qemu-options: Remove deprecated -no-kvm-pit-reinjection
[qemu.git] / hw / acpi / nvdimm.c
blob59d6e4254ccde9d2534d4bee7f31522667f62962
1 /*
2 * NVDIMM ACPI Implementation
4 * Copyright(C) 2015 Intel Corporation.
6 * Author:
7 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10 * and the DSM specification can be found at:
11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
13 * Currently, it only supports PMEM Virtualization.
15 * This library is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU Lesser General Public
17 * License as published by the Free Software Foundation; either
18 * version 2 of the License, or (at your option) any later version.
20 * This library is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * Lesser General Public License for more details.
25 * You should have received a copy of the GNU Lesser General Public
26 * License along with this library; if not, see <http://www.gnu.org/licenses/>
29 #include "qemu/osdep.h"
30 #include "hw/acpi/acpi.h"
31 #include "hw/acpi/aml-build.h"
32 #include "hw/acpi/bios-linker-loader.h"
33 #include "hw/nvram/fw_cfg.h"
34 #include "hw/mem/nvdimm.h"
36 static int nvdimm_device_list(Object *obj, void *opaque)
38 GSList **list = opaque;
40 if (object_dynamic_cast(obj, TYPE_NVDIMM)) {
41 *list = g_slist_append(*list, DEVICE(obj));
44 object_child_foreach(obj, nvdimm_device_list, opaque);
45 return 0;
49 * inquire NVDIMM devices and link them into the list which is
50 * returned to the caller.
52 * Note: it is the caller's responsibility to free the list to avoid
53 * memory leak.
55 static GSList *nvdimm_get_device_list(void)
57 GSList *list = NULL;
59 object_child_foreach(qdev_get_machine(), nvdimm_device_list, &list);
60 return list;
63 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \
64 { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \
65 (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \
66 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }
69 * define Byte Addressable Persistent Memory (PM) Region according to
70 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
72 static const uint8_t nvdimm_nfit_spa_uuid[] =
73 NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
74 0x18, 0xb7, 0x8c, 0xdb);
77 * NVDIMM Firmware Interface Table
78 * @signature: "NFIT"
80 * It provides information that allows OSPM to enumerate NVDIMM present in
81 * the platform and associate system physical address ranges created by the
82 * NVDIMMs.
84 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
86 struct NvdimmNfitHeader {
87 ACPI_TABLE_HEADER_DEF
88 uint32_t reserved;
89 } QEMU_PACKED;
90 typedef struct NvdimmNfitHeader NvdimmNfitHeader;
93 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
94 * Interface Table (NFIT).
98 * System Physical Address Range Structure
100 * It describes the system physical address ranges occupied by NVDIMMs and
101 * the types of the regions.
103 struct NvdimmNfitSpa {
104 uint16_t type;
105 uint16_t length;
106 uint16_t spa_index;
107 uint16_t flags;
108 uint32_t reserved;
109 uint32_t proximity_domain;
110 uint8_t type_guid[16];
111 uint64_t spa_base;
112 uint64_t spa_length;
113 uint64_t mem_attr;
114 } QEMU_PACKED;
115 typedef struct NvdimmNfitSpa NvdimmNfitSpa;
118 * Memory Device to System Physical Address Range Mapping Structure
120 * It enables identifying each NVDIMM region and the corresponding SPA
121 * describing the memory interleave
123 struct NvdimmNfitMemDev {
124 uint16_t type;
125 uint16_t length;
126 uint32_t nfit_handle;
127 uint16_t phys_id;
128 uint16_t region_id;
129 uint16_t spa_index;
130 uint16_t dcr_index;
131 uint64_t region_len;
132 uint64_t region_offset;
133 uint64_t region_dpa;
134 uint16_t interleave_index;
135 uint16_t interleave_ways;
136 uint16_t flags;
137 uint16_t reserved;
138 } QEMU_PACKED;
139 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
141 #define ACPI_NFIT_MEM_NOT_ARMED (1 << 3)
144 * NVDIMM Control Region Structure
146 * It describes the NVDIMM and if applicable, Block Control Window.
