hc
->unplug
= spapr_machine_device_unplug
;
4281 smc
->dr_lmb_enabled
= true;
4282 smc
->update_dt_enabled
= true;
4283 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power9_v2.0");
4284 mc
->has_hotpluggable_cpus
= true;
4285 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_ENABLED
;
4286 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
4287 nc
->nmi_monitor_handler
= spapr_nmi
;
4288 smc
->phb_placement
= spapr_phb_placement
;
4289 vhc
->hypercall
= emulate_spapr_hypercall
;
4290 vhc
->hpt_mask
= spapr_hpt_mask
;
4291 vhc
->map_hptes
= spapr_map_hptes
;
4292 vhc
->unmap_hptes
= spapr_unmap_hptes
;
4293 vhc
->store_hpte
= spapr_store_hpte
;
4294 vhc
->get_pate
= spapr_get_pate
;
4295 vhc
->encode_hpt_for_kvm_pr
= spapr_encode_hpt_for_kvm_pr
;
4296 xic
->ics_get
= spapr_ics_get
;
4297 xic
->ics_resend
= spapr_ics_resend
;
4298 xic
->icp_get
= spapr_icp_get
;
4299 ispc
->print_info
= spapr_pic_print_info
;
4300 /* Force NUMA node memory size to be a multiple of
4301 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4302 * in which LMBs are represented and hot-added
4304 mc
->numa_mem_align_shift
= 28;
4306 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_OFF
;
4307 smc
->default_caps
.caps
[SPAPR_CAP_VSX
] = SPAPR_CAP_ON
;
4308 smc
->default_caps
.caps
[SPAPR_CAP_DFP
] = SPAPR_CAP_ON
;
4309 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_BROKEN
;
4310 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_BROKEN
;
4311 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_BROKEN
;
4312 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 16; /* 64kiB */
4313 smc
->default_caps
.caps
[SPAPR_CAP_NESTED_KVM_HV
] = SPAPR_CAP_OFF
;
4314 smc
->default_caps
.caps
[SPAPR_CAP_LARGE_DECREMENTER
] = SPAPR_CAP_ON
;
4315 spapr_caps_add_properties(smc
, &error_abort
);
4316 smc
->irq
= &spapr_irq_xics
;
4317 smc
->dr_phb_enabled
= true;
4320 static const TypeInfo spapr_machine_info
= {
4321 .name
= TYPE_SPAPR_MACHINE
,
4322 .parent
= TYPE_MACHINE
,
4324 .instance_size
= sizeof(sPAPRMachineState
),
4325 .instance_init
= spapr_instance_init
,
4326 .instance_finalize
= spapr_machine_finalizefn
,
4327 .class_size
= sizeof(sPAPRMachineClass
),
4328 .class_init
= spapr_machine_class_init
,
4329 .interfaces
= (InterfaceInfo
[]) {
4330 { TYPE_FW_PATH_PROVIDER
},
4332 { TYPE_HOTPLUG_HANDLER
},
4333 { TYPE_PPC_VIRTUAL_HYPERVISOR
},
4334 { TYPE_XICS_FABRIC
},
4335 { TYPE_INTERRUPT_STATS_PROVIDER
},
4340 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4341 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4344 MachineClass *mc = MACHINE_CLASS(oc); \
4345 spapr_machine_##suffix##_class_options(mc); \
4347 mc->alias = "pseries"; \
4348 mc->is_default = 1; \
4351 static const TypeInfo spapr_machine_##suffix##_info = { \
4352 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4353 .parent = TYPE_SPAPR_MACHINE, \
4354 .class_init = spapr_machine_##suffix##_class_init, \
4356 static void spapr_machine_register_##suffix(void) \
4358 type_register(&spapr_machine_##suffix##_info); \
4360 type_init(spapr_machine_register_##suffix)
4365 static void spapr_machine_4_0_class_options(MachineClass
*mc
)
4367 /* Defaults for the latest behaviour inherited from the base class */
4370 DEFINE_SPAPR_MACHINE(4_0
, "4.0", true);
4375 static void spapr_machine_3_1_class_options(MachineClass
*mc
)
4377 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4378 static GlobalProperty compat
[] = {
4379 { TYPE_SPAPR_MACHINE
, "host-model", "passthrough" },
4380 { TYPE_SPAPR_MACHINE
, "host-serial", "passthrough" },
4383 spapr_machine_4_0_class_options(mc
);
4384 compat_props_add(mc
->compat_props
, hw_compat_3_1
, hw_compat_3_1_len
);
4385 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4387 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power8_v2.0");
4388 smc
->update_dt_enabled
= false;
4389 smc
->dr_phb_enabled
= false;
4390 smc
->default_caps
.caps
[SPAPR_CAP_LARGE_DECREMENTER
] = SPAPR_CAP_OFF
;
4393 DEFINE_SPAPR_MACHINE(3_1
, "3.1", false);
4399 static void spapr_machine_3_0_class_options(MachineClass
*mc
)
4401 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4403 spapr_machine_3_1_class_options(mc