148 struct NvdimmNfitControlRegion {
149 uint16_t type;
150 uint16_t length;
151 uint16_t dcr_index;
152 uint16_t vendor_id;
153 uint16_t device_id;
154 uint16_t revision_id;
155 uint16_t sub_vendor_id;
156 uint16_t sub_device_id;
157 uint16_t sub_revision_id;
158 uint8_t reserved[6];
159 uint32_t serial_number;
160 uint16_t fic;
161 uint16_t num_bcw;
162 uint64_t bcw_size;
163 uint64_t cmd_offset;
164 uint64_t cmd_size;
165 uint64_t status_offset;
166 uint64_t status_size;
167 uint16_t flags;
168 uint8_t reserved2[6];
169 } QEMU_PACKED;
170 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
173 * Module serial number is a unique number for each device. We use the
174 * slot id of NVDIMM device to generate this number so that each device
175 * associates with a different number.
177 * 0x123456 is a magic number we arbitrarily chose.
179 static uint32_t nvdimm_slot_to_sn(int slot)
181 return 0x123456 + slot;
185 * handle is used to uniquely associate nfit_memdev structure with NVDIMM
186 * ACPI device - nfit_memdev.nfit_handle matches with the value returned
187 * by ACPI device _ADR method.
189 * We generate the handle with the slot id of NVDIMM device and reserve
190 * 0 for NVDIMM root device.
192 static uint32_t nvdimm_slot_to_handle(int slot)
194 return slot + 1;
198 * index uniquely identifies the structure, 0 is reserved which indicates
199 * that the structure is not valid or the associated structure is not
200 * present.
202 * Each NVDIMM device needs two indexes, one for nfit_spa and another for
203 * nfit_dc which are generated by the slot id of NVDIMM device.
205 static uint16_t nvdimm_slot_to_spa_index(int slot)
207 return (slot + 1) << 1;
210 /* See the comments of nvdimm_slot_to_spa_index(). */
211 static uint32_t nvdimm_slot_to_dcr_index(int slot)
213 return nvdimm_slot_to_spa_index(slot) + 1;
216 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
218 NVDIMMDevice *nvdimm = NULL;
219 GSList *list, *device_list = nvdimm_get_device_list();
221 for (list = device_list; list; list = list->next) {
222 NVDIMMDevice *nvd = list->data;
223 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
224 NULL);
226 if (nvdimm_slot_to_handle(slot) == handle) {
227 nvdimm = nvd;
228 break;
232 g_slist_free(device_list);
233 return nvdimm;
236 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
237 static void
238 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
240 NvdimmNfitSpa *nfit_spa;
241 uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP,
242 NULL);
243 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
244 NULL);
245 uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
246 NULL);
247 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
248 NULL);
250 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
252 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
253 Structure */);
254 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
255 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
258 * Control region is strict as all the device info, such as SN, index,
259 * is associated with slot id.
261 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
262 management during hot add/online
263 operation */ |
264 2 /* Data in Proximity Domain field is
265 valid*/);
267 /* NUMA node. */
268 nfit_spa->proximity_domain = cpu_to_le32(node);
269 /* the region reported as PMEM. */
270 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
271 sizeof(nvdimm_nfit_spa_uuid));
273 nfit_spa->spa_base = cpu_to_le64(addr);
274 nfit_spa->spa_length = cpu_to_le64(size);
276 /* It is the PMEM and can be cached as writeback. */
277 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
278 0x8000ULL /* EFI_MEMORY_NV */);
282 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
283 * Structure
285 static void
286 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
288 NvdimmNfitMemDev *nfit_memdev;
289 NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev));
290 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
291 NULL);
292 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
293 NULL);
294 uint32_t handle = nvdimm_slot_to_handle(slot);
296 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
298 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
299 Range Map Structure*/);
300 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
301 nfit_memdev->nfit_handle = cpu_to_le32(handle);
304 * associate memory device with System Physical Address Range
305 * Structure.
307 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
308 /* associate memory device with Control Region Structure. */
309 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
311 /* The memory region on the device. */
312 nfit_memdev->region_len = cpu_to_le64(size);
313 /* The device address starts from 0. */
314 nfit_memdev->region_dpa = cpu_to_le64(0);
316 /* Only one interleave for PMEM. */
317 nfit_memdev->interleave_ways = cpu_to_le16(1);
319 if (nvdimm->unarmed) {
320 nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED);
325 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
327 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
329 NvdimmNfitControlRegion *nfit_dcr;
330 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
331 NULL);
332 uint32_t sn = nvdimm_slot_to_sn(slot);
334 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
336 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
337 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
338 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
340 /* vendor: Intel. */
341 nfit_dcr->vendor_id = cpu_to_le16(0x8086);
342 nfit_dcr->device_id = cpu_to_le16(1);
344 /* The _DSM method is following Intel's DSM specification. */
345 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
346 in ACPI 6.0 is 1. */);
347 nfit_dcr->serial_number = cpu_to_le32(sn);
348 nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code:
349 Byte addressable, no energy backed.
350 See ACPI 6.2, sect 5.2.25.6 and
351 JEDEC Annex L Release 3. */);
354 static GArray *nvdimm_build_device_structure(void)
356 GSList *device_list = nvdimm_get_device_list();
357 GArray *structures = g_array_new(false, true /* clear */, 1);
359 for (; device_list; device_list = device_list->next) {
360 DeviceState *dev = device_list->data;
362 /* build System Physical Address Range Structure. */
363 nvdimm_build_structure_spa(structures, dev);
366 * build Memory Device to System Physical Address Range Mapping
367 * Structure.
369 nvdimm_build_structure_memdev(structures, dev);
371 /* build NVDIMM Control Region Structure. */
372 nvdimm_build_structure_dcr(structures, dev);
374 g_slist_free(device_list);
376 return structures;
379 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
381 fit_buf->fit = g_array_new(false, true /* clear */, 1);
384 static void nvdimm_build_fit_buffer(NvdimmFitBuffer *fit_buf)
386 g_array_free(fit_buf->fit, true);
387 fit_buf->fit = nvdimm_build_device_structure();
388 fit_buf->dirty = true;
391 void nvdimm_plug(AcpiNVDIMMState *state)
393 nvdimm_build_fit_buffer(&state->fit_buf);
396 static void nvdimm_build_nfit(AcpiNVDIMMState *state, GArray *table_offsets,
397 GArray *table_data, BIOSLinker *linker)
399 NvdimmFitBuffer *fit_buf = &state->fit_buf;
400 unsigned int header;
402 acpi_add_table(table_offsets, table_data);
404 /* NFIT header. */
405 header = table_data->len;
406 acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
407 /* NVDIMM device structures. */
408 g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
410 build_header(linker, table_data,
411 (void *)(table_data->data + header), "NFIT",
412 sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL);
415 #define NVDIMM_DSM_MEMORY_SIZE 4096
417 struct NvdimmDsmIn {
418 uint32_t handle;
419 uint32_t revision;
420 uint32_t function;
421 /* the remaining size in the page is used by arg3. */
422 union {
423 uint8_t arg3[4084];
425 } QEMU_PACKED;
426 typedef struct NvdimmDsmIn NvdimmDsmIn;
427 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE);
429 struct NvdimmDsmOut {
430 /* the size of buffer filled by QEMU. */
431 uint32_t len;
432 uint8_t data[4092];
433 } QEMU_PACKED;
434 typedef struct NvdimmDsmOut NvdimmDsmOut;
435 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE);
437 struct NvdimmDsmFunc0Out {
438 /* the size of buffer filled by QEMU. */
439 uint32_t len;
440 uint32_t supported_func;
441 } QEMU_PACKED;
442 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
444 struct NvdimmDsmFuncNoPayloadOut {
445 /* the size of buffer filled by QEMU. */
446 uint32_t len;
447 uint32_t func_ret_status;
448 } QEMU_PACKED;
449 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
451 struct NvdimmFuncGetLabelSizeOut {
452 /* the size of buffer filled by QEMU. */
453 uint32_t len;
454 uint32_t func_ret_status; /* return status code. */
455 uint32_t label_size; /* the size of label data area. */
457 * Maximum size of the namespace label data length supported by
458 * the platform in Get/Set Namespace Label Data functions.