);
4404 compat_props_add(mc
->compat_props
, hw_compat_3_0
, hw_compat_3_0_len
);
4406 smc
->legacy_irq_allocation
= true;
4407 smc
->irq
= &spapr_irq_xics_legacy
;
4410 DEFINE_SPAPR_MACHINE(3_0
, "3.0", false);
4415 static void spapr_machine_2_12_class_options(MachineClass
*mc
)
4417 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4418 static GlobalProperty compat
[] = {
4419 { TYPE_POWERPC_CPU
, "pre-3.0-migration", "on" },
4420 { TYPE_SPAPR_CPU_CORE
, "pre-3.0-migration", "on" },
4423 spapr_machine_3_0_class_options(mc
);
4424 compat_props_add(mc
->compat_props
, hw_compat_2_12
, hw_compat_2_12_len
);
4425 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4427 /* We depend on kvm_enabled() to choose a default value for the
4428 * hpt-max-page-size capability. Of course we can't do it here
4429 * because this is too early and the HW accelerator isn't initialzed
4430 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4432 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 0;
4435 DEFINE_SPAPR_MACHINE(2_12
, "2.12", false);
4437 static void spapr_machine_2_12_sxxm_class_options(MachineClass
*mc
)
4439 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4441 spapr_machine_2_12_class_options(mc
);
4442 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4443 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4444 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_FIXED_CCD
;
4447 DEFINE_SPAPR_MACHINE(2_12_sxxm
, "2.12-sxxm", false);
4453 static void spapr_machine_2_11_class_options(MachineClass
*mc
)
4455 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4457 spapr_machine_2_12_class_options(mc
);
4458 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_ON
;
4459 compat_props_add(mc
->compat_props
, hw_compat_2_11
, hw_compat_2_11_len
);
4462 DEFINE_SPAPR_MACHINE(2_11
, "2.11", false);
4468 static void spapr_machine_2_10_class_options(MachineClass
*mc
)
4470 spapr_machine_2_11_class_options(mc
);
4471 compat_props_add(mc
->compat_props
, hw_compat_2_10
, hw_compat_2_10_len
);
4474 DEFINE_SPAPR_MACHINE(2_10
, "2.10", false);
4480 static void spapr_machine_2_9_class_options(MachineClass
*mc
)
4482 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4483 static GlobalProperty compat
[] = {
4484 { TYPE_POWERPC_CPU
, "pre-2.10-migration", "on" },
4487 spapr_machine_2_10_class_options(mc
);
4488 compat_props_add(mc
->compat_props
, hw_compat_2_9
, hw_compat_2_9_len
);
4489 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4490 mc
->numa_auto_assign_ram
= numa_legacy_auto_assign_ram
;
4491 smc
->pre_2_10_has_unused_icps
= true;
4492 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_DISABLED
;
4495 DEFINE_SPAPR_MACHINE(2_9
, "2.9", false);
4501 static void spapr_machine_2_8_class_options(MachineClass
*mc
)
4503 static GlobalProperty compat
[] = {
4504 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pcie-extended-configuration-space", "off" },
4507 spapr_machine_2_9_class_options(mc
);
4508 compat_props_add(mc
->compat_props
, hw_compat_2_8
, hw_compat_2_8_len
);
4509 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4510 mc
->numa_mem_align_shift
= 23;
4513 DEFINE_SPAPR_MACHINE(2_8
, "2.8", false);
4519 static void phb_placement_2_7(sPAPRMachineState
*spapr
, uint32_t index
,
4520 uint64_t *buid
, hwaddr
*pio
,
4521 hwaddr
*mmio32
, hwaddr
*mmio64
,
4522 unsigned n_dma
, uint32_t *liobns
, Error
**errp
)
4524 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4525 const uint64_t base_buid
= 0x800000020000000ULL
;
4526 const hwaddr phb_spacing
= 0x1000000000ULL
; /* 64 GiB */
4527 const hwaddr mmio_offset
= 0xa0000000; /* 2 GiB + 512 MiB */
4528 const hwaddr pio_offset
= 0x80000000; /* 2 GiB */
4529 const uint32_t max_index
= 255;
4530 const hwaddr phb0_alignment
= 0x10000000000ULL
; /* 1 TiB */
4532 uint64_t ram_top
= MACHINE(spapr
)->ram_size
;
4533 hwaddr phb0_base
, phb_base
;
4536 /* Do we have device memory? */
4537 if (MACHINE(spapr
)->maxram_size
> ram_top
) {
4538 /* Can't just use maxram_size, because there may be an
4539 * alignment gap between normal and device memory regions
4541 ram_top