460 uint32_t max_xfer;
461 } QEMU_PACKED;
462 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
463 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE);
465 struct NvdimmFuncGetLabelDataIn {
466 uint32_t offset; /* the offset in the namespace label data area. */
467 uint32_t length; /* the size of data is to be read via the function. */
468 } QEMU_PACKED;
469 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
470 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
471 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
473 struct NvdimmFuncGetLabelDataOut {
474 /* the size of buffer filled by QEMU. */
475 uint32_t len;
476 uint32_t func_ret_status; /* return status code. */
477 uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */
478 } QEMU_PACKED;
479 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
480 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE);
482 struct NvdimmFuncSetLabelDataIn {
483 uint32_t offset; /* the offset in the namespace label data area. */
484 uint32_t length; /* the size of data is to be written via the function. */
485 uint8_t in_buf[0]; /* the data written to label data area. */
486 } QEMU_PACKED;
487 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
488 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
489 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
491 struct NvdimmFuncReadFITIn {
492 uint32_t offset; /* the offset into FIT buffer. */
493 } QEMU_PACKED;
494 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
495 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
496 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
498 struct NvdimmFuncReadFITOut {
499 /* the size of buffer filled by QEMU. */
500 uint32_t len;
501 uint32_t func_ret_status; /* return status code. */
502 uint8_t fit[0]; /* the FIT data. */
503 } QEMU_PACKED;
504 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
505 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE);
507 static void
508 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
510 NvdimmDsmFunc0Out func0 = {
511 .len = cpu_to_le32(sizeof(func0)),
512 .supported_func = cpu_to_le32(supported_func),
514 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
517 static void
518 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
520 NvdimmDsmFuncNoPayloadOut out = {
521 .len = cpu_to_le32(sizeof(out)),
522 .func_ret_status = cpu_to_le32(func_ret_status),
524 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
527 #define NVDIMM_DSM_RET_STATUS_SUCCESS 0 /* Success */
528 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT 1 /* Not Supported */
529 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV 2 /* Non-Existing Memory Device */
530 #define NVDIMM_DSM_RET_STATUS_INVALID 3 /* Invalid Input Parameters */
531 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED 0x100 /* FIT Changed */
533 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000
535 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
536 static void nvdimm_dsm_func_read_fit(AcpiNVDIMMState *state, NvdimmDsmIn *in,
537 hwaddr dsm_mem_addr)
539 NvdimmFitBuffer *fit_buf = &state->fit_buf;
540 NvdimmFuncReadFITIn *read_fit;
541 NvdimmFuncReadFITOut *read_fit_out;
542 GArray *fit;
543 uint32_t read_len = 0, func_ret_status;
544 int size;
546 read_fit = (NvdimmFuncReadFITIn *)in->arg3;
547 le32_to_cpus(&read_fit->offset);
549 fit = fit_buf->fit;
551 nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n",
552 read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No");
554 if (read_fit->offset > fit->len) {
555 func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID;
556 goto exit;
559 /* It is the first time to read FIT. */
560 if (!read_fit->offset) {
561 fit_buf->dirty = false;
562 } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
563 func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED;
564 goto exit;
567 func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS;
568 read_len = MIN(fit->len - read_fit->offset,
569 NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut));
571 exit:
572 size = sizeof(NvdimmFuncReadFITOut) + read_len;
573 read_fit_out = g_malloc(size);
575 read_fit_out->len = cpu_to_le32(size);
576 read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
577 memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
579 cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
581 g_free(read_fit_out);
584 static void
585 nvdimm_dsm_handle_reserved_root_method(AcpiNVDIMMState *state,
586 NvdimmDsmIn *in, hwaddr dsm_mem_addr)
588 switch (in->function) {
589 case 0x0:
590 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
591 return;
592 case 0x1 /* Read FIT */:
593 nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
594 return;
597 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
600 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
603 * function 0 is called to inquire which functions are supported by
604 * OSPM
606 if (!in->function) {
607 nvdimm_dsm_function0(0 /* No function supported other than
608 function 0 */, dsm_mem_addr);
609 return;
612 /* No function except function 0 is supported yet. */
613 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
617 * the max transfer size is the max size transferred by both a
618 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
619 * function.
621 static uint32_t nvdimm_get_max_xfer_label_size(void)
623 uint32_t max_get_size, max_set_size, dsm_memory_size;
625 dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE;
628 * the max data ACPI can read one time which is transferred by
629 * the response of 'Get Namespace Label Data' function.
631 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
634 * the max data ACPI can write one time which is transferred by
635 * 'Set Namespace Label Data' function.
637 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
638 sizeof(NvdimmFuncSetLabelDataIn);
640 return MIN(max_get_size, max_set_size);
644 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
646 * It gets the size of Namespace Label data area and the max data size
647 * that Get/Set Namespace Label Data functions can transfer.
649 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
651 NvdimmFuncGetLabelSizeOut label_size_out = {
652 .len = cpu_to_le32(sizeof(label_size_out)),
654 uint32_t label_size, mxfer;
656 label_size = nvdimm->label_size;
657 mxfer = nvdimm_get_max_xfer_label_size();
659 nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer);
661 label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
662 label_size_out.label_size = cpu_to_le32(label_size);
663 label_size_out.max_xfer = cpu_to_le32(mxfer);
665 cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
666 sizeof(label_size_out));
669 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
670 uint32_t offset, uint32_t length)
672 uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID;
674 if (offset + length < offset) {
675 nvdimm_debug("offset %#x + length %#x is overflow.\n", offset,
676 length);
677 return ret;
680 if (nvdimm->label_size < offset + length) {
681 nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n",
682 offset + length, nvdimm->label_size);
683 return ret;
686 if (length > nvdimm_get_max_xfer_label_size()) {
687 nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n",
688 length, nvdimm_get_max_xfer_label_size());
689 return ret;
692 return NVDIMM_DSM_RET_STATUS_SUCCESS;
696 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
698 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
699 hwaddr dsm_mem_addr)
701 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
702 NvdimmFuncGetLabelDataIn *get_label_data;
703 NvdimmFuncGetLabelDataOut *get_label_data_out;
704 uint32_t status;
705 int size;
707 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
708 le32_to_cpus(&get_label_data->offset);
709 le32_to_cpus(&get_label_data->length);
711 nvdimm_debug("Read Label Data: offset %#x length %#x.\n",
712 get_label_data->offset, get_label_data->length);
714 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
715 get_label_data->length);
716 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
717 nvdimm_dsm_no_payload(status, dsm_mem_addr);
718 return;
721 size = sizeof(*get_label_data_out) + get_label_data->length;
722 assert(size <= NVDIMM_DSM_MEMORY_SIZE);
723 get_label_data_out = g_malloc(size);
725 get_label_data_out->len = cpu_to_le32(size);
726 get_label_data_out->func_ret_status =
727 cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
728 nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
729 get_label_data->length, get_label_data->offset);
731 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
732 g_free(get_label_data_out);
736 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
738 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
739 hwaddr dsm_mem_addr)
741 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
742 NvdimmFuncSetLabelDataIn *set_label_data;
743 uint32_t status;
745 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
747 le32_to_cpus(&set_label_data->offset);
748 le32_to_cpus(&set_label_data->length);
750 nvdimm_debug("Write Label Data: offset %#x length %#x.\n",
751 set_label_data->offset, set_label_data->length);
753 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
754 set_label_data->length);
755 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
756 nvdimm_dsm_no_payload(status, dsm_mem_addr);
757 return;
760 assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) +
761 set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE);
763 nvc->write_label_data(nvdimm, set_label_data->in_buf,
764 set_label_data->length, set_label_data->offset);
765 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr);
768 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
770 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
772 /* See the comments in nvdimm_dsm_root(). */
773 if (!in->function) {
774 uint32_t supported_func = 0;
776 if (nvdimm && nvdimm->label_size) {
777 supported_func |= 0x1 /* Bit 0 indicates whether there is
778 support for any functions other
779 than function 0. */ |
780 1 << 4 /* Get Namespace Label Size */ |
781 1 << 5 /* Get Namespace Label Data */ |
782 1 << 6 /* Set Namespace Label Data */;
784 nvdimm_dsm_function0(supported_func, dsm_mem_addr);
785 return;
788 if (!nvdimm) {
789 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV,
790 dsm_mem_addr);
791 return;
794 /* Encode DSM function according to DSM Spec Rev1. */
795 switch (in->function) {
796 case 4 /* Get Namespace Label Size */:
797 if (nvdimm->label_size) {
798 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
799 return;
801 break;
802 case 5 /* Get Namespace Label Data */:
803 if (nvdimm->label_size) {
804 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
805 return;
807 break;
808 case 0x6 /* Set Namespace Label Data */:
809 if (nvdimm->label_size) {
810 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
811 return;
813 break;
816 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
819 static uint64_t
820 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
822 nvdimm_debug("BUG: we never read _DSM IO Port.\n");
823 return 0;
826 static void
827 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
829 AcpiNVDIMMState *state = opaque;
830 NvdimmDsmIn *in;
831 hwaddr dsm_mem_addr = val;
833 nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);
836 * The DSM memory is mapped to guest address space so an evil guest
837 * can change its content while we are doing DSM emulation. Avoid
838 * this by copying DSM memory to QEMU local memory.