= MACHINE(spapr
)->device_memory
->base
+
4542 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
4545 phb0_base
= QEMU_ALIGN_UP(ram_top
, phb0_alignment
);
4547 if (index
> max_index
) {
4548 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %u)",
4553 *buid
= base_buid
+ index
;
4554 for (i
= 0; i
< n_dma
; ++i
) {
4555 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
4558 phb_base
= phb0_base
+ index
* phb_spacing
;
4559 *pio
= phb_base
+ pio_offset
;
4560 *mmio32
= phb_base
+ mmio_offset
;
4562 * We don't set the 64-bit MMIO window, relying on the PHB's
4563 * fallback behaviour of automatically splitting a large "32-bit"
4564 * window into contiguous 32-bit and 64-bit windows
4568 static void spapr_machine_2_7_class_options(MachineClass
*mc
)
4570 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4571 static GlobalProperty compat
[] = {
4572 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem_win_size", "0xf80000000", },
4573 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem64_win_size", "0", },
4574 { TYPE_POWERPC_CPU
, "pre-2.8-migration", "on", },
4575 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pre-2.8-migration", "on", },
4578 spapr_machine_2_8_class_options(mc
);
4579 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power7_v2.3");
4580 mc
->default_machine_opts
= "modern-hotplug-events=off";
4581 compat_props_add(mc
->compat_props
, hw_compat_2_7
, hw_compat_2_7_len
);
4582 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4583 smc
->phb_placement
= phb_placement_2_7
;
4586 DEFINE_SPAPR_MACHINE(2_7
, "2.7", false);
4592 static void spapr_machine_2_6_class_options(MachineClass
*mc
)
4594 static GlobalProperty compat
[] = {
4595 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "ddw", "off" },
4598 spapr_machine_2_7_class_options(mc
);
4599 mc
->has_hotpluggable_cpus
= false;
4600 compat_props_add(mc
->compat_props
, hw_compat_2_6
, hw_compat_2_6_len
);
4601 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4604 DEFINE_SPAPR_MACHINE(2_6
, "2.6", false);
4610 static void spapr_machine_2_5_class_options(MachineClass
*mc
)
4612 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4613 static GlobalProperty compat
[] = {
4614 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4617 spapr_machine_2_6_class_options(mc
);
4618 smc
->use_ohci_by_default
= true;
4619 compat_props_add(mc
->compat_props
, hw_compat_2_5
, hw_compat_2_5_len
);
4620 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4623 DEFINE_SPAPR_MACHINE(2_5
, "2.5", false);
4629 static void spapr_machine_2_4_class_options(MachineClass
*mc
)
4631 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4633 spapr_machine_2_5_class_options(mc
);
4634 smc
->dr_lmb_enabled
= false;
4635 compat_props_add(mc
->compat_props
, hw_compat_2_4
, hw_compat_2_4_len
);
4638 DEFINE_SPAPR_MACHINE(2_4
, "2.4", false);
4644 static void spapr_machine_2_3_class_options(MachineClass
*mc
)
4646 static GlobalProperty compat
[] = {
4647 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4649 spapr_machine_2_4_class_options(mc
);
4650 compat_props_add(mc
->compat_props
, hw_compat_2_3
, hw_compat_2_3_len
);
4651 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4653 DEFINE_SPAPR_MACHINE(2_3
, "2.3", false);
4659 static void spapr_machine_2_2_class_options(MachineClass
*mc
)
4661 static GlobalProperty compat
[] = {
4662 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem_win_size", "0x20000000" },
4665 spapr_machine_2_3_class_options(mc
);
4666 compat_props_add(mc
->compat_props
, hw_compat_2_2
, hw_compat_2_2_len
);
4667 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4668 mc
->default_machine_opts
= "modern-hotplug-events=off,suppress-vmdesc=on";
4670 DEFINE_SPAPR_MACHINE(2_2
, "2.2", false);
4676 static void spapr_machine_2_1_class_options(MachineClass
*mc
)
4678 spapr_machine_2_2_class_options(mc
);
4679 compat_props_add(mc
->compat_props
, hw_compat_2_1
, hw_compat_2_1_len
);
4681 DEFINE_SPAPR_MACHINE(2_1
, "2.1", false);
4683 static void spapr_machine_register_types(void)
4685 type_register_static(&spapr_machine_info
);
4688 type_init(spapr_machine_register_types
)