840 in = g_new(NvdimmDsmIn, 1);
841 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
843 le32_to_cpus(&in->revision);
844 le32_to_cpus(&in->function);
845 le32_to_cpus(&in->handle);
847 nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
848 in->handle, in->function);
850 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
851 nvdimm_debug("Revision %#x is not supported, expect %#x.\n",
852 in->revision, 0x1);
853 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
854 goto exit;
857 if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
858 nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr);
859 goto exit;
862 /* Handle 0 is reserved for NVDIMM Root Device. */
863 if (!in->handle) {
864 nvdimm_dsm_root(in, dsm_mem_addr);
865 goto exit;
868 nvdimm_dsm_device(in, dsm_mem_addr);
870 exit:
871 g_free(in);
874 static const MemoryRegionOps nvdimm_dsm_ops = {
875 .read = nvdimm_dsm_read,
876 .write = nvdimm_dsm_write,
877 .endianness = DEVICE_LITTLE_ENDIAN,
878 .valid = {
879 .min_access_size = 4,
880 .max_access_size = 4,
884 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
886 if (dev->hotplugged) {
887 acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
891 void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io,
892 FWCfgState *fw_cfg, Object *owner)
894 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
895 "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN);
896 memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr);
898 state->dsm_mem = g_array_new(false, true /* clear */, 1);
899 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
900 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
901 state->dsm_mem->len);
903 nvdimm_init_fit_buffer(&state->fit_buf);
906 #define NVDIMM_COMMON_DSM "NCAL"
907 #define NVDIMM_ACPI_MEM_ADDR "MEMA"
909 #define NVDIMM_DSM_MEMORY "NRAM"
910 #define NVDIMM_DSM_IOPORT "NPIO"
912 #define NVDIMM_DSM_NOTIFY "NTFI"
913 #define NVDIMM_DSM_HANDLE "HDLE"
914 #define NVDIMM_DSM_REVISION "REVS"
915 #define NVDIMM_DSM_FUNCTION "FUNC"
916 #define NVDIMM_DSM_ARG3 "FARG"
918 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
919 #define NVDIMM_DSM_OUT_BUF "ODAT"
921 #define NVDIMM_DSM_RFIT_STATUS "RSTA"
923 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
925 static void nvdimm_build_common_dsm(Aml *dev)
927 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
928 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
929 Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
930 uint8_t byte_list[1];
932 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
933 uuid = aml_arg(0);
934 function = aml_arg(2);
935 handle = aml_arg(4);
936 dsm_mem = aml_local(6);
937 dsm_out_buf = aml_local(7);
939 aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
941 /* map DSM memory and IO into ACPI namespace. */
942 aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, AML_SYSTEM_IO,
943 aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN));
944 aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
945 AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
948 * DSM notifier:
949 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
950 * emulate the access.
952 * It is the IO port so that accessing them will cause VM-exit, the
953 * control will be transferred to QEMU.
955 field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
956 AML_PRESERVE);
957 aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
958 sizeof(uint32_t) * BITS_PER_BYTE));
959 aml_append(method, field);
962 * DSM input:
963 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
964 * happens on NVDIMM Root Device.
965 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
966 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
967 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
968 * containing function-specific arguments.
970 * They are RAM mapping on host so that these accesses never cause
971 * VM-EXIT.
973 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
974 AML_PRESERVE);
975 aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
976 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
977 aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
978 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
979 aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
980 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
981 aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
982 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
983 aml_append(method, field);
986 * DSM output:
987 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
988 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
990 * Since the page is reused by both input and out, the input data
991 * will be lost after storing new result into ODAT so we should fetch
992 * all the input data before writing the result.
994 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
995 AML_PRESERVE);
996 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
997 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
998 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
999 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
1000 aml_append(method, field);
1003 * do not support any method if DSM memory address has not been
1004 * patched.
1006 unpatched = aml_equal(dsm_mem, aml_int(0x0));
1008 expected_uuid = aml_local(0);
1010 ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
1011 aml_append(ifctx, aml_store(
1012 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1013 /* UUID for NVDIMM Root Device */, expected_uuid));
1014 aml_append(method, ifctx);
1015 elsectx = aml_else();
1016 ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
1017 aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1018 /* UUID for QEMU internal use */), expected_uuid));
1019 aml_append(elsectx, ifctx);
1020 elsectx2 = aml_else();
1021 aml_append(elsectx2, aml_store(
1022 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1023 /* UUID for NVDIMM Devices */, expected_uuid));
1024 aml_append(elsectx, elsectx2);
1025 aml_append(method, elsectx);
1027 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1029 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
1032 * function 0 is called to inquire what functions are supported by
1033 * OSPM
1035 ifctx = aml_if(aml_equal(function, aml_int(0)));
1036 byte_list[0] = 0 /* No function Supported */;
1037 aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1038 aml_append(unsupport, ifctx);
1040 /* No function is supported yet. */
1041 byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT;
1042 aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1043 aml_append(method, unsupport);
1046 * The HDLE indicates the DSM function is issued from which device,
1047 * it reserves 0 for root device and is the handle for NVDIMM devices.
1048 * See the comments in nvdimm_slot_to_handle().
1050 aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1051 aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1052 aml_append(method, aml_store(aml_arg(2), aml_name(NVDIMM_DSM_FUNCTION)));
1055 * The fourth parameter (Arg3) of _DSM is a package which contains
1056 * a buffer, the layout of the buffer is specified by UUID (Arg0),
1057 * Revision ID (Arg1) and Function Index (Arg2) which are documented
1058 * in the DSM Spec.
1060 pckg = aml_arg(3);
1061 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
1062 aml_int(4 /* Package */)) /* It is a Package? */,
1063 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
1064 NULL));
1066 pckg_index = aml_local(2);
1067 pckg_buf = aml_local(3);
1068 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1069 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1070 aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1071 aml_append(method, ifctx);
1074 * tell QEMU about the real address of DSM memory, then QEMU
1075 * gets the control and fills the result in DSM memory.
1077 aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1079 dsm_out_buf_size = aml_local(1);
1080 /* RLEN is not included in the payload returned to guest. */
1081 aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1082 aml_int(4), dsm_out_buf_size));
1083 aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1084 dsm_out_buf_size));
1085 aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1086 aml_int(0), dsm_out_buf_size, "OBUF"));
1087 aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"),
1088 dsm_out_buf));
1089 aml_append(method, aml_return(dsm_out_buf));
1090 aml_append(dev, method);
1093 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1095 Aml *method;
1097 method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1098 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1099 aml_arg(1), aml_arg(2), aml_arg(3),
1100 aml_int(handle))));
1101 aml_append(dev, method);
1104 static void nvdimm_build_fit(Aml *dev)
1106 Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1107 Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1109 buf = aml_local(0);
1110 buf_size = aml_local(1);
1111 fit = aml_local(2);
1113 aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0)));
1115 /* build helper function, RFIT. */
1116 method = aml_method("RFIT", 1, AML_SERIALIZED);
1117 aml_append(method, aml_name_decl("OFST", aml_int(0)));
1119 /* prepare input package. */
1120 pkg = aml_package(1);
1121 aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1122 aml_append(pkg, aml_name("OFST"));
1124 /* call Read_FIT function. */
1125 call_result = aml_call5(NVDIMM_COMMON_DSM,
1126 aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1127 aml_int(1) /* Revision 1 */,
1128 aml_int(0x1) /* Read FIT */,
1129 pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1130 aml_append(method, aml_store(call_result, buf));
1132 /* handle _DSM result. */
1133 aml_append(method, aml_create_dword_field(buf,
1134 aml_int(0) /* offset at byte 0 */, "STAU"));
1136 aml_append(method, aml_store(aml_name("STAU"),
1137 aml_name(NVDIMM_DSM_RFIT_STATUS)));
1139 /* if something is wrong during _DSM. */
1140 ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
1141 aml_name("STAU"));
1142 ifctx = aml_if(aml_lnot(ifcond));
1143 aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1144 aml_append(method, ifctx);
1146 aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1147 aml_append(method, aml_subtract(buf_size,
1148 aml_int(4) /* the size of "STAU" */,
1149 buf_size));
1151 /* if we read the end of fit. */
1152 ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1153 aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1154 aml_append(method, ifctx);
1156 aml_append(method, aml_create_field(buf,
1157 aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1158 aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
1159 aml_append(method, aml_return(aml_name("BUFF")));
1160 aml_append(dev, method);
1162 /* build _FIT. */
1163 method = aml_method("_FIT", 0, AML_SERIALIZED);
1164 offset = aml_local(3);
1166 aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1167 aml_append(method, aml_store(aml_int(0), offset));
1169 whilectx = aml_while(aml_int(1));
1170 aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1171 aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1174 * if fit buffer was changed during RFIT, read from the beginning
1175 * again.
1177 ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1178 aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
1179 aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1180 aml_append(ifctx, aml_store(aml_int(0), offset));
1181 aml_append(whilectx, ifctx);
1183 elsectx = aml_else();
1185 /* finish fit read if no data is read out. */
1186 ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1187 aml_append(ifctx, aml_return(fit));
1188 aml_append(elsectx, ifctx);
1190 /* update the offset. */
1191 aml_append(elsectx, aml_add(offset, buf_size, offset));
1192 /* append the data we read out to the fit buffer. */
1193 aml_append(elsectx, aml_concatenate(fit, buf, fit));
1194 aml_append(whilectx, elsectx);
1195 aml_append(method, whilectx);
1197 aml_append(dev, method);
1200 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1202 uint32_t slot;
1204 for (slot = 0; slot < ram_slots; slot++) {
1205 uint32_t handle = nvdimm_slot_to_handle(slot);
1206 Aml *nvdimm_dev;
1208 nvdimm_dev = aml_device("NV%02X", slot);
1211 * ACPI 6.0: 9.20 NVDIMM Devices:
1213 * _ADR object that is used to supply OSPM with unique address
1214 * of the NVDIMM device. This is done by returning the NFIT Device
1215 * handle that is used to identify the associated entries in ACPI
1216 * table NFIT or _FIT.
1218 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1220 nvdimm_build_device_dsm(nvdimm_dev, handle);
1221 aml_append(root_dev, nvdimm_dev);
1225 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1226 BIOSLinker *linker, GArray *dsm_dma_arrea,
1227 uint32_t ram_slots)
1229 Aml *ssdt, *sb_scope, *dev;
1230 int mem_addr_offset, nvdimm_ssdt;
1232 acpi_add_table(table_offsets, table_data);
1234 ssdt = init_aml_allocator();
1235 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
1237 sb_scope = aml_scope("\\_SB");
1239 dev = aml_device("NVDR");
1242 * ACPI 6.0: 9.20 NVDIMM Devices:
1244 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1245 * NVDIMM interface device. Platform firmware is required to contain one
1246 * such device in _SB scope if NVDIMMs support is exposed by platform to
1247 * OSPM.
1248 * For each NVDIMM present or intended to be supported by platform,
1249 * platform firmware also exposes an ACPI Namespace Device under the
1250 * root device.
1252 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1254 nvdimm_build_common_dsm(dev);
1256 /* 0 is reserved for root device. */
1257 nvdimm_build_device_dsm(dev, 0);
1258 nvdimm_build_fit(dev);
1260 nvdimm_build_nvdimm_devices(dev, ram_slots);
1262 aml_append(sb_scope, dev);
1263 aml_append(ssdt, sb_scope);
1265 nvdimm_ssdt = table_data->len;
1267 /* copy AML table into ACPI tables blob and patch header there */
1268 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1269 mem_addr_offset = build_append_named_dword(table_data,
1270 NVDIMM_ACPI_MEM_ADDR);
1272 bios_linker_loader_alloc(linker,
1273 NVDIMM_DSM_MEM_FILE, dsm_dma_arrea,
1274 sizeof(NvdimmDsmIn), false /* high memory */);
1275 bios_linker_loader_add_pointer(linker,
1276 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1277 NVDIMM_DSM_MEM_FILE, 0);
1278 build_header(linker, table_data,
1279 (void *)(table_data->data + nvdimm_ssdt),
1280 "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
1281 free_aml_allocator();
1284 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1285 BIOSLinker *linker, AcpiNVDIMMState *state,
1286 uint32_t ram_slots)
1288 GSList *device_list;
1290 /* no nvdimm device can be plugged. */
1291 if (!ram_slots) {
1292 return;
1295 nvdimm_build_ssdt(table_offsets, table_data, linker, state->dsm_mem,
1296 ram_slots);
1298 device_list = nvdimm_get_device_list();
1299 /* no NVDIMM device is plugged. */
1300 if (!device_list) {
1301 return;
1304 nvdimm_build_nfit(state, table_offsets, table_data, linker);
1305 g_slist_free(device_list);